‘SUB-99-6
notes prepared for the VKI 29th CFD lecture series LA-508-99- 64

23-27 February, 1998
lecture 1 of 3

Amrita — A Computational Facility *‘?@Cg
(for CFD Modelling) 4 VEp

James J. Quirk
Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, CA 91125, USA.
J1q@galcit.caltech.edu

Abstract

Amrita is a software system for automating numerical investigations. The system is driven
using its own powerful scripting language, Amrita, which facilitates both the composition
and archiving of complete numerical investigations, as distinct from isolated computations.
Once archived, an Amrita investigation can later be reproduced by any interested party,
and not just the original investigator, for no cost other than the raw CPU time needed to
parse the archived script. In fact, this entire lecture can be reconstructed in such a fashion.
To do this, the script: constructs a number of shock-capturing schemes; runs a series of
test problems; generates the plots shown; outputs the IATEX to typeset the notes; performs
a myriad of behind-the-scenes tasks to glue everything together. Thus _Amrita has all the
characteristics of an operating system and should not be mistaken for a common-or-garden
code. In this first lecture I will attempt to describe Anmrita from the ground up which, if
successful, will be no mean feat given the scope of the system. Particularly, since much
of the material strays quite far from traditional computational fluid dynamics into areas of
heavy-duty programming. Hopefully, my second and third lectures will convince reluctant
programmers that the excursion is worth the effort.

1 Introduction

Amrita was originally developed as a means of driving an Adaptive Mesh Refinement (AMR)
algorithm so as to provide an interactive teaching aid which would allow students to explore
the practical aspects of compressible, computational fluid dynamics (CFD). Hence the name —
Adaptive Mesh Refinement Interactive Teaching Aid. Over time, however, Amrita’s mandate
has become far broader and so its name is now best taken at face valuel.

In the context of this lecture series, Amrita can be viewed as a software system for au-
tomating CFD investigations; right down to the level of constructing documents which explain
both the purpose and the outcome of a particular exercise. Automation is seem as the key to
improving numerical reliability, repeatability and productivity to the point where algorithms
could be improved through massed scrutiny. To reach this ideal, Amrita strives to provide a
computational framework which is sufficiently attractive to both novice and expert alike that
it might help erode the present cottage-industry mentality, and its concomitant vagaries, where

1By coincidence amrita (am-r& ) also happens to be the drink of the Hindu gods!

< ma —— 9 GEARY T Ry CUNFIIE
PEET RN EINE Y50 M SOMENCIC A SR~ S A o P gt S XDt LS NE LA LSS

i P R R B N R T AN e




DISCLAIMER

This report was .prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.

o rn e g o die o vt N s am e

s b | e . g g s



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

T A e A R o T N PR R T R Ry (S LR T



CFD codes are crafted on a one-off basis. Specifically, the many latitudes introduced by mun-
dane activities such as preparing input files and post-processing results, together with the sheer
drudgery of orchestrating investigations by hand, ensure that there is no convenient, watertight
basis for the exchange of practical information to feed back and improve the underlying CFD
algorithms. As a result, important observations can be slow to percolate through the research
community.

In an earlier work[18], I highlighted several pathological failings of Riemann solvers which
took several years to become common knowledge, despite the popularity of the schemes con-
cerned. Hence, personally speaking, I am reluctant to embrace new “improved” algorithms on
the strength of results from one or two selected test problems, as typically appear in a journal
article, for fear that the “improved” schemes contain their own as yet unidentified pathologies
(“better the devil you know, than the devil you don’t!”). Ideally, all new schemes would be
subjected to a complete battery of approved, acceptance tests before any claims are made on
their behalf, thereby streamlining the process of determining when it makes sense to employ a
particular numerical scheme. But many difficulties, both practical and ideological, would have
to be overcome before this could happen. One aim of this lecture is to demonstrate that Anprita
removes a sufficient number of the practical difficulties, in a sufficiently impartial manner that
you might be persuaded to help out with_Amrita’s further development for the computational
benefits that a properly, supported system would bring to the CFD community?.

1.1 Whatis Amrita — Animal, Vegetable or Mineral?

Amrita is a system which not only spans several disciplines, but one which is designed to
operate at several levels of sophistication. Consequently, it is impossible to describe the sys-
tem’s construction in an order which will keep all parties happy. First-off, Ampita is driven
via its own scripting language, Amrita’. At one end of the spectrum, too early an introduc-
tion to Amrita’s power leaves reluctant programmers with the impression that the language is
too sophisticated for their needs. At the other end, too late an introduction to its articulateness
runs the risk that hardened programmers will dismiss Amrita as yet another scripting language.
Similarly, in some quarters, too prominent a description of Amrita’s educational value, leaves
the impression that the system is a mere tinker-toy. On the other hand, to underplay this role, in
favour of emphasizing Amr_sol’s* mesh refinement capabilities, leaves _Amprita open to accu-
sations of algorithmic bias, which undermine its role as a neutral, numerical test-bed.

When all is said and done, Anrita stands or falls on its utility as a labour saving device. For
this reason, no claims are made regarding its algorithmic originality or efficiency; nor should
you feel_Amrita is trying to undermine your intellectual creativity. Ammrita is an open-ended
system for composing numerical investigations; in much the same way that I¥TjzX is a open-
ended system for composing documents. In view of this, it makes no sense to ask “What is
Amrita?’ or “What can_Amrita do?” Instead, you should ask: “What do I need to provide,
to enable _Amrita to do such and such?”’ To make this distinction clear, and also show that
Amrita is not vapour-ware, these notes rely heavily on worked examples which you can run
for yourself; Appendix A explains how to get started.

2By design, all parts of Amrita are considered ripe for improvement, to the point where the ultimate develop-
ment of the system rests with the generosity of its users.

3The typographic difference between Amrita and Amrita is defined on p. 41.

4 Amr_sol is the subject of lecture 2.

Do not be fooled into thinking that_Amrita’s horizons start and end with adaptive mesh refinement, just
because of its name,

T L T R T R R N T T TR T R i e T Y WERRTIT TR AR T AN It a T %




To gear up for this _Ampritan odyssey, the next section provides a gentle introduction to
Amrita programming using the example of a shock diffracting around a corner. Do not be put
off if you find the early pace slow, because the pace will soon quicken. However, to avoid
losing the way too often, many of the details as to how_Amrita goes about its full business are
consigned to Appendices. For example, Appendix B reveals how _Amrita conjures up a CFD
code for you to run the shock-diffraction simulation. Given this information, plus an appropriate
amount of effort on your part, there is no intrinsic reason why you could not eventually re-run
the self-same simulation in conjunction with your own hand-crafted solver.

Here is the complete road map for the lecture:

Road Map
1 Introduction 1
1.1 'Whatis Amrita — Animal, VegetableorMineral? . . . .. ... ........ 2
2 An Amrita Primer 5
21 myscript. . . .. ... e e e e e e e e e e e e 5
22 AutoloadProcedures . . . ... .. . ..ottt . 6
23 SuingTokens . . .. .. ... .. it e 7
24 TemplateExpressions . . . . . ... ... ... ... 9
3 Document Preparation 11
31 ProgramPFolds. . .. .. ... .. ... . ... ... 11
32 AMontageof FlowSolvers. . . . . . ... ... ... .. ... tee... 14
33 Startup-Errors . . . . . . .. ... e e e e e e e 18
4 System Overview 20
41 AmMritaSystem . . .. .. i it ittt e e e e e e e e e e 20
4.2 ISL —Intermediate Scripting Language . .................... 23
S Repeatability 27
6 Accessibility _ 29
7 Extensibility 31
71 def Path ... ... .. it ettt e e e 32
72 pluginAdhb . .. .. ... . . . e e e e e e e e 34
8 An Open Invitation 38
A Getting Started 41
Al SystemRequirements . . . .. ... ... ... ... 41
A2 TypographicConventions . . . . . . . . ..ot v vt v vt vt ennnnn 41
A3 NewUsers. . . . v v it it it e e e e e e e e e e e e e e e e 41
A4 WorkedExamples . . . . . . . . .. i e e e 42
B BasicCodeGenerator 43
B.1 SolverRoe fl . . .. ... . . i i ittt it et e e e 44
B2 def Solver . ... ... ... e e e e e e e e 47
3
T T R T R A o Y N 7;&‘:{- T PN . )




C Anrita mailit files
C.l Digital Signatres . . . . . v o v v v v v et et e e e e
C.2 BugReportsandSystemUpdates. . .. .. ... ................

D Dynamic-Linking

D.1
D.2
D3
D.4
D.5
D.6

Hello, World! .

..................................

CompilerOpHons . . . . . v o v v v ottt e e

Debugging . . .

..................................

ISL Call-Back RoOutines . . . ... ... .o viiveneneennnenss
Import-ExportControl . . .. ... ... ...ttt

Grid Generation

..................................

E Anatomy of plugin Foo

ClonePlugin2Perl . .. . . v i v it vttt ittt e te oo e ee o
CloneDefaults . .. o v v v vt o o v vt et oo et oo es oo eee e
CloneIncludes .« o v v v v v o v o o o o s oo o oo oo oo oo oo
CloneKeYWOTAS .+ v v v v o o o v o o s o o o o o o oo o v oo oo o oo

El
E2
E3
E4

ES5

E4.1 coml .

..................................

E42 def VkiInterlock . . . . v v i i v i it ot oo eeaanoos

E43 com2 .
CloneSxrc ..

..................................

..................................

E5.1 keywords.C . . . . . . . o i i i i ittt

E.S5.2  vki_lib.C
ES53 coml.C
E.5.4 com2.C

.................................

..................................

..................................

E6 CloneAmritaBuild . . . . i i v i it it it it ottt e s oo oo ee e

References

50
52
53

55
55
56
57
58
59
62

65
65
66
66
67
67
68
68
69
69
69
70

71




T A
PR

2 An Amrita Primer

Amrita is an interpreted language and so does not require separate compiling, linking and load-
ing phases. Given a scriptfile, the interpreter is invoked directly by typing:

unix-prompt>amrita [optiomns] scriptfile

where [options] is a list of switches which fine tune the behaviour of the interpreter (the
option ~A lists the other available options).

2.1 my.script

This first Amrita script produces the results shown in Figure 1:

TasteOfAmrita
prlugin amr_sol
CornerProblem Ms=2, Xs=10
logfile logs/my.script
solver code/roe_f£f1
do phase=1,5
def RefinementCriteria
DensityGradient
if($phase>1) ContactSurface
end def
march 30 steps with cf£1=0.8
flowout io/Corner$phase
end do
autoscale
postscript on
plotfile ps/schlieren.ps
ShadeCorner
SchlierenImage
plotfile ps/grid.ps
ShadeCornexr
plot grids

Provided you have followed the instructions in Appendix A, you can type:

unix-prompt>amrcp Chp2/my.script
unix-prompt>amrita -html my.script &

to generate a directory called ps which contains the two PostScript files needed to produce
the hardcopy shown (my.script also produces directories: io, code, logs and html_files, but
more on these later). Try running my.script now, and check the resultant PostScript output
using a previewer such as GhostScript. The script takes 90 seconds to run on an SGI Indigo2
machine (195 Mhz Mips R10000 procéssor) with 384 Mbytes of memory, but you may well
have to wait longer for the results, depending on the power of your machine, relative to mine. If
my.script fails to work®, consult with your local UNIX expert to correct your shell-setup before
proceeding, because the rest of this lecture assumes you are able to run worked examples such
as the above.

amrcp Chp2/my.script
amrita -html my.script &

amrps ps/grid.ps
amrps ps/schlieren.ps

SUnfortunately the vagaries of UNIX preclude the possibility of my.script working first time, for every user, on
every platform. Some common teething problems, listed in order of increasing difficulty to fix, are: the environ-
ment variable PATH is set incorrectly; the file .cshre (or equivalent) contains an error which causes it to terminate
prematurely; a user has the wrong file access rights; Anprita has not been installed properly; Perl has not been
installed properly, or is buggy on a particular computing platform (if in doubt, use Perl4 in preference to Perl5).




@ i ®)

Figure 1: Output from my.script depicting shock-diffraction around a 90° corner: frames (a) and (b) are
produced by the files ps/grid.ps and ps/schlieren.ps, respectively. If desired, the solutions check-pointed
using £1owout can be retrieved for post-processing using £1.owin.

2.2 Autoload Procedures

Despite being only 21 lines long, this first Amrita script orchestrates a complete simulation and
is representative of the effort reluctant programmers need expend to use Amrita profitably.
Amrita scripts tend to be short-and-sweet, because a line such as TasteOfAmrita is not
strictly a single command but a call to a procedure which contains the commands to be executed.
When a procedure definition is missing from an executing script, Amrita automatically attempts
to load it following some specified search path. By convention, autoload procedures have the
first letter of every word capitalized to distinguish them from built-in keywords (i.e. commands)
which are necessarily written in lower case. Although technically procedures, autoload routines
are like commands in that they often come pre-supplied and do not appear in a user’s script. The
general idea is to have one individual craft a procedure which the wider Angrita community
can then benefit from. Here, for example, the basic flow problem is set up by the procedure
CornerProblem, leaving individuals to decide the choice of solver and the time period over
which the problem is marched using the commands solver and march.

Amrita’s procedure loading mechanism is a convenient means of building customized li-
braries, the only rule is that there is just one procedure per file and that the filename matches
the procedure name with the extension .amr. Thus, the procedure SchlierenImage, which
rendered the schlieren image shown in Figure 1, sits in a file called SchlierenImage.amr. There
is nothing special about this procedure and given a little knowledge of Amrita you could well
have written it yourself; it is supplied merely as a convenience. As another convenience, Am-
rita provides a command showproc which can be used to obtain both the location and source
listing for an autoload procedure.

Here, you can type:

unix-prompt>amrita -c¢
to enter Amrita’s command mode, followed by:

amrita>showproc SchlierenImage

to obtain the listing:

v e e




autoload procedure: $AMRITA/stdlib/flowviz/SchlierenImage.amr
source listing<<

#
# Canned procedure to draw a schlieren image
#
proc SchlierenImage {
exposure [0:1] = 0.8 # darkness of image
amplification [0:?]= 15 # magnification of weak features
grid = {G} # select grid
}
DrhoDx = (RHO[+i]-RHO[-i])/(X[+1i]-X[-i])

DrhoDy ::= (RHO[+j]-RHO[-31)/(Y[+j1-Y[-31)
schlieren ::= sgrt(DrhoDx[] **2+DrhoDy[] **2)
minmax schlieren[] -> min, max
wt ::= (schlieren[]-$min)/($max-$min)
greyshading ::= $exposure*exp(-Samplification*wt(])
plot image $grid m<greyshading[]>

end proc '

>>end listing

You can then type:
amrita>guit
to exit Amrita, or:
amrita>Show proc=SchlierenImage

to produce an HTML listing of the procedure’.

The above routine nicely demonstrates several features of Amrita procedures. Specifically,
a procedure can be endowed with one or more parameters, each of which can be given valid
range bounds and sensible default values, should an explicit value not be provided when the
procedure is invoked. Thus exposure is a parameter restricted to lie in the range O to 1 and
defaults to 0.8, and amplificationis restricted to being greater than zero, but has no upper
bound, and defaults to 15. When a procedure is invoked, parameters are supplied by name and
so their ordering is unimportant. Therefore, all the following calls are acceptable:
SchlierenImage grid={Gl-G2}
SchlierenImage exposure=0.5
SchlierenImage exposure=0.6, amplification=10
SchlierenImage amplification=5, exposure=0.9
SchlierenImage grid={Gl1-G2}, amplification=5, exposure=0.9

2.3 String Tokens

Amrita has no variables in the sense of a language like Fortran or C; a parameter such as
exposure is nothing more than a token which identifies a string which is accessed by prefix-
ing the token with a dollar symbol® e.g. $exposure. String tokens can be given explicit values
using the command set, and can be viewed as containing anything from a number to a com-
mand, depending upon the situation in hand. Consequently, although contrived, the following
script is valid:

7You can also type: Show keywoxds=* 10 obtain a complete list of the commands available. The * is treated
as a wildcard, thus you could use s* to find all the keywords which begin with the letter s.

8Strictly speaking, $ is an operator which expands a token; for details, see Chapter 3 of An introduction to
Amrita[21].




.o preparatory script 7 amrcp Chp2/oddity.1

set procedure = LatexLabel amrita run space oddity
set number = 2000 amrps pslzoal.ps
set string = an Amritan oddity!

set number #= $number+sin ($number) **2+cos ($number) **2
set parameters "= label—$nnmber $str1ng
$procedure $parameters

The = operator (sometimes written =) directly assigns the string on its right to the token
on its left, after stripping away leading and trailing white space, as distinct from #= which
evaluates the string then assigns the result to the token. Thus here $number is incremented to
2001, and since Amrita attempts to expand all string tokens before executing a line of script,
the last line becomes:

LatexLabel label=2001 an Amritan oddity!

This version of the script: -

.o preparatory script amrcp Chp2/oddity.2

set procedure = LatexLabel | amrita run space oddity I
set number = 2000

set string = an Amritan oddity!

set number #= $number+sin ($number) **2+cos ($number) **2

set parameters "= label=$number S$string
$procedure $ parameters

generates the error:

Error at line 14 of file run_space_oddity:
expected string token!

Line 14 is:
$procedure $ parameters

error near:
parameters

because Amrita does not allow a space between the $ (i.e. the string expansion operator) and
the token upon which it is supposed to act.

Programmers brought up on strongly-typed languages might balk at Amrita’s lax approach
to things, but their fears are groundless. Generally speaking, Amrita scripts do nothing more
than farm out requests to a plugin engine (here Amr._sol) to accomplish their tasks; they do
not involve low-level code such as looping over the elements of an array. Consequently, because
the context of a request is always clear-cut, the interpreter has no difficulty pinpointing errors
(just as it did above). In the case of the procedure SchlierenImage, only two commands are
required to do the work. The minmax command expects to be given an expression template,
which if valid, is passed to the resident engine. The engine then grinds away to find the relevant
minimum and maximum values, which it spits back as two strings which are then assigned to
the tokens min and max. Hence the notation, —>, which is suggestive of the logical flow of
information from the engine to the script. Similarly, the image variant of plot expects to be
given a shading template to render.




24 Template Expressions

Template expressions, suchas schlieren[] and greyshading[ ], essentially define func-
tions which some command — further down the track — evaluates over the computational grid,
as it sees fit. Thus:

DrhoDx ::= (RHO[+i]-RHO[-1])/(X[+i]-X[-i])

defines a template which approximates the density derivative 9p/8z|; using central differences’.
The symbol : : = is used, rather than a straightforward =, to emphasize the fact that an expres-
sion is being defined symbolically and that no assignment takes place. Amr._sol pre-defines
X[] to return the  coordinate of the centre-of-gravity of the mesh cell (%, 7). Similarly, RHO[ ]
is a system function which returns the density within the cell (Z,7); RHO[] is defined in the
procedure EulerEquations!®, which is called from within TasteOfAmrita. Amr _sol
allows expression templates to take offsets. For example, RHO[+i] would return the density
in the cell (¢ +1, 5), and RHO [+i -3 ] would return the density for the cell (i -1, 7 — 1), The
precise syntax of an expression template is controlled by the plugin engine. Therefore, the
fact that Amr._sol understands +1-3j, has no bearing on what another engine might allow.

Once defined, a template may be used to help define further templates and so complicated
expressions can be conveniently broken down into smaller sub-expressions which are more
easily digested. Forexample, in SchlierenTImage the functionwt [ ] will clearly only return
values between O and 1. Therefore greyshading[] will only return values between 0 and
$exposure, and knowing that the image variant of plot shades the value O as black and
the value 1 as white, the choice of the token name exposure becomes obvious: it controls the
overall darkness or exposure of the rendered image.

Amrita uses expression templates in a host of commands which perform tasks ranging from
prescribing initial flow conditions, through selecting refinement criteria, to extracting data along
paths in space. This approach provides an extremely flexible, yet simple means of control-
ling the underlying computational machinery. Many of these commands are deemed to be
specialist in the sense that they can only be used within a def $mode block such as the
def RefinementCriteria block seen in my.script. Some other common def blocks are:
EquationSet, Domain, SolutionField and BoundaryConditions.

There are no restrictions regarding the script complexity within de £ blocks, that is you are
free to use logical constructs and invoke procedures (or even define new ones) and the like.
They exist solely to allow Amrita to maintain some semblance of control over the order in
which a simulation is set up. For example, it makes no sense to prescribe boundary conditions
before a flow domain has been specified. Nor does it make sense to sprinkle refinement criteria
at arbitrary places in a script, since the mechanics of grid adaption requires that all the desired
criteria be specified up front. Therefore def $mode commands can be viewed as interlocks
which turn certain commands on, and switch others off. Thus it is not possible to integrate a flow
solution from within a def RefinementCriteria block, using the march command,
since this could result in the grid being adapted using only a subset of the intended refinement
criteria, leading to unexpected results. However, since def blocks can be repeated’?, it is
possible to change refinement criteria midway through a simulation when desired. It just has to
be done explicitly as is done in the program my.script; the reasons for doing so here are given
at the end of the next section.

9This will only equal 8p/dz|, on a uniform mesh.
10The construction of an EquationSet is described in lecture 2.
1'The maximum allowable offset depends on the number of ghost-cells used by the engine, and will be discussed
in lecture 2. But should you make a mistake, Amrita issues an informative error message.
12There are some restrictions concerning how de £ blocks are nested.

9

Pass
AR e R B




Although Amrita has the usual program flow-control constructs such as do, while and
foreach looping commands, and logical constructs such as if and switch, these are not
what sets it apart from other programming languages and so have been left out of this primer.
Amrita’s usefulness stems from its ability to mix numerical tasks with document preparation
tasks, and it is not intended to be a replacement for the likes of C++ Therefore, although the
wisdom of endowing _Amrita with its own programming language might not be immediately
apparent, especially to reluctant programmers, Amrita does fill a niche which is not well catered
for by other languages. Here, in case you have not already twigged, the ~htm1 option used in
the running of my.script causes the interpreter to generate an HTML listing of my.script and any
autoload procedure it activates. This provides users with a very convenient means of examining
Anmrita’s standard library in action, and so there is no excuse for not being able to follow the
inner workings of the example scripts presented in these notes.

If you have not already done so, try typing:

unix-prompt>netscape html files/my.script.html
and you will see that CornerProblem invokes:

proc ShockWave Ms=1.0, statel=quiescent, state2=post_shock
gm ::= GAMMA'’S$statel

gg ::= (gm[]+1)/{(gm[]-1)
cl ::= sqgrt(gm[]*P’Sstatel/RHO’Sstatel)
P2 ::= (2*gm[]*$Ms*$Ms-(gm[]-1))/ (gm[]+1)
r2 ::= (ggll*p2[]1+1)/(ggll+p2[1)
u2 ::= $Ms*(1-((gm[]-1)*$Ms*$Ms+2)/ ((gm[]+1) *$Ms*$Ms) ) *c1[]
W’ $state2 ::= W’ Sstatel<RHO*=r2[],U+=u2[],P*=p2[]1>
end proc

to compute the shock-jump relationships™3:
P2 _ 29ME—(v-1)

p_1 ¥v+1

2 - [E)5ed-(a) 2

_ 2
w _ Ms[l__(')’ 1)Ms+2]

a (v +1) M2

For the time being, the syntactic details of ShockWave are unimportant. Of more signifi-
cance, is the fact that Amrita is equally at home executing such equation-based routines as it is
executing the typesetting routines in the next section.

13When using expression templates, Fortran aficionados should note there is no computational advantage to be
gained from replacing constant sub-expressions explicitly, because Amrita automatically reduces them down to a
number as part of its internal optimization. For instance, do not introduce gm1[] ::= gm[]-1 in the belief it
will save the cost of the subtraction in a later expression. Here, gg[] was defined solely to improve the legibility
of ShockWave. Once you have read §4, you can run this script (amrcp vki/sym.1):

plugin amr_sol

W/ one ::= <RHO=1,U=0,V=0,P=1,GAMMA=1.4>
ShockWave statel=one, state2=two,Ms=2
exprA ::= P’twol[]

W/one ::= <RHO=1,U=0,V=0,P=1,GAMMA=X[]>
ShockWave statel=one, state2=two,Ms=2
exprB ::= P’twol]

export exprAl],exprBl]

to gain a better appreciation of how expression templates work. Although Amrita is happy to use a variable GAMMA,
the CFD solver may not be so forgiving.

10




3 Document Preparation

On a couple of occasions I have remarked that these notes can be reconstructed using Amrita.
This section describes the rudiments of how this is done and then presents two realistic examples
for you to cut your teeth on. The key new concept here is the notion of a program fold.

3.1 Program Folds

To facilitate the construction of top-down investigations, Amrita scripts can employ “program
folds” along the lines used in the Occam Programming System (OPS)[5]. The new twist that
Amrita adds is to allow for multiple fold-types. If Amrita can’t process the fold itself, it farms
the fold out elsewhere. Thus, if the application warrants it, the Amrita expert can go so far as to
utilise several programming languages in the same script (a nice example is given in § 7). This
next script, illustrates how you can use program folds to embed sections of ISigXwithin Amrita,
the end result being Figure 2.

PotentialFlowEquations

plugin amr_sol

... generate figures

Latex2eHead
... typeset title and background
... typeset tabular of figures

LatexTail

Latex

amrcp vki/potential.l
amrita potential flow
amrps cylinder/psi.ps

The script becomes more illuminating when it is unfolded once:

PotentialFlowEquations
plugin amr_sol
fold::amrita { generate figures
«+o look in here for some more folds
}
Latex2eHead
fold: :print { typeset title and background
fold>guard=|,dollar=*
\pagestyle{empty}
\vspace|*{-40pt}’
\centerline{\Large *text::title }
*text: :potential
*text: :ref
}
fold: :print { typeset tabular of figures
fold>guard=|,dollar=*
\begin{center}
\begin{tabular} {ccc}
*fig::kappa0 & *hsep & *fig::kappal \\ \\[*vsep]
*fig::kappa2 & *hsep & *fig::kappa3 \\ \\[*vsep]
*fig: :kappad & *hsep & *fig::kappab
\end{tabular}
\end{center}
}
LatexTail
Latex

11




Stream function 1 for flow around a cylinder with circulation

) a2 - 2
= = — - —_— a___ —_——In—
w(z)=¢+iy Ve 2z o Ve z 21rlna )

For background details see 86.6! of:
BATCHELOR, G.K. 1967 An Introduction to Fluid Dynamics, Cambridge University Press.

k=4[3maV x 4 £ =4/3raV x5

*Page 424 onwards, for the 1983 paperback edition.

Figure 2: Page produced by the script potential_flow. If you alter the title used by the script and then
re-run it, you will notice that potential_flow does not waste the effort of regenerating the plots. One
interesting experiment you can try is to run potential_flow using a coarse grid and observe the resultant
moiré interference patterns between the stream function and the raster sampling of plot image;delete
the old PostScript files first, otherwise the script will simply reuse them and ignore your investigation.

12




The fold: :print construct works much as a “here-document” in sh, csh or Perl[28], in
that it allows a text template, with unexpanded string tokens, to be embedded within a script.
Lines which begin with fold>" contain directives which fine-tune the behaviour of the fold.
Ordinarily, Amrita employs \ as a guard character, thus Amrita would attempt to expand $a,
but not \$a. But within a fold: :print block, the directive guard can be used to change
the guard character to |, thereby eliminating the need to type \\ for every backslash intended
for BIEX. Similarly, the directive dollar can be used to change Amrita’s string expansion
operator from $ to *, which comes in useful when typesetting mathematics'>. The folding editor
amrgi (short for Amrita::Origami) facilitates the construction and viewing of folded documents,
but its use is not mandatory'®. To see the utility of amrgi, type:

unix-prompt>amrgi potential flow

Once you are in the editor you can type A1t~ to obtain a walk-through tutorial!” which will
explain how to browse the program folds within potential_flow's.

If you have looked ahead to Figure 8, you will not be surprised to learn that this script can
be used to typeset potential_flow in the manner shown earlier:

set script = potential_flow

amrcp vki/fold.it

set levz-al = am.r L1 o ita fold script
fold::file $script (to $level) -> listing cd latex files
LatexHead

amrps amrita.ps

fold: :print { latex script-listing
fold>guard=|,dollar=*
\begin{verbatim}
*listing
\end| {verbatim}

}
LatexTail
Latex

The script obtained with amrcp vki/grab. it performs a similar trick to typeset the fold
which defines the complex potentials:

fold::amrita’potentials { define complex potentials

set a = 15 # radius of cylinder

set V =1 . # velocity of free stream
set alpha = rad(30) # angle of free stream
Z ::= {X[]1-$Xo0,Y[]1-$Y0} # centre cylinder in domain
free_stream ::= -$V*exp({0,-$alpha})*Z[]

cylinder 1= -$V*Sa*Sa*exp ({0, S$alpha}l)/zl[]

circulation ::= -{0,1/(2*PI)}*1n(Z[]1/S$a)

... typeset formulas

Now if you are wondering where all this is leading, the next section might convince you that
there is at least some method to_Amrita’s typesetting-madness.

14As a mnemonic, view £01d> as a prompt for a directive which indicates how the fold should work.

1SIn C parlance, an Amrita string token is a pointer to a string whose value can be obtained using the indirection
operator $; hence the use of the standby notation, * for §.

16When constructing a fold using a normal text editor, just make sure the closing brace } is in the same oolumn
asthe £in fold: :print.

17This is spawned as a separate window.

18program folds are an advanced Amrita feature which reluctant programmers can take or leave as they see fit: '
Anrrita is designed to allow an individual to find his or her own level of programming comfort. -

13




3.2 A Montage of Flow Solvers

One reason why there is little consensus of opinion in the CFD community — concerning the
relative merits of the various shock-capturing schemes in existence —rests with the sheer number
of schemes to evaluate. Without some form of automation, no one person can hope to test more
than a small subset of schemes, on a small subset of problems. Consequently it is not surprising
that different workers, form different opinions, from different experiences. This script:

... redirect 1at;ex output . amrcp Chp2/montage.l
Latex2eHead pagesize=problem-sheet amrita run montage
... typeset title cd doc/montage

... typeset figures amrps solvers.ps
... typeset footnotes
LatexTail

Latex

summarise some of my experiences. The script takes around 25 minutes to run'®, and gener-
ates three directory trees: code, results and doc, the last of which contains the PostScript for
Figure 3.

If you browse the script with amrgi, you will notice that the shock-diffraction simulations
are run by a sub-fold of the fold which typesets the figure, but only if the results have not already
been generated by a previous invocation of the script (as was the case with potential_flow). The
Anmrita expert is not fettered by artificial notions of pre- and post-processing. Tasks, whatever
their nature, can be dealt with in the order dictated by the investigation. Here, for example,
run_montage goes so far as to call the library routine BasicCodeGenerator (see Appendix B)
to craft the individual flow solvers needed for the investigation: godunov._km, roe_fl, ausm_km,
hlle_km and efm_km. These solvers are not stand-alone CFD codes, but shared-objects which
are sucked into the mesh refinement engine Amr._sol using dynamic-linking.

A brief introduction to the programming benefits of dynamic-linking is given in Appendix D,
here the essential fact to grasp is that dynamic-linking allows a separation of the classical work
of integrating a discretized set of partial-differential equations from the drudge work of crafting
an investigation. For instance, this script:

... redirect latex output amrcp Chp2/schardin.l
Latex2eHead pagesize=problem-sheet amrita run schardin
... typeset title cd doc/ausm km

... lead in to body of article amrps schardin.ps
... describe flowfield

... describe how images are drawn
... describe sensitivity study
LatexTail
Latex

generates the two pages of PostScript shown by Figures 4 and 5. By default, the script em-
ploys the solver ausm_km, but the script-writer has made it possible for a different solver to be
selected via a command line argument, say:

unix-prompt>amrita ~-a efm_km

But, given the wonders of dynamic-linking, any Amr._sol compatible solver could be chosen;
even one that was not in existence when run_schardin was crafted.

15Recall, I am using an SGI Indigo2 machine (195 Mhz Mips R10000 processor) with 384 Mbytes of memory.

14




A Montage of Solvers'

solver code/godunov_km

o This solver is the most expensive of the
five codes, but it works across the range
of Mach numbers.

o Note the refinement criteria has lost track
of the diffracted shock near the wall.

solver code/roe_f£1

o This solver has the best resolution of the
five codes.

o Unfortunately roe_£1 cammot cope with
Mach numbers much above 2%,

solver code/ausm _km

o This solver is arguably the cheapest of the
five codes and has good resolution.

o Unfortunately ausm proves far from awe-
some for Mach numbers less than 1.5%,

solver code/hlle_km

e This solver is much more robust than
ausm and almost as cheap.

Unfortunately the improverment in robust-
ness is offset by poor resolution of contact
surfaces’

solver code/efm km

o This solver is very similar in performance
tohlle.
o Although, in some circumstances (e.g.

slowly moving shocks) efm performs
markedly better than hlle.

Ms=35 Ms=4.0 Ms =50

CFD aficionados: please note the object of the present exercise is to look beyond the bedeviling debate of which numerical
scheme is best (Ans: it depends on the ci f)soasto on the mechanics of crafting an d investigation.

This observation, like the others on this page, is made in the context of the present shock-diffraction problem and may not
apply in other situations (“All generalizations are dangerous, even this one.” fils Alexandre Dumas).

$1f you think the above images contradict this statement, you have forgotten to for the i in the gth of the
contact surface with Mach number: the stronger a contact, the easier it is to resolve, the better it shows up in a schlieren.

Figure 3: Output produced by run_montage. The accompanying pithy remarks are not intended to
diminish the presented schemes in any way: they simply reflect the author’s view that compressible CFD
can be an extremely frustrating business.

15




Comparison Against Experimenfr

Anpita is sufficicntly sceptical of its own capabilities, and numerical methods in general, that it goes
to great lengths to allow CFD simulations to be vouchsafed down to the smallest detail. For example, here
is an experimental shadowgrapht to show that the Mg = 2.4 simmlation from “A Montage of Solvers” is at
Icast qualitatively correct:

Bricfly, the main features of the flow field are as follows. The diffraction of the incident shock wave
(IA) around the comer gives rise to an expansion fan which emanates from the apex (0). The shape of
this fan’s lead characteristic (OQA) suggests the flow upstream of the shock is mildly supersonic. The
interaction of the expansion fan with the incident shock gives rise to a disturbed shock front (ADF) which
is curved. A contact surface (C) marks the boundary between fiuid which has been induced into motion by
the incident shock and fluid which has been processed by the disturbed shock front. The flow in the vicinity
of the corner is detached and so a slip stream (OS) separates the expanded flow from a region of almost
stationary gas, and the free end of this slip stream rolls up into a vortex (V). Two secondary shock waves
(T'S) and (OT) are needed to match the pressure of the flow accelerated by the expansion fan to that of the
decelerated flow behind the diffracted shock front. Observe how the secondary shock (T'S) is kinked as a
result of its interaction with the slip stream (OS). A final shock wave (R) is needed to decelerate the reverse
flow, within the separated region (OV R), down to zero velocity at the point of diffraction.

Now the above figure was produced using the Armrita procedure:

proc SchardinImage xo=-81.8,yo=-4.25,dx=83.7, dravkey
pushmatrix
rotate ~-90 -
paste schardin.jpg in box $xo, $yo, $dx, ?
popmatrix
if(token(drawkey)) SchardinKey
end proc

The file schardin.jpg contains a scanmed image of the experimental shadowgraph, but the image is in portrait
mode and lacks labels (try viewing it with Netscape). ShardinImage invokes Amr:_sol’s graphics engine
to draw this jpg file rotated by 90° to produce alandscape image. The in boxpart of the command ensures
the shadowgraph is positioned and scaled to match the coordinate system used by CornerProblem. This

YSCHARDIN, H. 1965, Proc. VIT Int. Cong. High Speed Photog. 1965, Dammstadt, Germany. pp. 113-119, Verlag O, Helwich;
picture courtesy of Dr. H. Reichenbach. Also, appears in: An Albxon of Fluid Motion (plate 243), assembled by Milton Van Dyke,
Parabolic Press, 1982.

Figure 4: First page of output produced by run_schardin.

16




then allows SchardinKey to operate in the same way as CornerSchematic. For example, (O) is
labelled with:

LatexLabel label=\$0\$,x0=26,y0=41,height=35ht

Similarly, it is possible to overlay the computed front positions oa top of the experimental image!, However,
for reasons given below, we choose to do this for Mg = 2.34 rather than the experimentally reported
Mg=24:

Comparing numerical results against experiment is not a cut and dried exercise and often involves a
measure of judgement based on common sense and physical reasoning. Here, for example, a close exam-
ination of the experimental image suggests the comer is blunted. But this is an optical illusion caused by
the refracton of light in the vicinity of the comer apexS. At another level, the inviscid flow model used for
the simulation cannot be expected to mimic the full viscous behaviour of the experiment. While this can
be raised as a criticism of the numerics, it can also be raised as a drawback of the experiment. Viscous
drag acts to slow the incident shock down during the course of the experiment, consequently the effective
incident Mach number is almost certainly different from the reported value.

Frames (i)~(v), below, show the results of a numerical seasitivity study aimed at determining the varia-
tion in the diffraction pattern to small changes in the incident Mach number:

(i) Ms =226 (i) Ms =230 (iv) Ms = 2.38 V) Mg =240

Observe how the secondary shock (T'S) moves away from the apex (O) with increasing Mach number,
while the foot (F) of the diffracted shock moves closer to the apex with increasing Mach number. Based on
this study, arguably the closest agreement between numerics and experiment occurs for Mg = 2.34, which
suggests an experimental uncertainty in shock speed of 2.6%.

$Check out the procedure OverlayNumericalFeatures - plot image treats negative shades (e.g. m<-1>, M<-1>,
rgh<-1,0, 0>,RGB<-1, 0, 0> etc.) as transparent.

SIf you are not swayed by this argument, examine plate 243 of An Albun of Flidd Motion. It shows three snapshots of the
diffraction process, each with a different of blunting, M , the blunting decreases as the flow develops in time and so

the variation cannot be blamed on some bizarre form of low-temperature ablation.

Figure 5: Second page of output produced by ruzm_schardin.

17




3.3 Startup-Errors

Both run_montage and run_schardin weigh in at around 300 lines of Amrita, and so are not
particularly onerous to construct. Nevertheless, they are sizeable enough to put an Amrita
novice off, especially one struggling to get to grips with string expansions (see p. 52). Therefore,
this next script drops down the programming scale to illustrate another problem which befuddles
CFD: :

. - obtain shock-diffraction solution amrcp Chp2/startup.l
make J.nterferogram schematic amrita startup_errors
LatexHead cd startup
... output raw latex for title amrps errors.ps

LatexNupFig iup=2, jup=3
foreach shift (0,0.2,0.4,0.6,0.8)

set file = shift$shift.ps

plotfile $amrita:latex::dir/ps/$file
etc .. '

Even with the best will in the world, there is generally insufficient room for the CFD author
to describe all the small innocuous details which might affect the reader’s perception of the
quality of the presented results?®. For example, consider the shock-diffraction results shown in
Figure 6. The raw solution-data is the same for each interferogram image[14]; all that changes is
the reference density. But one’s perception of the quality of the simulation varies dramatically?!
depending on the depicted strength of the tram-lines behind the shock. These tram-lines are

“startup-errors” which arise because the shock-capturing scheme used for the simulation cannot
propagate the perfect discontinuity used to prescribe the initial flow conditions. Therefore,
instead of propagating information solely on the (uz -+ @) characteristic, small dips in the density
field are introduced on the (¢ —a) and % charactenstlcs as the shock smears to the natural profile
dictated by the numerics.

- Startup-errors are self-similar with-mesh spacing and so do not disappear under mesh re-
finement. As such, they are zeroth-order errors which cannot be eliminated? by increasing the
order of the accuracy of the integration scheme; nor, for that matter, can they be eliminated by
moving from a workstation to a massively-parallel computer. For inert flows, startup-errors are
an annoyance which can be tolerated because they are small, localized glitches. For reacting
flows, startup-errors can prove catastrophic, as the small decreases in density, correspond to
small increases in temperature. These glitches can evolve under chemical amplification lead-
ing to “blow-up”[19] where the reaction proceeds many orders of magnitude faster than if the
initial temperature perturbation were absent, giving rise to drastically different behaviour than
expected. Thus a small local error, gives rise to a large global error.

Interestingly, adaptive mesh refinement diminishes startup-errors in a natural way, so long
as the refinement criteria do not home in on the density glitches, as in [7] or Figure 9. It is
for this reason that my.script does not employ ContactSurface for the first phase of the
simulation. Startup-errors are low frequency errors, which explains why they are preserved so
well by shock-capturing schemes that, universally, are designed to damp only high-frequency
errors. In the case of my.script, the low-frequency startup-errors, which appear on the fine grid
as the shock relaxes to a smeared profile, become higher-frequency ‘errors as they drop off onto
the coarse grid behind the shock. They are then damped in a natural fashion by the dissipation
of the integration scheme. *

201 et alone allow the reader to reproduce the results!

21 At least for those with a critical disposition.
21 live in hope of being proved wrong.

18




Shock-capturing schemes suffer from “startup-errors”

Po=08x%xAp

Figure 6: Page produced by the script startup_errors. The tram-lines do not appear for the p, = 0.6
and p, = 0.8 cases, because the erroneous density variation associated with the startup-error lies in the
region I > 1and plot image shades all values > 1 as white. The depicted strength of the tram-lines
in the remaining cases depends on the slope of I for the nominal, density platean behind the shock. If
you re-run my.script with the refinement criteria: setflags [ooo|oxo|ooo] 1 toforce refinement
everywhere (i.e. a uniform grid), the startup-errors will be more prominent than here.

19




4 System Overview

You now have sufficient knowledge of Amrita, put to everyday good use, for me to be able
to present an overview of how the system works. The basic design tenets are: repeatability,
accessibility and extensibility. For example, repeatability requires robustness. In this regard, a
simple well-engineered idea, outperforms the sophisticated approach which trips up on its own
cleverness. Therefore do not be afraid to code-up a “spade,” in place of a “manually operated,
earth moving implement,” if it sufficient to do the job. Equally, have the common sense not to
use a “spade,” when the job calls for a “JCB excavator.”

4,1 amritaSystem

amrcp vki/system.1

This one line scnpt23: amrita show system
AmritaSystem cd AmritaSystem
calls the Amrita library procedure: amrps AmritaSystem.ps

amrps AmritaIsl.ps

... Programmer notes
proc AmritaSystem {

plugin = amr_sol

workdir = AmritaSystem
} ‘
. define internal procedures
#

"# Depict Amrita system using the above intermal procedures

#

pushcwd $workdir

plugin $plugin

RunUserScript

postscript on

SetPage size=USletter, orientation=landscape

plotfile AmritaSystem.ps
DrawAmritalLogo
DrawUserScript
DrawScriptOutput
DrawIsl
DrawPipeLine
DrawLibraryScript
EndDrawing

SetPage size=USletter

plotfile AmritaIsl.ps
DrawExplodedIsl
EndDrawing

popcwd

end proc

to generate Figures 7 and 8.

23 An in-joke amongst BCPL programmers was that the language’s only use was to write BCPL compilers[22).
Similarly, a critic could say that Amrita’s only use is to document _Amrita. A package such Adobe Illustrator
could have been used to prepare the two figures, but then the tie-up between the schematic and the system would
likely soon become out of date. Here, because the system goes to the trouble of documenting itself, changes made
to the system (say a restructing of ISL) are automatically reflected in the schematic, the next time it is requested.
The only thing worse than no documentation, is wrong documentation.

20

NS
T s,

TREAT




|
|
i

iSPO3 UPW 4T3 JO J{uUp 8y} aq

03 suaddey os[e (D7, 24-WD) DILWD MUAPLUIY £q BION
* WO PI-wjLie - mma / /:dyjy uioly squfiear St

Py Buryaea], saorlsju] Juswauyey ysepy sandepy,

ooxd pue

prad¢ 3se3g [ooofoxo|oxo] sSeryjes

(Clony+EF+]ome /(D oM~ [(+]0HY)8qe =:: DHYF

(Od+[F+]1d)/(Dd-[F+1d)Bae =2 47

P7a8¢ 38034 [000|x%0|000] 8SuiFies

_ (DoHe+[7+10MY) /¢ CIOHY~- [F+]OHY) SR = OHYF
(Od+[F1d)/(Dd-[1+41d)8qe =2t dF ot¥ue3oeat i 13wy -
TOH<[JOHYF 37 [1d7<[10HYF = 3803 j08 3UOIXOIITOE aww ***
{D}=P128 ‘Z00'0=T03 ©9RvFANgIoORRUC) doxd OINIPNIISTIEPIiTosTaWR o¢¢
. wesgBiuraue ¢
ot etBuugoex: s (B wgTaue ¢
.QOQBH_.OH %Hﬁna—,ﬂ vdoﬁonﬁﬁu@‘ ﬂmu“»ﬂmunuﬂuﬁn...

fos~xue: :Snjdunsespaue ¢
g8urg:tq01d:to8 U@ ¢
qfx::13:mTawe <
orfuegoex: :{8ivjtame ¢
quegxe:iTOR"IWE *°°

l. The user

e such as Amr_so.

{zb} e3etz gord

ion of Amrita. High-level scripts are parsed by Amrita

' . oTRIgOINBI i TOSTAWR ¢ . . .
T eoaro: i ron-amy -+ <0'0*0>98x g I ,
pov—.n_c eSudneu: : tBteayame <0 0 UTEWOq30Td A
CACO .owwuoaxam;ﬁg oo . sd+afery/ed orzs0Td ; ! .
' - o t1gorditos=aum *+° . : AT B
| PeIBUS ' | 101e180qur SR oBenIueI0T NS R
S . ' Bue . ¢:H LXR} - .ﬂﬁmaoaao.ﬂm . L
' A 098d A i gd*uexeryos/sd o d Eh
.HOP@.HOHHOW U Jue3x0: i TOS IR *** 8I8YTYOS/! TTFI0T
. erSuegoea: : {9 ustawe ¢ uo gdrassqsod
ﬂv._.uhm quUBqX6! : TOS IWR ¢ * Jop pue
eInqoNI388ep: sgos e 80BIING]OBITO) ﬂ
w::yStearawe o
senyIqIqredeo jstyeroads POl 4 VTIOITIDIUGWOUTFOY FOP

qfx:: 13 wapawe

eTed80INB L : TO8™ IWR

gIeWI0)/OT UTHOTF
Tos~xme urdnrd

JuUe9Xe: YO8 IWR °*° swotgenbzronyg

which drive a plugin computational en
script here is representative of the ones you will use in lecture 2 to gain first-hand experience of the

output complete investigations

8

L

g 5
2 8
8 g
s 5 m
2 mzmvﬂﬂﬂ ofudnou::18:uvgpawe - o o
g STUrRUA oTTFsoTd: :{Biugpame ”.m o
m 5 @ adraosgsod: s 18 wqTIme ¢ =}
80qexEW: : fos~IwR *** ° .m

...M UTAOTF:iTOB"IWR °*° S ..m
.P.a — umuouu Buouno“..uw.muau .g o
: o mmate FEN
.w.. m oBesgew 3yByxidos 1st:i:proy °*° m .m m
T e e 1
= ! 4 (oSenSuer Sunydios pay ogenSuef 195[) LR
.m oyerpauLIsiut) ST [PAS[-YSIYy & M E
Jsxad yovq-[1es 78T \x LN \N lﬁsﬁ\. o .m .m.

¥ £ mc a4 )

e gd




ISL — Intermediate Scripting Language
ialuLO FLAT A ial::L2 isl:L3 isl::LA4
eoo amr_soliploti:flsgs  a=x_sol:plot::fisgs { sex_soliplot::flags { amr_sol:plots:flags { ax_sol:plot::fisgs {
vee gridlist gridlist { gridiist {
... BefinscentCriteria 1221 1221 1221
3 } 3 b 4
. Beti f - { {
... sstflags settlags { sstflags {
eco sstflags vee gridlist gridlist {
¥ eeo mmsk 0001
3 ee @xpT 3}
3 oask {
setlags { 000
eee gridlist 011
oo DRSK coo
B 3
3 expr {
3 1
= v 601
. . 010
Document Preparation — Amrita style v oo
= 13
£ 100
- 601
amr:LO o10
v 601
LatexHoad . : 22 [
grab::isl amr_sol:plot::flags from uscript.isl -> isl b 18
«e. output title e
foreach level (LO,L1,L2,L3,L4) v 530
fold::token isl (to isl::$lovel) lines {<75} -> listing ° 230
-3
... output listing £ 100
end foreach v 580
LatexTail ° :sg
v
Latex dvips=-E 00
b 12
. b 18
amr:L1 b2
v 601
010
LatexHead : :o:
grab::isl amr_sol:plot::flags from uscript.isl -> isl m 18
fold::print { output title £ 100
fold>guard=| M ;90:
\noindent\Large\amrprog{ISL} -- v 601
Intormediate Scripting Language\\[20pt] : gz o
} b 18
foreach level (LO,L1,L2,L3,L4) a 0.002
fold::token isl (to isl::$level) lines {<76} -> listing >
fold::print { output listing 3 b2
fold>guard=| b
\pagestyle{empty} setflags {
\tiny 000 ;[
\begin{minipage}[t]1{2.8cm} 3
isl::$level zask {
\begin{verbatim} g : g
fold>col=1 000
$1listing b4
\end|{varbatim} = {
\end{minipage} v 601
3} 001
end foreach : :O;
LatexTail a1s
Latex dvips=-E

Figure 8: The ISL instructions for the next-to-last line of the user-script in Figure 7 provide two pieces
of information for Amr._sol to get the job done: a gridlist to fix which parts of the grid the engine
should work on, and a shopping-list of RefinementCriteria by which to flag an individual cell.
Here the user invoked ContactSurface to set-up a shopping-list of just two setflags tests; each
of which needs a gridlist to restrict the extent of its operation and a mask of cells to flag if the
symbolic expr is true. The ISL tree structure allows information in the leaf-nodes to be revamped, say
an overhaul of expr, without the need to change the overall sequence of events.

22

5y AN,




4.2 ISL - Intermediate Scripting Language

The basic orchestration of Amrita follows the classical construction of a compiler?*. In the
case of a compiler, a front-end parses the user’s source code to form an intermediate syntax-tree
which a code generator then traverses to produce a target executable consisting of a sequence
of machine code instructions[4]. In the case of Amrita, the Amrita front-end parses the user’s
script to form an ISL syntax-tree which is traversed by an ISL parser to schedule work for a set
of user-supplied call-back routines which have been compiled to form a plugin engine”. Ap-
pendix E reveals how you can use the Amrita Tibrary routine ClonePluginFoo to generate
the boiler-plate code needed to construct a new plugin. Here I will restrict myself to two con-
crete examples which demonstrate the design advantages of employing an ISL layer between
the user written script and the engine which does the work.
Change to the directory where you ran run_montage and mun this script®s:

EulerEquations amrcp Chp2/solvers.l
plugin amr_sol ' amrita -debug solvers
logfile logs/solvers amrgi debug.isl
foreach scheme (godunov_km,roe_f£f1,\
ausm_km,hlle_km, efm km)
solver code/$scheme
end foreach

to get the ISL listing:

... fold::isl copyright message
... amrita:plugin::amr_sol

... fold::is1l amr_sol defaults
... amrita::logfile

... amr_sol: :solver

... amr_sol::solver

... amr_sol::solver

... amr_sol: :solver

... amr_sol::solver

... amrita:unplug::amr_sol

Notice that the script keyword solver isreally a contraction for amr_sol: : solver, mean- -

ing that it is a keyword which belongs to (i.e. will be decoded by) Amr: sol. As explained in
Appendix E, when an engine is plugged into Amrita it adds its own specialist keywords to the
system, complete with the requisite parsing machinery to generate the specialist ISL for the

2This similarity is not coincidental as I originally tanght myself to program by dissecting the source code
for various compilers and interpreters: BCPL[22], C[13], MOUSE[11] and PASCAL[3, 16]. I recommend this
route to anyone who wishes to improve their programming skills and rise above the debilitating language wars
which rage on USENET: “Fortran bad, C good, C++ better, Java best!” If you appreciate the basics of how
programming languages are parsed, you will have no difficulty in mixing and matching languages to suit the end
application, as is done in §7. Besides, external influences can dictate the choice of programming language, over
and above personal preference. Back in 1988, the forerunner to Amr._sol was written in Fortran at the behest of
the sponsoring government agency. Today, in 1998, large chunks of Fortran remain, but because of its design,
Amr_sol is none the worse for its syntactically-humble start in life.

25In view of this, one could legitimately refer to Amrita as a compiler; one which produces ISL code. Thus
circumventing the notion that an interpreted scripting language is inferior to a compiled programming language.
Moreover, keen eyed readers will by now have noticed that Amrita is a pukka block-structured language, which
allows procedures to be defined within procedures and so is more advanced than C in some respects.

26Here the \ acts as a line continuation marker.

23




new keywords, and adds the associated call-back routines for the parser to call when it stumbles
across ISL it cannot decode by itself. Thus, in principle, Amirita is infinitely extendible.?” The
ISL parser decodes a sufficient number of system keywords (e.g. amrita: :logfile)thata
new plugin does not have to reinvent the wheel.

Try expanding the five solver folds, and you will see they do nothing more than locate
shared-object files?®: '

amr_sol: :solver { .
file ~CWD/code/~AMRSO/godunov_km.so
}
amr_sol: :solver {
file ~CWD/code/~AMRSO/roe_f1.so
}
amr_sol: :solver {
file ~CWD/code/~AMRSO/ausm_km.so
} .
amr_sol: :solver {
file ~CWD/code/~AMRSO/hlle_km.so
} ,
amr_sol: :solver {
file ~CWD/code/~AMRSO/efm_km.so
}

which the ISL parser loads and links dynamically? at run time. Here, the only evidence that
the solvers have indeed been activated is the log-file logs/solvers:

. SOLVER GENERATED BY BCG .
LA AL R A 222222222222 2222 Rl s ssxess)
BCG ID: euler-code::2d-c-km-os

SOLVER: godunov_km

OWNER : James J. Quirk (aka jiq)

DATE : Mon Feb 2 14:46:11 PST 1998

* SOLVER GENERATED BY BCG o

L e A T e e P

RSN EC IR RSN NSRS AR N AT E S SRR RO NN RN
* SOLVER GENERATED BY BCG *
EA A2 S 2t 2222822222212 2222222222222
BCG ID: eulex-code::2d-c-fl-os

SOLVER: xoe_fl

OMNER : James J. Quirk (aka jiq)

DATE : Mon Feb 2 14:46:21 PST 1998
""t""ttt..’."""."'ll."""""
* SOLVER GENERATED BY BCG *
AAA AR A 2222 2SS d i dddd i il st ssssss
etc ..

Prior to being passed the filename of a solver, Amr._sol has no knowledge of the code,
thus it would view BCG’s efforts and your hand-crafted efforts with equal disdain®®. Conse-
quently, the system can accommodate codes: past, present and future; all on an equal footing.
Note also that the ISL parser receives a logical filename and not a physical filename. Internally,

27But, as with any software, there are a number of practical reasons why this is not to be taken literally. Never-
theless, the statement stands in that Amrita can be extended seamlessly, well beyond its present boundaries.

28The Amrita parser has done all the hard work of checking that the files exits etc.

2Dynamic linking is discussed in Appendix D, but you might also like to type:
unix-prompt>man dlopen dlsysm diclose.

30This does not imply your solver has no intellectual content, it simply means that Amr_sol views a solver
as a lump of object-code it must link with in the UNIX sense of resolving external references in a link-load table.
Once loaded, Amr._sol interrogates the solver to check that it is compatible with the resident equation set,
thereby avoiding the anarchy which would ensue, say, if a ShallowWaterEquations solver were used on a
problem set up for BurgersEquation. A solver is the one component of Amrita which can be equated to
a classical CFD code. In lecture 2, I explain the constraints on the CFD codes Amr._sol can accept.

24

A T T TR L T T R s e R e O i AR e




the ~CWD part is expanded to be your current working directory, and the ~AMRSO part is ex-
panded to the architecture of the machine which runs the parser. For example, on my machine:
~AMRSO expands to AMRSO/serial/IRIX/64, but if I were running on a cluster of workstations,
then mpi would be substituted for serial3! The principal advantage though of having the ISL
parser expand ~AMRSO, is not to distinguish between serial or mpi, but to take account of the
fact that one session you may be logged in to a Solaris/sparc machine, but the next session you
could be using Solaris/x86, or IRIX/32, or whatever’?, and . Amtita automatically insulates you
from the underlym g hardware. Thereby allowing you to work in an uninterrupted fashion.

Amrita is constructed in layers, not to bamboozle reluctant programmers, but to build in
the necessary flexibility to allow the system to grow, while remaining considerate to the needs of
its less computer-literate users. This script demonstrates how an Amrita expert can replace,
or overload, a keyword with his or her own customized code:

EulerEquations amrcp vki/overload.l
plugin amr_sol : ] amrita run overload
set dir = your/very/own/keywords

fold::amrcc { ISL call-back routine
fold>amrso ?= $dir/keywords
fold>src ?= $dir/keywords.C
#include "AMRITA/isl.h"
AMRVOID solver() { )
fprintf (stdout, "solver: %s\\n",ISL: :get_file() );:

}
}
fold: :print { Amrita interpreter
fold>file ?= $dir/solver.pl
fold>guard=|,dollar off
sub amr_sol’solver {
unless($line =~ /*\s*([*\s]+)\s*/) {
Serror[l] = "expected name of a solver!®;
&amrita’report’error();
}
$line = $’;
&isl'put_ltag(0, 'amr_sol::solver’);
&isl’put_file(1,$1); .
&isl’'put_rtag(0, 'amr_sol::solver’);
}
1;
}
replace amr_sol::solver with $dir/{keywords:cc::solver, solver.pl}
foreach scheme (godunov_km,roe_fl,ausm_km,hlle km, efm _km)
solver code/S$scheme
end foreach

31 A computer scientist might ask of the ISL communication channel: does it use a “thick pipe” or a “thin pipe?”
Conceptually Amrita does not care what form the pipe takes, as it only carries a small amount of scheduling data;
the heavy duty input-output is handled by the operating system in the normal manner. Consequently, serial and
mpi platforms can both use the same ISL. The internal working of the ISL parser functions differently in the two
cases, but its interface to the back-end of Amrita remains the same. There is no need for the Amrita interpreter
itself to run in parallel, because its work, although logically complex, is not labour intensive; Amrita provides the
brain, the plugin provides the brawn.

32 ook in the directory SAMRITA/SYSTEM to see what platforms your Amrita mstallatmn issetup for




Do not worry, if you cannot understand the source code for the above example, as it is tar-
geted squarely at system-level programmers®. The key point to grasp is that because both ends
of the ISL pipe-line can be overloaded, an expert can develop and test incremental improve-
ments to_Amrita, in situ, without impacting on anyone else. Then when the upgrade is ready to
ship, it can be slotted seamlessly into place. At that stage, a conscientious developer would not
discard the old code, but would package it up in such a way that users could easily back-track
to the old-version, should the need ever arise**. For instance, suppose amr_sol: : flowin
and amr:_sol: : £lowout were revamped so as to take special advantage of an upgrade to
the input-output hardware of a parallel computer. A small percentage of the users, may actually
be negatively affected by the upgrade and wish to drop back to the old way of doing things’?;
replace would allow them to do so in a relatively pain-free fashion.

Although far simpler than run_overload, this next script shows an important design advan-

tage of employing an ISL pipe-line:

EulerEquations amrcp vki/www.l1
plugin amr_sol amrita run www
solver amrita://www.amrita-cfd.com/vki/godunov | cd latex files
LatexHead : amrps amrita.ps

grab::info LatexDocument from solver
parse token LatexDocument

LatexTail

Latex

Because Amrita employs an explicit communication channel, as distinct from direct memory
accesses, it can readily exploit the world-wide-web. The above script uses an amrita:// URL3S
to obtain a flow solver to link with Amr_sol, and is no more onerous for the user to write
than had the solver been stored locally. At the system level, however, the story is quite differ-
ent. Instead of using NFS to read the solver straight from disk, an HTTP request is sent
to the remote server www.amrita-cfd.com which replies by sending back a PGP-authenticated
Amrita script (see §C.1). This script, if it comes from a trusted user, is then run silently in
the background to produce a shared-object code/godunov which is sucked into Amr._sol in the
usual manner. Once the solver is installed, the grab: : info command obtains an Amrita
script®” to generate a ISEX document to produce the PostScript output latex_files/amrita.ps.

33The £old: :amrcc constructs a four line C program and compiles it to a shared object. In the fold directives,
the ? preceding the = is optional and requests that no work be done should the target file already exist. Observe
the use of the namespaced procedure call, ISL: :get_£ile () .. Anrita employs a pre-processor amrpp which
maps such namespaced calls to standard Fortran or C, depending on the language being used; AMRVOID is a
garden-variety, typedef which is defined in the header-file AMRITA/isLh. A detailed explanation to the workings
of amrpp, and why it is needed, can be found in any of the documents created by BasicCodeGenerator. The
fold: :print creates a small Perl file which is sucked directly into Amrita, using Perl’s require command,
so the interpreter knows how to parse the overloaded version of solver in the user’s script; the shared-object file
is sucked into the plugin in the manner described in Appendix D.

3 Amrita strives to ensure that user scripts are backwards compatible between software releases, but it feels
under no obligation to do the same with all its system internals. For this reason, any code you write to link with
Amprita is best recompiled when you upgrade to a new release in case the glue which binds user-code and system-
code together has altered. As the source code for this glue is generated automatically by the system, this does not
create work for the user.

351t is possible for a system to improve its peak efficiency, at the cost of lowering its off-design performance.

36Internally an amrita:// URL is translated to an htp:// URL, and the file received is rejected unless it has a
valid PGP signature from a trusted user. Therefore to run this example you must have PGP installed on your
system, and_Ammrita’s public-key (see p. 53) must be installed on you public key ring.

37This script is embedded in the executable at compile time. The parse command executes the contents of a
token, or a file, or an amrita:// URL, as if it were in-line Amrita script.

26




5 Repeatability
This next script, which outputs Figure 9, offers some light relief from the system stodge of the

previous section: amrcp  vki/ 2
plugin amr_sol amrita surfs the web
postscript on amrps ps/surf.ps
... typeset title

set eccomas = http://www.amrita-cfd.com/vki/eccomas.ps.gz

set vki = http://www.vki.ac.be/images/vkifront.jpg

set galcit = http://www.galcit.caltech.edu/relief.gif

set icase http://www.icase.edu/images/transparentlogo.gif
set chester = http://www.chester.org/gif/chester-city~council.gif
paste $eccomas in box 10, 20,125,?

paste $vki in box 144,180, 60,?
paste $galcit in box 155,120, 40,?
paste $icase in box 150, 80, 50,°?

paste $chester in box 150, 20, 50,°?

Although light-hearted, a number of common-sense observations pertinent to CFD software-
design can be made. In fact, the initial motivation for Ampita is epitomized by the flow in
Figure 9: the flexibility of my “research codes” had grown to the point where it was difficult
for me to reproduce®® pieces of work from week to week, let alone month to month, or year
to year. The algorithm behind Amr._sol is sufficiently intricate that, even with stringent quality
control, “features” (aka bugs) would creep in and destroy my confidence in the method as an
investigative tool.

The first step to improving repeatability is automation: if you envisage having to do a job

more than once, automate it! Doubly so, if the task concerned has anything to do with testing. -

The more a CFD code is tested: the quicker that bugs are flushed out; the more likely you are
to spot conceptual errors; the sounder you sleep in bed at night. Testing by-hand is both time
consuming® and prone to human errors which render the results useless. The time saved via
automation can then be used profitably on the other important tasks you need to get done?®.
The second step to improving repeatability is self-sufficiency: the more you rely on third-
party software, the more often you will come unstuck when said items go missing*!, or are
upgraded in a backwards incompatible way*2. For this reason, Amrita only uses third-party
software which is either a de facto standard (e.g. Perl, LaTeX and GhostScript) or has source
which I am prepared to maintain myself (e.g. Origami). Even if you do not have the software
skills to be fully self-sufficient, you can help yourself in two simple ways: avoid using vendor
supplied compiler switches and language extensions, which may be here today, but gone tomor-
row; do not upgrade a piece of software at the first sight of a new release, let it bed down before
taking the plunge®. i
The third step to improving repeatability is simplicity. The HTTP protocol[2] used to drive
the web is a good example of how relatively simple software can prove revolutionary, whereas
sophisticated software — ahead of its time — can all too easily fall by the wayside®.

38This is used in the strictest sense, that is: bit for bit; byte for byte; word for word.
390ften to the point where it is ignored as being too much trouble.

40At least one of my colleagues would argue that I only automate programming jobs so as to free up the time

needed to automate yet more jobs!
“1You might change jobs and find your new place of employment does not have the graphics library you need.
“2The implications of this advice in regard to you using_Amrita will be discussed at the end of the lecture.

43Per], the language used to write Amrita, underwent revisions 5.000 — 5.001 — 5.002 — 5.003 — 5.004in a

matter of a few months. Although to be fair, Amrita went through many more releases in the same period. -
“A good example is Algol68 which introduced operator over-loading, a feature now lauded in C++.

27




“ Amrita ~’surfs" the web”

Figure 9: Page output by the script paste_http, - Amrita was initially developed to reduce the effort
needed to maintain the intricate software used to produce “AMR@ECCOMAS94”[20]. The right-hand
images, from top to bottom, are: a painting qfthévpvri‘Karman Institute; a false-colour image of a relief
sculpture located over the front entrance of the Guggenheim Aeronautical Laboratory (the original home
of GALCIT); the logo of the Institute for Computer Application in Science and Engineering (where much
of the spade work for Amrita was done); the city-council coat of arms for Chester (Amrita’s spiritual
home). e L




6

Accessibility

Appendix C describes — Amrita mailit files — a simple idea which will likely out-live the rest
of the system. This mailit was the very first one to see the light of day:

BEGIN PGP SIGNED MESSAGE--—--~

AmritaMailit::run_cellulaxr {
origin {

}

Amrita v1.35 R03-07-37
user James J. Quirk (aka jjq)
date Sun Jul‘ 6 14:10:31 PDT 1957

resources {

digk 57.09 MBytes
cpu 3 hrs 34 mins 24 secs

}
operation {

}

amrita -mailit -a lstep/A run_cellular

acript (

M XL (" *D\P#, * *W)U;E)CI6QL=60A<BYTB7 (* [10) 4] 1.X=G_V7Z&%3 *MM/NRO
MASZ&R=*>%+, 6F [ 43 IMQPLTQAVGRAQ+3>V* 5F6__W>DRS; ~>#CYEKV; 0" ; 8402
M>T_2~YB<RS3\XK(62*,J7_T!8-MVK],A>.W:CKHZO:ZZ*NOZ’ 6+W-GIPV FU
HN\1V.NV-S94 {_:,F5 (8TIFSEMOW’ U] OQPO/0_{M=) S-Y?UZ*22__I_‘JK5*
MR’IP*, 1ICBOATIPD5 (/, DOSSBLSSNFBEAH, B; / *WYF09 *238_YGRPF[W?W+O\Q
M>*56;.V8//G* BIS*S[KBB+ILT-2Q'C'R><" (7.~6[<_0Z_2C) /6FEABS7XIS
MOSW (BA4 (. B#_95 TWOLVH, LMOVSQRBV>=6WE (KAGDKC" BRTG3EAD12) . 8E?R
MeSEMIQIPHSI; IM(/:729, .31 Q)M\XK, OUBX’ = &*W* XA0 (DT (SRV<8"WS
MQB@OB5SISSE>MS2CECA?300D=, BNR/OLS] 7?K\CA#EL?C\S8I8 [-8*Z [UZH>,

MA/ [?N\7_VYT-]/ NIKUAPQ_T T(7J?5.(21F"5k>) #¥*ENUI [6ZS9-TMORXA
MRHMUNZRAY1><!, SUsNV@=YJU .J368T, ML *+1*0" ; I685/C3NCETY,_W<" [?264
ML/367AK$$.24D2%_C_DTHI+XIXQ[A _10; &{T<O_7V, $\W[6[W<X_’P) 6R<<Q
HCXDR; (ALS, ;, (V=3DHSIWISPFI=*UK=4G4# (3) 97CBE M ON, 9+95+FB00HU
HB~\D>2JA081/?5HGR30J*1 *ZD3RAI$’ }F ' 41R="05_XAX41(9) A0 L1-ISH2
MLT3 (GAZ?LE"GOHLELL?8BT<F5+D: 5N2) SN; 4<F&RX: 15>>; \ ) DTZY$YPO\T\,

© MG?K<<’* IN'Y1%;KA"I<VH) 7&00_:S (2R U4B (/*I2JTTQS (D-XB &: :3,XB2

MPB>1X"80\) ", :>"W) *, NSGPHAWQ' , 31XQ5V3A0* S/87544 [5*4WP: *Z]P ' 2"
M-SR<YAP-£88 (* S501HROE?3 *A1E"LABCS ; FB1 &) C@ IF] QRSSSREG ! 8<QHQY {
M*3BUM>TMA2+1J /K] $V_~F6CSILEX: $H) ~0*, -Q: IA] 8>" ) <FKSPI U*4 | &RX
H~9) ]52E0+PP?4Q: 24247 ; ¥ Z+M* T(0"5G0T4261 [61° ODIT, BO [1S&NYTAF
MP)BI#/>->Y#30,<I>&R, 8°X<80:VK~T70%,J=/T*D\$4 *F1-6AS$DQL * “4X29
MO, #N/95>6GV33 ( (=X:;05°G8/P=D7*<FZ (“ASSR* *\75LL; ~IN>=EDE?R$"3
M(:7)0(59?:8\*5SBI§0<ZTR541><AdZ8=" \) KZIZ/ISAQTHE-PO8, ?PQHVOK7
M:89Y72-D+1 { (HXXY[ 10MG5\M(\X) 16RT | PORNUKXE>F_[A, TIOFIL6XYAOK,
M(-15V)/-LL/B{¥ND;G#’ (B+;8) (GR_GLEGESK<T+N'7Z; **HFMAL2/0-~*TX
M’E~C64IP5KP, *MKA>[J\_QIR:0%1GIDSQBLORASX~LC/$0%480X84) 6$#9X40
MMSZ)79D_°#R;70) BM‘ *4G** 0%32, . 0Z\TYGTAAU200A"8) *&=L, &*HF870\2§
MA/*Q:1>:0\?*<"W/YADO+&# TEHRX  QI>0* 6A, =DEE2/21TB5~ND] 8~ J71HQ8
=AL7MO2MN :UX$S5"_;XUQQ_E/IV-OR.H_W/_UGKYU_O, @HS+S (402") ($3S0-
MOU!X(=E.AQWS,A"2BRT/1'D., $§P<"-E:&9.4 (AUC*9%H, X<MBE4L"9" (G/GRI<
MAHX;FLCA ; *J) (T °*MELS)3+. BPN* (N=SG+81SFL2: §NJB$ [O_RVF) KX ?18<61
M:CAOFSWIUG! “PISA (CAH*53 : T, CHFYEQI+XOFI] 1~ IN9RIB-;CX306P) 1 /1)
M.BD562/) /1%P*QIDZY! [N98, =<>1G_GB~Y8 :M26T* 99YV<HSEG;7#* ?5RDUE
M’@P:CI*QYARE~’ * ‘+"X&?65T5:H7, QSEM"NRMTIFISTA SSI] 2GGHBS?>+%*3
MG2&L$G;NR. ARWS&SIVHC T/+$Q2Z-8>&PX0\70) I* [YS##A, E(; *H; D&#1HT>:
H)C@103XNEKSINW] -MARO=66HSHIQSDS-G"Z Q<. U=3"H" ; 260 IPYOUT ‘N) K
MBPDAF.PX), #V, ~<BU+1FH*OE[T* IXSP:J9"01279 (RSYAVSP-56:D3EST, D}
M;R.G"\RW#/, =, : '<\, *91Q#MBOTK: FOOTIRAG+T>E*L$Q; SNUIN.E<M*EIJRF
M; Y] E'YHQAIFGLLRP*MOXIE (S) E3P58UDZSD, ~0VV-&.G]W* 1Z_R: #D60HGLA
MY2SP2DL#\:, V0 1 &UAOV> (62VU. \/R-"} : :~VI*@_/T42U; $%) 2T8, XPUY-LS
MAOT1=H*270*1F*, .Q) **RNCO< 02 ; \J<$MN! : 1GZ_CSW_SNY’ \*C’QOTE_E*
M/7"*53(EIIOB?,$61_5/" [0*&_S?AZ=N_7COYRIXQ+**@,$2BOT4U+N+NI=Y
M"1F+Y$L<B42Q6T-G\=J_4 ++>M-S>HVJIODR=/RII.X.5<;_S57< H*\TYI$>M
MA\7&\I3554] .E]GY:RSSTIQNYADR7 [B. | K<HNS: *$\OE>X.Z{T~XL*)O-8" ;
M3, *~(RXUAAE"HAWI [ * ; 1E242&/R" *#VS+H. ; "X:EKO* 1B2-1 (* (WO "24Y6
M,9°/9;P(~L:NY&<LSTAIBP3 /6\*9TGNNTE) Y-MN&OT1) IDLESMILISZES’ 1=
M7E[*1==30DIX? /*<GSs . T? I K&, D73°7C* *2C4ARS5\3 : [+RI | \B"DEFVQC+5>
MMRZQ_T\YU/ONU?*=]7_;Z>TU_\9IFMX?GOYM. ] ? [GO4 *5\K/O; T TR>A$-4B*
HKOY@#SRI‘ 60FASV AWMCLSQ/ALO" 23 : 2T\J (*GMO (; VD*VAQWPDOS *N*$*3\0
MV :Y/IK205N0OAT#IK7B* +=~DIT=U/5;Y5IQ#&S\6_’ $’>Z7N* 9 .RRGS&>RR
MYSIM-S0) ]} 748<I:>7" KZWCL’ 1;NSQPZEVSLRY) * "<\ *$A[BT6. ) :&N(/J0/
MG[) SIK67P<¥28<3] [$2?]),R<(9F7, \7<5TH’GRN$?24KR’ JEV?Q0.IB: 8THE
M3J7,>=QU?_Y0*J<HGTHI] **777) DR0O) A*QULSLP\RENIG_\2691_0[1,_DQ*
MD+(6_s;RA40BAK/ } 5\O)_GI[SE+IMCYIX?IE>+) ;G__*0, (19K*\7;QI4SIWE-
MB YN\ (N(@]I'0.YFEGY, 13, DVR+/~12L*=ZHLI-9C*UN\T, 4 [_=+/=[F=1U
M?RB*SNLEDD=ST!S[_?TW>*I5K$%5) .1, YX) 4REXTL\{O(, §.0X; *ONBY!, TS
M, LRIS?K_’]) _E?*K_8_E_RK_(U3Y__’'$_RX_/V(]S_F_RO]}S_J_R/T*5_Q)?
M_*_R_*/62¥7_J.Q?¥?\J_R~4~?_QQ?\J_SIN_6/~SSYCAP&IT\ . =WW_"8\G_
HI4Y/??_5L:0\_Q"8;-U\QTCA3X 'WXI; 5_5\V~/08L 225WT"282° *_T) ) 7X/
MGO\2\~*=1YQ) $NB<\&M) *ADE; ; O>M>N.K?YCCQOP*, )01/20A’ (~~.OYJTIWV
)2 (_)3/9P=6NT\#NWSDK__\O_;_X$030MK\**JBGGSHIT*~~"BIHH( (*'9;~
)#3W3ES4 4
.

Version: 2.6.2

iQCVAWUBNMXI1Lng fL8P/XIAQFIWAQATD+02IC2] ze1Nkiaeyk+R3CNDiBgp/Ko9
RN7k1AOWGXIPImTT +CREIWvuwS c3Fbomp+kSkuvp6Yp01h9scM2bjRNIkGIxbeNG
gipVNYzkoP5UZgzD98gTbseS5a04eETRIVaDaGiDEECYS]) YYiDPSHEGMLEMhUxeB
JJIIYLap/TyA=

=6nd0y

.

amrcp vki/mailit.2
amrita run cellular.mailit
amrps ps/Celll.ps
amrps ps/Cell20.ps

it runs a simulation to investigate the cellular instability of a detonation wave, see Figure 10;
the recipient was Dr. Mark Short (nshort@tam.uiuc.edu).

29




Figure 10: PostScript image ps/Cell20.ps produced by rnm_cellularmailit. The bottom image shows the
extent of the computational domain. The notional resolution of the grid is 3,200 by 256, but Amr_sol’s
mesh refinement skills restrict the expense of this high-resolution to the local vicinity of the detonation
front, that is the darker regions of the zoomed image.

Although the mailit was generated under. Amrita v1.35, it runs faultlessly under v1.38, thus
illustrating Amrita has some measure of backwards compatibility*. This reliability ultimately
stems from Amrita’s high level of automation, which facilitates repeated testing. Another ben-
efit of automation is that it improves accessibility to specialist fields. Here, instead of simply
reading about the cellular structure of detonation waves(e.g. [24]), you are able to gain first-
hand experience of how the phenomena develops. If you have not already done so, examine
the files ps/Celll.ps to ps/Cell20.ps. The simulation was started by prescribing a planar ZND
wave[8] near the left-hand end of the domain. At the time shown in ps/Celll.ps, the wave
has just ingested a hot-spot located on the domain centre-line. The hot-spot seeds a physical
instability which leads to a highly dynamic wave-pattern of which Figure 10 is just one snap-
shot‘ﬁ.‘B}Eis next script generates a 120 frame mpeg animation to illustrate the wave-dynamics
involved*’:

.-+ Dpreparatory script amrcp vki/cell.1
screen on’ : . . . amrita -a 120 make movie

do n=1,$nframes netscape cell.mpg
march 1 step with ¢fl=0.5

AmritaBlue

filled rectangle $film::area

SchlierenImage

savescreen $film::area [snap 2x2] to sch/frame$n.jipg
end do
EncodeMpeg nl=1,n2=$nframes,mpeg=cell .mpg, dir=sch

45Do not be fooled by the closeness of the version numbers, because over 2,000 coding hours were spent re-
vamping Amrita between these releases. Although the language is now sufficiently mature that no wholesale
changes are planned to disrupt users, in the interests of consistency, changes are occasionally made which force
minor script alterations be made. For instance, the v1.35 commands splurge and slurp have been superseded
in v1.38 by fold: :print and fold: : file; the utility amrsearch -vi is useful for making wholesale edits
following a syntax change. A software project the size of Amrita is never static, even if the look and feel suggests
otherwise. '

46Round-off errors are sufficient to trigger the physical instability; the hot-spot merely speeds up the process.

“7If you are unsure how long this script will take, do a 1 frame animation and scale the time up.

30




7 Extensibility
Onp.2,1 wrote:

it makes no sense to ask “What is_Amrita?” or “What can Amrita do?’ Instead, you
should ask: “What do I need to provide, to enable _Amrita to do such and such?’

Amrita — like UNIX — has no set limits: it provides a foundation to build on. Consequently,
the ultimate scope of the system rests with the industry, and perspicacity, of its users. In this
regard, the flow over “AMR@ECCOMAS94” example is not as gratuitous as it first appears.

The solid-bodies for the computation in Figure 9 were obtained using the same construct
which allows this script to output Figure 11:

plugin foo
def Path’bodies
... use PostScript to define bodies
parse token postscript::output
end def
postscript on
plotfile ps/swirl.ps
extent of Path’bodies -> xo,vo,dx,dy
set r #= sqrt((Syo+$dy) **2+ (Sxo+$dx) **2)
autoscale on -Sr,-$r,2*8r,2*Sr
do n=1,36
rotate 10
HLS<$n*10,128,128>
stroke Path’bodies
end do

amrcp vki/swirl.l1
amrita make swirl
amrps ps/swirl.ps

)

(v \L £

P EAC
i 0.

A
t
£ B

iy
‘& ERA L Nk
# BN TR0
TGS X
) AN SN

-\“\‘l )
X

Figure 11: Output produced by the script make_swirl. For best effect, the image should be viewed

on a 24-bit colour display. Try appending the line echo $postscript: :output to see what the
program fold produces.

31

T T T T T



7.1 def Path

Anmrita provides a def Path construct which allows paths (i.e. segmented curves) to be de-
fined using the PostScript-style operators: newpath, moveto, rmoveto, lineto, rlineto,
curveto, rcurveto and closepath*. The program fold:

fold: :postscript’bodies { use PostScript to define bodies
fold>token=postscript: :output
/print-path {.
/prime-comma { /n 0 def 0 exch } def
/print-comma { (, ) n 0 gt {print}{pop}
ifelse n 1 add /n exch def } def
/print-segment { print prime-comma dup -1 2
{print-comma index 100 string cvs print} for
1 sub {pop} repeat (\n) print } def
{3 (moveto ) print-segment} {3 (lineto ) print-segment}
{7 (curveto ) print-segment} {1 (closepath )} print-segment}
pathforall
} def ‘ : .
/Fl1 {/Times-Roman findfont 80 scalefont setfont} def
/F2 {/Times-Italic findfont 80 scalefont setfont} def
/Cl 100 def /C2 180 def /C3 260 def /L1 420 def
/L2, 340 def /L3 260 def /14 180 def /L5 100 def
/M {moveto} def /P {true charpath} def
Fl CLL1'M (AMR) P
Fl Cl L2 M (@) P
F2 C1L L3 M (E) P F2 C2L3M (C) PF2C3 L3 M (9) P
F2 C1lL4-M (C) PF2 C2 L4 M (O) PF2 C3 1.4 M (4) P
F2C1L5M (M) PF2C2L5 M (A) PF2 C3 L5 M (S) P
pr:l.nt—path quit -
}

contains a small PostScript program® which unravels the drawing operations used to stroke
the outline of a charpath(1] and stores its findings™ in the token postscript: : output.
The contents of this token is then parsed by Amirita to define the desired path, exactly as if you
had typed the moveto, lineto and curveto commands by hand.

Do not worry, if you cannot understand the machinations of the above PostScript fold.
The important pomt to grasp is that Amrita has hooks which allow experts to embed spe-
cialist programming languages into a script. Thus, instead of the present font-outlines, the
fold could just as easily have contained a CNC program for machining a wind-tunnel model.
The expert may need to fashion a fair amount of glue-code to incorporate such a fold, but the
work is done as a one-off, allowing users to benefit time and time again. Here, for instance,
fold::postscript can be used in conjunction with a solid-mechanics plugin called
Adlib to produce Figure 12:

“8These operators-take the same arguments as their PostScript counterparts, but use infix rather than prefix
notation e.g. 100 100 moveto is written moveto 100,100. At the time of writing: arc, arcn, arct
and arcto have not been implemented. The decision to replicate PostScript’s path model illustrates that_Amrita
does not reinvent new keywords for the sake of it. Regarding the flexibility of the path model: if you cannot draw
it, you ceriainly cannot compute the flow around it!

, “9The program is farmed out to GhostScript to process, and the results are stored in the token specified by
the £old> directive. GhostScript is also fed an error-handler which allows Amrita to assume control should the
PostScript program abort. |

50The PostScript pathforall operator allows the drawing instructions to be unravelled directly into Amrita
script. The fact Amrita employs the same operator names as PostScript, is not critical to the conversion, but it does
reduce the oode mvolved

32

CETEG )\ﬁ«’*;”ﬂ?




- dynamics
- lecture series
23-27 February 1998

Figure 12: Page output by the script amrita@vki, when run with plugin Adlib. Note when you run
the script with plugin Foo, only the outlines of the letters are produced. Even if you do not understand
how the script works, you should not find it too much trouble to substitute your own message in place of
the current one. If you are willing to help dot some of Amrita’s i’s, there is a sign-up sheet for volunteers
athttp://www.amrita-cfd.com.

33




7.2 plugin Adlib

Adlib employs an advancing-front grid generation technique[6] which allows the font-outlines
to be meshed up with an unstructured, triangular grid’!. Therefore, although Adlib comes
out of the solid-mechanics community, its software organization is very similar to that of an
unstructured grid, CFD code. Consequently, the Anprita glue written to drive Adlib could be
re~cycled to drive the equivalent CFD code, should one be made available for distribution with
Amrita’2. Please note, Adlib is not bundled with the_Amrita installation kit and so you will
not be able to reproduce Figure 12, in its entirety. However, this mailit substitutes a plugin
called Foo, see Appendix E, so that the script can at least be seen in action.

AmritaMailit::amrita@vki { amrcp vki/mailit.3
origin { amrita amrita@vki.mailit
Amrita v1.38 R07-01-98 amrps ps/message.ps
etc ..

Although plugin Foo has limited functionality, it has the exact same structure as Adlib
(or for that matter Amr._sol). Therefore, if you can understand the construction of Foo, you
will see why _Amrita need not be too concerned with the inner workings of Adlib to be able
to drive it®. In part, this is because each plugin brings its own specialist keywords to the
programming table. The first set of Adlib keywords**: .

KEYSPACE adlib:: {
autoscale
extent
plot
DEF BoundaryRepresentation {
*addbody
space
globalspacing
DEF Body {
edge
*edges
name
node
*nodes
DEF SubBody {
path - :
loop
*1oops.
material
name

}

were chosen to reflect the engine’s internal notion of a Boundary Representation (BREP) grid.
A BREP grid is viewed as a collection of bodies, where each body is made up from a collection
of sub-bodies. Each sub-body is then thought of as consisting of a set of loops of edges, and
each edge is defined by a set of nodes.

S1Adlib can also produce unstructured, tetrahedral meshes. Amrita will drive any software which comes its
way, and so it makes no sense to ask: “Is.Amrita 2D or 3D?”

52CPD philanthropists can contact the author via e-mail.

331n fact, I have never seen the source for Adlib. The Amrita wrapper was written with knowledge of a handful
of subroutine entry points then linked with two archived library files.

54The plugin is still under development.

34




Once the parsing machinery was written for the new keywords™, the informed Amrita user
could then write this procedure to mesh up a rectangular block:

proc MakeBRep {

theta =0
globalspacing = 0.04
}
def BoundarvRepresentation
space 2D
globalspacing $globalspacing
def Body
name simple
nodes {
Vi< -1.0, 0.0>
V2 < -0.5, 0.0>
Vi < 0.0, 0.0>
vl < 0.5, 0.0>
Vs < 1.0, 0.0>
Ve < 1.0, 0.5>
V7 < 1.0, 1.0>
v8 < 0.0, 1.0>
V9 < -1.0, 1.0>
V1i0o< -1.0, 0.5>
}
edges {
Bl <V1,v2 ,V3>
E2 <v3,v4 ,V5>
E3 <V5,v6 ,V7>
E4 <V7,V8 ,V9>
E5 <v9,V10,V1>
}
def SubBody
name loopl
material unknown
loops { .
L1l <El1,E2,E3,E4,E5>
}
end def
end def
addbody simple {
rotate $theta
}
end def
end proc

55 A fairly straightforward task for someone proficient at Perl. Note, however, that the Amrita keywords used to
drive a plugin are written as one-offs, by some suitably qualified individual, in much the same way that BIgX
style files are written as one-offs. The usefulness of the plugin, to the end-user, rests in the choice of keywords

and the amount of error checking they employ. The keywords: nodes, edges and loops, employ copious

amounts of error checking so as to pinpoint the user’s exact mistake. Nevertheless, the keywords are simply too
cumbersome for the user to type in the description needed to produce Figure 12, and so I took the trouble to add
a keyword path which would allow the user to simply specify the name of an Amrita, PostScript-style, Path
and have the plugin do the work of deducing the 1oops, nodes and edges. Amrita’s golden rule: the more
trouble the systems-level programmer goes to, the easier programming-life becomes for the applications specialist.

35




and throw in a driver script:

autopath +1ib
plugin adlib
postscript on
set bbox = -1.5,-1.5,3,3
LatexHead file=$amrita::script.tex
LatexNupFig iup=3,jup=4
foreach theta (10,20,30,40,50,60,70,80,90,100,110,120)
plotfile latex files/ps/S$theta.ps
autoscale on $bbox
rectangle $bbox
MakeBRep theta=$theta degrees

plot grids

plotfile

LatexNupFig {
file = ps/$theta.ps
width = 4.5cm

caption = \$\\theta=$theta”{\\rm o}\$
}
end foreach
... output title
LatexTail
Latex

to produce the output shown in Figure 13.

There is no question that these results could be generated independently of Amrita, since
Adlib does the basic work. However, Anrita streamlines the operation to make the Adlib user
more productive’. The operational infrastructure developed to drive Amr_sol transfers directly
to Adlib because it deals with day-to-day, programming needs and is relatively unconcerned by
algorithmic issues. This infrastructure grew from a belief that modern CFD is poorly served
by traditional means of scientific communication. The AMR method behind Amr_sol does not
have a precise mathematical formulation and its implementation necessitates writing a large
piece of sophisticated software. Consequently the “algorithm” cannot be reproduced exactly,
by a third-party developer, because numerous small but nontheless essential details are missing
from the open literature. Therefore, in the absence of purloining a code and reverse engineering
it, many details have to be laboriously reworked. But given the inevitable variations in the
success of specific AMR software implementations, a body of anecdotal evidence is bound to
accumulate regarding the merits of the general approach, as it becomes more widespread.

To combat this malaise, Amrita is designed to provide a generic means of disseminat-
ing small, but important, algorithmic details in an unequivocal manner, so that the wider CFD
community can benefit from the hard won skills and experience of individuals. In this regard,
there is no difference between developing a CFD code, such as Amr_sol, and developing a
solid-mechanics code, such as Adlib. Anrita’s software design principles — repeatability, ac-
cessibility and extensibility — can be put to good use no matter what the target application.

55y a similar vein, the argument for using Amrita, in preference to Per], is that it streamlines the construction
of a certain class of program; the same argument can be employed to justify either using Per], in preference to C,
or using C, in preference to machine-code. Amrita is not an attempt to out do Perl (try using the £0l1d: :perl
construct), it just grew from a different necessity.

36




6 = 100° 6=110° 6=120°
examplel: Amrita checks Adlib for rotational invariance.

Figure 13: Because Adlib’s advancing-front algorithm: marches in from fixed points on the block’s
» . boundary, it would be expected to produce grids which are invariant to the orientation of the block. The
above output shows that this is indeed the case. However, the first time the script was run it unearthed
a remnant left-over from a pre-Amrita exercise which broke the invariance. Programs which need re-
wiring between user-problems, no matter how innocuous the changes involved, always run the risk of

such “code rot.” . - -

. ,

37 .

IR 2 O AR P AL s A o = ey e Lvae e R Ty VS R R T o« e
R S A AR 1 I IR Foud £ SRR N T




8 An Open Invitation

These notes describe but a small part of Amrita, and propound an even smaller part of the
underlying philosophy. However, enough of the system has been exposed for you to judge
whether or not the approach has merit. Therefore, to close, I explore some possibilities for how
interested parties might contribute to_Amrita’s further development. But first, I build on some
remarks made on p. 2.

Amrita stands or falls on its utility as a labour saving device. For this reason, no claims
are made regarding its algorithmic originality or efficiency. The scope of the System is such
that it touches upon a number of active research areas. Consequently, although these notes
are undoubtedly self-absorbed, I recognize Anmrita has much room for improvement’”. The
system is designed to allow experts to contribute specialist components, while at the same time
remaining accessible to non-experts. The danger of this approach is that one-half of the target
audience dismisses Anpita as being overly complicated, while the other half dismisses it as
being old hat™. ,

At a practical level, this makes it difficult to locate individuals who are willing to help
maintain a system that runs to over 220,000 lines of code™. Half the target-audience members
feel they do not possess the skills to contribute, the remaining audience members would rather
reinvent the system wheel for themselves. This second response is fully consistent with the
advice I offered on p. 27. If you develop your own software, you should always be reluctant to
utilize unsupported, third-party software. Unfortunately, at the time of writing, Amrita is not
a supported product, because its development and maintenance fall squarely on my shoulders.
One motivation for developing_Amrita, in the first place, is that I believe CFD has progressed
to the point where it is no longer practical for one individual to develop and maintain a com-
petitive “code.” Even if you disagree with this sentiment today, given the developments of the
last decade, it is clear that CFD is becoming reliant on ever larger and larger pieces of soft-
ware. Consequently, unless something is done, you will eventually be forced to concur that the
cottage-industry approach — one worker, one code — is outdated.

Therefore, although Ammrita is currently unsupported, I feel a case can be made for a third-

5TThe security conscious might be concerned with the combination of digital-signatures and dynamic-linking.
Since the source for Amrita is available for scrutiny, there is nothing to stop a malicious programmer from
circumventing the built-in security features and wreaking havoc. This problem is not unique to_Amrita and will
undoubtedly receive widespread attention with the release of Netscape 5.0, whose source will similarly be open to
public scrutiny.

58A computer scientist might classify_Amrita as a problem solving environment, or PSE for short. But in my
mind, having a fluids background, PSE stands for parabolized stability equation (e.g. [17]). The basic structure of
Amprita has been in existence since 1989, and so can legitimately be considered old hat. Asmmrita was developed
to cope with day-to-day programming needs, without regard to contemporaneous research activities. By releasing
the system, now that it has become too useful to keep proprietary, in some quarters I expose myself to accusations
of selective referencing. However, at this late stage, I feel it would be disingenuous to provide a post-natal PSE
review. Instead, Amrita will soon feature a database server which will allow individuals to submit pertinent
reference entries, and the requisite document-preparation keywords will be added to Amrita to allow users to
access this bibliography in a transparent fashion.

S91f it were not for amrpp, this number would be tripled. However, to quote from p.7 of The C++ programming
language[25]: “C++ was designed to enable larger programs to be constructed so that it would not be unreasonable
for a single person to cope with 25,000 lines of code.” — skip two sentences — “Naturally, the difficulty of writing
and maintaining a program depends on the complexity of the application and not simply the number of lines of
program text, so the exact numbers used to express the preceding ideas should not be taken too literally.” — skip five
sentences — “However, as programs get larger, the problems associated with their development and maintenance
shift from being language problems to more giobal problems of tools and management” Amrita functions as a
generic code-development tool, as such you should look beyond its present incarnation to envisage what it could
become with your support.

38

R T B




party developer chancing an arm in the hope that a sufficient number of like-minded individuals
band to form a critical mass of ‘“Amrita++” developers. For my part, I am happy to modify
any part of Amrita to facilitate the process. Moreover, if you feel you have a system to rival
Amrita, and are willing to entertain the idea of a software merger, I would be happy to consider
how this might be done. If the research community continues to go it alone, the pace of software
development is such that a commercial® product in the manner of Mathematica or Matlab will
eventually hold sway, and CFD will be all the intellectually poorer for it.

Below I indicate contributions which would benefit_Amrita as it stands today. This is by
no means an exhaustive list, and so should be considered a first-cut effort:

i. Beta-Release Testers

The primary development platform for_Ampita is an SGI Indigo2 machine running IRIX
6.2. Therefore, although the system runs on other UNIX platforms, installation teething
problems often give reluctant programmers a bad first-impression. For instance, when
v1.38 was released, the Solaris version ran fine on a Sun SparcStation 5, but choked on a
Sun Ultra. The problem was easily fixed by adding —1socket to the list of link libraries,
and was a generic Sun Ultra problem for programs which used -1X11 -1Xext. Nev-
ertheless, in the eyes of the user, Anmrita was mistakenly condemned as non-robust. To
circumvent such problems, volunteers are needed to test beta releases of Anrita under'
AIX, HPUX, LINUX®! and OSFI.

ii. Amrita Script Writers
Few people in the CFD community are prepared to learn a new programming language
for the sake of it. Hopefully, these notes will convince some that the time taken to learn
Amrita will be recouped many times over by the improved productivity it brings. How-
ever, others will need more convincing. Therefore volunteers are needed to first learn
Aumrita then craft CFD applications to the standard of the linear-advection study obtained

by typing:
unix-prompt>amrcp Ch7/la.mailit

It is important that such example scripts be of a reasonably high standard, because they
will be held up as a programming standard for others to aspire to. At the same time, if the
scripts are too sophisticated they run the risk of losing their target audience.

iii. plugin Developers
To demonstrate that_Anmrita is truly a neutral, numerical test-bed, volunteers are needed
to develop the equivalent engine to Amr._sol in other CFD areas. For suitable candidates,
I am willing to help write the required system-level code.

iv. BCG Contributors 7
Again, to demonstrate Amrita’s algorithmic neutrality, volunteers are needed to both
solicit and install CFD codes into BasicCodeGenerator.

%To clear one common misconception, the .com domain extension in www.amrita-cfd.com does not signify
that Anmrita is a commercial venture. At the time of registering, the .org extension was mappropnate for an
organization consmtmg of just one person. Similarly, Quirk Research obtained by typmg'

unix-prompt>whois amrita-cfd.com
resides only in the mind of one Dr. Aure Prochazka (a former GALCIT student) who was kmd enough fo register
and host the domain name for me.

5! Amrita’s Fortran code requires the use of the Absoft, or Portland Group, commerc:lal compiler.

39




v. Technical Writers
Many thankless, but nonetheless important jobs need doing if Amrita is to become a
supported system. Therefore, although the infrastructure for an on-line manual is in place:

unix-prompt>amrita -c
amrita>Show keywords=*

volunteers are needed to help produce clear and precise, keyword documentation.

vi. GUI Developers
Although _Amrita was designed to be batch driven using Amrita, the event driven nature
of its plugin engines make them ideal candidates for being driven by a Graphical User
Interface. Volunteers are needed to explore two approaches: (i) the GUI generates Amrita
script to drive a plugin; (ii) the GUI generates ISL to drive a plugin.

Volunteers, for any of the above, can find a sign-up sheet at http://www.amrita-cfd.com.

Acknowledgements

This work was supported by Los Alamos National Laboratory — subcontract 319AP0016-3L
under DOE Contract W-7405-ENG-36. All brand or product names used in these notes are the
trademarks or registered trademarks of their respective holders.

S ARG PPN I 0
B RED Lt g R




A Getting Started

A.1 System Requirements

Amnrita runs under the UNIX operating systems: HPUX, IRIX, OSF, Solaris and SunOS, and
is self-contained apart from its language interpreter which is written in Perl. Consequently Perl
must be installed before_ Amrita can be used. Now there is a good chance that Perl is already up
and running on your computer system (check with your system administrator) as it has become
a de facto standard on UNIX platforms. If not, consult the USENET newsgroup comp.lang.perl
to see how Perl may be obtained via anonymous fip. For its part, Amrita is available via from:

http://www.amrita-cfd.com

and comes complete with easy to follow installation instructions, written in HTML, and a set of
acceptance tests to verify the installation process.

Amrita does not require any third-party software (other than Perl) to be used profitably, but
to follow the examples in these notes you will need access to Latex, Dvips, Ghostview, Gnuplot
and Netscape. Again, given their popularity, these packages should already be installed on your
system.

A.2 Typographic Conventions
The following typographic conventions are used in these notes:

Amrita is used to mean the complete system known as AMRITA:
Adaptive Mesh Refinement Interactive Teaching Aid.

Amrita is used to mean_Amrita’s language interpreter.

Slant Font is used for the names of third-party software packages and
Amrita’s plugin engines.

Italic Font is used for filenames.

Constant Width Font is used for miscellaneous code fragments such as Amrita
listings and UNIX commands, and also for program output.

Constant Width Font is used in examples to identify variables which take
context-specific values. For example, £ilename would
be replaced by the actual name of a file.

Constant Width Fomnt is used both for commands that you are meant to type in
verbatim and also for syntactic entities in the definition of
commands.

A.3 New Users
To use_Amrita from a csh window, add these two lines to your .cshre file:

setenv AMRITA installation
setenv PATH "${PATH}: SAMRITA/tools"

where installationis the full pathname to the directory where Amrita is installed, say:

Jusrflocal/AMRITA
41

TN NI




Once this is done, and you have typed:

unix-prompt>gsource .cshrc
unix-prompt>rehash

you can check which_Amrita version is available by typing:
unix-prompt>amrita -v

This should produce a message along the lines of:

Amrita version 1.38 (release 28-01-98)
Copyright (C) 1988, 1998 James J. Quirk

Send bugs and suggestions to help@amrita-cfd.com

If it does not, or you are using an alternative command shell to csh, such as bash, check with
your system administrator as to how you should access_Amrita.

A.4 Worked Examples
These notes contains a number of worked examples such as this one taken from p. 14:

... redirect latex output amrcp Chp2/montage.l1

Latex2eHead pagesize=problem-sheet amrita run montage
--. typeset title cd doc/montage
--. typeset figures amrps solvers.ps
... typeset footnotes

LatexTail

Latex

In each case, a text frame provides pertinent information such as the commands needed to
run the example and the output files to look out for. Thus the above would be run by typing:

. unix-_prompt>aqzrcp Chp2/montage.l
unix-prompt>amrita run montage

The first command is a utility which unpacks the named file from Amrita into your filespace,
to save you having to type it in, and the second invokes the Amrita interpreter to execute the
program stored in the file startup_errors. Once the script is finished, the main output file of
interest (relative to the directory in which you ran the script) would be:

doc/montage/solvers.ps

which you could then view with the PostScript previewer of your choice (by defaunlt amrps
invokes GhostScript). Because the number of files produced by a single script can be quite
large, you might want to consider using a separate work directory for each section of the notes
50 as to facilitate subsequent file management. Here, for example, you could use a directory
called Chp262,

The script examples were tested using Amrita 1.38 (release 28-01-98) running on an SGI
Indigo2 machine (195 Mhz Mips R10000 processor) with 384 Mbytes of memory.

62This example comes from Chapter 2 of An introduction to Amrita[21].

42




B BasicCodeGenerator

Whereas classical CFD doctrine has the computational universe revolving around the flow
solver, Amr sol views solvers as disposable items. For instance, if a code such as roe_fl
does not meet your needs — recall this was used by my.script on p. 5 — it can be replaced by
another code more to your likingS, without disrupting the general orchestration of the inves-
tigations in which the substituted solver appears. This is possible, because Amr sol takes
care of all the generic work needed to perform a simulation, such as: file-handling; applying
physical boundary conditions; applying mesh-refinement; post-processing results etc. When
supplied the discrete solution {W7;} for an isolated rectangular patch®, the solver is ex-
pected to perform one of just two tasks: (i) return a stable time-step for the integration process;
(ii) return a discrete solution {WZ}} at the next time level®. If needs be, the solver could
read the new solution in from a file, or even grab it from the internet. As far as Amr sol is
concerned, the precise details of the integration process rest solely between the solver and its
maker (but see below).

Given the division of labour, a solver is a light-weight piece of software®. For instance,
the source for roe_fl weighs in at a shade over 300 lines of Fortran. If you change to the
directory where you ran my.script, you can view this source by typing®’:

unix-prompt>cd code
unix-prompt>amrgi code/roe_f£f1.src

Here, folded using:
fold::file code/roe_fl.src (to £77::L0) -> listing

the source appears as®:

#include "AMR_SOL/AMRITA"
SUBROUTINE L.OG_BCG_ID

#define HARTEN_entropy fix

#define phi 2.0 DO
SUBROUTINE INIT BASIC_EULER_CODE
AMRDBL FUNCTION PATCH_DT(IM,JM,NG,DX,DY,W)
SUBROUTINE PR];ME_I (GRD, J, IM,JM,NG,DX,DT,W)
SUBROUTINE ISWP(GRD,IM,JM,NG,DX,DT,F,W)
SUBROUTINE PRIME_J (GRD,I,IM,JM,NG,DY,DT,W)
SUBROUTINE JSWP(GRD,IM,JM,NG,DY,DT,G,W)
SUBROUTINE CALCULATE WAVE STRENGTHS (K1,K2)
SUBROUTINE COMPUTE_EIGENVECTORS (K1,K2)
SUBROUTINE MODIFY WAVE_STRENGTHS (K1,X2)
SUBROUTINE CALCULATE_DISSIPATION (K1,K2)

S31n tum, Amrita views Amr_sol as a disposable item. However, given the software-engineering involved, it
would be impractical to replace Amr._sol with same regularity that solvers are swapped.

64Details of how Amr._sol orchestrates the integration process will be give in lecture 2.

5 Amr._sol decides the size of a master time-step based on the individual, patch time-steps returned by the
solver. Again details are given in lecture 2.

6This does not imply that the intellectual content of the solver is slight.

" Amrgi automatically folds Fortran on FUNCTION and SUBROUTINE program units. Therefore you can use
it to view your own folded-Fortran without needing to introduce explicit £01d directives.

%The file me_fl.src is processed twice before it is actually compiled: re_flsrc — f77src/roe fLF —
f77src/roe_fLf . The second of these pre-processing phases takes care of the #include and #define direc-
tives and expands the typedef AMRDBL to the appropriate Fortran type for a double precision variable.

43




B.1 Solver Roe fl

If you are wondering precisely how you becamie the owner of the file roe_fl.sre, the first line
of my.script invokes the procedure TasteOfAmrita which in turn calls the Amrita library
procedure BasicCodeGenerator (BCG for short) which constructed the solver for you.
If instructed to do so, BCG will also document the code it produces. For instance, try ranning
this script:

EulerEquations ’ S amrcp Chp2/solver.l
plugin amr_sol amrita make Roe f1l
BasicCodeGenerator { cd code
solver = Roe_f1l amrgi Roe fl.src
scheme = flux-limited’operator-split cd code/doc
document = yes . amrps Roe fl.ps

}

to create a clone of roe_fi, called Roe_fl; complete with the BIEX document Roe_fl.tex, the first
two pages of which are shown overleaf.

The scheme parameter instructs BCG to build a so-called flux-limited, operator-split code.
Internally, BCG uses the scheme specification to traverse a tree of Amrita procedures which
construct source code, subroutine by subroutine, using the document preparation skills de-
scribed in §3. This provides for far greater flexibility, and ease of system maintenance, than
if the code were merely regurgitated from a single, pre-prepared file. The solver parameter
allows the user to select a name by which to refer to the resultant code and so has no bearing
on the code content. Here the name was chosen to reflect the theoretical lineage of the solver
(background references are given in Roe_fl.ps), but any filename would do®.

To find out what other BCG codes can be used to integrate the EulerEquations, type:

unix-prompt>amrita -c¢
amrita>EBulerEquations
amrita>plugin amr sol
amrita>BasicCodeGenerator scheme=7?

this will produce an HTML document which you can browse to find a naming-convention which
reveals the available schemes. At the time of writing the allowed schemes are™:

def NamingConvention
convention for euler-code is space’grid’recon’evol
where space = {ld:one-dimensional|2d:two-dimensional}
where grid {c:cartesian|b:body-fitted:curvilinear}
where recon {fo:first—orderlkm:kappa—muscllcm:char-muscl}
where recon .= {fl:flux-limited}.
where evol {os:operator-split|fv:finite-volume}
exclude names 1ld-b-*-*

end def

... BCG latex documentation'(

%Try re-running the make_Roe_fl script with solvex set to your initials (e.g. 77g) then check for differences
between the source files Roe_fl.src and j jg.src using the UNIX utility, i £f. -

"In keeping with the rest of Amrita, the naming-convention for euler-code is programmable and so can be
widened to accommodate user-supplied code. Thus recon could be extended to include eno, and evol could be
extended to include runge-kutta. Because the naming-convention fixes the scheme names used to traverse
BCG’s code-generating tree, and not the hardydetails of the codes themselves, its extension is trivial.




Amyrita

BasicCodeGenerator

Made: Roe fl

For : James J. Quirk (aka jjq)

On : Mon Feb 2 15:44:34 PST 1998
Correct Usage:

EulerEquations
plugin amr_sol
logfile logs/Roe_fl
solver code/Roe_f1l

Preamble

This document! dissects the source code for the Amr_sol compatible solver:
Roe_fl
which was generated using:

BasicCodeGenerator {
solver = Roe_f1
scheme = flux-limited’operator-split
document = yes

}

It is assumed you have some familiarity with the operation of BasicCodeGenerator and imderstand
how flow solvers are bound to Amrsol. I this is not the case, you should read Chapters 6 and 7
of An introduction to Angita before proceeding.

-

31f you spot an errar in this d t, or the iated source code Roe_fl.sre, please take the time to file a bug
report so that it can be carrected.

Figure 14: Page one of the document produced by BCG for solver Roe_fl.

45

B N S S P SO N - <27 RN SR YR L N

ey S
PRI R SN




TN T Y SR LT T TR T TP T

Contents ’

1 File Inventory 3
11 Roeflsre o o v e e i it i s i teeeceeeecccssnsoanecnasonanses 4
12 ROEfLB o v ee et e e e s e ssaeanseeceeascaeea e 6
13 Roeflinfo . o o oo o o e e it it i it teeeeennescscnsesecsenenens 7
14 Roeflmk .. .ottt ittt ettt eesascsosnocnsnonnns 8

2 Code Dissection 10
20 MADHESE < 2 o o o e ee e ee e e e e e e aae e 10
22 Incdudefile Roeflh . o o e o e oot e i i teieeeeaimenaraaaenens n
23 SUBROUTINE LOGBCGID . .+ ¢ v v 4 v c e e s v s ovoonsnsosmsnvmmonnenn 13
2.4 SUBROUTINE INIT.BASICEULERCODE. .« v v v v v o e o e vewa e e e meas - 15
25 FURCTION PATCHDT . . ¢ o c o c et s e st oo nssonoessmpsonssmmnmssmesss 16
26 SUBROUTIHE PRIME T . . . . s ¢ c c ¢ e st s e scssvssscosonmmceoneess 17
27 SUBROUTIHE ISWP . v v ¢ o o s c c oo onsssnonsosncosvsnnasennnesss 18
28 SUBROUTIHE PRIME J . . « ¢ v ot ¢ e st e s s scoossscsovsmmsssnneees 19
29 SUBROUTIHE JSHP . . 2 4 v e vt v c o oo vocssnscsscsnnnasvransnens 20
2.10 SUBROUTINE CALCULATEVAVESTRENGTHS .. .. ... ¢ e it evnonosonenosn 21
2.11 SUBROUTINE COMPUTEEIGENVECTORS . . © © ¢ 4 ¢ e v s e s e cesomossovmsee 22
2.12 SUBROUTINE MODIFY.WAVESTRENGTHS . . ¢ ccvvoosccrsvovomomcmneoes 23
2.13 SUBROUTINE CALCULATEDISSIPATION .. .. .. ¢ e v eeeenemennen e e 2 .

A Two-dimensional Euler Equations (slab symmetry) i 25

B Plugin Amr.sol 26
B.l Overviewof AMR Algorithm ... ... e i i innenenn feeea 26
B.2 Current ImplementationRestrictions . . . . . . e 4 i it it b it et ha e 29

C Fortran preprocessor: amrpp 30

2

Figure 15: Page two of the document produced by BCG for solver Roe fi.




With thls knowledge you can then choose a scheme (or schemes) to suit your preferences.
For example, the run_montage script (see p. 14) essentially runs:

EulerEquations ) amrcp Chp2/solver.2
plugin amr_sol amrita make km solvers
foreach flux (godunov, efm, hlle, ausm)

BasicCodeGenerator {

solver = $flux'_km
£lix = beg/$flux
scheme = kappa-muscl’operator-split

}

end foreach

to produce a collection of MUSCL-based solvers’..

BasicCodeGenerator is designed to produce flow codes to meet the general needs of
the Amrita community. As such, it operates at several levels, and leaves users to find their
own level of programming comfort. At the lowest level, you can use BCG blindly, safe in
the knowledge that it will craft a serviceable code. In this lecture the focus has been on the
EulerEquations, but it is only a small leap of faith to run this script:

ShallowWaterEquations amrcp Chp2/solver.3
plugin amr_sol amrita make swe_solver
BasicCodeGenerator {

solver = my.swe.code
}

to acquire a code with which to integrate the ShallowWaterEquations, and so on for

other sets of equations’. Then, if you are curious as to the inner workings of a particular solver,
' BCG will produce a code dissection to slake your curiosity; if you have not already done so,

now would be a good time to view the PostScript file Roe_fl.ps (all 30 plus pages of it!).

At a more active level, the output from BCG can be used as boiler-plate for creating a
customized solver. But as its name suggests, BasicCodeGenerator has no pretensions
to representing the last word in solver sophistication. Therefore, if you are a CFD die hard,
you may well feel you can do a better construction job than BCG. If this is the case, you can
still use the output from BCG as a template with which to build your own Amr._sol-compliant
code from the ground up. In particular, a document such as Roe_fl.ps will explain how to define
the required solver bindings™.

B.2 def Solver

Before Amr_sol can use a solver, it must have some knowledge of the code’s internal layout.
Specifically: which routine should it call to initialise the solver; which routine should it call
to compute the stable time-step for an isolated mesh patch; which subroutine calls need it make
to integrate the solution held by an isolated mesh patch. Therefore Amrita provides a def

If you are not familiar with MUSCL schemes, activate the document parameter.

T2For maximum flexibility, each EquationSet employs its own BCG naming-convention. In the case of the
LinearAdvectionEquation, which provides the clearest setting in which to learn to build a solver, the
naming-convention even allows the user to specify a choice of programming language (£77 or cc).

T3The complexity of the bindings is independent of the mathematical complexity of the target EquationSet.
Thus lessons learned using the LinearAdvectionEquation transfer directly to codes written forfull systems
of partial-differential equations.

47

IR E RN e




Solver block to allow the solver author to furnish Amr_sol with the information it needs,
and a BCG document such as Roe_fl.ps provides a ready made example of its use, as do the
documents for the kappa-muscl schemes.

The Solver block for Roe_fl, taken from Roe_fl.mk is:

def Solver
gridreq. : cartesian (NG>=2)
symmetry : slab | cylindrical Lo .
startup : INIT BASIC_EULER_CODE " '
timestep : PATCH_DT (IM,JM,NG,DX,DY,W)
step Isweep (aka Li) : ISWP(GRD,IM,JM,NG,DX,DT,F,W)
step Jsweep (aka Lj) : JSWP(GRD,IM,JdM,NG,DY,DT,G,W)
integration: Li*Lj
end def

and is dissected in §1.4 of Roe_fl.ps.
If you compile the code manually:

unix-prompt>amrita Roe_ f£f1.mk
you will see a message:
creating Amrita bindings

The CompileSolver call at the end of Roe_flmkuses the def Solver information to craft
a number of system-level, binding routines which allow Amr._sol to call Roe_fl at run-time. The
output from this construction phase, f77src/Roe_fLF:

#include "AMR_SOL/AMRITA"

SUBROUTINE LOG_BCG_ID
#define HARTEN_entropy_fix
#define phi 2.0 DO

SUBROUTINE INIT BASIC_EULER_CODE

AMRDBL FUNCTION PATCH_DT(IM,JM,NG,DX,DY,W)

SUBROUTINE PRIME_TI (GRD,J,IM,JM,NG,DX,DT,W)

SUBROUTINE ISWP(GRD,IM,JM,NG,DX,DT,F,W)

SUBROUTINE PRIME_J (GRD,I,IM,JM,NG,DY,DT,W)

SUBROUTINE JSWP(GRD, IM,JM,NG,DY,DT,G,W)

SUBROUTINE CALCULATE_WAVE_STRENGTHS (K1,K2)

SUBROUTINE COMPUTE_EIGENVECTORS (X1,K2)

SUBROUTINE MODIFY_WAVE_STRENGTHS (K1,K2)

SUBROUTINE CAI.CULATE_DISSIPATION(K1l,XK2)
***********************************************************************
* THE FOLLOWING AMR_SOL BINDING ROUTINE(S) WERE GENERATED BY AMRITA *
* USER: James J. Quirk (aka jjq) *
* DATE: Mon Feb 2 15:44:37 PST 1998 *
***********************************************************************
#include "AMR_SOL/AMRITA"

#include "AMR_SOL/BINDINGS.H"

SUBROUTINE AMR_SOL: : VALIDATE_SOLVER (CHAN)

AMRDBL FUNCTION AMR_SOL: :PATCH_DT(L,GRD)

SUBROUTINE AMR_SOL: : INTEGRATE_GRID(L,Nt)

SUBROUTINE AMR_SOL: : GRABINFO (CHAN)

khkhkkhkhkhkhhkhkdhhhkhhkhkhhhhhkkhkhhkhhhhkhkhkhkhhhkhrhhhkhhhhrkhkdkhhhhkhkhkhkhhhrhkkhbkdhkd

* THE ABOVE AMR_SOL BINDING ROUTINE(S) WERE GENERATED BY AMRITA *

khkkhkkkhkhkhkhkhkhkhkhhkhhkhkhkhkdhhhhkhkhkhkhkhhhkhkhkhhdhhhhhhhhkhhhhhkkkdddrrkrkhdrrrdhddhd

RN R




is then pre-processed by amrpp to produce a file f77src/Roe_flLf which can be compiled by a
standard Fortran compiler™.

Reluctant programmers need not be phased by the above machinations, because all the hard
work takes place automatlcally. For example, some of you may have noticed that the integration
sequence:

integration: Li*Lj

is not formally second-order accurate. Fortunately, all that need be done to get pukka Strang-
splitting[23], is substitute the line:

integration: 1/2Li*Lj*1/2Li
then recompile:
unix-prompt>amrita Roe fl.mk

and the innards of the binding-routine AMR_ SOL : : INTEGRATE_GRID automatically adjust
to the revised integration sequence™.

Practical experience shows that Strang-splitting is a mathematical nicety for the shock-
diffraction problem run by my.script™® and so an Engineer might not be happy putting up with
the extra cost of the integration for no tangible reward. For a uniform grid, the sequence:

integration: Li*Lj*Lj*Li
combines the economy of Li*Lj with the accuracy of 1/2Li*Lj*1/2Li. However, when
used with Amr sol, it has the side-effect of halving the number of grid adaptions which in-
creases the risk of introducing O(1) errors, should a shock escape across a fine-coarse grid
boundary. Such subtleties help explain why Ampita is endowed with a programmable inter-
face rather than a GUI: Amrita allows a wider range of tastes to be catered for in a seamless
fashion.

Here, the expert programmer need not feel fettered by BCG’s way of doing things. When
all is said and done, with the current_Amrita release an Amr. sol solver is a shaned—ob_]ect
file which provides four system-level calls 7'

i. AMR_SOL: :VALIDATE_SOLVER allows Amr._sol to check that the solver is com-
patible with the current EquationSet. This prevents the sorts of chaos which would
ensue from integrating the EulerEquations with a solver intended for a different
EquationSet, say the LinearAdvectionEquation.

ii. AMR_SOL: : PATCH_DT returns the stable time step for an isolated mesh patch.

iii. AMR_SOL: : INTEGRATE_GRID updates the flow solution for a collection of mesh
patches. Lecture 2 will describe some of the subtleties which dictate the internal machi-
nations of this routine.

iv. AMR_SOL: :GETINFO services Amrita’s getinfo command and is not mandatory.

74This statement is not strictly true, since two industry-standard extensions are needed: (i) ability to cope with
long variable names; (i) ability to copy with POINTER variables. But the statement stands in that the Fortran
compilers provided by all major workstation vendors have the required extensions. Unfortunately, at the time of
writing, the Fortran supplied with Linux does not cope with POINTER variables, and so you must purchase a
commercial compiler which does (e.g. Portland Group pgf77).

75An explicit integration sequence can be specified when BCG is called, and so there is no need to feel
inconvenienced by the default Li *Lj, should it not be to your liking.

6please read the Dumas quote on p. 15.

T'Future _Amrita releases are not obliged to maintain the low-level binding structure. Therefore, unless you
have good reason for doing so, do not circumvent the def Solver mechanism.

49




C Awrita mailit files

The primary purpose of Amrita mailit files is to allow Amirita scripts to be distributed via e-

mail, hence the name “mailit”. For instance, suppose person A sets out to develop an Amrita

application for drawing fractals; with the express intention of showing that, despite its heritage,

Amrita is not restricted to gas dynamics. Well, once the necessary scripts are written and

tested, A need only invoke Amrita, thus:

' unix-prompt>amrita -mailit fractal

to produce a file fractal.mailit which can then be e-mailed directly to person B; complete with

a PGP[10] digital signature, courtesy of amrmailit, to authenticate the origin of the message.
All B need do, upon receipt of the mailit:

BEGIN PGP SIGNED MESSAGE—————

AnritaMailit:sfractal { amrcp vki/mailit.l
orighn ¢ amrita fractal.mailit

Amrita v1.38 R07-01-98
user James J. Quirk (aka jiq)

date Thu Jan 8 14:17:00 PST 1898 amrps ps/fractal.ps
]

resources {
disk 131 XBytes
cpu 34 gecs
)
operation (
amrita -mailit fractal

}
script {
M'XL (" (11M30° *VIRB6-TB6PR=LSR" .U7; 5/B2 ! #>S_R*KENKSC1*$GEQ*>, 6
M(KA>*5F (MYXLM34FOT23355" "N?YWZ\ [*9 * $UIT/NWMU=>D" INAYNT>GIZ: [
M34PQ/6#6FY] ) LBSTZUGEMBEKE :04:V5; 4T . FEEROUFLIEIX@*SNI 7/ TH\DU
H*J:X’S'/3;P[>WE=Y) P[XMB1E, ; 4X] 828 -G*1XA-*~&RB* ) ; EGE3Z§ : GHEN_
MPIN#SP/-9H[ 1X1M/ §) ) CLYFFUFESUYK>F@XPV_OL*ZMPP8-S=L0! -__BVNES
MDB., *>Y+-/*1TBBP) §1.P*) 3. ) J$2GR=N; SE*C_P=<]T*Q* .JA3 IV+0XN'YE
M’SE1=0T"*)RP@, ] .V'VHB" : TFBS-A: ; LRM*$F[>30%.JTB>" ) <@BL/ ; TA\OV
HS(*)}2%>3L3IK(00YSG=B*H’ IN* +-J\632¢D] . 1U4P_F@)ADS35/DIT7I7ENC
MERO4A5>TAZ+M (S5’ YI] ~ICC[SXR2SD (1K-"N) 47 (0\S8#="A] &C7ZTDA" | YF\
M+9=W25HF8>T;X; BSDXM>FOB; 5 [Z8+L==XV2, ~.20[ 1071 UI-) ;W7298H-1V
HYS9_W\RNI [04RPHIL"?_=4]T&! ; +:L12Y[F*~52Q#=F~#.4F~] ‘Q%<B) IT\
HE*HQ<R=B>T#44 " TP, _V, AGATFRR\L_! $L62J8CX1/G? * 9LYLB3 ' HPGBM/L/+
MPIP>WWIHCAS0V, QTEF' * POBIHG3$FR5SVY247PYP@3U%4TL BA_SVO[2ZVeIV
MCHLE34’_SDIETH#8**I~Y7* ] \\/RJIPBLB. 6; SYFWAL" 8% /G\SH\COU\ : 1>C?&
MG 1L:05-UI0XS 1461 L{4ZN* [4) WOOGH\ ~BKAB<6>A3~TGEMA36DI79~;1HS"
M’1S37_CX-$ZN>QB>-F: “HM/&7 (0>3BC-~E4/S"1H* -C<GX#QZ; § ; <PCB8#-]
MGOTHCL?SGR*FI3"7;BA9S& (. ) ) GA*=OP5HSPE&[0[_J6+0787\[?10NX9[+%
U[EXTFWCB*~IVO, IF4\7=#8: CAI \L=NO#4 *CQMYCASX@1"0Y‘'~S(\'<G/7P’.
MEL'MULQMSEN~[ 9Z\$I~E) 6ZI=S’ \+HI_W<VF\TT<KSDYGL) F1WR<V$) #8*4T
M) 9" 5>0_F: SPECITIMA<B3IW<Y’ 5P+2I>G824K: /0LW/ \ . ‘DBF G+LN; 69=*
MEKI+HM_$LV'O%_E+)X6<:BATEN" *2=46* (I2\0AE1H""3+/(5_0?{3_E_07(Y
HML3GP6_F_XLJI+_$ M-ZCAK\NJIFN?. 7TSA_L"4_75)6.<K.F8:XKIXIT1*]1. (A
M>8) §</0CI>S?-&AY ! TH?XLO *Al [1\>(8; 3=T2GRABL] [ * YBW) 748QUB* /HLY
MGAX™, >; S>$6TQ 1 1Q/H" YWXSXGLZP’N§- I RBK620¥62Z, WSRT43 . 8F/A: §1YF
M/P>P2] [AOL\~N) E3EG=="*1QC:G,TZ+)B5;SC.%Q8F)ES ;J““18R\>*,M"PX
M)_)126°*LYX*Q7CEK: RIQMT [ [AP<GT+WLM0?°9STX; ?4. .R<’_;-1\; S5+{V§
M17Y1;F2ZNC;7/K1::F?9Q(T!) *3>:>LT7:,@° > EEI5>WHS+1/ST*NR(EB
MEIYRV2FE<=<1KBA+<GJB%$PVL2C=\/D’ [K#<X[EUV, H\]U*+!]>;USCLI<-PM
MMEL’ $\7XKAOFHAUI+Y; -~N=BC/IE>*L’ 602>7%4) : >1 ‘UOP3H=P:7_; 613N_P
MN)ME]DCSEIL)B’ YT-SBI~§+2F5Q6FAE¢GBLI HR&Y >, <AJSF2.D; 0580+H.C
M\>!1; ILFIB\?YIFUS.</CA_VE8BZ (GIF4_V/55K,Q?~~8W§;17*=")M2:C19
MW s2T5T<4?IT; * AWB () YV2YH/5<+005YC6_\3.#0/*)3*H3 (*46 .GF+F*
MS>8&IB=I8\*0U, 782~&H) 1W; BILX29&]) \_*MOXXD] : $YIBBL)Q/=90&([§"<1
M*F; §SWI4TI232XBE%51" (\/26WD"Q_1QCVeB*BZ#9IKHE~I7 [_V_GGYQRREFG
>0 +%*; ><<LHITYORRBFGG’ +*Z>?1/_VRG?\*****
’
}
}
~-——-BEGIN PGP SIGNATURE-----
Version: 2.6.2

1QCVAWUBNLVQ4 rg £1.85 P/ xTAQEOWWP/ Xa 1 BHIGWBCAQNRQZAKEX3 +7F bENCHaaP

njJveQnoHg: SxETUZFV F34+5uDVE; £W7TGvYL:
8gI0mPK1CQ7703RWKST/Glrqa]in825YE0vA 8I7TECAIIDIZHun2qfusST7dv2dIzd
XQ6FFkY+4kA=

=And+

----- END PGP SIGNATURE-~~-~
is type:
unix-prompt>amrita fractal.mailit

and Amrita will automatically unpack the archived script, check its authenticity, and invoke the
interpreter with the exact same options used by person A. Thus B ends up with the same set-up
as A, regardless of the complexity of the script involved’®.

78The system is not completely foolproof, that is determined users can break it!
50




o < | =
m Ay m m .o "

[=7] Q w

g en
8 . & o
ooxd pue toe . Lege P . ﬂ m ..m
. 2ord TXUWT¢ 8 OmXp* 0u0h g  ()-n0X TU3IOVIJARIQ m —

T s 9LT'9L107°01 weavgord 3 = B m
(ovungn) seupranoprad sord 06 «Xp'Q =04'09T=0x‘  Iwe*(U3VIIXVIQnOTTF BuF9ET190Td S & .m a5 :
emen <pu 00Tuxp*gamod! g9Tmox‘ aum £3090811RIOVI{=TTF SUTISTIIOTd o M g ..m '
<OTFOTH* (13001 1TRI09500098TR {XYTTHD-10} .mnw.w“_ﬂ_,.. OTT=Xp'g =0A‘0p =0X ‘Tegouszee s Suresyrsond B ‘" %0 o g

suemeTzex qeem exorTp +e° 4209001 1930031 8VITIUY\\WT#qV] o 3 m @ 8

7ep pue \'¥1aauBren! 00704 0quox TOqUTXEIRT . % g =

0>[fz-]sps[frs)op [ooo|oxo|oxa] sBerzies sd+Tesonzg/ed sTFF307d .
0>[TC-19Ps[YC+]9p [000|xx0000] eSwryies uo 3djzosgsod « 8 ..m
AOBV OAD.“ nﬂno_ao_OOOH -?ﬂn.. n 3
C3moot tTea0Rz-g/F mit oduospURTatoT3RIUSTIO! TutBaew’ 2059075 1n0ZT8 9BRI308 o m m
wyI037InIUCTOTTIOY FOP Tos~aue upBnyd ..m
Lreupy T7ex qeem ¥ §9Ta XV 30IqTOPUN =388 £I030R4TRIOVI] = vm &0
7ep pe
<okguokioTgeoTyTRIONIT N PISTFIOL 9¥1+ Ysudogne .e o .
PTOTATOYINIOG Fop I~ s

eouwyd xordoos 3o jxwd uesoyo dnyes o

best

m on

amic-

is

51

ooxd pue
dn3xeqst tTeiony uenoy esawd
IVEUP/LTIM atl 2UNODL ITWIOUF
<0nck'(u0x> wtt TU300IF 8
3% pus
3% pos
0 w1t ok Azyoeds
0 wit ox Lyyoeds
€(C1z)=r’ ([1Z) oy ‘zvaug’ 3oag: 1 £20300F TVIOUIZ)UF wit [T1N
{00K+Qla' Qox+e0X> wtt 2
oftox eagnbex
20300AUOYINTOS F9P
ok'ox opzyowds weyqoxd
ok'ox uwogjwzoT

the hidden program folds, constitute the entire

T subeu
TeUOTsUITTP~0AY eouds
Kxozougruionzy o

jeSuoysenby ep
Axojowz-Tw3ouxy eyydmod
1ITRIOVIF <=> {
000008=FX10R sexSivasy =, dn3auess
99T = awug
203qTIPNT = 08
} £2030w3reiowxy oocxd

ed by the unwieldy source needed to produce Figure 5.9 of U.

arring

.

inspir

Output produced by fractal.mailit. The image
h as Ghostview will also allow you to zoom

t 4 Amrita script lines plus 24 lines of Fortran.

ina

A1010% [ejoRIL] S, VIl

previewer suc

example was

ghs

wel

screen so that the full affect of the HLS colour shading[9] is seen near the fractal boundary. A PostScript
the page shown. The largest of the hidden folds uses the dyn

the three listings, b

Figure 16




C.1 Digital Signatures

Garfinkel[10] provides a thorough introduction to the general need for tamper-proof, digital
signatures and explains the basics of public-key encryption; the technology upon which DSA
(digital signature algorithms) are based. This script suffices to illustrate the basic problem:

set ob "= obfuscated amrcp Chp3/obfus.1
set obfuscated #= "\162\155" cd safeguard
set fu . "= Obfu . amrita run obfuscate

set scated #= "scated"."\052"
set Obfuscated #= " \052\056"
clarify on

execute $$ob.$Sfu.Sscated

It outputs, courtesy of Amrita’s built-in clarify command:

<<

SCRIPT: execute $$ob.$$fu.$scated
execute $S$Sob.$sfu. {$scated}
execute $S$ob.$$fu.scated*
execute $$ob.${$fu}scated*
execute $$o0b.$0bfuscated*
execute $$ob.{$Obfuscated}*
execute $$ob. *.*
execute ${Sob} *.*
execute $obfuscated *.*
execute {$obfuscated} *.*
execute rm *.*

>>

and illustrates one good reason why you should not use (or write!) obfuscated scripts: you can
never be sure (or recall!) precisely what they do.

Programming languages which employ string interpolations, such as Perl and Amrita, are
inevitably susceptible to Trojan Horse attacks through variable tainting. Here, the clarify
command reveals the intricate expansion process which leads to the devastating bottom-line”.

"It also indicates the extent to which_Amrita is happy to cater for reluctant-programmers®, If
you fall in this category, do not be put off Amrita by the above example: you run the same risk
of such an attack, every time you run a program executable you did not write yourself8!.

There are two basic methods for safeguarding against malicious attacks. The first is the
so-called “padded cell” approach, favoured by Java[26] and TCL[27], where suspect programs
(e.g. ones executed straight off the web) are run with draconian access restrictions, to prevent
them running amok. The second approach, as used by . Amrita, is based on trust. When Anrrita
receives a mailit from John Doe: it runs it, if and only if, you trust John Doe not to send out a
Trojan Horse®? and the attached digital signature verifies that the mailit was not tampered with
in transit. Neither security approach is entirely satisfactory, but the “padded cell” style, because

"°In fact, as a precaution against novice programmers shooting themselves in the foot, execute is disabled
when clarify is activated: execute launches a Bourne shell, and so csh users who have sensibly aliased xrm
torm -i would still have their files deleted by this obfuscated script, if it were not for clarify.

80Gijven the clarify command, there is no excuse for being unable to get to grips with Amrita string expan-
sions, other than plain sloth.

81Tyy typing: unix-prompt>man unlink.

8That is, John Doe’s PGP public-key is on your PGP key-ring of trusted associates.

52

Ly e tr———

- )/',f \l s .r“’ N




it hampers both good and bad scripts alike, appears to be losing favour®. Ultimately, however,
the security-buck stops on the desk of the user.
For those who are interested, fractal. mailit was sent out by®:

Amrita Mailit-Master <help@amrita-cfd.com>
using the public key:

----- BEGIN PGP PUBLIC KEY BLOCK-—-—--
Version: 2.6.2

DOCNAZ P156YARAEEAMBGD i Cv7LXkPSHDIO6HuucKoyQuPtaTRAWOSpRYQtDAu k6
££PiDILIEZ+84gyDIVPiBSCTSqOW3VI2MBEVTS/x042209GC790EhlukmiDA+0f
FE/IEDIx042g1XAVZHAOK3 Pyz4 ASYEST3 lvmnRtpU/ L8H2Uirrmg £ 1.8 P/XJAAUR
£Cp! bGL0LULhc3R1ciABaGVs CEBhbXIpAGELY2ZkLaNvhT6IATUD
BRAzS2NpuaBSuyM/ /EXBAbS1A/ 0DZKYC3Xw6X4hrWFAh78c45i0sgU0 840X VR
KxJuyJ /CEN19pDF19989pMFbvu3xacE6/VE0aeS3AGCE8H10I0dwd UCP+12V7DYD
wvglSX7HIcr+WO+eB5c9 BWKOF3 X++0Hz20RDRLRIMYBaZFE/ Oprb+hinCE+bebME
£wq//Q==

=5V07

----- END PGP PUBLIC XEY BLOCK----~

which has the MDS5 fingerprint:
D4 33 F8 7F 1F 80 C7 3A 00 13 FF A5 C9 FA 70 34

C.2 Bug Reports and System Updates

At another level, Amrita mailits were developed to facilitate the filing of bug-reports. Someone
struggling to get to grips with Amrita string expansions might be convinced that this script:

set x #= 10 amrcp Chp3/error.2a
set v #= -5 amrita run careless
set z #= $x-Sy :

which outputs:

Error at line 3 of file run_careless:
error evaluating expression ’‘10--5’1

Line 3 is:
set z #= 10--5

error near:
10--5

unearths a bug in the interpreter. Instead of bemoaning the fact, the individual can fire off a
mailit to a more expert programmer, with a realistic hope that the problem will be tracked down.
At least more so than had they merely submitted a vague written report®. In this instance, the
problem lies with the user’s script. Because Amrita fully expands a script-line before attempting
to execute it, the user should have written:

set x #= 10 . amrcp Chp3/error.2b
set y #= -5 amrita run correct_way
set z #= $x-(Sy)

8 Netscape belatedly offers a JavaScript signing tool called “zigbert”[15] which produces JAR files that work
along the same lines as Amrita mailit files.

84The library routine Get PGPkeys can be used to obtain a copy of Amrita’s public key.

85Nevertheless, you should always take the time to distill a buggy script down to the minimum which charac-
terizes the problem before submitting the mailit. The smaller the mailit, the quicker the bug-fixer can get to grips
with it, the quicker you get your problem solved.

53

RIS 7 &S R34



At the system level, amrmake automates the process of producing mailit files which upgrade
one version release of Amrita to another. For example, following a bug-fix, a “software tzar”
runs:

unix-prompt>amrmake tarfile

to generate the definitive_Amrita installation kit®:
AMRITAv1.38_R24-01-98.tar.gz

plus a series of mailit files which upgrade’previous releasés to the new release, say:
AMRITAv1.38_RI17-11-97_to_R24-01-98.mailit

The upgrade mailit can then be shipped out to_Amrita’s existing user-base, for recipients to
type:
unix-prompt>amrmake AMRITAv1.38 R17-11-97_ to R24-01-98.mailit

to make the appropriate upgrade. As the whole process is completely automatic, the upgrade
can be performed by individuals who are blissfully ignorant of the workings of patch and other
UNIX system utilities.

For those who are interested, here is the first part of the upgrade file:

AmritaPatch: :header {
upgrade AMRITAv1.38_R17-11-97_to_R24-01-98
instigator James J. Quirk (aka jjq)
date Sat Jan 24 12:27:44 GMT 1998
}
AmritaPatch: :delete { Amrita/keywords/gl/pasteimage.pl
file Amrita/keywords/gl/pasteimage.pl
}
AmritaPatch: :delete {
file examples/Chp2/Schardin/LatexSchardin.amr
}
AmritaPatch: :delete {
file examples/Chp2/Schardin/SchardinInfo
}
AmritaPatch: :delete {
file examples/Chp2/Schardin/schardin.ps.gz
}
AmritaPatch::edit {
file include/cc/AMRITA/isl.h 58759
4a5,9
> #include <stdio.h>
> #include <string.h>
> #include "AMRITA/typedef.h"
> #include "AMRITA/errors.h"
>
22a28
> AMRVOID ISL: :unplug (AMRSTR *plugin);
} .
AmritaPatch::add {
file stdlib/system/GetPGPkeys.amr 14312
proc GetPGPkeys
.. amrita:pgp::id
... amrita:pgp::£fingerprint
... amrita:pgp::publickey
foreach token (id, fingerprint,publickey)
chop amrita:pgp::S$token
etc ..

86This is far from being as simple as running tar on_Amrita’s root directory, which is why the task is automated.

54

T N T AT Ph ey oty Lo

B DGR LA




i — T T BT
IR NN NN T il S I AR i VTR,

D Dynamic-Linking

Dynamic-linking enables a code to perform open-heart surgery on itself — as it runs — so as to
fix a bug or obtain functionality that was not available when the code was constructed. Under
UNIX?, the dynamic linker (i.c. the surgeon) is controlled using four routines: dlopen,
dlsym, dlerror and dlclose®. Amrita builds on these routine to provide users with a
painless means of exploiting the programming-power of dynamic-linking.

D.1 Hello, World!
On my machine these two Fortran subroutines:

c ;

c OUTPUT CLASSIC MESSAGE amrcp vki/dl.1f

c cd code
SUBROUTINE MSG1 amrf77 greetings.f
WRITE(6,*) ‘HELLO, WORLD!’
RETURN
END

c

c OUTPUT AMRITA'S MESSAGE

c

SUBROUTINE MSG2

WRITE(6,*) 'HELLO, AMRITA!’
RETURN

END

can be compiled to form a so-called “dynamic shared object:”
AMRSO/serial/IRIX/64/greetings.so

On your machine, as explained on p. 25, the filepath between AMRSO and greetings.so might
reflect a different architecture, but the net result is the same: the file greetings.so is ready to be

sucked into any executing program which cares to make use of it.
For instance, change up out of the code directory® and run this three line Amrita script:

prlugin foo .
call code/greetings: :msgl cp vk::/ d1.1£
call code/greetings: :msg2 amrita print greetings

to output:

HELLO, WORLD!
HELLO, AMRITA!

The Amrita keyword call has the syntax:

call [<path>/]<package>[:<language>]: : <procedure>

The optional <path> locates a directory containing a shared-object <package> which con-
tains a <procedure> to call, in an optionally declared <language>®® (by default £77 is
assumed).

87 At least under the UNIX variants supplied by the major workstation vendors: dynamic-linking (DL) is not
available under UNICOS'! DL is now so pervasive in the design of operating-systems that you should not, not use
DL out of some misplaced fear that it is non-standard. If UNICOS survives, a future release will support DL.

88JRIX provides a solid introduction to the use of dynamic shared objects: irix-prompt>man DSO.

8 As a matter of good file-management, unless used for compilation purposes, I recommend you keep Amrita
scripts separate from both Fortran and C source-code.

%Currently, <1anguage> is restricted to f77 or cc, but the generalization to other languages s straightforward.

55 :

NSl




Therefore, if you prefer programming in C, there is nothing to stop you from compiling:

#include <stdio.h>
/ *

output classic message

amrcp vki/dl.lc
cd code
amrcc greetings.c

*/
void msgl(void) {
printf("Hello, World!\n");
} _' i . - .
/*
output Amrita’s message
*/
void msg2 (void) {
printf("Hello, Amrita!\n");
}

and running;:

plugin foo
call code/greetings:cc::msgl
call code/greetings:cc: :msg2

amrcp vki/run _dl.lc ‘
amrita print greetings

to output:

Hello, World!
Hello, Amrita!

The Amrita expert could even run:

... make hybrid-package

plugin foo '

call code/greetings:cc::msgl

call code/greetings:£77::msg2
f

amrcp vki/run dl.1
amrita print greetings

to output®:

Hello, Woxrld!
HELLO, AMRITA!

D.2 Compiler Options

Amrita is designed to work transparently across multiple platforms. Therefore, unless you
have good reason for doing s0°2, the only compile options you should employ with amrf77
and amrcc are: -0 or -G, and —serial or -mpi. The first pair of options toggle between
production mode (i.e. best possible optimization) and debug mode (see next section). The sec-
ond pair toggle between the serial and parallel versions of Amrita. This minimalist approach
works®?, because tools such as amrf77 and amrcc tune themselves to your local platform by
in-lining code from the directory structure AMRITA/SYSTEM®*. For instance, on my machine
the bottom-line Fortran compilation uses $JAMRITA/SYSTEM/IRIX/64/amr{77.

91The Fortran WRITE introduces a leading space, hence the mismatch in the justification of the messages.
. There is nothing to stop you from building shared-objects independently of Amrita using whatever tools or
switches your system provides.
93Many of the reluctant programmer’s woes stem from using computer systems which are overly flexible. Here,
the generic options -0 and -G are automatically mapped to the specific options required by the hardware.
94If present, the directory structire $AMRITA_HOMEF/SYSTEM takes precedence over SAMRITA/SYSTEM.
Therefore, if you find yourself swimming against_Amrita’s tide, change the flow direction!

56

. ‘
i

o . e

o
3 q

T AT Ay g TG At T PR T AT e Fi O S A MG BV K £ - RTINS L g (O I EOMR TS




D.3 Debugging

Although Amprita is designed to insulate users from the harsher aspects of UNIX, it does not
prevent you from working with the operating-system when the need arises. For instance, this
Fortran subroutine contains a deliberate floating-point error:

C [ ]
c GENERATE FLOATING POINT ERROR amrcp vki/dl.2f
C cd code .
SUBROUTINE FPE amrf77 -G example.f
X=1.0
Y =20.0
7z = X/Y
WRITE(6,*) 2 = ’,2
RETURN
END
which causes this Amrita script:
plugin foo
call code/example::fpe amrcp vki/run d1.2f
to output®: amrita -debug run fpe

output:plugin::foo {
Z = Infinity
}

The ~-debug option instructs Amrita to save a copy of the ISL sent to Foo in a file debug.isl:

... fold::isl copyright message
... amrita:plugin::foo

... fold::isl foo defaults

... amrita::call

... amrita:unplug::£foo

This file can then be fed directly into a symbolic debugger®s:

unix-prompt>amrdbx amrita:plugin: :foo
dbx version 7.0 May 28 1996 00:47:28
Executable $AMRITA/bin/serial/IRIX/64/G/foo/amrita:plugin::foo
(dbx) run '
Process 16531 (amrita:plugip::foo) started
amrita:plugin::foo {

str ok:23:3:62
} .
Process 16531 (amrita:plugin::foo) stopped on signal SIGFPE:
(handlexr __catch) at [FPE:7 +0x8,0xffffe0834] 7 Z = X/Y
(dbx) quit

to find the exact location of the error®’, thereby eliminating the hit-or-miss approach of debug-
ging with print statements.

950n your system, Infinity may appear differently e.g. Inf, NaN, ***** etc.

9% Amrdbx is a Perl wrapper to a standard symbolic-debugger such as dbx or gdb. Under IRIX, amrdbx
sets the environment variable TRAP_FPE to DIVZERO=TRACE (5) ; OVERFL=TRACE(5), ABORT(100);
DIVZERO=ABORT, to ensure floating point errors are trapped.

97If amrdbx complains that it cannot find amrita:plugin:;foo, get your system administrator to run:
unix-prompt>amrmake -G amrita,then try again.

57

<l T
Faniad A



D.4 ISL Call-Back Routines

To gain an appreciation of the role of Amrita’s Intermediate Scripting Language, it is instruc-
tive to follow the sequence of events activated by the call command in the last script example.
Amrita parses the script line%:
code/example: : fpe
to produce the ISL:

amrita::call {
file ~CWD/code/~AMRSO/example.so
str fpe_

}

which is then fired down the pipe-line (see Figure 7) to plugin Foo.

Internally, the plugin relies on an ISL parser to decode the incoming stream of instruc-
tions®. This parser works much like a GUI call-back interface in that it maintains a list of
event-activated routines. However, instead of keyboard presses and mouse clicks, the events
which invoke the call-back routines are ISL tag-names. For instance, this C code!® primes the
parser to recognize a series of tags in the keyspace amrita: :, one of which is call:

#include "AMRITA/isl.h"

AMRVOID AMRITA: :keywords (AMRVOID) {
AMRVOID CC:AMRITA::call();
AMRVOID CC:AMRITA::command();
AMRVOID CC:AMRITA::export_expr();
AMRVOID CC:AMRITA::export_path();
AMRVOID CC:AMRITA::export_token();
AMRVOID CC:AMRITA::import_token();
AMRVOID CC:AMRITA::replace();
AMRVOID CC:AMRITA::plugin();
AMRVOID F77:AMRITA: :PRINTFILE() ;
AMRVOID F77:AMRITA: :LOGFILE();
ISL: :add_keyword("amrita::call", CC:AMRITA::call);
ISL::add_keyword("amrita: :command”, CC:AMRITA: :command) ;
ISL::add_keyword("amrita:export::expr", CC:AMRITA::export_expr);
ISL::add_keyword("amrita:export::path”, CC:AMRITA::export_path);
ISL::add_keyword("amrita:export::token", CC:AMRITA::export_token);
ISL::add_keyword("amrita:import::token", CC:AMRITA::import_token);

o e e o

ISL::add_keyword("amrita::logfile", F77:AMRITA: :LOGFILE) ;
ISL::add_keyword("amrita::plugin”, CC:AMRITA: :plugin);
ISL::add_keyword("amrita: :printfile"”, F77 :AMRITA: :PRINTFILE) ;
ISL::add_keyword("amrita::replace"®, CC:AMRITA: :replace) ;

%8The location of the Perl script responsible for parsing amrita: : call, relative to_Amrita’s root directory,
is Amrita/keywords/basic/call.pl. This you could have found by typing:
amrita>location <keyword> amrita::call wrt Samrita::AMRITA -> src
amrita>echo $src
9The source for this parser is located in the directory tree SAMRITA/plugin/amrita/src.
100This source is pre-processed by ampp before it is compiled by an ANSI compiler. This pre-processing phase
mangles the namespaces ISL: : and AMRITA: : down to a name, AMRxxx_, to reduce the possibility of name
conflicts with rontines users introduce via dynamic-linking. The qualifiers CC: and F77 : allow the pre-processor
to take care of the calling conventionsbetween languages. The call command does a similar trick, which explains
why fpe in the Amrita script reads £pe__ in the ISL.

58

NN RIS Sy A YA T PER S




When the ISL parser reads the tag amri ta: : call, it skips over the opening brace ’ {* and
the newline character, then invokes CC:AMRITA: :call to parse the body of the command.
The C procedure is short enough to be listed here:

#include "AMRITA/isl.h"

AMRVOID AMRITA::call() {
AMRSTR *package, *procedure;
package = strdup(ISL::get_£file());
procedure = strdup(ISL::get_stx()}));
DL: :call (package,procedure) ;
free(package) ;
free(procedure);
ISL::done("amrita::call®);

}

because it utilizes the ISL: : routines get_file() and get_stxr () to grab the pertinent
information needed by the procedure which does the dynamic-linking. The call to ISL: :done
sends information back down the pipe-line to inform Amrita that the operation completed nor-
mally. The ISL parser then checks for the closing brace *}’°, before moving on to decode the

next keyword (here amrita:unplug: : foo) to come down the pipe-line!®l.

D.5 Import-Export Control

By design, the two ends of the ISL pipe-line need not reside on the same machine. Therefore
a plugin, and any code linked to it, does not have direct access to the string tokens of an
Amrita script. Instead an import-export control mechanism is used to exchange explicit packets
of information, over and above that exchanged by the plugin’s built-in keywords.

This script shows how you can generalise the prinz_greetings example to output an arbitrary
string token:

fold::amrcp { user instructions amrcp vki/export.l
type { amrita export_msg
amrita export_msg

}

}

fold::amrita { make package
pushcwd code

... compile some Fortran
popcwd

}

plugin foo

set message = The quick brown fox ...
export message

call code/package::print_token

1017 call-back procedure is free to parse the contents of on an ISL command in any way it sees fit. Its only
obligation is to stop at the closing brace ’}” to allow the parser to check for the end of the ISL block. Consequently
there is nothing to stop a code-developer from embedding program sources, or even executables, within the ISL
stream. Moreover, because the programmer controls both ends of the pipe-line (see p. 25), he or she is free to
employ specialist hand-shaking should the need arise. This simple design, coupled with the fact that the logical
pipe-line could be generalized to several physical lines connecting machines on different continents, ensures that
Amprita will stand the test of time, at least over the next decade or so. Of course, ideas can often be cheap, and so
the accuracy of this last statement rests in future graft and implementation details. Good software never dies — old
components are phased out, as new improved components are phased in.

59




Here, I have deliberately chosen to show the program fold which provides the information
used to typeset the shadow-box instructions in these notes'®. The second fold'®:

fold: :amrf77'mycode { compile some Fortran
fold>amrso = package

fold>src = package.f

(64 ,
C OUTPUT AMRITA STRING TOKEN
(64

SUBROUTINE PRINT_ TOKEN
CHARACTER*80 STR
INTEGER AMR_LEN
CALL: AMR_GET_ TOKEN ( ‘message’, STR)
WRITE(6,*) (STR(I:I),I=1,AMR LEN(STR))
RETURN |
END
}

compiles a few lines of Fortran to produce the shared-object package. The Amrita keyword
export fetches the contents of the string token message and fires an ISL packet down to
Foo. Upon receipt, Foo squirrels the token away in an internal storage-heap, ready for when
the Fortran code issues an AMR_GET _TOKEN!®, The function AMR_LEN returns the length of
a null terminated string, as used by Amrita, thereby a]lowmg the WRITE statement to print out
the requisite number of characters in the message.

Apart from the long variable names, the Fortran used above meets the f77 standard. There-
fore, although I might choose to write:

fold: :amrf77 ‘mycode { compile some Fortran

fold>amrso = package

fold>src = package.F

c

64 OUTPUT AMRITA STRING TOKEN
C

SUBROUTINE PRINT_ TOKEN

AMRSTR*80 STR

AMRINT AMR: : LEN

CALL AMR::GET_TOKEN('message’, STR)
WRITE(6,*) (STR(I:I),I=1,AMR::LEN(STR))
RETURN

END

}

you are not forced to do so. However, this next script illustrates why it is safer to take advantage
of the benefits afforded by amrpp:

| amrcp vki/export.3 I
... make package amrita typedefs
plugin foo

set string three point one four one.five nine two six five

set number = 3
set single = 3.141593
set double = 3.141592653589793

export string,number,single,double
call code/package: :print_tokens

10277 re-iterate an earlier sentiment — the one thing worse than no documentation, is wrong documentation. For
those interested, the instructions are typeset by Latexamrcp.
1030 rdinarily, the Fortran code would live in a separate ﬁle, but here it was convenient for me to bundle it in with

the Amrita script.
104Bor consistency purposes, ISL: : GET _TOKEN may also be used.

“’;J

R SR R T At T
i X SELIEEO T eyl s AR el

LR, S ORI AN

-



Sy

The tokens string, number, single and double may look like they contain quan-
tities of different types, but to Amrita they are all just character strings. Therefore, when
AMR: :GET_TOKEN is used to pull the tokens off Foo’s storage heap, the onus is on the pro-
grammer to specify the necessary type conversion. For instance:

fold: :amrf77 ‘mycode { compile some Fortran

fold>amrso = package

fold>src = package.F

C

C OUTPUT AMRITA STRING TOKENS
(od

SUBROUTINE PRINT_ TOKENS

AMRSTR*80 A

AMRINT B

AMRSGL C

AMRDBL D

AMRINT AMR: :LEN

CALL AMR::GET_TOKEN (‘AMRSTR::string’,A)
CALL AMR::GET_TOKEN (’AMRINT: :number’,B)
CALL AMR::GET_TOKEN (’AMRSGL::single’,C)
CALL AMR::GET_TOKEN (’AMRDBL: :double’,D)
WRITE(6,*) (A(I:I),I=1,AMR::LEN(A))
WRITE(6,*) B,C,D -

RETURN

END

The typedefs AMRSTR, AMRINT, AMRSGL and AMRDBL provide a convenient means of pro-
viding both cross-platform and cross-language consistency.
Here is how you can send information back from a code, (this time written in C):

fold: :amrcc’mycode { compile some C

fold>amrso = package
fold>src = package.C
fold>guard = |

/*

set some Amrita string tokens
*/ .
#include "AMRITA/isl.h"
AMRVOID set_tokens (AMRVOID) {

AMRSTR *A = "three point one four one five nine two six five";
AMRINT B = 3;

AMRSGL: C = 3.141593;

AMRDBL: D = 3.141592653589793;

AMR: :set_token ("AMRSTR: :string",A);
AMR: :set_token ("AMRINT: :number", &B) ;
AMR: :set_token ("AMRSGL: :single", &C) ;
AMR: :set_token ("AMRDBL: :double”, &D) ;

}
}
to an Amrita script:
... make package amrcp vki/import.l
plugin foo

amrita import_tokens

call code/package:cc::set_tokens
import string,number,single,double
echo $string

echo S$number $single $double

0 )

= e g e TR

Bt g g e
PR PSS X BN SRR D




——

D.6 .Grid Generatmnmm- T U e
To close this secuon, below1s a sma]l scnpi to produce the polar—gnd shown in Fi gm'e 17'%:

ces create code/ f77/polar amrcp vki/polar.lf
EulerEquations amrita £77_polar

Get pomin —= e

set grid::NS =
set grid::RL
set grid::R2 =
do n=1,$grid: :NS
patch <1, +,w25,h25>
end do
export grid::{*}
grid code/f77/polar
end def
... plot grid

I
RIS

Figure 17: Amr._sol polar-grid generated using dynamic-linking.

The script illustrates how namespaced tokens!% can be exported en masse. The line:
export grid::{*}

allows tile Fortran code to access: the number of grid sectors, grid: : NS; the inner-radius of
the grid, grid: :R1; the outer radius of the grid, grid: :R1. However, here the attention of
focus is the script-line'?’:

grid code/£f77/polar

The keyword grid, or amr_sol: :grid to give the full name, acts as a special version of
call. The dynamic linker loads polar in the normal fashion, but instead of invoking a named
procedure, it jumps directly to a binding routine AMR_SOL : : GENERATE_GRID. This routine
is a system wrapper, similar to AMR_ SOL : : INTEGRATE_GRID described on p. 49.

To compile polar manually, so as to see where the wrapper comes from, type:

unix-prompt>cd polar/£77
unix-prompt>amrita polar.mk

105§f you prefer programming in C, use amrcp vki/polar.lc.
196 Fortran programmers unfamiliar with namespaces can view them as glorified common blocks.
167The def Domain block will be described in lecture 2.

62

PR T o

O R NS P

T A TN Y Wyt




to run the script:

NullEquationSet
plugin amr_sol
def Grid
patch: GEN_SECTOR(NG,IM,JM,X,Y,IW,JS)
end deﬁ
CompileGrid grid=polar

to compile the file péla'r:sﬁ:m

#include "AMR_SOL/AMRITA"
SUBROUTINE GEN_SECTOR(NG,IM,JM,X,Y,IW,JS)
AMRINT NG, IM,JM,IW,JS,NS
AMRDBIs X {amrVpatch (IM,JIM,NG))
AMRDBL Y (amrVpatch (IM,JM,NG) )
AMRDBI: R, THETA,PI,R1,R2

= 4*ATAN(1.0 DO)
CALL AMR::GET_TOKEN(’AMRDBL:grid::R1’,R1)
CALL AMR::GET_TOKEN(’AMRDBL:grid::R2’,R2)
CALL AMR::GET_TOKEN (’AMRINT: grzl.d: :NS’,NS)
DO I=1-NG, IM+NG+1

R = R2+(R1-R2) *FLOAT(I+IW-2)/IM

DO J=1-NG, JM+NG+1

" THETA = ((2-J-JS)/FLOAT(NS*JM)+1.0) *PI
X(1I,J) = R*COS(THETA)
;Y(I,J) = R*SIN(THETA)

END DO .
END DO
RETURN
END

The def Grid block serves a similar purpose to the def Solver block discussed in §B.2.
The patch command identifies the subroutine which needs the wrapper. It also identifies
the information that Amr sol must provide the grid generator. The labels IM, JM etc. are
mnemonics for variables, the quantities which are actually passed across depend on the choice
of programming language. °

Here it just so happens that for GEN_SECTOR I chose to use variable names to match the
mnemonics. In practice, you write the Fortran, or C, using whatever names you want. Then,
afterwards, you write the def Grid block to instruct Amr_sol what information must be
passed across, and what order it must be supplied in!®. One exercise, to try, is to rearrange
the order of the SUBROUTINE parameters. So long as the patch mnemonics are similarly
rearranged, the code can be compiled and will run just as successfully as before. The changes
in the wrapper can be seen by examining the file f77src/polar.F.

1981f you feel uneasy looking at this Fortran, try typing:
unix-prompt> amrpp srcin=polar.src lang=£77 warn=yes
to'see the output from amrpp. For instance, amrVpatch (IM, JM, NG) dimensions an array large enough to store
Vertex quantities for a patch I by J¥ cells surrounded by NG layers of ghostcells.

"199If Amr._sol only had-to worry about user-supplied routines written in C, it could simply pass across a structure
containing all the necessary information. However, apart from its multi-lingual capabilities, the present approach
has the merit that the innards of Amr._sol can be changed without impacting on user-written code. Following a
néw release, the user need only recompile his or her code, keeping the original def Grid block the same, and
the appropriate bindings are automatically generated.

63

RNV T o 4 3 IO RPN O



E Anatomy of plugin Foo

The Amrita library routine ClonePluginFoo constructs a bare-bones_Amrita plugin which pro-
vides two keywords: coml and com2. Although the functionality is limited, a Foo-cloned
plugin has the exact same architecture as Amr,_sol and so essentially provides the boiler-plate
code for any new plugin, regardless of its sophistication or target application. To see how
this might work in practice, consider the one line script:

: _ amrcp vki/foo.la
ClonePluginFoo name=vki amrita clone foo

It produces a Foo-clone named Vki with directory root, relative to your home directory:

.amrita/plugin/vki

or if set, relative to the environment variable AMRITA HOME.
Once the plugin is built, it can be put through its admittedly very limited paces:

plugin vki amrcp vki/foo.lb
coml ‘coml’ does nothing more exciting amrita run clone
coml than echo its string argument to
coml the screen
def VkiInterlock
com2 {
‘com2’ can only be used inside a:

def VkiInterlock
end def

block, but is capable of outputting an
entire block of text.

}
end def

The remaining sub-sections correspond directly to program folds in CLonePluginFoo, which
can be perused along with this text by typing:

unix-prompt>cd $AMRITA/stdlib/system
unix-prompt>amrgi ClonePluginFoo.amr

E.l ClonePlugin2Perl
The keyword plugin instructs the Amrita interpreter to search the directories:

SAMRITA/plugin
$AMRITA_HOME/plugin

for a directory called vki. On locating the root of the plugin, the interpreter (which is written in
Perl) parses the file vki.pl so as to obtain two new procedures!!®:

amrita’plugin’vki’
vki’copymsg

110per] aficionados should note that Amrita is Perl4 compliant.




which are short enough to be listed here in fuil:

sub amrita’plugin’vki {
SROOT'VKI = @_[0];
Samrita’plugin{"keywords::vki"} = "$ROOT’VKI/keywords/KEYWORDS";
$amrita’plugin{"defaults::vki"} = *$ROOT’'VKI/defaults/plugin®;
&vki’copymsg() ;
}
sub vki’copymsg { . -
$AMRITA’COPYMSG{"vki"} = <<COPY;
plugin: :vki Copyright (C) James J. Quirk (aka jjiq)
COPY -
}
#
i;

Only the first of these procedures is mandatory: it instructs Amrita where to locate the keywords
VKki brings to the programming table, see §E.4; it identifies a defaults script, written in Amrita,
which will be run once the plugin is activated, see §E.2.

The second routine shows that authors of plugins can daisy-chain their own copyright mes-
sages to those of Amrita’s!!!. Try runmng‘

‘ amrcp vki/copy.right
pluglndvkl : amrita copyright msg
comman

to place Amrita into its command mode where script lines can be typed interactively; it demon-
strates that_Amrita is respectful of intellectual ownership!'2.

E.2 CloneDefaults
The file vki/defaults/plugin:

# .
# The following will be executed by vki on plugin

#
set defaults = $Samrita: AMRITA/defaults )
parse file $defaults/plugin

defers to a set of master defaults which fix the size of the graphics page etc. Additional Amrita
script could be added as needed.

E.3 CloneIncludes
The file JAMRITA _HOMEF/include/cc/VKI/AMRITA:

#include <stdio.h>

#amrpp namespace VKI £77{VKI_} cc{vki_}
#include "AMRITA/isl.h"

#define SCREEN stdout:

is a header file (see §E.5) for inclusion by the C files: keywords.C, coml.C and com2.C. The
#amrpp directive instructs amrf77 and amrcc to map the namespace VKI:: to VKI_ and
vki_, respectively. Additional namespaces could be added as needed.

11lwhen you have run run_clone, your name will appear in the copyright message instead of mine.
12pjease read the licence agreement by which you obtained Amrita: it does not lie in the public domain.
65

e R
5 PR



E4 CloneReywords .
The file vki/keywords/KEYWORDS:

KEYSPACE vki::
coml
DEF VkiInterlock {
*com2
}
}

provides Amrita with a list of the keywords that plugin Vki can parse. Based on this in-
formation Amrita searches'® the vki/keywords directory structure for three Perl files: (i) a file
named coml.pl; (ii) a file named vki,pl, in a directory named VkiInterlock; (iii) a file
named com?2.pl which lives in the same directory as file (ii). An error is issued, should any of
the files be missing, but no attempt is made to parse the Per] until it is needed. The * against
com? informs the interpreter that the keyword spans multiple lines and so must be called even
when it is inactive, as in:

if(0) then
com2 {
without the help of vki::com2
Amrita would not know how to
skip over this inactive command

}
endif

E41l comi ’
The file vki/keywords/basic/coml.pl:

sub vki’coml {
$line =~ s/*\s*//;
&isl’put_ltag(0, ‘vki::coml’);
&isl’put_str(l,$line);
&isl’put_.rtag(0, ‘vki::coml’);
$line = ’’;

R o3k

.
’

is sucked into Amrita, as a one-off, when the interpreter first comes across a script-line which
begins with coml or vki: :coml. When this routine is called, the scalar variable $1ine
contains the text of the Amrita script-line following the keyword com1. The three i s1 routines
output to the ISL pipe-line and are defined in $AMRITA/Amrita/isl.pl. They are provided as
a convenience, that is you are free to substitute your own routines should you so desire. A
keyword must set $1ine to a null string before exiting, otherwise Amrita will complain that it
expected an end of statement. Normally, $1ine is whittled down as the command is parsed,
but here it is explicitly set to a null string.

13 A full-blown search is only done, if the file locations depart from those used here. Moreover, the KEYWORDS
file can contain directives to specify where to start the search for a particular keyspace.

66

-
ST



E42 def vkiInterlock
The file vki/keywords/def/Vkilnterlock/vki.pl:

sub Entexr’vki’VkiInterlock {
}
sub Exit’vki’VkiInterlock {
}
i
1;

is sucked into Amrita, as a one-off, when the interpreter first comes across a script-line which
begins with def VkiInterlock. The Enter and Exit stubs can be used to control the
program behaviour inside the def block. For instance, you could choose to turn coml off
upon entering the interlock, and turn it back on again at exit. Amrita automatically restricts the
visibility of com2 to script-lines within the def VkiInterlockblock.

E43 com2
The file vki/keywords/def/Vkilnterlock/com2.pl:

sub vki’VkiInterlock’com2 {
local (Sactive) = @_;
local (Gcom2’strs);
unless($line =~ /M\s*{/) {
Serror[l] = "expected ‘{’!";
&report_error();
}
$line = $7;
&check_end_statement() if($active);
undef @com2’strs;
while (1) {
$n = &get_line($INPUT_FHDL,1,1);
etc ..

is sucked into Amrita, as a one-off, when the interpreter first comes across a script-line which
begins with com2 or vki: :com2. The Perl for this command is more involved than that
for coml. The parameter $active is passed from Amrita and determines whether com2
should output its content to the screen or silently skip on by. The routines: report_error,
check_end_statement and get_line are direct calls to the Amrita interpreter'*4. Once
the body of com2 has been gathered up, it is a relatively straightforward matter to send the
appropriate ISL down the pipe-line to the plugin.

if(Sactive) {
&isl’put_ltag(0, ‘vki:VkiInterlock::com2’);
&isl’put_int (1, $S#com2’strs+l);
foreach $str (CRcom2’strs) {
&isl’put_str(l, $str);
} ,
&isl‘put_rtag(0, 'vki:VkiInterlock::com2’);.
}

etc ..

114These calls are soon to be cleaned up to read amrita’report_error etc soas to better protect Amrita
from a wayward plugin.
67

PR RS




ES CloneSrc

The file vki/src/vki.C''5:

#amrpp include "VKI/AMRITA"
AMRVOID VKI::args():
AMRVOID VKI::keywords();

main () {
ISL::parser(VKI::args,VKI: :keywords) ;

oy

provides the main driver for Vki. The driver for a full-blown plugin need not be any larger
than this, because startup and shutdown procedures are dealt with through the ISL: :parser.
The parser is fed two routines: (i) VKI: :args () which decodes any system arguments that
are passed to the plugin!!6; (ii) VKI : : keywords () which adds a set of call-back routines
to supplement the built-in ones.

ES1  keywords.C

The file vki/src/keywords.C:

#amrpp include "VKI/AMRITA"

AMRVOID VKI::keywords() {
AMRVOID VKI::plugin();
AMRVOID VKI::unplug():;
AMRVOID VKI::coml();
AMRVOID VKI::com2();

ISL::add_keyword("amrita:plugin::vki®, VKI::plugin);
ISL::add_keyword("amrita:unplug::vki®, VKI::unplug);
ISL::add_keyword("vki::coml”, VKI::coml);

ISL::add_keyword("vki:VkiInterlock::com2", VKI::com2);
}

adds four call-back procedures using the library routine ISL: :add_keyword. The first pro-
cedure VKI : :pluginis called in response to the ISL tag amrita:plugin: : vki whichis
generated at plugintime. VKI : :unplugiscalledin response to amrita:unplug: :vki,
" which is automatically generated when a script terminates. This provides the plugin with a
chance to exit gracefully, should it need to flush any output buffers. The procedures VKI : : coml
and VKI: :com2 are called in response to the keywords coml and com2, stipulated in §E.4.
Note the ISL tag for com2 includes the name of the def block which activates the keyword.
Four coding-steps are needed to add new keywords to Foo: (i) modify the KEYWORDS file
(8E.4) to inform Amrita of the new keywords; (ii) write the necessary Perl parsing routines, &
1a coml.pl (§E.4.1) and com2.pl (§E.4.3); (iii) append the appropriate ISL: :add_keyword
calls to keywords.C; (iv) construct the call-back routines, & la coml.C (§E.5.3) and com2.C
(8E.5.4). In the case of Amr._sol, I found it convenient to add just one new keyword at a time.
After each keyword was added, I would test and debug the plugin before moving on to the
next keyword. This divide-and-conquer approach was far more productive than an abortive
attempt at mass assimilation. .

USThe #amrpp include directive causes VKI/AMRITA to be in-lined by the pre-processing phase vki.C —
ccsre/vki.c so that the namespace VKI : : is dealt with correctly. The plain #include contained by VKI/AMRITA
does not come into effect until ccsre/vki.c is compiled by an ANSI C compiler.

. W6These do not appear in a script but are sent using the environment variable AMRITA_PLUGIN. For instance,
amrdbx (see p. 57) sends —-input debug.isl.

68

T




ES.2 vki lib.C
The file vki/src/vki_lib.C:

#amrpp include "VKI/AMRITA"

AMRVOID VKI::plugin(AMRVOID) {
ISL::plugin("vki®);

}

AMRVOID VKI::unplug(AMRVOID) {
ISL::unplug("vki®);

}

AMRVOID VKI::args (AMRVOID) {
ISL::args();

}

contains three routines which are needed for Vki to fulfill its system responsibilities towards the
ISL parser. Here, the plugin defers to pre-defined ISL: : routines, but if required, specialist
code could be used instead.

ES3 coml.C
The file vki/src/coml.C:

#amrpp include "VKI/AMRITA"
AMRVOID VKI::coml() {

AMRSTR *1line;

line = ISL::get_str();

fprintf (SCREEN, "line: %s\n",line);
}

decodes the ISL generated by coml.pl (§E.4.1). The call ISL: :get_str grabs a single str
from the ISL stream. A full list of the pre-defined ISL: : decoding routines are given in the
header file JAMRITA/include/cc/AMRITA/isl.h. These routines, however, are merely provided
as convenience, because a call-back procedure is free to parse the contents of an ISL command
in any way it sees fit. Its only obligation is to stop at the closing brace }’ to allow the parser to
_check for the end of the ISL block.

ES5.4 com2.C
The file vki/src/com2.C:

#amrpp include "VKI/AMRITA"
AMRVOID VKI::com2() {
AMRINT nstr,line=1;
AMRSTR *str;
nstr = ISL::get_int();
while(line<=nstr) {
str = ISL::get_str();
fprintf (SCREEN, "line %3d: %s\n",line++,str);
} .
}

decodes the ISL generated by com2.pl (§E.4.3). The call ISL: :get_int grabs a single int "

from the ISL stream. This provides the line count to see how many calls should be made to -

ISL: :get_str. The file handle SCREEN is set to stdout in the header file VKI/AMRITA. -
69

S
S T




E6 CloneAmritaBuild
The files:

vki/amrita.build
vki/src/amrita.make
vki/src/keywords/amrita.make

are used by amrmake to.orchestrate the compilation of Vki'!’:

unix-prompt>amrmake -0 -serial plugin::vki
unix-prompt>amrmake -G -serial plugin::vki

However, you are free to compile code in the normal UNIX fashion. Amrita’s only expectation
is that the resultant binary for plugin Vki be called:

amrita:plugin::vki
and that it reside in a directory!5:
SAMRITA_HOME/bin/~AMRSO/O/vki
if intended for production runs, or:
SAMRITA_HOME/bin/~AMRSO/G/vki

if intended for amrdbx purposes.
The amrita.build file contains all the information needed to locate the libraries used to link
the plugin. At the time of writing, these are:

=1lvki see §E.5.2

-lamrita .  ISL parserplus amrita: : keywords
-lamrita_gl amrita:gl:: keywords

-1ljpeg see directory SAMRITA/src3p/libJpeg
-1lygl _ see directory SAMRITA/src3p/libYgl
-1Xext -1X11 standard X11 libraries

-lmpi | . standard MPI message passing library

The last library is not needed on —serial platforms.

U The default options to amrmake are: -0 —serial.
"8$AMRH"A__H0ME defaults to your UNIX $HOME directory.

70




References

[1] ADOBE SYSTEMS INC., PostScript Language Reference Manual (2nd ed.), Addison-
Wesley, 1990.

[2] T. BERNERS-LEE, R. FIELDING & H. FRYSTYK, Hypertext Transfer Protocol —
HTTP/1.0, RFC1945, http:/finfo.internet.isi.edu:80/in-notes/rfc/files/rfc1945.txt, May 1996.

[3] R.E. BERRY, Programming Language Translation, Ellis Horwood, 1982.
[4] R. BORNAT, Understanding and Writing Compilers, Macmillan Press, 1979.

[5] K.C. BOWLER, R.D. KENWAY, G.S. PAWLEY, D. ROWETH, & G.V. WILSON, An Intro-
duction to OCCAM 2 Programming, Chartwell-Bratt, Studentlitteratur, Sweden, 1989.

[6] G.T. CAMACHO & M. ORTIZ, Adaptive Lagrangian Modeling of Ballistic Penetration of
Metallic Targets, Comput. Meth. Appl. Mechanics & Engineering 142, 269-301, 1997.

[71 W.Y. CRUTCHRELD & M.L. WELCOME, Object-Oriented Implementation of Adaptive
Mesh Refinement Algorithms, Scientific Programming 2, 145-156, 1993.

[8] W. FICKETT & W. DAVIS, Detonation, University of California Press, Berkeley, 1979.

[9] J.D. FOLEY, A. VAN DAM, S.K. FEINER & J.F. HUGHES, Computer Graphics: Principles
and Practice (2ud ed.), Addison-Wesley, 1990.

[10] S. GARFINKEL, PGP: Pretty Good Privacy, O’Reilly & Associates, 1995.

[11] P. GROGONO, MOUSE: A Language for Microcomputers, Petrocelli Books, Princeton NJ,
1982.

[12] W. GROPP, E. LUSK & A. SKJELLUM, Using MPI: Portable Parallel Programming with
the Message-Passing Interface, MIT Press, 1994.

[13] HENDRIX, J. E., The Small-C Handbook, Reston Publishing Company, Reston VA, 1984.
[14] H.W. LIEPMANN & A. ROSHKO, Elements of Gasdynamics, Wiley, 195_7

[15] NETSCAPE COMMUNICATIONS CORPORATION, Object-Signing tools,
http://developer.netscape.comlproducts/zigbert/’mdex.hum, 1998.

[16] S. PEMBERTON & M.C. DANIELS, Pascal Implementation: The P4 Compiler, Ellis Hor-
wood, 1982,

[17] D.C. PRUETT & C-L. CHANG, Transitional High-Speed Flow on a Cone: PSE Versus
DNS. In Transition, Turbulence and Combustion, edited by M.Y. Hussaini, T.B. Gatski and
T.L. Jackson, Vol. I, pp. 379-389, Kluwer Academic Publishers, 1994.

[18] J.J. QUIRK, A Contribution to the Great Riemann Solver Debate, Int. J. Numer. Methods
Fluids 18, 555-574, 1994.

[19] J.J. QUIRK, T.L. JACKSON & A.K KAPILA, Numerical Study of the Evolution of a
Compressive Pulse in an Exploding Atmosphere. In Transition, Turbulence and Combus-
tion, edited by M.Y. Hussaini, T.B. Gatski and T.L. Jackson, Vol. II, pp. 313-329, Kluwer
Academic Publishers, 1994.

71




[20] J.J. QUIRK, A Cartesian Grid Approach with Hierarchical Refinement for Compressible
Flows. ITn Computational Fluid Dynamics 94, Invited Lectures and Special Technological
Sessions of the Second European Computational Fluid Dynamics Conference, edited by S.
Wagner, J. Périaux and E.H. Hirschel, Wiley, pp. 200-209, 1994.

[21] J.J. QUIRK, An Introduction to_Amrita , in preparation.

[22] M. RICHARDS & C. WHITBY-STREVENS BCPL the Language andits Compiler, Cam
bridge Umverslty Press, 1980.

[23] G. STRANG, On the construction and comparison of finite-difference schemes,
SIAM J. Num. Anal. 5, 506-517, 1968. -

[24] R.A. STREHLOW, R.E. MAURER & S. RAJAN, Transverse Waves in Detonations: L
Spacing in the Hydrogen-Oxygen System, ATAA Journal 7, 323-328, 1969.

[25] B. STROUSTRUP, The C++ Programming Language (2nd ed.), Addison-Wesley, 1991.

[26] SUN MICROSYSTEMS, Frequenﬂy Asked Questions — JAVA Security,
http://www.javasoft.com/sfag/index.html, 1997.

[27] SUN MICROSYSTEMS, Security: Safe-Tcl,
http://www.sun.com/960710/cover/tcl-safe.html, 1997.

[28] L. WALL & R.L. SCHWARTZ, Programming Perl, O’Reilly & Associates, 1991.

g




notes prepared for the VKI 29th CFD lecture series
23-27 February, 1998
lecture 2 of 3

Amr_sol: Design Principles and Practice

James J. Quirk
* Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, CA 91125, USA.
jiq@galcit.caltech.edu

o Abstract

This second lecture describes how you can use Amrita to explore some of the issues which
shaped the design and construction of the pLugin Amr._sol. The aim is to look beyond the
Jbare-bone algorithmic details to allow you to build up a first-hand understanding of how
‘the high-resolution,” shock-refraction simulations presented in lecture three are produced.
-This knowledge is needed to be able to separate physical-fact from numerical-fancy when
determxmng just how far the simulations can be trusted. In that regard, although Amr._sol
‘has propagated well beyond the development stage to become a reliable investigative tool,

» .  there remains much room for improvement., Therefore this lecture will also indicate ways
that Amrita could be used to orch&strate the required algonthmm 1mprovements in a sys-
tematic fashion. ’ ’ .

1 - Introduction
" Despite the impressive number-crunching power of massively parallel computers, it is worth

illustrating that brute force computations of phenomena which contain disparate physical scales
_ are ill-conceived. Consider the following example taken from the study of detonation waves.

1.1 Disparate Physical Scales

The usefulness of solid ‘explosives stems from their ability to convert chemical energy very
- rapidly into heat energy via the propagation of a detonation wave consisting of a reaction zone
coupled to a strong shock front (see §E.3)!. When a detonation propagates through an explosive
. material, the material is compressed by the lead shock front and the resultant rise in tempera-
ture behind the shock triggers-a chemical reaction which releases large amounts of energy in
the form of heat. This localized heat release pmwdm motive force for the detonation front to
propagate further into the unburnt material and a balance can be reached whereby a given ex-
plosive supports a nominally steady speed of detonation propagation. This speed of propagation

*  is significant in that it characterizes the performance of the explosive.
Tradmonally, detonation speeds in solid exploswes are found from experiment. A cylindsi- . .

cal chalge knownasa rate-stlck —is 1gmted at one end, and the propagation speed — —which can

1A good sohd explosive converts energy at arate ~ 100 watts/em?, thus a wave front 20 m square would
operate at a power level equal to all the power the earth receives from the sun[11].

E o L~ Maae X T



reach as high as 9,000 m/s — is measured at the other end, with the assumption that the length
of the stick is sufficient to allow the detonation to reach its nominally steady speed.

The direct numerical simulation® of a rate-stick test represents a formidable computational
challenge. Since the chemical reaction drives the detonation wave, the simulation must be able
to resolve the narrow fire-region in the reaction zone where the bulk of the heat is released
(see p. 68). Results with reduced reaction models suggest that at the very least 10 mesh cells
are needed to capture the fire-region accurately[8]. For certain types of solid explosive the
pertinent length scale may be as small as 0.02 mm?, in which case the mesh spacing within -
the reaction zone would need to be no larger than 0.002 mm. Given that a rate-stick is of
order 100 mm in length and 25 mm in diameter, some 3.13 x 108 cells would be required
for an axisymmetric flow calculation on a uniform mesh. Moreover, from the point of view
of numerical accuracy, because of the non-linearities involved, it is unlikely that the detonation
front could be propagated by more than one mesh cell per time step. Consequently, it would take
some 5 x 10* time steps for the detonation to travel the full length of the rate-stick. Therefore
the total workload for the simulation would be of order 1.56 x 10'3 cell updates.

Such a calculation would be absurdly uneconomic. A 1 Gflop computer might be capable
of 10% mesh updates per second*, in which case the calculation would take 181 days to run.
Clearly, to make such a simulation viable, something other than a more powerful computer is
required®. Hence the need for adaptive mesh refinementS.

1.2 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) schemes(see [17, 33]) attempt to reduce computing costs by
dynamically matching the local resolution of the computational grid to the requirements of an
evolving flow solution. Thus very fine mesh cells are restricted to those regions where they
are needed, and elsewhere the computational grid is kept relatively coarse. Such a strategy
can dramatically reduce the computational effort required to simulate phenomena containing
disparate physical scales. In the above rate-stick example, if the fine mesh cells were restricted
to the vicinity of the fire region, only about 6.25 x 10* cells would be needed resulting in the
order of 3.13x10° cell updates. Therefore, whereas the uniform mesh simulation might take 181
days to run, the adaptive mesh simulation would take just 52 minutes’. Because the potential
savings are so large: any AMR scheme is better than none. Consequently, the computational
literature is littered with examples of one-off, problem-specific mesh refinement strategies. -
Superficially, the one-off approach appears attractive, because the development costs are
considerably less than those for a general purpose AMR scheme. In practice, however, the
development costs of a general scheme can be recouped across a wide range of projects, and

2This is used in the sense of reproducing the full nuances of the physical system, as opposed to merely pre-
dicting one or two global quantities. However, the discussion presented here is restricted to macroscopic scales. A
Quantum Chemist, for example, would be concerned with reaction mechanisms measured in pico-seconds.

3The reaction zone could be as wide as 1mm, but most of this would be taken up by an induction region.

4A single cell-update using realistic chemistry would require far more than 1,000 floating point operations and
so this assumption is optimistically high.

SNotionally, a tera flop computer would reduce the time to under a day, but the practical turnaround time
would still most likely take several days, if not weeks, given the number of jobs which vie for a large, centralized
computing resource.

6Similar arguments can be put forward (say by a Quantum Chemist, see footnote 2) for the need to supplement
AMR simulations with improved reaction modelling and analysis. ,

Given the approximations made, these times should not be taken literally. Nevertheless, the conclusion stands:
a calculation with local mesh refinement can — if the physical scales are disparate enough — be up to three ordets
of magnitude cheaper than an equivalent uniform mesh calculation.

(361 R T I



over time the cost per project becomes negligible. On the otherhand, with the one-off approach
the effective costs accumulate with each passing project and can become unexpectedly large
over time. Moreover, since one-off schemes rarely reach maturity, they tend to be needlessly
expensive to run. Therefore, taken overall, there is little merit in pursuing a one-off approach.

Even amongst general purpose AMR schemes, there remains an element of “horses for
courses,” because an algorithm has to strike a balance between the desirable and the practica-
ble. Therefore a method, say, which was designed to provide the cheapest medium-accuracy
solution to a steady flow problem might not be competitive when it comes to producing the most
accurate solution to a time-dependent problem, and vice versa. Consequently some care should
be taken in choosing the most appropriate form of mesh refinement, for a given application,
before embarking on what might be an arduous exercise in software development.

In 1988 a series of circumstances® led me to adopt a form of block-structured, AMR algo-
rithm first proposed by Berger and co-workers[4, 6, 5], arid the mesh refinement guts of Amr._sol
were written shortly thereafter.

The bare-bone algorithmic details which underpin Amr _sol are suﬂiclently well docu-
mented elsewhere[21, 25], that here only a brief overview is presented in Appendix A%. Instead,
this lecture aims to engender some discussion as to the strengths and weaknesses of various re-
finement strategies as applied to investigations of time-dependent, shock wave phenomena. The
aim is not to promote one scheme over another, but to reveal specific issues which shaped the
design of Amr_sol. To help place this discussion in the right context, three — hands on — nu-
merical simulations are presented which were inspired by a series of experiments performed by
Takayama et al.[32]. The experiments were done to classify the canonical reflection processes
which occur when a planar shock wave interacts with a double wedge. The numerical simu-
lations serve a number of purposes, not least of which is that they provide templates for you
to construct your own investigations. To help you understand the construction of the provided
scripts, Appendices B — G describe the specialist Amrita keywords used to drive Amr._sol.
These should be read in conjunction with the Amrita primer given in lecture 1.

Here is the complete road map for the lecture:

Road Map

1 Introduction L B _ ) _ 1
1.1 D1sparatePhy51caIScales Gt e eerececac e e e e el 1
1.2 AdaptiveMeshRefinement . . . .. .. ... ...t 2

2 Shock Double-Wedge Interactions - 5
2.1 FileManagement ........... et e e e e 6
22 RampProblem. .. .. ... oeeeeeeeccososennenesse O |
23 Experiment#l............. e e e cs it et ae e 8

24 Experiment#2. ... ...t veenenmonens e eeee e 12

8As is often the case with a Ph.D. thesis, external influences led to Hobson’s choice.
9Given Amrita’s document preparation skills, you should not be too surpnsed to lwm that Appendlx A can
be reproduced using the four line script: :

LatexHead L
LatexPlugin plugin=amr_sol
LatexTail

Latex

although the precise formatting depends on the BIRX pagé size, marginwidtfl etc.




.
25 Experiment#4. . ... . .00t ot minioan e e e e

3 Discussion

3.1 TemporalRefinement . . ...... ... .0 enenennn.
32 Fine-CoarseBoundarieST . . . o o v v ot it e i oo oo et e eeenns
33 Fine-CoarseBoundariesTl . . ... :. .o ueeennn. e e
34 FlowSoIVerS . . . i i v it i e it i ettt eessoeensoeeeeneess
3.5 .GrdEfficiency- . ...,.. .. 0., R e .
36 RefinementCriteria . . . . . v v ¢ c 4 ¢ e v et o v o oo e oosossoosas

4 Closing Commenfs
A plugin Amr sol

Al Overviewof AMRAIlgorithm. . .. ... ... ... ... .. . ...

B def EquationSet

B.l TheEulerEquations . . .. .. c o it it e it eeneecoeeceens

B.1.1 ThermodynamicStates . . . .« « v o o v e e e e v e oo oo oo
B.2 ThelLinearAdvectionEquation. .. ... ... .o veueneennn
B.3 TheFractalFactory ...... et et e e e
B4 KeyWords . . . v v v v v it v vt ottt ittt ot eee et

C def Domain _
Cl SixSpecifics. . . v v v v v v ittt e it e et e et e e e e e e
C2 Curvilinear GEOMmEIIY «» « « ¢ ¢ « ¢ ¢ e o o o o o o v o o o o o oo v v o oeoaes

D def BoundaryConditions

D.1 CornerSchematic ....... ..ttt iiiiienenneenennn
D2 {N,S,E,WIDAY « « ¢ c o vt ot e o ettt e s teeeneeenseeens
D.3 Time-Dependent Boundary Conditions . . . . .. ... ... e e e e e e e

E. def SolutionField

E.1 Richtmeyer-MeshkovProblem ... ..................... e
- E2 Inclined MeasuringGauge . ............... e et e e
E3 ZNDDetonaionWave . . . . . .. oottt iv ittt v o oeonnnnnos

F def Meshadaption

F1 TieredGridSystem . . . . . . . vt vt ittt ittt i ittt e eeenn
F2 ActivatingMeshAdaption . ... .. ...ttt ittt nnnennnnn

G def RefinementCriteria
G.1 Tunable Parameter s . . v v v v ottt e e et e e oo oo oo oneenn

References

17
17
18

30
32

35
35

45
47

50

51
52
53

56
57
58

61
63

65

69
70
71

73
75

79

RIS




2 Shock Double-Wedge Interactions .

To obtain the Amrita scripts needed to follow this Section, type:
unix-prompt>amrcp vki/ramp.mailit ‘
unix-prompt>amrita ramp.mailit.
unix-prompt>cd ramp

then run: ) . ‘ .
unix—prompt>a1izr.ita -a schematic do. one off.ramp
unix-prompt>amrps ps/ramp schematic.ps

to produce Figure 1.

i

X1 X2

—>»|

Figure 1: Double-wedge configurations used to simulate the experiments of Takayama et al.[32].

The main purpose of this Section is to observe the variations in the shock reflection process,
for the three sets of {6;, 6>} shown above, so as to provide a solid introduction to the discussion
in §3. However, along the way, some pointers are also given on how best to construct an Angita
investigation. First-off, it is worth noting that Figure 1 is drawn using:

proc RampSchematic

parse file studies/schematic

RampProblem

draw domain
... draw shock
... draw table of experiments
. label thetal and theta2

... 1label X1

... label X2

... label Xs

... label H1

.. label H2

end proc
which relies on the actual RampProblem procedure used to set up the simulations. Thus the
schematic is guaranteed to be a faithful reflection of events. The file studies/schematic contains
Amrita script to fix: Mg, Xg, 61, 6, X1, X2, H1 and H2, and fulfills the same purpose as
the actual studies: TK1, TK2 and TK4. Using a separate schematic study, in this fashion,
opens up the possibility of introducing a domain re-scaling should the aspect ratio of the true
domain not lend itself to a schematic. Similarly, the pseudo-study kelp provides the user witha
set of help instructions and clean removes all derived files to return ramp to its original pristine
condition.

PV




. 2.1 File Management

The ramp.mailit employs the following directory structure:

e ramp
This directory contains the driver scripts needed to perform generic ramp-investigations,

e.g. do.one_off.-ramp and do.ramp.study.

o ramp/lib
This directory contains the Amnta procedures needed to perform generic ramp—mvestlgatlons,
e.g. InitRampResources.amr, BasicRampGrid.amr, RampProblem.amr.

e ramp/code
This directory is created by InitRampResources and contains the compiled code
- needed for generic ramp-investigations, e.g. body,_roe and ramp. The body._roe solver
is fashioned by BCG and the ramp grid is fashioned by BasicRampGrid.

° ramp/studzes
This directory contains the Amrita script needed to set the scopeofa spec1ﬁc mvestlgatlon
or study, e.g. 7K1, TK2 and TK4. ‘

e ramp/results/study
- This directory contains the output ﬁom a spec1ﬁc study

_® ramp/ps .
This d1rectory contains mlsoellaneous PostScript output such as the file ramp_schematic.ps.

~ e ramp/logs/study
This dn'ectory contains any dlagnosucs output by a specific study.

o ramp/help
This directory contains the HTML instructions produced by running:

un1x—prompt> amrita -a help do.one off.ramp

" as docs the la.mazlzt onp. 47

The precise details of the above directory structure are relatively unimportant; the obser-

’ vation is that repeatable investigations stem from good file management, and so the ramp ap-

plication maintains distinct sets of like-minded files. This mundane observation transcends the
mathematical complexity of the target application, but is all too easily over-looked in the rush

- to produce numerical results. Amrita commands which output files: flowout, plotfile,

printfile, logfile etc., automatically create directory paths as needed by their argu-
ments. For instance, the procedure SolverMontage, from lecture 1, contains the line:

plotfile $amrita:latex::PS/$solver/Ms$Ms/schlieren.ps

to arrange PootScﬁpt plots indexed by'the flow solver used to simulate a specific Mach number.
The procedure OutputResul ts from la.mazlzt uses a more convoluted index:

set 1a: :results =\ .
results/$la..study/$1a::solver/$1a--prof11e/$1a..cf1
: prlntflle $la::results/numerical

" but the end purpose is the same,

T e




2.2 RampProblem
The procedure RampProblem is short enough to be listed here in full:

proc RampProblem {

Ms = 2 # Mach number of incident shock
Xs = 5 # initial shock position
X£ # final shock position
X1 =25 . # foot of first wedge

" THETAL #= rad(15) # angle o6f first wedge.
X2 = 40 # foot of second wedge
THETA2 #= rad(35) # angle of second wedge
H1 = 80 4# inflow duct height

H2 = 10 # outflow duct height
npatches =4 # number of patches in GO
Imax =1 # number of grid levels
xr =4 # refinement ratio

} <-> ramp::

def Domain
do n=1, $npatches
patch <+, 1,w40,h80>
end do
export ramp::{X1l,X2,H1,H2,THETAl, THETA2}
grid code/ramp
end def

W/ quiescent ::= <RHO=1,U=0,V=0,P=1>
ShockWave Ms=$Ms, statel=quiescent,\
state2=post_shock

def BoundaryConditions

Nbdy domain: reflect

Sbdy domain: reflect

Ebdy domain: extrapolate

Wbhdy domain: prescribe W’post_shock
end def

def SolutionField

setfield W'quiescent

setfield W/post_shock X[]<$Xs -
end def ’ ’
makefield

def MeshAdaption
adaption on
Imax S$1imax
r ‘ Sr
end def

def RefinementCriteria
DensityGradient
end def

do 1=1,$Imax
adapt
makefield
end do

... compute tf
end proc

ke e



RampProblem is essentially a template for all you need provide to set up an arbitrary
problem® for Amr. sol to solve. Therefore, although lecture 1 may have given the impression
that Amrita requires you to become a heavy-duty programmer, this is not the case. Naturally,
the more effort you put in, the greater the return!l.

The def blocks: EquationSet!?, Domain, BoundaryConditions, Solution—-
Field, MeshAdaption and RefinementCriteria, are described in Appendices B-G.
If you recall from the Amrita primer, def blocks act as interlocks which allow Amprita to
maintain some semblance of control over the order in which a simulation is set up. They also -
introduce the specialist commands needed to get the job done. For instance, Domain must be
supplied before BoundaryConditions, and patch <+, 1, w40, h80>laysdowna
mesh patch 40 cells wide and 80 cells high. The + signifies that the patch should be tacked
on to the end of the previous patch (details are given in §C).

At this early stage, you should not be too worried about the CFD details of a boundary-
condition such as reflect, because ultimately you can provide your own interpretation.
Therefore Amrita scripts should be read at face value, on the understanding that someone,
somewhere has provided the correct, number-crunching code. In time, with an appropriate
amount of learning effort, this someone could be yourself and so there is no need to feel you
rehnqmsh baslc mtellectual control over a simulation by electing to make use of Amrita .

2.3 Experiment #1

Without further ado, you can type:
unix-prompt>amrita -a TKl1 do.one off.ramp

to produce an Mpeg animé.tion of the first experiment which can be viewed using!*:
unix-prompt>netscape resulfs/iﬂ/ramp.nmg

The simulation takes around 15 minutes to run on an SGI Indigo2 machine (195 Mhz Mips

R10000 processor) with 384 Mbytes of memory, a large percentage of which is simply taken up

with writing the individual frames of the animation to the directory results/TK1/jpg. A restart

file is also written to the directory results/TK1/io.

. Amprita views animations as working diagnostics and provides machinery to allow them to
be produced routmely15 However, for these printed notes, this script was run:

unix-prompt>amrita -a TRl do.vki.ramp

to produce Figure 2.

10This is used strictly in the sense of the problems that Amr._sol is designed to tackle, e.g. 2D, time-dependent,
compressible flows.

1Byt to repeat Amrita’s golden rule: the more trouble the systems-level programmer goes to, the easier
programming-life becomes for the applications specialist. Therefore, if you find yourself writing contorted Amrita
scripts, you could always argue the need for a new language feature to make your programming-life easier.

2Here this is buried inside the library procedure EulerEquations.

13 distinction can be made between “using Amrita” and “making use of Amrita” The former implies passive
acceptance of anything the system provides, the latter implies acceptance of the system as a labour savmg dev1ce
with the realization that you can, when necessary, stamp your authority on proceedings. -~

4 amrita provides an Mpeg encoder but not a viewer and so here it is assumed your web browser is able to
play .mpg files.

lsTry dissecting the procednresMakeRampAnlmatlon, SaveRampImage and EncodeMpeg.




Study TK1: {f; = 15,6, = 35, M, = 2.16, < 1.40}

(c) t = 23.88

(8) t = 35.82 {h) t = 41.79

Figure 2: Page output by the PostScript file ramp/results/TKJ/psﬁnontage.ps. At early times, frames
(2) and (b), there is single Mach reflection (SMR) of the incident wave from the first ramp(see [3] for
an introduction to shock reflexions). At intermediate times, frames (c) and (@), the Mach stem from this

type SMR. At late times, frames (€) to (h), the secondary refiection interferes with the primary reflection.

The snapshots were produced using the Schl ierenImage procedure from lecture 1.

T R T VP —erezr TR IS ey s e o r e e e
Fh AL T PRC SRR R SRS 8 AR ISR R 50 Phiin THEEET f v e Ay



Given the time it takes to run, this‘ﬁrs,tsimulaﬁonfaﬂys ﬁrmly in the category of “cheap and
cheerful,” but it is still no less demanding to craft than the higher resolution results shown in
Figure 3, which here for expediency was obtained using:

plugin amr_sol ‘ ) amrcp vki/paste.tkl
postscript on amrita paste tkl

... latex title and captions amrps ps/tkl.comparison.ps
... set.page.locations
set experiment = http://www. amr:.ta-cfd.com/vh/TKl/e.xperment.ps gz
set simulation = http://www. amrita-cfd.com/vki/TK1l/simulation.ps.gz
paste S$experiment in box $e::xoff,$e::yoff,$e::width,?

paste $simulation in box $s::xoff,$s::yoff,$s::width,?

As discussed in lecture 1, the comparison betweén numerics and experiment is not a math-
ematical exercise. Here the numerical and experimental interferograms are in close agreement,
at least to the eye. But, because an interferogram provides quantitative values of the density
field, it can be argued that there is also a reasonable quantitative agreement between simulation
and experiment. Nevertheless, there are clear discrepancies on the small scale. For instance,
in the experiment the base of the primary reflected shock has a small lambda foot due to its
interaction with the boundary layer on the bottom wall of the shock tube (see bottom-left corner
of image). This feature is missing in the numerical image since the simulation assumed that
the flow was inviscid. Adding viscous terms to this type of simulation can be done (e.g. [14]),
but the following scaling argument suggests that the grid needed to resolve the relevant viscous
length-scale would not be cost effective for the small improvements it would bring. -

The pertinent viscous length scale to resolve, d,, is of the order /7%, where v is the kine-
matic viscosity of the fluid and ¢, is the time vorticity has to diffuse from its point of origin.
Taking v to be 0.15cm?/sec[1] and #, to be —on average!® —50us gives a 8, of just over 10um.
But a typical shock-capturing scheme might need 10 cells to resolve a feature at this length
scale and so the pertinent mesh spacing would be-around 1um. The finest mesh spacing used
for the simulation in Figure 3 was approximately 100um. Therefore a 100 fold reduction in
mesh spacing would be needed in viscous dominated regions. Unfortunately, the cost of an un-
steady, two-dimensional simulation, at least for a uniform mesh, increases eight-fold every time
the mesh spacing is halved. The analogous increase in cost for an AMR scheme is more difficult

. to predict, because it is highly problem dependent. Here, because of the manner in which the
flow is integrated, the increase is likely to be closer to 8 than the optimum — but unobtainable
scaling — of unity'’. Hence the above assertion that a viscous simulation is not cost effective.

The scaling figures presented here are pessimistic, but the thrust of the argument remains
true even when the figures are re-jigged to give the optimistic prediction of a 10 fold decrease in
spacing. An engineering calculation, using a highly stretched mesh near the solid boundaries,
would probably be sufficient to pick out the lambda shock, but would do nothing to improve the
resolution of the roll-up of the contact surface. Interestingly, because of its extra dissipation,
the low resolution simulation (Figure 2) gives a better prediction of the contact surface than the
high-resolution simulation (Figure 3) with its éxagggrated Kelvin-Helmholtz instability. Con-
sequently, as done with the Schardin experiment in lecture 1, a viscous investigation would
have to run a full-blown sensitivity study to ensure any observed 1mprovements were down to
improved numerics and not just a fortuity of grid resolution.

16The effective ¢, varies across the flowfield: the value nmrthe incident shockls s1gn1ﬁcantly less than that near
the foot of the ramp. NN
178trictly, this observation is anecdotal unﬁl itis backed up by an exphclt txt.

'10_

N byt
R )



Study TK1

(a) Experimental Interferogram, courtesy of Prof. Takayama

(b) Numerical Interferogram

Figure 3: Page output by paste_tkl.




24 Experiment #2
The second simulation can be run, as before, by typing:
unix-prompt>amrita ~a TK2 do.one off.ramp
to produce an animation, to be viewed using: |
un:.x—promp t>net:scape resul ts/TKZ/ranm npg
orbytyping: ,
unix-prompt>amrita -a TK1 do.vki.ramp
to produce Figure 4. Similarly this script:

plugin amr_sol : amrcp vki/paste.tk2
postscript on amrita paste tk2

... latex title and captions amrps ps/tk2.comparison.ps
... set page locations
set experiment = http://www.amrita-cfd.com/vki/TK2/experiment.ps.gz
set simulation = http://www.amrita-cfd.com/vki/TK2/simulation.ps.gz
paste Sexperiment in box $e::xoff, $e::yoff,Se::width,?.

paste $simulation in box $s::xoff,$s::yoff,$s::width,?

can be used to obtain the comparison between numerics and experiment shown in Figure 5.

As with experiment #1, the two interferograms are in reasonable agreement, but the tie-
up is noticeably poorer than before. Again the discrepancies are due to the lack of physical
viscosity in the flow model. For instance, in the experimental image there is a recirculation
zone at the apex of the first ramp, and the base of the secondary reflected shock has a lambda
foot due to its interaction with the boundary layer on the wedge. But these features cannot be
reproduced by an inviscid simulation. The shock-boundary layer interactions are now stronger
than in Experiment #1 and have had quite a pronounced affect on the curvature with which both
the primary and secondary reflected shocks run in to the wall. Consequently there would be
some justification for switching to a viscous simulation for this experiment.

2.5 Experiment#4

The last simulation is the sequence can be run in the same manner as the other two to produce
Figures 6 and 7. The two interferograms are again in fair agreement, except for those regions
where viscous effects are expected to be important'®. Namely, the vortex core near the convex
corner, and the foot of the reflected shock where it interacts with the boundary layer on the
wall of the shock tube. This interaction affects the curvature of the reflected shock and would
seem to account for the difference in the curvature of the fringes between the computational and
experimental interferograms. However, the tie-up is sufficiently good that, as in Experiment #1,
it is not clear that a viscous simulation would be worth the extra effort involved..

180n closer inspection, however, it is clear that the numerical results are for an earlier time than the experiment.
The two plots are scaled using the the distance from the incident shock to the foot of the second wedge, which is
why these two reference points line up. But because the simulation was effectively stopped too early, there is a
significant discrepancy in the position of the foot of the first-ramp. Such “deliberate mistakes™ are not uncommon
in the CFD literature and make it harder for the discriminating reader to draw an independent conclusion as to
the quality of the presented results. Such errors provide one practical reason why)&mnta. goes to the trouble of
providing the means to automate document preparation. Once an error is spotted, jtcanbe easily remedied and so
does not have to remain a permanent source of confusion.

12




Study TK2: {6, = 20,0, = 55, M, = 2.16,y = 1.40}

(a) t = 0.00 (b) t = 5.07

(c) t =10.14 (d) t = 15.22

(c) t = 20.29 (f) t = 25.36

(g) t = 30.43 (h) t = 35.50

Figure 4: Page output by the PostScript file ramp/results/TK2/ps/montage.ps. At early times, frames
(a) and (b), there is SMR of the incident wave from the first ramp as in Experiment #1. However, at
intermediate times, frames (c) and (d), the reflection of the Mach stem is now complex Mach reflection
(CMR) rather than SMR. At late times, frames (e) to (h), the secondary reflection again interferes with
the primary reflection.

AL, Y5 S 7



Study TK2

(2) Experimental Interferogram, courtesy of Prof. Takayama

(b) Numerical Interferogram

Figure 5: Page output by paste_tk2.

T I Ot SV T U v i o A L L R P 00 (NI T et L TSR ML ™ LS RN ik SR AT IS




Study TK4: {#; = 60,6, = 30, M, = 2.16,v = 1.40}

(a) t = 0.00 (b) t = 2.97

(c) t =593 ' (d) t =8.90

(f) t = 14.83

(g t=17.79 (h) t = 20.76

Figure 6: Page output by the PostScript file ramp/results/TK2/ps/montage.ps At early times, frames (b)
to (c), the slope of the first wedge is sufficient that there is regular reflection (RR) and not SMR as in the
other two experiments. At late times, frames (d) to (h), the incideft shock diffracts around the convex
corner formed by the two wedges.

. o, - - e Codty e X T ) oo e i RN Wy e e T
R Y S AT AN L L AT F I TN DIREE e Iy S LI S NN S £ X DA TGN ORPTSS S MUV A - N N




Study TK4

(a) Experimental Interferogram, courtesy of Prof. Takayama

Figure 7: Page output by paste_tk4.

R BT




3 Discussion R

The following discussion is restricted to specific observations conceming the development of
mesh refinement methods for simulating unsteady shock wave phenomena; descriptions for the
underlying algorithmic techniques are available elsewhere, e.g. [20, 33]. The observations are
mainly based on simple physical arguments and programming common sense, but are no less
useful because of it'°.
3.1 Temporal Refinement
Many mesh refinement schemes give the impression of having been designed solely to mini-
mize the number of grid cells that are required to compute a solution of a given resolution or
accuracy. This design philosophy is based on the notion that the effort required to integrate a
discretized flow solution decreases as the riumber of grid cells decreases. But the following ex-
ample demonstrates that the number of grid cells can have surprisingly little bearing on the cost
of performing a time-dependent simulation and so-this particular design philosophy is flawed®®.
Consider the propagation of a shock down auniform mesh of V cells, each of width Az. Ifa
uniform time step is chosen such that the Courant number based on the speed of the shock is one
(hence the shock traverses one cell per time step), it will take IV integrations of N cells for the
shock to pass through the domain, for a total of N2 cell updates. Now halve one cell in the grid

such thatthere are N — 1 cells of width Az and two of width Az/2. Again, if a uniform time
step is used to propagate the shock through this domain, without violating the CFL condition it

will take 2N integrations of N + 1 cells to propagate the shock through the domain, for a total

of 2N2 + 2N cell updates. Therefore, although but a single cell has been added to the grid the
cost of the simulation has more than doubled. Consequently, for time-dependent problems it is
desirable to refine in time as well as space[21]. Here, using temporal refinement, the two small
cells would be integrated 2N times and the other NV — 1 cells would be integrated NV times as
in the uniform mesh case, for a total of N2 + 3N cell updates. Thus, for NV reasonably large,
the cost of the refinement becomes negligible. As an alternative to temporal refinement one
could conceivably opt for an integration scheme which was stable for large Courant numbers,
but for highly non-linear problems the loss in temporal accuracy, associated with large time
steps, would probably prove unacceptable.

A temporal refinement strategy is easily mcorporated into hierarchical refinement schemes .

" such as those based on quad-trees (e.g. [7]) or embedded patches (e.g. [5, 21] since it is
. possible to avoid ever having to interpolate across discontinuities[21]. However, a temporal

refinement strategy seems ill-suited to refinement schemes based on unstructured triangular
meshes (as typified by[16]), at least when combined with a shock-capturing methodology, since
one cannot avoid having to perform awkward non-line€ar interpolations at discontinuities. Such
interpolations are unlikely to satisfy a shock-capturing scheme’s unique smeared shock profile
and so would result in spurious oscillations[21]. One convenient way around this difficulty
would be to employ an integration scheme based on floating shock-fitting[18, 34] rather than
shock-capturing. Then there would be no smeared discontinuities and the cause of the problem
disappears. This strategy illustrates an important design principle of mesh refinement methods
it is often better to work around difficulties than to attempt to effect a cure. ’

19In many regards, such observations are more likely to stand the test of time than overly sophisticated argu- -

ments. As a case in point, §3.2— which first appeared in[21] —is perennially useful in dispelling qualms that AMR
methods inevitably introduce spurious numerical vorticity: they do so, only when operated incorrectly.
20This comment, and the others which follow, are only accurate in the context of time-dependent, compressible
flow simulations. Even then, however, you are advised to recall the Dumas quote from lecture 1.
17

- X /o
P S SUMMRD - i POk ek TSR TTRE N SN

R A7t TBrie, 1 sy Tarts e g e VRM G

JUNEEUUR W




3.2 Fine-Coarse Boundaries 1

A number of techniques have been devised to lessen the spurious reflections which occur when
a numerical shock wave crosses a grid discontinuity (e.g. [28]). In practice, the performance
of such remedial procedures is problem dependent; provided that the shock waves are not too
strong, and the grid discontinuities are not too severe, then satisfactory results can be obtained,
otherwise the “cures” are found wanting. The following thought experiment, taken from [21],
suggests that preventative measures are a better design pﬁngiple than curative measures:

“Consider the composite grid formed from abutting two uniform rectangular meshes, one
mesh being r times finer than the other, and suppose a planar shock wave is allowed to
propagate in a direction which runs parallel to this join. All things being well, one would
expect the flow to remain one-dimensional. But, if 7 is large then it is difficult to see how
such a two-dimensional simulation could maintain, indefinitely, a one-dimensional flow.
For a given shock-capturing scheme the numerical representation of a shock is self-similar
with mesh spacing. Therefore, the shock wave on the coarse mesh would be much wider
than that on the fine mesh. Consequently, at the foot of the shock there would be a pressure
gradient which acts across the grid discontinuity from the coarse mesh to the fine mesh,
and at the head of the shock there would be a pressure gradient which acts in the opposite
direction. Thus, the grid discontinuity would cause the supposedly planar shock wave to
act as a vorticity generator! Even if the rate of production were small, the accumulation
would be relentless. So, sooner or later the two-dimensional numerical solution'would
differ markedly from the expected one-dimensional solution.”

This script, which outputs Figure 8, can be used to test the validity of the thought experiment:

set vki = $amrita::AMRITA/examples/vki amrcp vki/fc.1
autopath +$vki/lecture2/1idb anrita fine coarse_bdy
EulerEquations cd ps/roe/split
plugin amr_sol amrps phasel.ps
set flux roe

amrps phase9.ps

won

set plate = yes
if(!&amrso("code/$flux")) then
BasicCodeGenerator {
solver = $flux
.scheme = first-order’operator-split
flux = beg/$flux :
}
endif
FineCoarseBoundary Ms=10,splitter_plate=$plate
solver code/$flux
logfile logs/$flux
postscript on
do phase=1,10
march 30 steps with cf£1=0.8
flowout io/$flux/split/phase$phase
plotfile ps/$flux/split/phase$phase.ps
PlotShock
end do

18

R OM sy S L IS NN O~ A S



Figure 8: A grid d1scontmmty can cause a planar shock to act as a vorticity generator. Although here, -
a solid plate is used to decouple the coarsé gnd solution: ﬂomthe fine gnd solution so as to suppress the
generation of VOl’thlty

The simulation shown in Figure 8 useslalslﬂittet plate (ie. a solid wall) to decouple the
coarse grid solution from the ﬁne grid solution 50 as to prevent the generation of vorticity. But
when the plate is removed. :

un1x-prompt>amrcp vk:./fc.z i
un1x-prompt>amrz.ta f:.ne ‘coarse bdy

the shock structure rapldly breaks downm the manner shown in Figure 9 and the thought ex-
periment is vindicated. But events, since the test problem was formulated in 1991, indicate that
- this is not the entire story. The breakdown observed here is particularly bad, because the Roe
linearization predicts wave speeds which are too high along the centreline of the duct leading to
the shock protrusion 21, If the test is re~runw1th flux = godunov, the results are better but
far from perfect (see Figure 10), and yet a further improvement can be obtained by switching
to flux = efm (see Figure 11). However, ‘before these results add more fuel to the “Great
Riemann Solver Debate”’[22], it should be pointed out that a ten line fix can be added to the
~ roe flux so as to produce Figure 12. Nevertheless, the quality of results is less than acceptable
for simulations of reactive flows, since small peturbanons can be amphﬁed chemlca]ly to the
point where they dominate proceedmgs[24] R :
Given the stylized setting of the present split-grid test, itis not inconceivable that some form
of “intelligent” interpolation, wh1ch took: speclal account of both the local pressure gradient and
the local gradient in mesh spacing — knowing the setup of the problem — could prevent the gen-
eration of spurious vorticity?. But such.a “cure” would not generalise. Therefore the practical
solution is not to argue about the choxce of ﬂux, or mterpolatlon function, but to recognize that
the test is artificial: it is more ‘natural to orchestrate the mesh adaption in such a way that a
shock wave is not given the opportumty to’ crossa gud d15contmmty[21] ‘When this is done:

un1x—prompt>amrcp tkz./fc..‘le ,
un1x—prompt>amr:.ta fine coarse bdy -

even flux = roe can produce the pnstmeresults showanigure 13.°

2'Examples of the patterns of data wlnch cause Roe S scheme to glve poorresults are given in the next section.
 RThisisused in the complete sense areducucn in spurious vm'uclty is good, butnot good enough.

IR N

\\\\\




.
S
,
.

\ oFigure 9: ﬁne_coarse_bdy results for flux

]
N
(o}
P

’ . FigurelO ;fli‘nhefé,oa}se_bdy tesults for flux ‘= godunov.

¢ 1

- e

iy Figure 11: fine_coarse:bdy resilts for £lux = efm.
N LB s o DD e LT T -




\ . .
- . s
v
, .
o .
. -
H .
v .
t .
T AN -
s s :
. o
f
1 -
!
Y ' . .
\
o ~
o
L3
3
, .
!
>
IR . '
.
’
. «
.
. a
{ 1t
Il v *
' Al 0 . + 1
- t .
} , ! 3
B Lo o
- - .

' : ! Figure 13& jiné__coarse;bdy results for f£lux = roe when the grid is adapted to the shock.

! ,f‘J' s ‘
a A
S ‘ N ‘
$ ' -
;- Figure14: fine: coarse: bdy resultsfor £lux = godunov when the grid is adapted to the shock. -
; R 2, T U Y S T VA . - _
L - 1 . o

. . .
R — rfriere o
kS (P I N AR AP S




33 .Finer(kmarselsenumﬂamiesll

When Ami-_sol was first constructed it was deemed neoessary to enforce strict conservation
at a fine-coarse boundary by applying a fixup pass to the integration process which took strict
account of the net difference in the cumulative flux seen by the fitie and coarse grids[5, 21].
Subsequent experience shows that this fixup procedure is counter ive.

First, to preserve monotonicity, it introduces a secondary time step restriction on the maxi-
‘mum allowable Courant number; ¥4z, used to integrate the flow:

_2
r—1

which for refinement ratios » > 3 is more restrictive than the standard CFL condition (i.e.

Vpaz <

Umaz = 1)B, see [21] for details. Second, when running on apara]lel machine, it mtmducee

an extra layer of communication which can impact on performanoe24 Third, and in some ways
most telling, the fixup procedure is merely a book-keeping mechanism which credits or debits

the coarse grid solution to maintain conservation. As.such, at least on a finite sized grid, it does_

not guarantee the consistency and convergence of results needed to ensure waves travel at the
correct speed, which is the motivation for using the ﬁxup in the first place” Consequently,
Amr._sol no ]onger employs the conservatlve-ﬁxup pass reported in[21]%5.

The following script demonstrates that given the manner in which Amr_sol adapts the gud\

(i.e. only smooth flow is allowed to cross a grid discontinuity), no special treatment need be
applied at a fine-coarse boundary to ensure an embedded shock wave travels at the correct speed:

set flux = roe : : .| amrep vki/fc.2
EulerEquat:Lons space—one—d:unens:.onal : amrita shock_ speed
plug:.n amr_sol ’ : T led results/roe-1d
- BasicCodeGenerator { - . .| amrps error.ps
solver = $flux-1d ‘ ; .
" scheme = kappa-muscl’operator-split
flux beg/xoe

}
CheckShockSpeed {
- solver
Amax

r
MachNumbers

$flux-1d-
4

4 -
1.2,1.5,2,3,4,5,10,20

1}

. Here, the procedure CheckShockSpeed.

. 2f a safety factor is applied to the CFL condmon, as is common practice, then the cutoff point in refinement
ratio will be higher e.g. a CFL of 0.8 allows r = 4 to be used.
2The amount of data involved is relatively small, but it can have a detumental affect on load balancmg and so
lead to unexpectedly large losses in performance.
" 25The next section provxdes a concrete example of why conservatlon shouldnotbe v1ewed asa panacea. Also,
Whitham([36] provides® a nice example, using the shallow water equations (SWE), which shows the difference

between casting equatlons in conservation form (the SWE have an infinite number of such formulatlons) from the

unique, weak-formulation needed to predict shock jumps correctly. -

26But this does not imply that conservation has been relaxed elsewhere: it is still i unportant for the mtegxatxon
of the flow solution held by a patch and for the interpolation operators wlnchtransfer the ﬂow solutmn from old
patches to new patches when the grid adapts.

3




proc CheckShockSpeed {

solver -
MachNumbers
Xs = 28.00 # shock position
1max = 0 # grid levels
rl = 2 # refinement ratio
nGo = 10 # patches in GO
nphases =20 | R
nsteps = 100° ' ' "
cfl = 0.8
io "= results/$solver

} <-> S::

... Pprocedure definitions
solver code/S$solver
logfile logs/$solver
... setup $io/error
foreach Ms ($MachNumbers)
SetupTest Ms=$Ms
... setup $io/Ms$Ms.xt
do phase=1, $nphases
march $nsteps steps with cfl-$cfl
along y=0 locate last RHO[]>$S::RHOt -> xs
time -> t
printf ("%$.8£ %.8f\n", $xs, $t)
end do
set Xf #= $Xs+$Ms*sym(C’quiescent) *$t
set erxror #= ($XE£-$xs)/($Xf-$Xs)*100
set error #= $error*1000
... plot Ms results S
end foreach
GraphErxror {

odir = results/$solver
output = error.ps
}
end proc , ) L

marches the shock profile on Gipe, for 512,000 time steps 27. The %error in shock location —
scaled by a factor of 1000—is shown in Figure 15. Here the largest recorded error occurs for the
weakest shock and is only 10 parts in 10° and is comparable to the uncertainty in locating the
shock position using the along command?. For a given Mach number, this uncertainty is of -
fixed size, therefore the recorded %error increases as the travel distance of the shock decreases.
The above highlights one important Amr._sol design principle: accountability. The under-
lying AMR algorithm does not have a concise recipe and is non-trivial to code. Therefore, it
is essential to avoid excess baggage: if a component does not earn its keep, it is jettisoned.
Amrita is designed to facilitate the testing of components in an automated, objective manner

Z1The solution on Gy is integrated in 20 phases of 100 time steps, but folowing the time-stepping procedure in
8A, with a fixed refinementratio of 4, G is integrated 4! times for every G integration: 20 x 100 x 4* = 512, 000.
If you have limited computing resources, you can run shock_speed with 1max=2 and nsteps=20 for a total of
6,400 time steps.

28The weakest shock is the most smeared out in terms of mesh cells and so has the greatest uncertainty in
location which helps explain why it gave the largest recorded error.

L Sy

’\"7/

B RN DR RO KD VS




LR
F

to allow critical design dec1s10ns to! be vouchsafed through m&scmmﬂy Conscguently, the.
decision to drop the conservative-fixup. pass is not meversible ‘and the fixup would be resur-
rected should a sufficient number of mailit files emerge to suppert its remstatcmcnt. However,
criticisms mustbe made in the operatlonal contextshown bythn; scnpt which outputs F'gure 15:

EulerEquat:.ons - Co o amrcp vki/fc.3

plugin amr_sol .o i . | amrita fo context.
flowin io/Cormex5. . ., , . .. . . , | amrps ps/fc context.ps
autoscale L ST . —
postscript on-

plotfile ps/fc_context.ps

SchlierenImage : -7 @
AmritaBlue ) —_— ' -
filled rectangle 0,0,30,40 _ Lo 8 . "
ps>15 setlinewidth ‘ o R - 7
m<l> - e . | R
plot domain {G2} ’ ‘ ’
w R
,49' | ) o -
20} ~ §
g i
a0} t
E-ﬂl - oo -
: ol ] ]
ol .
-100 B

T T e T w
7 . Ms A
Figure 15: Graph of %error in shock location versus Mach number for a-shock fntegrated 512,000 time
steps. Note the %error is multiplied by a factor of 1000 to make the scale easier to read.

@h

- ] =
| EE

o
o1
‘,

Figure 16: Outpit from Je_s context. Amr_sol is demgned to encase shocks usmg a seamless; collection
-of recmgular mesh patches, such that to all intents and pmpom, the shock sees aumform gnd. -

O A o T B , ‘ .
) . N ' e f .
. ) . ).“
il S v
S 24 )
e -
.




%

ThlS over-predlcts the exact speed

" the’ ShockShockproblem. S .

34 Flow Solvers . o

The early development of Amr-_sol was plagued by aseries of obscure fmmerical failings which
afflict shock-capturing schemes[22]. In the end, these failings were tracked down not so much
by analysis, but by searching out pathological patterns of flow data, in much the same way as
tracking down a bug in a program. This mailit which outputs Figures 17 and 18 and can be used
to hunt for such failings?:

' .unix-prompt>amrcp vki/st mailit

unix-prompt>amrita st.mailit

In Figure 18, the density dip at X = 50 is similar in nature to the startup-error discussed in

lecture 1. The initial conditions for this shock-tube problem are two impinging shock waves:

proc ShockShock Ms=3 3
ves Stic*
W/ quiescent ::= <RHO=1,U=0,P=1>
ShockWave Ms-$Ms, statel=quiescent, \
state2=post_shock -

W’left ::= W’post_shock ) -
W'right ::= W'post shock<U—-U’post shock[]3 T K .
... st::notes ) : , ’

end proc: , )

The exact solution consists of two shocks of equal strength which move away from one another

leaving behind statlonary fluid as they go. By design, Roe’s scheme can recognize a single .
shock wave, but the linearization used cannot cope with two waves as here. Thus the estimate

for the speed of the shocks is wrong by 0(1) leading to the error in density. '
. Using standard notation — see the two glven references — because of the symmetry of the

1mt1al data. :

. v/ JiL! + Vorur _
VAP

and so the shock speed \forthe first lime step, A=d+a,is given by: -

i= M T 2 = 2.265
T T T

1

o (r+ue+4/(y+ 1202 + 1602
A= 1 +

Therefore, in the shocig ﬁ'a.nie of reference, the post-shock velocity istoo hiéh, iridicating the
shock is too weak. Hence the predicted density is lower than the exact solution. The numeri-

Uy =1.446 =

.cal solution never recovers from this first step because the error appears on the contact wave,
*and since the flow velocity is everywhere zero behind the shock wave no dissipation is added®®
.to damp out the error at the “wall” (i.e. line of symmetry). The roemk2 flux used in §3.2

achieves its robustness by the expedlency of artificially increasing the velocity of a stationary
contact wave from 0 to € to ensure that some dissipation is added to prevent pathologies devel-
oping in the flow solutlon. Thus flux = roemk2 performs better than flux ‘= roe for -

'

29’1‘11%(: figures show just two pages from the voluminous output produced by the mailit. For convenience
purposes, as with the la.mailit, the output is collated in the form of an:HTML document.
3 Roe S scheme, dlsmpatlon is dnectly proporuonal to wave speed LN

: ;
.
‘ : 25
,

AR




Shock Tube Test: “Sod’s problem”
=1 pr = 0125
uy =0 u = 0
n =1 pr = 01
m = 14 7% = 14

The classic shock-tube problem, first used by G. A. Sod (J. Comput. Phys. 27, 1-31, 1978).

Scheme euler-code::1d-c-fo-os

Flux

Ioe

BEE

x

0O 10 D XN 440 2V 0 W W N UL

EEESEEEEEE

C 10 W W 40 DV @O 0 0 W IO

References

[1) RoE, P. L. 1881 Approximatc Ricmann Solvers, Parameter Vectors, and Difference Schemes. J. Comput.

Phys. 43, pp. 357-372.

[2) RoE, P. L. AND PIKE, J. 1984 Efficient Construction and Utilisation of Approximate Riemann Solu-

x

ax
ax
%0
San
a4
o
axn
ato
am

o

aso ¢

10 2 2 o

® €@ 0V L 0

h

MY

100 0 » «

tions. Comput. Math. Appl. Sci. & Eng. VI, cds. Glowinski, R. and Lions, J-L., pp. 499-518.

Figure 17: Page output by shock_tube.

26

ARG AN RS
Yoy el SNaltX




Shock Tube Test:  Shock-Shock I

L* v=08
;o= 3.857 pr = 3.857 Wil Wi
uy = 2629 u, = —2629
m = 1033 P, = 1033 We Wi
1 o= 14 % = 14
e
>

Excessive “wall heating” can be produced by numerical shock-shock ineractions.

Scheme euler-code::1d-c-fo-os

1nm ploi]
7
.
10m
200 ¢
sm
mi
g 14}
<]
E'un 2am
[¥:
am}
s
~200 ¥
40
- - -3m
0 10 1V X 4H N H W W NV O 0 0¥ D 20 0O VD O W W WV Ko
X x
5m0 5
=~
nm
“Sm 430
a0
400 b
asm
8 3
am
pL .3
2500
a0 b
15030 <
1am 2% -
[+] 10 20 30 40 30 0 MV W O 0 [ ] M 2V XN 4o 2 0 MW WV V WO
x x
References

[1] Rog, P. L. 1981 Appraximate Ricmann Solvers, Paramcter Vectors, and Difference Schemes. J. Comput.
Phys. 43, pp. 357-372.

[2] RoE, P. L. AxDp PIKE, J. 1984 Efficicnt Construction and Ttilisation of Approximate Ricmann Solu-
tions. Comput. Math. Appl. Sci. & Eng. VI, cds. Glowinski, R. and Lions, J-L., pp. 499-518.

Figure 18: Page output by shock_tube.

27




>
Figure 19: Solution to the Riemann problem {W, Wg}.

The following consideration of the Riemann problem shown in Figure 19 suggests that
Roe’s scheme is susceptible to problems near shear waves[21]. For the Euler equations, the
generic solution to a Riemann problem {W, Wz}, where two semi-infinite states W; =
(o1, w1, vi, )t and Wy = (p;, 4y, vy, Dr)* are prescribed at £ = 0, consists of three waves
separating four regions. The two outer waves, are acoustic waves which can either be shocks or
expansions that match the left- and right-states to a common pressure, p*, and a common normal
component of velocity, #*. The inner wave is a contact surface, or slip line, which accounts for
any differences in density, p. — p;, and shear velocity, v, —v;, between the left- and right- states.
Now suppose that the prescribed tangential component of velocity v, is replaced by —v,, and
call this new state W’%. The exact solution to this new Riemann problem {Wy, W} is the
same as before, with the exception that v} = v, = —v,. But, as an inevitable consequence of
the linearization process, for Roe’s approximate Riemann solver the form of solution to these
two problems will be very different. Specifically, the average:

5= VPOt D
Vot /Pr

must differ from 4’ and therefore the acoustic wave speed:

a = —_ — g2 - 52
a \/(fy 1)h 58— 57

must differ from @', and so on for the wave strengths, thus altering the entire solution. If a change
in the prescribed shear velocity can result in a difference between the approximate solutions for
the two Riemann problems that is not reflected in the two exact solutions, then the accuracy
of the approximate solver is clearly sensitive to the prescribed data. Therefore, since v, can
be made arbitrarily large in relation to u,, the error in the approximate solution can be made
arbitrarily large.

As was done in §3.2, this next example is intended to cut short any unproductive Riemann-
solver debate that may be generated by the above shear-wave revelation. Consider the initial
conditions shown in Figure 20. At #° a shear wave is coincident with one mesh interface of a
one-dimensional, finite-volume grid. Now suppose this discrete solution is advanced using a
conservative discretization to produce the solution shown at #*. Assuming the CFL condition is
satisfied, the shear wave will fall short of the next grid interface®! and so introduce a smeared
cell containing the state (p*, v*, v*, p*).

3lwith a CFL of 1 the shear wave will reach the next interface, but in practice this special case is less likely to
occur than a CFL<1,

RS Al T A S RTAKE NI oA S SR A 1§ 5% S £-4 21 SO SO P T S




U LI T Rl g - R ARLS "
LR NCR AL AL IR

wd e

] .1
EEEEE EEEI

Figure 20: Schematic showing a shear-wave propagating along a one-dimensional, finite-
volume grid.

Because a conservative discretization is assumed:

*

P’ =p
p'ut = pu
P l 2,1 4 P 1 5,12
Y1 TPt T = STyt

and so regardless of the choice of scheme:
1
p* —p= '2"p(’02 _ 11*2)

Now unless the scheme employs some form of sub-cell resolution, the shear must smear
numerically, that is:
—v <V <Y

and so p* > p, regardless of the choice of flux function. The worst case, which is likely to be
the practical case, is that the shear smears symmetrically leading to v* = 0, giving:
* — 1 2
p —p= 2.0’”
Again, since v is a prescribed quantity, it can be made arbitrarily large resulting in an arbitrarily
large, spurious pressure p*. E ‘

The above might appear to be a contrived example, but the numerical difficulty arises when-
ever there is a component of the total energy which is passively advected with the flow (e.g. [8]
or [26]). The solution options are: (i) relax conservation locally; (ii) employ sub-cell resolution
to prevent the interface from smearing; (iii) use front-tracking in preference to shock-capturing;
(iv) pre-smear troublesome interfaces. Solution (iv) is probably the most widespread, because it
is the easiest to implement. Solution (i) is often done unwittingly (e.g. [37]) and so the problem
never surfaces.

Whatever the preferred solution approach, the shear-wave pathology illustrates the dangers
of blindly following the concept of conservation. In the context of Amr._sol, when performing
high-resolution simulations, it pays to watch out for nuances in the flow solution which might
have severe consequence further down the line. For this reason, it is important to perform
mission-critical simulations using as many different, disparate numerical techniques as you can
afford, as this facilitates the process of distinguishing numerical-fancy from physical-fact. For
this reason alone, many of the algorithmic arguments put forward — concerning the relative
merits of shock-capturing schemes — are academic in the worst sense of the word.

29

<3 /ey B e e e
T I e e




. PN U T cvonfe 0o = 15
SR S U IO L 447, OV W AN« IR Med MG ¥ XDy 2y

3.5 Grid Efficiency

To pick up from where §3.1 left-off, leaving aside the issue of temporal refinement, minimizing
the number of grid cells will not automatically lead to an efficient method of refinement. Con-
sider the case of an isolated discontinuity which runs oblique to the grid, as shown in Figure 21.
It is clear that cellular quad-tree refinement (say [7]) is more efficient than embedded patch
refinement (say [21]) in terms of the number of cells each method requires to tile the discon-
tinuity. However, it also has the larger storage overheads per mesh cell of the two associated
data structures. For inert shock wave simulations, which generally need only a small number of
levels of refinement, the storage overheads from quad-tree refinement are easily tolerated, but
this might not be the case, if the flow contained chemical reaction.

(a) Il (b) BEEEA

Figure 21: Output from oblique_shock (amrcp vki/fc.3z)showing a zoomed region of Figure 16.
Plot (a) shows the domain {G2} (i.e. the outline of the finest grid tier) drawn in white. Plot (b)isa
simulation (using very small patches) of how a cellular refinement scheme might be able to resolve the
flow features; the equivalent domain {G2} is shown by the bold black lines. Clearly, compared to a
cellular refinement scheme, there is room for improvement in the efficiency with which Amr._sol tiles a
shock which runs oblique to the grid.

Instead of a shock, consider a detonation wave oblique to the grid, which in addition to a
shock front has some internal structure (see §E.3), albeit on a very fine scale, which must be re-
solved and cannot be captured. In this instance, a wide swathe of cells would be needed to cover
the reaction zone which might be ten or more levels of refinement down in the quad-tree, be-
cause of the disparateness between the width of the reaction zone and the distance over which
the detonation wave needs to be propagated. Therefore, although the cells in the swathe are
close to one another spatially, they could lie far apart in the grid data-structure. Not only would
this impact on cache performance, and increase communication traffic in a parallel implemen-
tation of the scheme, but each cell would introduce a sizeable overhead due to the accumulation
of pointers down to its level in the data structure. Consequently, embedded patch refinement
might now prove to be more efficient, because its storage overheads would be that much lower
and it would better preserve the proximity of cells within the reaction zone. .

Adaptive mesh refinement algorithms, compared to classical numerical methods, entail writ-
ing sophisticated software. Therefore arguments, such as the one above, must be tempered by
the realization that specific implementation details can make or break an algorithm in terms of
its practical performance. In particular, the grid data structure needs to be well crafted. For

30

N A T O O B PN N S e AN S SO ST



example, the data storage needs to be flexible enough to cope with dynamic allocation and deal-
location as local refinement is added and removed, and data accesses have to be efficient so as
not to impact on performance. Since it is all too easy to underestimate the level of commitment
needed to write, test and debug a general purpose mesh refinement code, a newcomer would be
well advised to take his or her own software skills in to account before choosing to code up any
one particular method.

At times, the number of considerations appear legion, even when the application needs
are fairly specific. For instance, given the results from §2, it would appear that Amr_sol is
well suited to time-dependent simulations of shock wave phenomena. But suppose you were
dissatisfied with the quality of the results shown in Figure 5 and wanted to perform a viscous
simulation, it remains unclear just how well Amr._sol would perform.

In the past, it has been successfully used to perform viscous simulations of shock-boundary
layer interactions[21], and so there is no reason to believe that it could not cope with a viscous
simulation of study TK2. However, since viscous flow features tend to be anisotropic in nature,
such a simulation would expose a weakness of the refinement scheme: it does not cope that
well with anisotropic refinement. The method used[21] is essentially limited to features such
as boundary layers which are affixed to solid surfaces. To refine a free shear layer which might
happen to lie oblique to the mesh, Amr_sol would be forced to use isotropic refinement which
would be needlessly expensive. This is an example where a change in the flow model can have a
significant impact on the refinement efficiency, even though the application remains unchanged.
Thus the correct choice of refinement strategy is never straightforward.

To complicate matters even further, interplays between the method of refinement and the
method of flow integration cannot be ignored. For instance, a triangular unstructured mesh has
the geometric flexibility to allow for efficient anisotropic refinement but a certain amount of care
must still be taken to generate meshes which are suitable for viscous simulations[19]. Some-
times, depending on the application, it is necessary to compromise the refinement efficiency so
as to avoid compromising the accuracy of the flow integration (or vice versa). Of course, the
accuracy of a refinement scheme is, for the most part, ordained by the monitor functions which
determine where refinement does or does not take place.

31

o e T o (A i e R T/




LT 7 Qo

3.6 Refinement Criteria’

As outlinedin §G, Amr._sol employs heuristic monitor functions to determine where to refine®2.
For instance the double-wedge simulations use a combination of two monitor functions: density
gradients locate shocks and a local comparison between density and pressure gradients locate
contact discontinuities. Now there are numerous reasons why this type of heuristic approach
is unsatisfactory, not least of which is that it introduces tunable parameters and so increases
the experience factor needed to operate a refinement scheme reliably (§G.1). As Warren et
al.[35] have shown, a poorly constructed heuristic monitor function can cause a mesh refinement
scheme to home in on an incorrect solution®. But this can happen with any refinement function,
heuristic or not, which provides estimates for the local error without also providing estimates
for how the local error affects the global error i.e. every refinement function in common use. To
a large extent the mesh refinement community has been lulled into a false sense of security by
the general experience that local errors are usually benign. The test case discussed in [35] is a
gentle reminder that small local errors can sometimes tip the balance and result in large global
errors, but other more pathological examples are not difficult to find, especially where chemical
reaction is involved.

Figure 22 (a) shows a trace of the pressure behind the lead shock front of a one-dimensional
detonation wave, driven by the 3-step chain-branching reaction given in §E.3, see [30] for de-
tails. By normal standards, this computation would be thought well resolved, since 160 mesh
points cover the so-called reaction half-length (giving some 256,000 cells over the time period
shown), whereas contemporary simulations have ten or less points in the reaction half-length.
However, when the simulation is repeated with the grid spacing halved, the dynamic behaviour
of the detonation wave alters dramatically, see Figure 22 (b). At first glance, Figure 22 (b)
appears to be from the coarser computation, since it looks more dissipative in that a two mode
pulsation is decaying to a single mode pulsation. But in fact it is the extra dissipation in Fig-
ure 22 (a) that sustains a spurious two mode pulsation, whereas the correct behaviour should be
that of a two mode pulsation with a time-attractor limit cycle[30], i.e. Figure 22 (b). Interest-
ingly, as observed in §E.3, the difference in behaviour arises not from an error in resolving the
detonation shock-front, but from a failure to resolve a seemingly innocuous part of the reaction
zone which is smooth.

257 * . I 20
2.0 L ] [
] 15 o
A 15 L a ] [
1 i 1.0- -
1.0 R '\& -
05 . . [ 05 ] . .
0 500 1000 1500 0 500 1000 1500
(@) t (®) ¢

Figure 22: Variation in the computed pressure history trace for a galloping detonation driven by a 3-step
chain-branching reaction model[30]: (a) 160 pts/L 13 (b) 320 pts/L 1.

32Coarsening takes place naturally by choosing not to refine and so involves no additional criteria[21].
31t is worth noting that an undivided-difference when used by Amr._sol has an implicit constant length scale,
and so does not suffer from the precise problem discussed in [35] for unstructured triangular meshes.

32

ettt CEnr & PR LT B, N oy Carfa e o ool T 2 v e i, R A e AT SN T el Mt e B

3



Clearly there is much room for improvement in the current crop of criteria used to control
refinement. However, any attempts at devising rigorous mathematically based refinement crite-
ria should not ignore the operation of the underlying grid adaption algorithm. For example, in
detonation simulations it can be necessary to adapt the grid tens of thousands of times[25] and
so the method of determining where to refine must be reasonably cheap so as not to cripple the
performance of the simulation. Also, the physical scales involved are so disparate they preclude
the luxury of periodically comparing the solution computed with refinement against that com-
puted on a uniform mesh of the same high resolution, as is effectively done in[13], because of
the unrealistically large amount of storage involved.

For practical purposes the lack of a fool-proof refinement criteria does not undermine the
usefulness of adaptive mesh refinement schemes for investigating shock wave phenomena, but
it does complicate matters. The practical solution, when starting a new investigation, is to
perform a sensitivity study to see how the computed results vary with, amongst other things, the
effective resolution of the computational grid as controlled by the chosen refinement criteria.
The aim is to tool-up to a position where a reliable simulation can be produced. This approach
is not just restricted to simulations which use mesh refinement. General experience shows
that past performances are no real guide as to how a specific numerical scheme will fair on a
new problem. Therefore, the results from any new CFD simulation, regardless of the solution
method involved, should be viewed with a healthy degree of scepticism until the results have
been shown to be reliable.

For serious investigations the cost of tooling is generally spread over a parameter study and
so is not excessive. The only drawback is that the results from grid sensitivity studies are rarely
conclusive. Many shock wave phenomena exhibit physical instabilities and so the notion of
a grid converged solution is not always clear, or even appropriate since the flow model might
preclude the possibility of having a sensible solution in the limit of the mesh spacing going to
zero. For example, in [23] results are presented for the vortex sheet produced by a shock wave
diffracting over a knife edge. These results show that an inviscid simulation can reproduce the
correct physical behaviour and yet provide no limiting solution, because the numerical dissi-
pation which controls the fine scale structure of the vortex sheet, in the absence of physical
viscosity, never bottoms out as the grid is refined. On the other hand, in some simulations of
detonation phenomena, it is clear that it not practical to reach a fully converged solution, either
because the physical scales are too disparate for the available computing resources, or the phys-
ical behaviour of the system is non-deterministic in that variations in discretization errors, no
matter how small, lead to significant variations in dynamical behaviour.

The majority of CFD simulations are performed with the aim of producing quantitative
answers to well understood problems, in which case the above vagaries are unacceptable. In
contrast, Amr._sol is typically used a qualitative diagnostic in an attempt to fathom behaviour
which is not known, and so a certain amount of subjectivity cannot be avoided. And this often
involves using Amr_sol to perform simulations which are more detailed than would otherwise
be possible. Consequently, no attempt is made in this discussion to “sell” the method in terms
of how efficiently it was able to compute the double wedge problems. While this might be
viewed as contrary, any results which could be presented would have little practical value.
Moreover, by comparison to other work[25] the present simulations are so cheap as to be almost
inconsequential. It should also be appreciated that the cost of performing a time-dependent
simulation can pale into insignificance when compared to the time taken to decipher the results,
and so to bandy performance figures loses sight of the fact that Amr._sol has progressed well
beyond the development stage and is used as an everyday tool.

33




4 Closing Comments

To close, it is clear that many theoretical aspects of adaptive mesh refinement algorithms require
further investigation, e.g. the rigorous control of errors via well founded refinement criteria, or
when running on a parallel machine, the performance bounds on load balancing strategies.
But the present theoretical shortcomings of Amr_sol do not undermine its usefulness as an
investigative tool. Moreover, it is worth noting that the algorithm requires little mathemati-
cal respectability of its own, because it is designed to subsume the stability characteristics of
application specific, patch-integrators.

If the next generation of mesh refinement algorithms are to offer substantial improvements
over existing methods — to this author at least — it seems essential that common ground be found
between theoreticians and practitioners. Thus, in the case of Amr_sol, Amrita was constructed
to facilitate third-party contributions which might help reduce the current heuristic elements to
more acceptable levels.

Acknowledgements

This work was supported by Los Alamos National Laboratory — subcontract 319AP0016-3L un-
der DOE Contract W-7405-ENG-36. I am grateful to Prof. K. Takayama for providing me with
the experimental interferograms shown in Figures 3, 5 and 7, and I am happy to acknowledge
the efforts of Dr. H. Babinsky in this matter.

34




A plugin Amr_sol

The plugin Amr_sol is based upon a general purpose Adaptive Mesh Refinement (AMR)
algorithm for integrating systems of hyperbolic partial differential equations. This algorithm at-
tempts to reduce the costs of a simulation by matching the local resolution of the computational
grid to the local requirements of the solution being sought. For example, in simulations of gas
dynamic flows, a fine mesh would be used only in the vicinity of shock waves and other flow
discontinuities, leaving a coarse mesh elsewhere. Although the savings which accrue from this
technique are entirely problem dependent, they can be every bit as attractive as those gained
from using expensive parallel computers (savings of more than five hundred-fold have been ob-
tained for simulations of detonation phenomena, Quirk 1996). The foundations of the present
AMR algorithm lie with the works of Berger & Oliger (1984) and Berger & Colella (1989),
but the derivative outlined here is due to Quirk (1991, 1996). Contemporaneous AMR work is
listed in the references.

A.1 Overview of AMR Algorithm

The AMR algorithm employs a hierarchical grid system. In the following, the term “mesh”
refers to a single topologically rectangular patch of cells and the term “grid” refers to a collec-
tion of such patches. At the bottom of the hierarchy a set of coarse mesh patches delineates the
computational domain. These patches form the grid G and they are restricted such that there is
continuity of grid lines between neighbouring patches. This domain may be refined locally by
embedding finer mesh patches into the coarse grid G. These embedded patches form the next
grid in the hierarchy, G;. Each embedded patch is effectively formed by subdividing the coarse
cells of the patches that it overlaps. The choice for the refinement ratio is arbitrary, but it must
be the same for all the embedded patches. Thus, by construction, the grid G} also has continu-
ity of grid lines. This process of adding grid tiers to effect local refinement may be repeated as
often as desired, see Figure 23.

\\\\\\

1111111111111111

\\\\\\\\\\\\\\
\\\\\\\

Figure 23: Amr._sol employs a hierarchical grid sjstem.

From stability considerations, many numerical schemes have a restriction on the size of time
step that may be used to integrate a system of equations. The finer the mesh, the smaller the
allowable time step. Consequently, the AMR algorithm refines in time as well as space. More
but smaller time steps are taken on fine grids than on coarse grids in a fashion which ensures
that the rate at which waves move relative to the mesh (the Courant number) is comparable for
all grid levels. This avoids the undesirable situation where coarse grids are integrated at very
small Courant numbers given the time step set by the finest grid’s stability constraints: some
schemes (e.g. Lax-Wendroff) give poor accuracy for small Courant numbers.

35

R e



GRID INTEGRATION TIME STEP PROIECTION ADAPTION

Gy At
G At/2
4 X G2 4 x Atf8
Gy — G1
G
G, At/2
4 x Gg - 4 x At/8
G, -Gy
G1— Gy
G
G

Figure 24: Grid operations are recursively interleaved (to be read from top to bottom).

The field solution on each grid is retained even in regions of grid overlap and so all grid
levels in the hierarchy coexist. The order of integration is always from coarse to fine since it
is necessary to interpolate a coarse grid solution in both time and space to provide boundary
conditions for its overlying fine grid. The various integrations at the different grid levels are
recursively interleaved to minimize the span over which any temporal interpolation need take
place. Periodically, for consistency purposes, it is necessary to project a fine grid solution
on to its underlying coarse grid. Figure 24 shows the sequence of integration steps and back
projections for a three level grid {Go, G1, G2} with refinement ratios of 2 and 4.

The integration of an individual grid is extremely simple in concept. Each mesh is sur-
rounded by borders of ghost cells. Prior to integrating a grid, the ghost cells for every mesh
patch in the grid are primed with data which is consistent with the various boundary condi-
tions that have to be met. Each mesh patch is then integrated independently by an application
dependent, black-box integrator that never actually sees a mesh boundary. In principle any cell-
centred scheme developed for a single topologically rectangular mesh could form the basis for
the integration process.

In general it is necessary to adapt the computational grid to the changes in the evolving flow
solution and so the grid structure is dynamic in nature. Monitor functions based on the local
solution are used to determine automatically where refinement needs to take place to resolve
small scale phenomena (Quirk 1991). For a simple example, Figure 25 shows several snapshots
taken from the simulation of a shock wave diffracting around a corner. Each snapshot shows the
outlines of the mesh patches which go to make the finest grid. This grid clearly conforms to the
main features of the flow, namely the diffracted shock front and the vortex located at the apex
of the comer (van Dyke 1982). Althoughi the changes in grid structure shown here are dramatic,
many adaptions have taken place between each frame (the mesh patches appear small, but each
patch actually contains several hundred cells).

A large number of small grid movements occurs because the adaption process dovetails
with the integration process, see Figure 24. Observe that the adaption always proceeds from
fine to coarse so as to ensure that there is never a drop of more than one grid level at the edge
of a fine grid to the underlying coarse grid. A grid adaption essentially produces a new set of
mesh patches which must be primed with data from the old set of patches before the integration
process can proceed. Where a new patch partially overlaps an old patch of the same grid level,
for the region of overlap, data may be simply shovelled from the old patch to the new patch.
In regions of no such overlap, the required field solution is found by interpolation from the

36




" Figure 25: Amr._sol employs a dynamic grid system.

underlying coarse grid solition. -

In a typical application the finest grid will contain several hundred mesh patches. Conse-
quently the mesh patch is a sufficiently fine unit of data for efficient parallelism. The paral-
lel version of Amr_sol (Quirk 1996) is implemented using a Single Program Multiple Data

" (SPMD) model. Each processing node executes the basic serial algorithm (Quirk 1991) in iso-
lation from all other nodes, except that at a few key points messages are sent between the nodes
to supply information that an individual node deems to be missing, that is off-processor. For
example, during the integration of a grid, the only point at which a processor needs to know

- about other processors is during the priming of the ghost cells. Whereas in a serial computa-
tion all data fetches are from memory, for a parallel computation some are from memory and
some necessitate receiving a message from another processor. Each time the grid adapts, the
algorithm generates a schedule of tasks that have to be performed so as to prime correctly the
ghost cells of a given grid. If running in parallel, this schedule is parsed to produce a schedule
of those tasks that necessitate off-processor fetches. At which point, individual processors can
exchange subsets of their fetch schiedules, as appropriate, so that every node can construct a
schedule of messages that it must send out at some later date. Thus, the priming process is
carried out in two phases: First, all the local data fetches are performed as for the serial case.
Second, each node sends out the data that has been requested of it. The node then waits for
those data items it has requested. For each incoming message it can readily determine from its
own schedules what to do-with the off-processor data, and so the order in which messages arrive
is unimportant. The adaption process and the back projection of the field solution between grid
levels also necessitate sizable amounts of communication, these are handled in a similar fashion
to the priming of the ghost cells.

The problem of load balancing the AMR algorithm rests on determining the best distribution
of the new patches amongst the processing nodes before the new field solution is interpolated
from the old field solution. Currently, this is done using heuristic procedures which bear strong
similarities to classical “bin packing™ algorithms (e.g. Graham 1969) with the added complica-
tion that they must account for the communication costs of data transfer between nodes.

iy

37

5%



References

[1] BERGER, M. J. & OLIGER, J. 1984 Adaptive mesh refinement for hyperbolic partial dif-
ferential equations. J. Comp. Phys. 53, 482-512.

[2] BERGER, M. J. & COLELLA, P. 1989 Local adaptive mesh refinement for shock hydrody-
namics. J. Comp. Phys. 82, 67-84.

[3] GRAHAM, R. L. 1969 Bounds on certain multiprocessing anomalies. SIAM J. Appl. Math.
17, 416-429.

[4] QUIRK, J. J. 1991 An adaptive mesh refinement algorithm for computational shock hydro-
dynamics. PhD Thesis, Cranfield Institute of Technology, U.K.

[S] QUIRK, J. J. 1996 A parallel adaptive mesh refinement algorithm for computational shock
hydrodynamics. Appl. Numer. Math. 20, pp. 427-453.

[6] VANDYKE, M. 1982 An album of fluid motion. Parabolic Press, p. 148.
Contemporaneous AMR Work3*

[71 ARNEY, D.C. & FLAHERTY, J.E. 1989 An adaptive local mesh refinement method for
time-dependent partial differential equations. Appl. Numer. Math. 5, pp. 257-274.

[8]1 ARNEY, D.C. & FLAHERTY, J.E. 1990 An adaptive mesh-moving and local refinement
method for time-dependent partial differential equations. ACM Trans. Math. 16, pp. 48-71.

[9] BELL, J.B., BERGER, M.J., SALTZMAN, J.S., WELCOME M. 1994 Three-dimensional
adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. bf 15, p.
127.

[10] BELL, J.B., COLELLA, P., TRANGENSTEIN, J.A. & WELCOME, M. 1987 Adaptive
methods for high Mach number reacting flow. AIAA Paper 87-1168.

[11] BERGER, M.J. & SALTZMAN, J.S. 1994 AMR on the CM-2. Appl. Num. Maths. 14, pp.
239-253.

[12] CLARKE, J.F., KARNI, S., QUIRK, J.J., ROE, P.L., SIMMONDS, L.G. & TORO, E.F.
1993 Numerical Computation of 2-dimensional unsteady detonation-waves in high-energy
solids. J. Comput. Phys. 106, pp. 215-233.

[13] COLELLA, P. & HENDERSON, L.F. 1990 The von Neumann paradox for the diffraction
of weak shock-waves. J, Fluid Mech. 213, pp. 71-94.

[14] FISCHER, J. 1993 Selbstadaptive, lokale Netzverfeinerungen fiir die numerische Simula-
tion kompressibler, reibungsbehafteter Stromungen. Ph.D. thesis, Institut fiir Aerodynamik
und Gasdynamik, Universitét Stuttgart.

34This list is restricted to block-structured, adaptive mesh refinement schemes. Please send additions to
librarian @amrita-cfd.com. : ’

38

AL PRI Sy

E ARV A (R SRR S L S - S N e A



[15] HENTSCHEL, R. & HIRSCHEL, E. H., 1994 Self adaptive flow computations on struc-
tured grids. In Computational Fluid Dynamics 94, Proceedings of the Second European
Computational Fluid Dynamics Conference, edited by S. Wagner, J. Périaux and E.H.
Hirschel, Wiley, pp. 242-249.

[16] HENDERSON, L.F., COLELLA, P. & PUCKETT, E.G. 1991 On the refraction of shock-
waves at a slow fast gas interface. J. Fluid Mech. 224, p. 1.

[17] HORNUNG, R.D. & TRANGENSTEIN, J.A. 1997 Adaptive mesh refinement and multi-
level iteration for flow in porous-media. J. Comput. Phys. 136, pp. 522-545.

[18] PEMBER, R.B., BELL, J.B., COLELLA, P., CRUTCHFIELD, W.Y. & WELCOME, M.L.
1995 An adaptive Cartesian gnd method for unsteady compressible glow in irregular regions.
J. Comput. Phys. 120, pp. 278-304.

[19] PUCKETT, E.G. & SALTZMAN, J.S. 1992 A 3D adaptive mesh refinement algorithm for
multimaterial gas-dynamics. Physica D 60, pp. 84-93.

[20] QUIRK, J.J. & KARNI, S. 1997 On tile dynamicé of a shock-bubble interaction. J. Fluid
Mech. 318, pp. 129-163.

[21] SHORT, M. & QUIRK, J.J. 1997 On the nonlinear stability and detonability limit of a
detonation-wave for a model 3-step chain-branching reaction. J. Fluid Mech. 339, pp. 89—
119.

[22] UPHOFF, U., HANEL, D., RoTH, P. Numerical Modelling of detonation structure in 2-
phase flows. Shock Waves v6, pp. 17-20.

[23] VERWER, J.G. & TROMPERT, R.A. 1991 Local uniform grid refinement for time-
dependent partial differential equations. Centrum voor Wiskunde en Informatica, Report
NM-R9105.

39

hiy < n NP AN A0, P A Sy 3 S




B def EquationSet

Amr_sol provides adef EquationSet blockto allow you to define mappings which dictate
how physical quantities — such as density, pressure and velocity — are written to, and extracted
from, the computational grid. The strict mathematical interpretation of the EquationSet,
however, is left up to the solver and so you retain complete control over its formulation.
Given pre-defined routines such as these:

PotentialFlowEquations amrcp vki/egns.1
LinearAdvectionEquation amrita invoke_egns
BurgersEquation

ShallowWaterEquations

EulerEquations

IsentropicEquations

IsothermalEquations

NavierStokesEquations

ReactiveEulerEquations

RelativisticEulerEquations

you may well feel you have no need to program down at the level described in this Appendix. If
this is the case, you should at least skim through the following material to gain an appreciation of
what happens when an EquationsSet is invoked. If nothing else, this will show that_Anmrita
is built to last.

B.1 The EulerEquations

The mathematical formulation for EulerEquations can be obtained using this script:

amrcp vki/egns.2
amrita show euler egms

EulerEquations {
space = 2D

cd latex files
symmetry slab -

amrps amrita.ps

}
set thisfile = file $amr_sol:EquationSet::file
grab::info BCG: [Latex::Document] from Sthisfile
LatexHead !

parse token Latex::Document
LatexTail
Latex

which conveniently provides the background information (see Figure 26) needed to follow the
rest of this section.

Amr._sol views an EquationSet solely in terms of how data must be shovelled to and
from the discrete solution vector, W, stored for an isolated cell, in an isolated mesh patch. For
instance, to be able to write field data, this command:

setfield <RHO=1,U=1,V=0,P=1>

needs to know how to pack the quantities p, u, v and p together to form W. Similarly, to be
able to return the minimum and maximum pressures, this command:

minmax P[] -> Pmin, Pmax

needs to know how to unpack p from W.

TR e A Sy

N

K
P 2




1 Two-dimensional Euler Equations (slab symmetry)

Notation:
z—y Cartesian coordinates
t time
p density
u z-component of velocity
v y-component of velocity
P pressure
E total energy
v ratio of specific heats
c sound speed
P
W= Z”u conservative solution vector
E
[

2

F=| ™ +p flirx in z-direction
puv

\ (E+p)u}

[ v
G= pv’;v:p flux in y-direction
\ (E+p)v )
Formulation:
dw  gF A aG
ottty
Perfect gas model:
p= (1~ 1B - 2ou? — 1 v = c=‘/2
2 2 p
Predefined Functions:
xg =z RHEO[] ii=p d[] ii=c
YO ::=y uO si=u EQ ::=E
td ::=t vO =y
PO 1:=p
GAMMA[] ::=¢

Figure 26: Page output by the script show_euler_egns. If curious, try: (i) re-running the script with
space set to 1D and symmetry set to cylindrical or spherical; (i) adding the line echo
$Latex: : Document to see what grab: : info returns; (iii) viewing $thisfile with amrgi to
locate the £0ld: : info blocks which contain the ISTEX typesetting information; (iv) re-running the
script with another EquationSet,e.g. ReactiveEulerEquations.

41




The required mapping information is furnished using a def EquationSet block. The
EulerEquations employs three such blocks to cover 1D, 2D and 3D flows™:

proc EulerEquations {

space = two-dimensional
symmetry {slab|cylindrical|spherical} = slab-
gamma = 1.4

}
switch on $s;5ace
case 1D:one-dimensional:
... 1D EquationSet
case 2D:two-dimensional:
cee 2D EquationSet
case 3D:three-dimensional:
o 3D EquationSet
default:
error ‘$space\’ space unknown by EulerEquations!
end switch
end proc
+«++ BCG documentation

Below is the two-dimensional version of the EquationSet36:

fold::amrita’space2D { 2D EquationSet
def EquationSet

name $amrita: :procl

note equations are cast in conservation form
space two-dimensional

symmetry S$Ssymmetry

negns 4

notation RHO,U,V,P,GAMMA
notation C,E
problem specific GAMMA
def SolutionVector
require RHO,U,V,P,GAMMA
hint precompute P

W[1] ::= RHO[]
W[2] ::= RHO[]*U[]
W3] ::= RHO[]*VI]
W[4] ::= P[]1/(GAMMA[]-1.0)+0.5*RHO[]1* (U[]1**24+V[]**2)
specify GAMMA::= S$gamma
RHO ::= W[1]
U = W[2]/W[1]
v 1= WI3]/W[1]
P 1:= (GAMMA[]-1)*(W[4]1-0.5* (W[2]1**24+W[3]1**2) /W[1])
end def
C ::= sqrt(GAMMA[]*P[]/RHOI[])
E ::= P[]/ (GAMMA[]-1)+0.5*RHO[]* (U[]**2+V[] **2)
. end def

35At the time of writing, Amr_sol cannot compute three-dimensional flows, but it can nonetheless be taught a
three-dimensional EquationSet.
36space2D is simply a retrieval-name given to the program-fold and has no physical significance.

42

————— - nr s e -



The first command specifies a name with which to label the EquationSet. The string
token amrita: : proc0 expands to the name of the last procedure entered by Amrita, and so
here yields Eul exEquations. This programming trick ensures an EquationSet is named
after the procedure which created it and is used by all the pre-supplied routines®.

The second command, provides a simple reminder (i.e. note) thatthe EquationSet em-
ploys a conservative solution vector W = (p, pu, pv, E)t, as opposed to the primitive variable
vector (p, u, v, p)’, or some other set of variables. '

The third command, indicates the EquationSet is for two-dimensional space,as
opposed to one~dimensional spaceor three-dimensional space. The abbrevi-
ations 1D, 2D and 3D may also be used to indicate the desired space.

The fourth command is used to indicate the symmetry implied by the EquationSet.
By default $symmetry has the value s1ab and so the EquationSet is considered strictly
two-dimensional. But if cylindrical symmetry were specified, as in:

EulerEquations symmetry=cylindrical

the EquationSet would be considered axisymmetric®.

The fifth command, neqns, is slightly misleading in that it specifies the number of compo-
nents in the solution vector and not the total number of equations in the system, which explains
why here it is given the value four and not five.

The two notation commands provide a list of the quantities permitted in the formulation
of the solution vector. One or more of these quantities may be tagged problem specificto
indicate that they fix the EquationSet for a specific problem and so must be input somewhere
along the line by the user. Here only + is identified as being problem specific, but as shown
below this does not mean that -y need be a constant. The commands notation and problem
specific may be repeated as often as needed and so there is no need to cram long lists on
to one line. The notation: z, y, ¢ and W is predefined[27] and so does not need to be
declared explicitly. Sometimes, however, it is useful to employ spatial notation which is more
meaningful than the default = and y. For instance, to use r and z with an axisymmetric set of
equations, you could use either:

notation R, Z or notation R, 2
R ::= YI[] R ::= X[]
Z ::= XI[] -2 1= Y[]

depending on the physical orientation of the grid.

Given the above preliminaries, the functional form of W is defined using template expres-
sions® inside a def SolutionVector block. The require command identifies a subset
of the notation quantities to provide a checklist with which to trap careless errors where a
state cannot be defined because key information is missing. For instance, given:

EulerEquations amrcp vki/egns.3
W/quiescent ::= <RHO=1> amrita missing data

37To see what other system tokens Amrita keeps track off, type:

unix-prompt>amrita -c¢
amrita>Show tokeng=amrita*

38Not that this has any affect on the rest of the Equat ionSet block, because the chosen symmetry is simply
a directive to be interpreted by other parts of _Amprita as they see fit, e.g. BasicCodeGenerator (recall
Appendix B from lecture 1).

39Expression templates were described in §2.4 of lecture 1.

43




Amrita responds:

Error at line 2 of file missing data:
state is missing: P,U,V!

Line 2 is: »
W/quiescent ::= <RHO=1>

error near: St S
end of line

The hint directive is an optimization which instructs Amr._sol to pre-compute pressure
whenever it expects to do a large amount of interpreted computation*® involving the solution
vector. As such, it is non-essential to the operation of EulerEquations.

The first four template expressions in the SolutionVector block define how the prim-
itive variables p, u, v and p are to be mapped to W. The second four expressions define the
inverse mapping. The keyword specify which precedes the definition of  is syntactically
redundant and could be omitted, nevertheless it helps emphasize that GAMMA is problem
specific and so is not entirely useless. The significance of this fact are two fold: (i)
provided it is independent of W*#!, a problem specific quantity does not need to be
specified when a state is defined as it can default to the value used in the definition of the
EquationSet (which reveals why - was not listed as missing in the above script); (ii) un-
like plain notation quantities, which are considered cast in stone, problem specific
quantities can be changed by the user. Consequently, this next script bombs out on the third line
rather than the second:

EulerEquations amrcp vki/egns.4
specify GAMMA ::= X[] ‘ amrita reserved_notatian
RHO ::= X[1] -

with the error message:

Error at line 3 of file reserved_notation:
'RHO’ is reserved by the current ‘EquationSet’!

Line 3 is:
RHO ::= XI]

error mnear:
RHO ::= X[]

Note, however, that speci fy is mandatory when updating a problem speci fic quantity.
The two remaining notation quantities (C and E) are not critical to the definition of the

EquationSet and are provided merely as a convenience, which is why they are declared

separately from the other quantities and also defined outside the SolutionvVector block.

“0Template expressions are interpreted at run-time and so execute more slowly than compiled code. With
Amr._sol the cost of decoding a template expression is borne by a mesh patch and not a single mesh cell, and
so the overhead can be tolerated for lightweight-tasks such as flagging for refinement. The hint directive helps
reduce the overhead still further: Nevertheless, for heavy-duty work Amr._sol always falls back to compiled code.

“IHere, -y could be made temperature dependent. However, although EulerEquations is happy to cope with
a variable «, the flow solvexr may not be so obliging.

A




B.1.1 Thermodynamic States

Once an EquationSet has been defined, you are free to specify thermodynamic states which
are automatically checked for consistency. For instance, the left- and right-states in the ubiqui-
tous Sod’s problem[31] could be specified using:

EulerEqﬁations space=one-dimensional amrcp vki/state.l
W’ left_state ::= <RHO=1 .0, 1U=0,P=1.0> amrita set_sod states
W/ right _state ::= <RH0=0.125,U=0,P=0.1>

and later used as parameters to a command such as setfield:

setfield W/left_state X[] < $diaphragm
setfield W/ right_state X[] >=$diaphragm

which is described in §E.

Internally, states are stored as template expressions, which explains the use of : : = rather
than a plain =. The W’ part alerts Amrita*? that a state is to be defined (or used), and the
accompanying state-label (here left_state and right_state) enables the interpreter to
distinguish one state from another. ¥ you experiment with this two line script:

EulerEquations amrcp vki/state.2
W'mystate ::= <RHO=1,U=0,V=0,P=1,GAMMA=1.4> amrita set_mystate

you will find that the state-label can be set to any string made up from the characters {A-2, a-z,
0-9 and _}, provided the string starts with a letter*>. Also, the order in which the quantities
RHO, U, V, P and GAMMA are supplied is unimportant. You might also like to check Amrita’s
response when you deliberately mistype a required variable e.g. type Rho instead of RHO. As
usual, the system goes to some lengths to trap any careless errors you might make.

Amrita allows simple state assignments of the form:

W/ state2 ::= W'statel
But compound expressions such as:
W/ state2 ::= 2*W’'statel
and:
W/state3 ::= W/ statel* W'state2

are ruled out, because of the thermodynamic implications of allowing states to be naively ma-
nipulated as numbers. Similarly, the individual expressions of a state must evaluate to a real
result, although as in PotentialFlowEquations, they can involve complex arithmetic en
route to a real result. On the other hand, it is perfectly natural to define a new state in terms of
a previously defined state**. For example, try adding this line:

W' new ::= W'mystate<RHO*=mul,bU+=add,V-=sub,P/=div , GAMMA=num>

to the set_mystate script, and experiment by replacing mul, add, sub, div with expressions
of your choice. The operators *=, /=, += and -= work asin C. .

“2Strictly speaking, the machinery used to parse a state is provided by Amr_sol, but because the relevant Perl is
sucked into Amrita, the distinction is moot.

“3With Amrita v1.38, states are viewed as global quantities and cannot be given namespaced labels: in effect
W’ acts as a state: : namespace. On the other hand, template expressions, like string tokens, can be given an
explicit namespace. This distinction is historical and will likely be removed in later_Amrita releases.

44Recall the definition of ShockWave in §2.4 of lecture 1.

45




Amrita allows a state’s constituent template—express:lons to be accessed individually. For
instance, this script from the end of §2.4 in lecture 1:

EulerEquations amrcp vki/sym.1

plugin amr_sol .
: . amrita -debug run export
W/one ::= <RHO=1,U=0,V=0,P=1,GAMMA=1.4> ;" aof :isl —

ShockWave statel=one,state2=two,Ms=2
exprA ::= P’'twol]

W/ one ::= <RHO=1,U=0,V=0,P=1 GAMMA-X[]>
ShockWave statel=one,state2=two,Ms=2
exprB ::= P’twoll]

export exprAl],exprB[]

accesses the pressure for state two using P’ two [1.  You could similarly use: RHO’ two[],
U’two[],V'two[] and GAMMA ' two[] to access the other available expressions.
Here it is instructive to observe the difference between expra and exprB*:

amrita:export::expr { amritazexport::expr {
str expraA str exprB
expr { ) expr {
1 1
n 4.5 nl
} . n 2
- ) 500
00
15 -
2
15
2
15
500
00
1
13
13
500
00

B odEBHOoOdORB YR YO <

}
Although both templates where constructed in the same fashion, expra involved only constants
and so could be mangled down to a single number, but expxB involved the system variable X [ ]

and so is left as a postfix version of M@#pl, with Mg =2,7y=X[] andp; = 1.

Because expraA is a constant, it can be assigned to an Amrita string token using:
set token #= sym(exprall)
but sym is currently unable to convert a variable template such as exprB.

45An expr fold consists of a series of low-level op-codes which employ postfix arithmetic to leave one or more
results on an expression stack. Here exprA pushes one number on to the stack, and exprB performs a series of
operations to leave one number on the stack. For instance, b 15 is a binary operator which takes two numbers
off the stack, multiplies them together, then pushes the result back on to the stack. Analogously: b 16 performs
division; b 12 performs addition; m 13 performs subtraction. The opcode v 500 with the offseto 0 0 pushes
X[] on to the stack. This internal expr format is scheduled to be revamped and so the fact exprB contains a
redundant multiplication by 1 is of no great concern.




B.2 The LinearAdvectionEguation
Dropping down the mathematical scale, the EquationSet for the linear-advection equationf15]

aUu ou .
E+a—a—;—0 with a>0

follows the exact same form as that used by the EulerEquations*:
proc LinearAdvectionEquation {
space = one-dimensional
a [0:?2] =1.0
}
switch on $space
case 1D:one-dimensional:
def EquationSet

name $amrita: :proc0
space one-dimensional
neqns 1

notation U,A
problem specific A
def SolutionVector
require U,A
W[1] ::= UI[]
U 2= W([1]
specify A ::= $Sa
end def
end def
default:
error '$space\’ space unknown by LinearAdvectionEgquation!
end switch
end proc
... BCG documemtation

Amrita is designed to operate more or less independently of the mathematical complexity
of the target application. Consequently the Amrita programming skills acquired by working
~ with the LinearAdvectionEquation are directly transferable to projects which employ
full systems of partial-differential equations. Because of this, instead of diving head long into
your chosen application, you should first serve a short apprenticeship dissecting the linear-
advection investigation obtained by typing:

unix-prompt>amrcp Chp7/la.mailit

This may seem a retrograde step, but it will speed progress in the long run. To quote from the
HTML help page which is unpacked when the mailit is first run:

CFD algorithms are often designed by considering model problems. The insight gained
from studying the model problem is then extrapolated to find a successful solution proce-
dure to some target application which itself might be too difficult to analyse or so expensive
to compute it precludes a trial and emor solution approach.

The same is true for learning to use Amrita efficiently. Learn new programming constructs
using model scripts, because the turnaround time for your chosen application is likely too high
for you to stumble through writing the required code by trial and error.

4SInternally, symmetry defaults to s1ab and so need not be given.

47

-
-




B.3 The FractalFactory 4
The fractal.mailit from lecture 1 (Appendix C) contains a routine Fractal Factory:

proc FractalFactory {
set = mandelbrot
nmax = 255
startup "= ArraySizes NGIxJ=800000
} <-> fractal:: : T
... compile fractal_factory
def EquationSet

name FractalFactory
space two-dimensional
negns 1

notation xo,yo
problem specific xo,vo
def SolutionVector
require xo,yo
z s:= {X[1+xo[],¥[1+yol]}
W[1] ::= En(fractal_factory::$set,$nmax,Re(Z[]1),.Im(Z[]))
specify xo ::= 0
specify yo ::= 0
end def
end def
W’ fractal 1= <x0=0,yo=0>
fractal::count ::= W[1l]/$nmax
parse token fractal::startup
end proc

which shows how to construct an EquationSet when the SolutionVector mapping is
not in closed-form. The expression template:

WI1l] ::= fn(fractal_factory::$set, $Smmax,Re(Z[]).,Im(Z[]1))

uses an Amrita £n () hook to call a routine $set (i.e. mandelbrot) from a shared-object
package fractal_factory, which is produced by the program-fold.
When called”’, the routine mandelbrot:

AMRDBL FUNCTION MANDELBROT (PAR)
AMRDBL PAR(0:*)

AMRCPX Z,C
AMRINT N, NMAX
NMAX = PAR(1)
c = CMPLX(PAR(2),PAR(3))
A = (0,0)
N =0
100 CONTINUE
Z = Z*Z4+C

IF((ABS(Z) .GE.2) .OR. (N.GE.NMAX)) THEN
MANDELBROT = N
RETURN
ENDIF
N = N+1
GOTO 100
RETURN
END

4TThe setfield command in the Amrita routine DrawFractal implicitly sweeps over the grid, calling
mandelbrot for each mesh cell as it goes.

)



is passed an array of four AMRDBL numbers: PAR (0) contains the number of parameters
in the fn () call; PAR (1) contains the value $nmax; PAR (2) contains the current value of
Re(Z[]); PAR(3) contains the current value of Tm(Z []). The body of the FUNCTION
performs its business and then returns a result in the normal Fortran fashion.

Although —in the context of these lecture notes — the fractal. mailit may appear flippant the
Amrita programming construct outlined above transfers directly to genuine fluids applications.
For instance, this EquationSet was written to drive a two-phase (solid-gas) code used to

- . investigate deflagration-to-detonation transition in damaged energetic materials[2]:

proc SeptemberEquations {

space = one-dimensional

code = geptember::

startup "= $code‘get_tokens
} —-> SEPT::

switch on $space
case 1D:one-dimensional:
def EquationSet
name $amrita::procO
space one-dimensional
negns 7
notation RHOs,Us,PHIs,Ps,Ts
notation RHOg,Ug, Pg,Tg
def SolutionVector
require RHOs,Us,PHIs,Ps,Ts
require RHOg,Ug,Pg,Tg

W[1l] ::= RHOs[]
W[2] ::= RHOs[]1*UsI[]
W[3] ::= RHOs[]*PHIs[]
W[4] ::= fn(Scode‘'fn_rhoets,RHOs[],Us[],Ps[],PHISI[])
W[5] ::= RHOg[]
W[6] ::= RHOg[]*Ugl[]
WI[7] ::= £n(Scode‘fn_rhoetqg,RHOg[],Ugl],Pgll,Tgl[l,PHIs[])
RHOs ::= W[1]
Us 1= W[2]/W[1]
PHIs ::= W[3]/W[1]
PHIg ::= 1-PHIs[]
Ps ::= fn($code‘fn_ps,W[1],W[2],W[3],W[4],WIS1.W[6]1,W[7])
Ts .. ::= fn($code‘fn_ts,W[1l],W[2],WI3]1,W[4]),WI[5]1,w[6],W(7])
RHOg ::= WI[5]
Ug ::= WI61/W[5]
Pg ::= fn($codefn_pg,WI1],W[2]1,W[3],W[4],W[5],W[61,W[7])
Tg ::= fn($code*fn_tg,W[1],Ww[2],WI3],W[4],Wi5],W[6],WI[7])
end def
end def

default:
error ‘$space\’ space unknown by SeptemberEquations!
end switch
end proc

The tie-up to FractalFactoryis self-evident.

49




B.4 - Keywords

The earlier observation that you should learn new programming constructs using model exam-
ples, and not your target application, cannot be emphasized strongly enough. The turnaround
time for most CFD simulations is sufficiently long that it inhibits the development of good pro-
gramming style. To employ a hackneyed, but nonetheless appropriate adage — practice makes
perfect. Consequently, Amrita programming skills are best honed using short, targeted scripts.
For instance, this script will list all the specialist keywords which can be.used inside a def
EquationSet block: o ' ' '

plugin amr_sol . amrcp vki/key.l1
keywords amr_sol :EquationSet* amrita show EgquationSet

and forms the basis of the system routine:

proc HtmlKeywords search=*
set amrita:html::file = $amrita::junkdir/$amrita::jobno.html
HtmlHead
HtmlSearchBanner banner=keywords: $search
keywords $search -> keywords
if(token (keywords)) then
foreach keyword (S$keywords) split on /\n/
HtmlKeyword keyword=$keyword
end foreach
endif
HtmlTail
Netscape
end proc

which is activated when you type:

unix-prompt>amrita -c¢
amrita>plugin amr sol
amrita>Show keywords=amr sol:EquationSet*
Similarly, this script lists the specialist keywords described in Appendices C-G: .

plugin amr_sol amrcp vki/key.2
foreach defblock (Domain, \ amrita show keywords
BoundaryConditions, \

SolutionField, \
MeshAdaption, \
RefinementCriteria)
keywords amr_sol:$defblock* -> list
echo $list
end foreach

Although in practice you would obtain the information, in the form of an HTML documeant, by
typing:
unix-prompt>amrita -c

amrita>plugin amr_sol
amrita>Show keywords=zamr sol*

50




C def Domain

With Amr._sol, after selecting an EquationSet, the first step in setting up a simulation is to
define the computahonalDomaJ.n. This is done using a logical Cartesian space:

Co={ixj:ieN,jeN}

where each coordinate pair (7, j) identifies a possible mesh cell[21, 25]. Specific domains are
. constructed by laying down rectangular patches of cells, each patch being fixed in terms of its
lower-left and upper-right corners in C,,, and this information can be supplied explicitly as two
pairs of coordinates or implicitly as one-coordinate pair plus a width and height. For example,
the following would select the cells shown in Figure 27 (a):

proc CornerProblem amrcp Chp2/corner.1l
def Domain ‘ : amrita run corner. mkl
ilscale 1 amrps ps/corner.ps

patch <1,11,w8, hio>
patch <+, 1,wl2,h20>
end def ’
end proc

@ )

Figure 27: Computational domains: (a) 90° corner (full scale); (b) multiple cavity (quarter scale).

The command def Domain instructs Amrita to start constructing a new domain and en-
ables it to accept certain specialist commands such as 1scale, which here sets the cell size to
one. The first patch command selects a patch 8 cells wide by 10 cells high with its lower-left
corner positioned at logical cell (1,11). The second patch command then places a patch im-
mediately to the right of this first patch, because the ¢ coordinate is specified implicitly using the
notation +. Thus the lower-left corner of the second patch is positioned at (9,1) and its upper-
right corner at (20,20). The following straightforward variation on a theme would produce the
multiple-cavity grid shown in Figure 27 (b):

proc MultipleCavityProblem amrcp Chp2/mcavity.1
def Domain , amrita run mcavity
lscale 1 , amrps ps/mcavity.ps.

do n=1,4 _
patch <+,11,w8, hil0>
patch <+, 1,wl2,h20>
end do
end def
end proc

51




C.1 Six Specifics

1. Entering a def Domain block wipes the computational slate clean, that is any previous
flow solution is erased.

2. The commands:
patch <1,11,w8,h10> and patch <1,11,8,20>
are equivalent to one another, - h
3. Both these commands are invalid:
patch <0,5,10,10> and patch <10,10,1,1>

The first, because 0 falls outside the range of coordinates used to define patches. The
second, because the lower-left coordinates are greater than the upper-right coordinates.

4. A ‘-’ is treated as the inverse of ‘+’, therefore:

def Domain

patch <1,11,w8 ,hl0>
~ patch <+,1 ,wl2,h20>
end def

produces the same domain as both:

def Domain
patch <9,1 ,wl2,h20>
patch <-,11,w8 ,hl0>
end def

and:

def Domain
patch <1,11,w20,h10>
patch <9,- ,wl2,hl0>
end def

The script obtained with amrcp Chp2/verify.1 can be used to verify this equiva-
lence graphically. "

5. To prevent user mishaps, Amr._sol precludes the input of overlapping patches. Internally,
the algorithm could cope with overlapping patches, but on balance it is thought more
user-friendly to exclude them.

6. Because of storage efficiency reasons, Amr._sol places two internal restrictions on the
upper size of a mesh patch: (i) the longest side cannot be greater than 210 cells; (ii)
the total number of mesh cells plus ghostcells cannot exceed 5500. Consequently this
command generates an error:

patch <1,1,100,100>
and should be replaced by:

patch <1, 1,w50,h50>
patch <+, 1,w50,h50>
patch <1,51,w50,h50>
patch <+,51,w50,h50>

52




C.2 Curvilinear Geometry o
Section D.6 in lecture 1 described how to produce a polar giid. This script:

... create code/nozzle ‘ amrcp Vki/nozzle.l
EulerEquations amrita run nozzle
plugin amr_sol ‘ amrps ps/nozzle.ps
def Domain

lscale 0.4
patch <1,21,w25,h20>
patch <+,21,w50,h20>
patch <+,21,w25,h20>
patch <1, 1,w25,h20>
patch <+, 1,w50,h20> 2
patch <+, 1,w25,h20>
os export names of data files
grid code/nozzle ‘
end def
... plot grid

uses the same basic grid-generation technique to produce the configuration shown in Figure 28,
and was written for a simulation of a supersonic shear-layer experiment[10]. The grid quality is
not the best that could be generated, but it does have the merit that the associated code is short
enough to be dissected here in full.

The program fold:

fold::amrita‘’dat { export names of data files

set GEOMETRY = $amrita: AMRITA/examples/ChpG/GG
set Nupper = $GEOMETRY/top.wall. nozzle

set Supper = $GEOMETRY/top.wall.splitter

set Nlower = $GEOMETRY/bottom.wall.nozzle

set Slower = $GEOMETRY/bottom.wall.splitter
set Xo = -8.0

export Xo,Nupper,Nlower, Supper, Slower

1

locates four data files which tabulate, in the form of z —y data pairs, the geometry for the upper
and lower walls of both the nozzle and the splitter-plate. For example, here are a few lines from
the file top.wall.nozzle:

8.48000 15.43964
8.64000 15.32548
8.80000 15.21182
8.96000 15.09881
9.12000 14.98656
9.28000 14.87518
19.44000 14.76478
9.60000 14.65547

The locations of the geometry files, together with a reference position, Xo, are exported to
Amr _sol so that they can be read by the Fortran code: -

53




fold: :print’srcl { write nozzle.src
fold>file = nozzle.src |
#include "AMR_SOL/AMRITA*®
SUBROUTINE GEN_NOZZLE (GRD,NG,IM,JM,DX,X,Y, Iw)
AMRSTR*255 Nupper,Nlower, Supper, Slower
AMRINT GRD,NG,IM,JM,IW
AMRDBIL DX,X(*),Y (%)
CALL AMR::GET_TOKEN (/AMRSTR: :Nupper’ ,Nupper)
CALL AMR::GET_TOKEN ('AMRSTR: :Nlower’ ;Nlower)
CALL AMR: :GET_TOKEN (’AMRSTR: : Supper’ , Supper)
CALL AMR::GET_TOKEN (’AMRSTR::Slower’, Slower)
IF(GRD.LE.3) THEN
CALL: GEN_PATCH (Supper, Nupper,NG, IM,JM,DX, X, Y, Iw)
ELSE )
CALL GEN_PATCH(Nlower, Slower,NG,IM,JM,DX,X,Y,IW)
ENDIF
RETURN
END

}
This code acts as a driver for the routine:

fold: :print’src2 { write nozzle.src
fold>col=7,file .= nozzle.src
SUBROUTINE GEN_PATCH (TABDATAl, TABDATA2,NG, IM,JM,DX,X,Y, Iw)
AMRSTR*255 TABDATA1l, TABDATA2
AMRINT NG, IM,JM,IW
AMRDBL X (amrVpatch (IM,JdM,NG))
AMRDBI: Y (amrVpatch (IM,JM,NG))
AMRDBL DX,AMR: : INTERP
AMRDBI: Xo,Xs,¥Y1,Y2
CALL AMR: :GET_TOKEN (’AMRDEL: :Xo’ ,Xo)
DO I=1-NG, IM+NG+1
Xs = (I+IW-2)*DX+Xo
Y1l = AMR::INTERP(3,TABDATAl, Xs)
Y2 = AMR::INTERP(3,TABDATAZ2,Xs)
DO J=1-NG; IM+NG+1
X(I,J) = Xs
Y(I,J) = (J-1)*((¥Y2-Y1)/JIM)+Y1
END DO
END DO
RETURN
END

'

}

which constructs the geometry for a single patch using calls to AMR : : INTERP. This is a hook
into Amr_sol’s internal machinery to perform the necessary interpolation*® of a tabulated data-
file to find — for a specified X station — the top-most (¥2) and bottom-most (Y1) points of a
vertical grid line. The interior points are then found by sub-division with equal spacing.

48ffere third-order Lagrange interpolation is used, but AMR : : INTERP can be dynamically over-loaded to use
other types of interpolation. Internally, AMR : : INTERP is used to decode expression templates such as this one

taken from the run_cellular.mailit from lecture 1 (also see §E.3):
W’znd ::= < RHO interp($znd.RHO,Xd([]), U
P interp($znd.P ,Xd4[]l), 2Z

interp($znd.U,Xd[]), V = 0,\
interp($znd.z ,Xdl]) >

54

R A SISO LN A A A e S X U AU A ) SO



Lo
P

AU

\ SO\
' BT IR IR
\QY&“&\\S\\\\\\\\\\\\
T SANNNY

Iii!i GOE FEtE E % AW
JAA0 A0 G0GIIANCT] AR,
7070800 000003E6C00 DUIIIERIRERRRRRRR
“‘ﬁ&ﬂ\%\%\\\%\

N

y/
!5§§HEEUUEEDDEDDD Iy
FA5668000080RE 00010
FEEEHEHL! jx/3]

fun i os{ g [ T
CALIEICICIEY
0T

o OO 0] o ; h o o e
EEaREFROOOCORRERE0 ; [ [ o o e e e e o |

Figure 28: Multi-block grid generated usmg nm nozzle Eventua]ly, the work done by the routine
GEN_PATCH will be abstracted down to a specialist- Amr soI keyword, but given the versatility provided
by Amrita’s dynamic-linking mechanism, the upgrade ;gpot deemed urgent. -




D def BoundaryConditions

With Amr._sol, even after an EquationSet and a Domain has been specified, there is still
insufficient information to run a simulation. Consequently, this script:

proc Comer?roblem amrcp Chp2/corner.2
def Domain amrita run cornmer mk2
l1scale 1

" patch’<1,11;w8, hi0>
patch <+, 1,wl2,h20>
end def
end proc

EulerEquations
plugin amr_sol
CornerProblem . .
march 150 steps with cf1=0.8 g «

generates an error:

Error at line 12 of file run_corner:
cannot march: no BoundaryConditions!
cannot march: no SolutionField!
cannot march: no solver!

Line 12 is:
march 150 steps with cf1=0.8

error near:
150 steps with cf£f1=0.8

Amr._sol treats def blocks as interlocks which allow it to maintain some semblance of
control on how a simulation is set up, without introducing draconian rules on what you can and
cannot do. The simulation order:

1. Equat:l.onSet

2. Domain’

3. BoundaryConditions
4. SolutionField

5. MeshAdaption

6. ReflnementCr:Lterla

allows Amr sol to perform far more comprehensive consistency checks than would be possible

with a free-for-all approach®. . S

“9The system allows for a certain reordering in that the last three def blocks may be repeated out of
sequence once a problem has been set up. For instance, def SolutionField is used by a routine,
Firelaser, from the ramp.mailit in §2 to add a perturbation to an existing flow field, and many scripts alter

+ RefinementCriteria during the course of a simulation, or toggle MeshAdaption on and off. But this
apart, the presented ordering is mandatory when starting a fresh simulation. .

56

e g e e e = =



‘D1 CornerSchematic. . S

,  The schematic shown in Figure 29 is drawn usingz.- . . .. .

S T amrcp cnpzlschemt.ic.

proc CornerSchematic , | amrita run schematic
PlotDomain Twall=8 ' - amrps ps/schematic.ps
DrawShock  x0=10,y0=40, 3x=0.6, dy=40
DrawRightArrow xo-12,yo—60 dx= 10, dy—O 6
DrawMeasurn.ngStrut x1=0,y1=45,%2=10 ,y2-45
LatexLabel label=\$X_S\$,xo= 1,yo=46 ,helght-G'
LatexLabel label=\$M_S\$,x0=15,y0=62,height=6
LatexLabel label=\$A\$ ,x0=-5,yo=38,height=4
LatexLabel label=\$B\$ ,xo=-5,yo0=77, height=4 )
LatexLabel label=\$C\$ ,xo0=80,yo=77,height=4 oy
LatexLabel label=\$D\$ ,x0=80,yo=-2,height=4 N
LatexLabel label=\$E\$ ,x0=30,vo= 0,height=4
LatexLabel label=\$F\$ ,x0=30,yo0=38,height=4

end proc ’

... driver script

and comes in useful for describing the keywords used to specify BoundaryCondi tions.

Figure 29: Schematic showing the initial conditions for a shock-diffraction problem. The backslashes
are needed to prevent Amrita from acting on the $ symbols intended for IXTiEX. ’

Such drawing capability should not come as a surprise, given that one of the purposes of
Amrita is to generate standardized test output. Here the schematic was constructed eiltirely
using standard library routines. Recall that an HTML listing for any of these routines can be
found using the library procedure Show. For instance: -

unix-prompt>amrita -c¢
amrita>Show procs=I.atexnabel |praw+*[pP1 otDomain

would list all five procedures used to generate the schematic. Observe that the locations and
sizes for the various text labels are supplied relative to the computational grid and not in phys- *
ical page coordinates. Consequently the present code would also work for the, multnple—cawty' -
problem with no mod1ﬁcatlons whatsoever. !

5T

ey me———




D.2 {N,S,E,W}bdy

This next version of the CornerProblem shown in Figure 29 contains a def Boundary-
Conditions block’’: :

proc CornerProblem { amrcp Chp2/corner.3
Ms = 1.25 # shock strength amrita run cornmer mk3

}

def Domain
lscale 1
patch <1,41,w30,h40>
patch <+, 1,w50,h80>
end def

W/ quiescent ::= <RHO=1,U=O,V=O,'P=1>
ShockWave Ms=$Ms, statel=quiescent,\
state2=post_shock

def BoundaryConditions
Nbdy domain: reflect
Sbdy domain: reflect
Ebdy domain: extrapolate
Wbdy domain: prescribe W’post_shock
Sbhdy along J=41 from I=1 to 30: reflect
Wbdy along I=31 from J=1 to 40: reflect
end def

end proc

EulerEquations
plugin amr._sol
CornerProblem
march 150 steps with cfl=0.8

S0 as to reduce the ran-time error for run_corner_mk3 to:

Error at line 29 of file run_corner:
cannot march: no SolutionField!
cannot march: no solver!

Line 29 is:
‘march 150 steps with cfl=0.8

error near:
150 steps with c¢£1=0.8

0y practice, for reasons given later, the above def BoundaryConditions block would be replaced

by a second slightly terser version. Note that the resolution of the domain has been increased to a more re~

spectable level than that in run_corner_mkl and run_corner_mk2. Also, pre- and post-shock states are now de-

fined using the constructs described in §B.1.1, and the controlling Mach number is made a parameter, Ms, of

. CornerProblem and given a default value of 1.25. Syntactically, the definition of W’ quiescent and the

call to ShockWave could appear inside the def BoundaryConditions block, but W’ quiescent is also
needed by def SolutionField and so, on the basis of impartiality, is best placed outside the def block.

58




The command:
Nbdy domain: reflect

instructs Amr:_sol to employ reflecting conditions’! along any boundary-segment of the domain
which lies on the northern edge of the logical bounding box which just encompasses the domain.
Thus segment BC (in Figure 29) would be treated as a solid wall when the time comes to run
the simulation. Similarly:

" sbdy domain: reflect’

requests reflecting conditions for the boundary segment E D, but says nothmg about the segment
AF as it does not form part of the bounding box. Alternatively:

Ebdy domain: extrapolate

requests zeroth order extrapolation from the interior and results in the segment DC being treated
as an outflow boundary. )

Boundary segments which are not coincident with the domain’s bounding box can be spec-
ified using C, coordinates explicitly, as in:

Sbdy along J=41 from I=1 to 30: reflect
which fixes the segment AF’, or:
Wbdy along I=31 from J=1 to 40: reflect

which fixes EF. However, such prescriptions would need to be changed each time the comer
altered in cell resolution. Therefore a better prescription for segments AF and EF is:

Sbdy default: reflect
Wbdy default: reflect

which provides Amr._sol with a standing order to employ reflecting bonmdary conditions for
those western and southern patch-boundaries not covered by an explicit i mstructlon.
For segment AB, the explicit prescription:

Wbdy domain: prescribe W’post_shock
takes precedence over the default instruction:
' "Wbdy default: reflect

regardless of the order in which the two commands are posted.
In summary, the preferred way to prescribe boundary conditions for CornerProblemis:

def BoundaryConditions
Nbdy domain: reflect
Ebdy domain: extrapolate
Wbdy domain: prescribe W’post_shock
Sbdy default: reflect
Wbdy default: reflect
end def

Again, the changes outlined here for CornerProblem are also appropnatafor the
MultipleCavityProblem,on p. 51, albeit an additional:

Ebdy default: reflect : o
would be needed to complete the specification of the boundary conditibns (why?).

S1The algorithmic details are given on the next page.
59

4

gft

NN I N AL QLY (LT DS UMYV St # M o A T e A SN ISR

S m T RV TN T L M L e e L L N



D.3 Time-Dependent Boundary Conditions

The subtleties of applying numerical boundary conditions preclude the possibility that a conve-
nient set of pre-canned treatments can meet all needs®2. Consequently, Amr_sol provides hooks
which allow you to employ your own boundary condition code for when the built-in: reflect,
prescribe,noslip, extrapolate and periodic prove deficient[27]. Such extensibil-
ity runs throughout Amrita’s design and affords tight control of the subtleties of a simulation.
However, with some lateral thinking, expression templates can often do away with the need to

" - add custom code. Forinstance, this script fragment (amrcp Chp2/CornerProblemMk2.amr):

fold::amrita’north { time-dependent boundary condition
... Pprogrammer notes
Xs ::= $Xs+t[]*$Ms*sqrt(C’quiescent[])
foreach g (RHO,U,V,P)
Sa'n ::= X[]<Xs[] ? $qg\’post_shock[] : $a\’quiescent[]
end foreach i
W/ north ::= <RHO=RHOn[],U=Unl],V=vnl[],P=Pnll>
Nbdy domain: prescribe W'north
} .

provides a time-dependent boundary condition for side BC of the corner problem.

Internally, Amr._sol surrounds each mesh patch by NG rings of ghost cells®® so that bound-
ary conditions can be applied implicitly by priming the ghost cells with appropriate data[21].
¥ you examine the file JAMRITA/src/amr_sol/bdy_lib.F, you should be able to verify that for
EulerEquations, with NG set to two, the following priming rules apply at a Wbody™*:

Way| W wig | was | was | W Wis
o 4 Oo’j | .ld | 02" | .3” | .4\’ | L J | .‘J | ® |

-€ >
ghosst cells mesh cells
p p p
extrapolate —> | 7% ="~ =~
v pv pv
EJa; \Blog \EBJy
(7 [ 7 (p) [ ¢ )
reflect = | 7 =" and /u =| "
v v pv o
\E/_; \ E J, \E Jo; \ B ],
(o (0 (o ()
noslip = | 7 =~ and pu =| "
o —pv v —pv
\E /.y B Jy \E Jo; \ B Jy

S2gtrictly speaking, the boundary condition used by CornerProblemfor segment AB is over prescribed when
the flow behind the shock is subsonic, as is the case for Mg = 1.25 (assuming v = 1.4). Here, this transgression
makes no real odds, but the same is not true for the nozzle calculation on p. 55. )

53The call ArraySizes NG=numcan be used to set the number of ghost cells. Large values of NG, say > 4,
arenot encouraged on efficiency grounds. Also, accuracy problems might arise, if NG is larger than the refinement
ratior.

S*This figure can be generated by typing:

unix-prompt>amrcp Chp2/ghost.l1
unix-prompt>amrita ghost cells




E def SolutionField

Amr_sol allows initial flow conditions to be prescribed withina def SolutionFieldblock
using the setfield command. For instance, CornerProblem requires five lines be placed
immediately after the def BoundaryConditions block™:

proc CornerProblem { - amrcp Chp2/corner.4
Ms = 1.25  # shock strength amrita run corner. mk4
’ Xs = 28.00 # shock position

}

def Domain
lscale 1
patch <1,41,w30,h40>
patch <+, 1,w50,h80>
end def

W'quiescent ::= <RHO=1,U=0,V=0,P=1>
ShockWave Ms=$Ms, statel=quiescent,\
state2=post_shock

def BoundaryConditions
Nbdy domain: reflect
Ebdy domain: extrapolate
Whdy domain: prescribe W’post_shock
Sbdy default: reflect
Wbdy default: reflect
end def

def SolutionField
setfield W/ quiescent
setfield W/ post_shock X[]<$Xs

end def

makefield

end proc
EulerEquations
plugin amr_sol

CornerProblem
march 150 steps with c¢f1=0.8

so as to whittle the run_corner_mk4 error down to:
Error at line 35 of file run_corner:
cannot march: no solver!

Line 35 is:

march 150 steps with ¢£f1=0.8

error near:
150 steps with cfl1=0.8

55The default shock position, Xs, is also added to the CornerProblem parameter block.
61

,
it




The first set£ield command requests that the quiescent state, be used to set the
solution vector for every cell in the current computational domain. The second setfield
command employs a qualifier, X [ ] <$Xs, and so would only overwrite the quiescent field
with the post__shock state for those cells whose centre-of-gravity, X [1, lies to the left of the
shock position, $Xs. Strictly speaking, a def SolutionField block does nothing more
than create a list of actions to follow and it is the make field command which activates the
actual process of updating the field solution.

This script, which outputs Figure 30: -

.:. procedure definitions amrcp Chp3/cell.sch
NullEquationSet amrita cell gschematic
plugin amr_sol amrps ps/cell.ps

autoscale on 0,0,10,6
postscript on”
plotfile ps/cell.ps
DrawhAxes )
DrawCell

AnnotateCell

identifies a number of Amr._sol’s pre-defined expression templates, including X [ 16.

x[+i+jl,y[+i+j]

x[+i],y[+i]

Figure 30: Schematic showing several of Amr._sol’s pre-defined expr;.ssion templates.
Although this flow prescription:

def SolutionField
setfield W/ quiescent X[] >= $Xs
setfield W’post_shock X[] < $Xs
end def

is nominally equivalent to the one used for CornerProblem, because of the vagaries of
floating-point round-off errors, it does not guarantee that every mesh cell will receive data.
In general, regardless of the choice of programming language, compound logical tests, whose
members are nominally mutually exclusive, should always be cast in the form where one mem-
ber acts as a catch-all to safeguard against unanticipated events.

56Two common templates missing form ﬂusFlgure are: t [] which returns the current soluuon time and Vol[]
which returns the volume of a cell.

62

AL L

Y i spiey <
PP SN VO




El Richtmeyer-MwlikovrProblem

7'5 R

: fArbltranly complex initial conditions. may be bmlt ~up by stnngmg multiple setfleld com-

mands together, each with their own separate qualifiers. But because Amrita uses thermody-
namic states made up from expression templates, and not plain numbers, there is usually no
need to employ more than a handful of setfield commands. For instance, the wavy inter-
face shown in Figure 31, which might be required for a Rlchtmeyer Meshkov pmblem[29],
created usmg Just one setfleld command.

... preparatory script ) ‘ ' | amrcp @pZ/RH.I

def SolutionField . amrita run RM
RHO1 t:=1 ' amrps psS/RM.ps
RHOK ::= 5
interface: := 55+4*cos(Y[]/80*3*PI)
wt ::= (X[]-interface[])/5
wt se=wtil>1 2 1 ¢ (wt[]l<-1 2 -1 : wt[])
RM ::= (RHOL[]1+RHOR[])/2+wt [] * (RHOh[]-RHO1[])/2
setfield <RHO=RM[],U=0,V=0,P=1>

end def

makefield

PlotDomain Twall=8

m<0>

plot RHO[] contours 10 levels

Figure 31: Smeared wavy interface between a light fluid on the left and a heavy fluid on the nght.

Observe, the use of the ternary operator a?b: ¢ in the second definition of wt []: this op- 4
erator works exactly as in G, i.e. if a is true, it returns b, otherwise c is returned. Consequently, .~
wt [ ] is constrained to return values between —1 and +1 and can be used to determine whether
a cell lies within the smeared interface (wé = ¢, —1 <'¢ < 1), or to the left (wt = —1),orto
the right (w¢ = 1) of the interface. Thus it is possible to define a single function RM[] which °

describes the entire density field. Also note the use of the system constant, PI whlch Amuta e

provides gratis.

63

s, o e w1

RECERAE



~ Thisseript: . ... - ... Lo o EE

E2 Inchuuulhﬂhasurnu;(}augp “; : <V,‘_7; : ;‘ o

... set aﬁtopa“.th
EulerEquations
plugin amr_sol
postscript on
plotfile ps/gauge.ps R T
GaugeProblem ' .
GaugeSchematic

amrcp Chp2/gauge.l
amrita run gauge
amrps ps/gauge.ps

produces the schematic shown in Figure 32, and was written to describe.a- test problem in
which a planar shock wave impinges on an inclined, rectangular measuring gange of a heavier
fluid. Although the geometry is straightforward, the appropriate construction of:the required
SolutionField necessitates a small amount of lateral thinking, and prov1des a nice coun-
terpoint to mindless coding®’.

B

13

Figure 32: Schematic showing a planar shock about to impinge on an inclined, rectanglﬂar measuring
gauge of heavier fluid.

The quiescent and post_shock states are dealt with as in Comei'léi'bbléinf ‘The
trick for dealing with the inclined, measuring gauge is to define a new coordinate system aligned
to the gauge using a complex expression template, Z [ ], as shown here:

fold: :amrita’lateral_thinking { SolutionField .
def SolutionField ° . : : AN S
Z ::= {X[]—$X0,Y[]—$Yo}*exp({0,—rad($theta)})
in_gauge ::= (Re(Z[]1)>=0 && Re(Z[]1)<=%w) && \
(Im(Z[])>=0 && Im(Z[])<=5%h)
W/gauge ::= W/'quiescent<RHO*=$Dratio>
setfield W/ quiescent
setfield W/post_shock X[]<$Xs ; -
setfield W’gauge in_gaugel[] -
end def e
} o

It is then a trivial matter to construct an expression template, :Lngauge[] ‘to pmv1dc a
boolean test for whether or not a cell falls inside the inclined gauge58 ’

ty

STIf you find yourself writing contorted Amrita scripts, there is an evens chance that you’are approachmg the
problem in the wrong manner. When this happens, step back from what you are doing and re-appraise your solition
strategy. If you cannot find a better approach, and are convinced the fault lies with Amrita, pleasemkethe ume to
distil the contortion down to a clean mailit and log an official request for a language upgrade. =

58The setfield command can circumvent complications such as a celt slraddlmg the edgeof the gauge by .
expeditious sub-sampling of the computational grid.




E.J3 ZND Detonation Wave

The run_cellular.mailit, from §6 of lecture 1, contains a procedure CellularProblemwhich
uses this SolutionField:

def SolutionField
set znd = $io/$znd: :header
Xd 1= X[]-8xd
W’znd ::= <RHO= interp($znd.RHO,Xd[]),\
U = interp($znd.U ,Xd4[]),\
v =0 \
P = interp($znd.P ,Xd[]1),\
Z = interp($znd.Z ,Xd[])>
W’disturbance ::= <RHO=1.0,U=0,V=0,P=1.5,2Z=1>
extent -> xo,yq,dx, dy

-
.
-
-

hot_spot ::= (abs(Y[1-$dy/2)<2) && (Xd[]>3) && (Xd[]<5)
setfield W/ znd (
_ setfield W’disturbance " hot_spot[]
end def '

to prescribe a travelling ZND detonation wave[11], and is an example of how to prescribe non-
analytic initial conditions. ,

The interp function® interpolates tabulated profiles of density, velocity, pressure and
unburnt fuel through the detonation wave to return values for setfield to paint into the
computational domain. The template, Xd [, is a simple mapping to position the wave at the
point $Xd in the computational domain, travelling from left to right.

If you are unfamiliar with the structure of a ZND wave, this script:

ReactiveEulerEquations { ) amrcp vki/znd.1l
space = one-dimensional ’ ‘ amrita run znd-la
bcg = yes cd znd-1a/Q50

} amrps profile.ps

plugin amr_sol cd code/£77src

set znd::gamma = 1.2 . amrgi znd-ia.F

set znd::E = 50.0

set znd::d = 1
foreach Q (0.1,1,5,10,50,100)
set znd::Q = $Q
ZndProfile {
io = znd-1a/Q$Q
doc = yes
}

end foreach

outputs a number of pages similar to Figure 33 which depicts the detonation structure for a
one-step Arrhenius reaction model. Details of the controlling parameters: heat release (Q),
overdrive (d), activation energy (F) and ratio of specific heats (), can be found by running
a suitably modified version of the script example on p. 40. The bcg parameter requests the
production of the shared object znd-1a which is needed to compute the ZND profiles.

" 9Recall the discussion of AMR: : INTERP on p. 54.

65

Y T
1O O S LT N e NP K e J ),




ZND structure for 1-step Arrhenius reaction

Input: Detonation Speed: Reaction Rater von Nemmann State:
d =1 D = 6.809 K, = 24113403 P = 874
Q@ = 50 Dy = 6.809 . . U = 603
E = 500 X . Pm = 4206
¥y = 12 7 Ty = 481
20 .
™0 «b
20} .
w}l ol
8 s} Du»
40
20 or
anf aslh
Mo 35 me a5 @b 45 a5 a5 o “ap as an as
x x
a0 w
ast
<an asP
arf
t aso s}
IS ~ as}
500 3
ash
20 oz}
1 ok
®Us a5 Ao 25 a0 45 s a5 @ 40 35 30 25 .0 15 b a5
x x

40
A0 335 30 23 20 4S5 40 OS Q0

»

Figure 33: Output produced by run_znd-I1a. The structure of the detonation is controlled by the four
parameters {d, Q, E,~}. The reaction rate, K, is a free parameter which is chosen such that Z = % at
X = —1. The von Neumann state refers to the point, X = 0, just behind the lead shock-front of the
detonation. Note only half the shock jump in pressure is shown, i.e. P’ quiescent = 1.

66

T T ST ¥
XEMNEVELZRPE AN TN 3RS



The one-step Arrhenius reaction model is attractive in that it is tractable to analysis, but it
has several weaknesses: (i) it proves overly chaotic in the Chapman-Jouguet limit (d = 1); (ii) it
has no mechanism for quenching; (iii) it does not mimic induction zones properly. On the other
hand, simulations with full blown reaction-kinetics are orders of magnitude more expensive to
compute and so prone to misinterpretation due to the much poorer grid resolution which can
be afforded. This next script utilizes a three-step chain-branching reaction model which lies
somewhere between these two extremes:

-

ReactiveEulerEquations { amrcp vki/znd.2

space = one-dimensional - amrita run znd-3cb
bcg = yes cd znd-3chb
model = 3cb amrps Tb.ps

} cd code/£f77src

plugin amr_sol amrgi znd-3cb.F

set znd::gamma = 1.2

set znd::Qf = 3.0

set znd::Q0d = 0.0

set znd::Ei = 20.0

set znd::Eb = 8.0

set znd::Ti = 3.0

set znd::Tb = 0.8

set znd::d = 1.2

set range = 0.8, 0.85, 0.9, 0.95
foreach Tb ($range) '
set znd::Tb = $Tb
ZndProfile {
io = znd-3cb/Tb$Tb
Xec =15
RRi = 948.14
}
end foreach
... plot results

and helps place §1.1 in context.

Figure 34 demonstrates the change in detonation structure when just one of the eight con-
trolling parameters is varied. Observe the increase in the induction length and the decrease in
the radical spike as as T is increased. These variations hint at the observed, dramatic varia-
tions in the dynamical behaviour of the wave (see [30] for details). Here it is sufficient to note
that the bulk of the heat release (i.e. the fire-region) occurs in the vicinity of the radical spike,
and experience shows that failure to resolve this narrow, but smooth region, leads to completely
erroneous results (see Figure 22). Consequently, even for this one reaction model, the mesh
spacing needed to resolve the reaction zone properly is highly variable, and the common prac-
tice of choosing a fixed number of cells within the half-reaction length is inappropriate. Thus
the reaction-width figures used in §1.1 were strictly chosen to reflect the care with which it
is necessary to resolve the internal structure of a detonation wave, under certain circum-
stances. In other circumstances, the predicted behaviour may be fairly insensitive to grid
resolution, allowing much coarser grids to be used. At a practical level, if it is to stand the test
of time, a general purpose computing system must be designed with the pessimistic scenario in
mind®, ’

60Today’s research problems, requiring cutting-edge numerical techniques, are tomorrow’s homework assign-
ments, covering everyday solution techniques.

67

AR M L I VS N S ISP B LR AR ES S RN JENCEY O S N




3-Step Chain-Branching Reaction Model

The essential dynamics of chain-branching reactions can be represented by three main stages,
initiation, chain-branching and chain-termination with the rates kr, kp and k¢ respectively:

I: F — Y  (Initiation); Rate kr=exp(d T}'_T))
B: F+Y -+ 2Y (Chain-branching); Rate. k= exp( TB 1)

C:Y — P (Chain-termination); Rate ke=1"

a7 E a7 f

harin R

Figure 34: Output produced by rm_znd-3cb. Note that the data has been scaled relative to the von
Neumann state at X = 0, hence Pyy = Tyny = 1. The structure of the detonation is controlled by
the eight parameters {d, Qf, Qd, E%, Eb, T%,Tb,v}. Here, Tb is varied from 0.8 to 0.95 in steps of
0.05. As T'b increases, so the induction length increases and the peak in radical, Zy, decreases. For
Tb = 0.86, one-dimensional simulations using a second-order TVD scheme needed 320 mesh points in
the distance X =0to Zf = % to reach a grid converged answer, and had to be propagated over 1500
half-reaction lengths in the process[301], i.e. to repeat this simulation using a uniform mesh would require
480,000 mesh cells. This statistic does not bode well for the viability of gnd-resolved, mlﬂu-dnnenmonal

simulations with the three-step chain-branching reaction model.
68




F def MeshAdapt:LonA-w_;

-t

WthAmr r sol, once a SolutlonF:Leldhas been deﬁned, a suitable solver can be loaded -
to integrate the prescribed flow forwaid in time. For instance, this run_corner. mk5

... define CornerProblem o - , amrcp cb;p2/comer.5
FulerEquations o o ' o amrita run_corner. mkS5
plugin amr_sol L P - - P8 )
BasicCodeGenerator {= o R Y coarse grid.ps
solver = roe_f1 - : } coarse_flow.ps

scheme = flux-limited’operator-split
}
CornerProblem Ms=2, Xs=10
solver code/roe_f1
march 150 steps with cf£1=0.8
... plot results

invokes BCG to obtain a solver roe fl, and marches 150 time steps to produce the
flow shown in Figure 35 (b). However, compared to the output of my.script from lecture 1,
reproduced here in Figure 36, the flow is grossly under-resolved.

@ o ®)

.Figure 35: Output from run_corner_mk5 (note the presence of the startup-errors).

69.




i '
BT e S & G i v A 717 SR IO R 3 PR ML U= e S Aol Lo A S I il RS R

F.1 Tiered Grid System
As explained in Appendix A, Amr_sol employs a tiered grid system:
G= {GO: Gla’ ey Gy, -:e Glmaz}

in which the higher the grid tier, /, the smaller the mesh spacing. Figure 36 illustrates how
this grid system allows the plugin to refine the computational domam loca]ly to 1mprove the
resolution with which key flow features are captured: ~

Many Amr._sol commands can be given a grid qualifier to restrict their operation to a subset
of the full grid, G. For instance, Figure 36 (a) was generated using: '

plot grids
but could equally well have been produced usmg either:
plot grids {6} or plot grids {G0,G1,G2}

The qualifier, {G}, denotes the entire set of grid tiers, while {G0, G1, G2} denotes the ooarsést
three tiers. Sometimes it is more convenient to-exclude a specific list of grids using the not
operator ‘!°. For example, { 1G} is the same as the empty set {} and is useful for turning a
command off.

Recall from §C that G consists of a set of loglcally rectangular patchm anchored in a
Cartesian space C,, similarly the grid G; consists of a set of patches anchored in a Cartesian
space C). Thus Amr._sol’s grid-system may be viewed as a straightforward collection of patches
which are labelled consecutively up through the grid tiers, using label 1 for the first patch of Gy.
This enables a grid qualifier to be specified in terms of patch indices, say:

plot grids {2,60-120}

 which requests a total of 62 patches be drawn, ora combination of grids and patches, such as:

plot grids {G1-G2,1,!60-120}

These two plot commands produce the non-intersecting subsets of G shown in Figure 37.

@ @

Figure 37: Grid piots produced using lhe‘s‘cﬁpt run_gridlist (amrcp vki/gridlist.l): (a) plot
grids {2,60-120},(b)plot grids {61-G2,1,160-120};c.f. Figure 36 ().

70




F.2 Activating Mesh Adaption

Amr_sol’s mesh refinement machinery is controlled in two steps. The first step, which is dis-
cussed below, merely activates the machinery. The second step, which is described in the next
section, defines the criteria by which the grid is adapted.

The script run_corner_mk6:

proc CornerProblem { .

Ms = 1.25
Xs = 28.00
Imax = 2
r = 2

}

def Domain
lscale 1

# shock strength
# shock position
# grid levels

# refinement ratio

patch <1,41,w30,h40>
patch <+, 1,w50,h80>

end def

W/ quiescent ::= <RHO=1,U=0,V=0,P=1>
ShockWave Ms=$Ms, statel=quiescent,\
state2=post_shock

def BoundaryConditions
Nbdy domain: reflect
Ebdy domain: extrapolate

Wbhdy domain: prescribe

Sbdy default: reflect
Wbdy default: reflect

end def

def SolutionField

setfield W/ quiescent
setfield W post_shock X[]1<$Xs

end def
makefield

def MeshAdaption
adaption on

Imax $1lmax
r Sr
end def
end proc
EulerEquations

plugin amr_sol

CornerProblem Ms=2, Xs=10

solver code/roe_£f1

march 150 steps with c£1=0.8

... plot results

W/'post_shock

amrcp Chp2/corner.6
amrita run_corner. mk6
cd ps

amrps coarse_grid.ps
amrps coarse flow.ps

turns mesh adaption on and requests a grid structure {G0, G1, G2} with a refinement ratio

7

B Tt it X A/ S NP I e ST~ eC 4 T I s 0 L YA A et 2\ Wl LR S A LA S AL AT AY




R A N P 7T G AT N LAt N I X PN LRI R A MR A AN X S Y XA S

‘I,.;‘.,.ofzii‘nwcéll_’spacing:‘.'-. e et

, Alg All 2 . . ,
1’ Lo ' ‘5-" ' ‘1“'7:7"A[17 Alz f( e ::»...: ) ‘
Thus 16 cells from G2 cover the same aréa as 1 cell fmm Gi. However, the MeshAdapt:Lon
does not have any effect until Refn.nementCrJ. teria are selected, therefore the above script
still produces the washed out results shown in Figure 35. :
If desmed, anisotropic refinement can be selected usmg

- e N t e

fold::amrita’ anlsotroplc { MeshAdaptlon amrcp Chp2/aniso.corne.r

def MeshAdaption o qmgita aniso corner
adaption on : amrps ps/aniso grid.ps
Imax $1lmax amrps ps/anigso flow.ps
rl 2*3r {G1}
rJ 1 {G1}
rI 1 {G2}
rJ 2*Sr {G2}

end def

}

to give nominally the same 16-fold increase in resolution. However, when such a simulation
is run (see Figure 38), the solver generates a NaN shortly after the shock starts diffracting
around the apex of the corner®!. Internally the solver could likely be modified to overcome
this robustness problem, but such a fixup would only delay matters until another set of contrived
circumstances threw it out of kilter. Amr_sol traps a number of grid configurations which are
unworkable®, but the restrictions are kept to a minimum so as not to encroach on legitimate
applications. For example, anisotropic refinement is needed for simulations of shock-boundary
layer interactions[21], and so cannot be dismissed because of its poor showing here.

@ - ®

Figure 38: Output from aniso_corner. Amr._sol employs a fixed refinement ratio between any two grid
levels, but the ratio can vary from one pair of levels to the next. Here, the use of anisotropic refinement
causes the solver to generates a NaN shortly after the shock starts diffracting around the corner, and
so the simulation is stopped after just 30 time steps.

A
i

f
{
v

6!The march command stops calling the solver as soon as it detects a NaN. ,
t“zlntemally Amr._sol can work with an arbitrary refinement ratio, but the commands. r, rT and rJ, restrict

input to integers less than 10. This restriction was put in place after a student attempted to run two grid-levels of |

refinement, each with a refinementratio of 100, i.e. one Gy cell leading to 100 million G5 cells.




G def Ref:.nementc:r:.ter:.a .

Lectum 1 outlined how Amr _sol can be taught heuristic RefinementCriteria to enable

it to adapt its computational grid to an evolving flow solution. For CornerProblem, a call
to the library routine DensityGradient is sufficient to instruct Amrsol to refine the initial
shock-position based on its associated discontinuity in density.

proc CornerProblem { . ) amrcp . Chp2/corner.7 .
Ms' . ' .° = 1.25" # shock strength” | amripa run cormer mk7
Xs = 28.00 # shock position cd ps - -
Imax 2 # grid levels

amrps poor. grid.ps
amrps poor_ flow.ps

r 2 # refinement ratio

}

def Domain

lscale 1

‘patch <1,41,w30,h40>

patch <+, 1,w50,h80> '
end def:

W/quiescent ::= <RHO=1;U=0,V=0,P=1>
shockWaye Ms=$Ms, statel=quiescent,\
‘state2=post_shock

def BoundaryConditions
"Nbdy' domain:' reflect
" Ebdy domain: extrapolate '
Wbdy domain: prescribe W’post_shock ‘
* Sbdy. default: reflect
) Wbdy, default- reflect
end def ‘

def SolutionField
setfield W/ quiescent
setfield W'post_; shock X[1<$Xs
end def
.make;E:.eld , I LT

def MeshAdaption
adaption on

Imax =~ $lmax
r $r

end def

def RefinementCriteria
. Dens:LtyGradlent

~ end def

end proc

EulerEquations . S

. plugin amr_sol
CornerProbliem Ms=2, Xs=10"
solver code/roe_fl - '

. march 150 steps w:.th cfl=0. 8
ven plot results .

K

73

DR IIMATO ATONY oo o O WA AT A SO e o AN TN Ry P (Dt Mk R T A NS AR 2 P 2 SCC AR A2 F ey



PO — o cr i TRy -
CTRRC Y I kAR G o it N SO e SIS Vo GO VR AP S Sl ot G UAMINIME D > /N I

o

But as Figure 39,shoWs, DensityGradi?enti:‘x .-

. proc DensityGradient { -

Ms = 2
 tolerance #- sprlntf( % 4f" $Ms<2’>0 1*($Ms/2)**2 0. 1)
grid = {G}

}

setflags [ooo]|oxx]|oo0] abs(RHO[-t-J.]-RHO[]) >($tolerance) $gr:Ld' .
_ setflags [oxoloxolooo] abs (RHO[-l-j]—RHO[]) >($tolerance) Sgrid .
end proc

is insufficient for the simulation proper which contains a contact-smfaee, once the shock starts
to diffract around the apex of the corner. For this reason, my.script employed:

def RefinementCriteria _ P
DensityGradient
if ($phase>1) ContactSurface A )
end def 7 .

If you recall from lecture 1, ContactSurfaceisnot used for the first phase of the mmulahon

so as to avoid flagging the start-up errors which occur when the prescn’bed shock smears to the o

actual profile supported by the solver.

The mk7 version of CornerProblem introduces a second hnd of startup error in that’

grids G; and G» are not given explicit initial conditions. Instead, the procedire relies on
Amr sol interpolating the G solution when it adds the extra grid tiers during the course of .
the flow integration. Fortunately, this start-up error is entirely avoidable using the script: -~

do 1=1, $1lmax
adapt
makefield
end do

23

which explicitly invokes the adaption machinery to add one new grid tier, and then owierwﬁtes -

the interpolated solution with the prescribed SolutionField. Note, however, once the sim-

ulation is underway (i.e. maxch is called), the required sequencing of grid adaptlons istoo

1nvolved to be left under casual-user control, and so is fully automated.

Figure 39: Output from run_corner.; mk7 The reﬁnement criteria set by Den51tyGrad1ent1s -

sufficient to keep track of the contact surface which separates fluid induced mto motion by the planar,
incident shock-front ﬁ'om fluid induced into motion by the curved, dlﬂfracted shock front. .. - 7

i

4 »

aaaaa




LSRRI RS KA £ Swisc ot v RSt §° M TR A S Y AT S IR S s L T <P IS T NI N TN Sy Ve

G.1 Tunable Parameters

In the absence of solid theoretical criteria®® mesh refinement algorithms tend to employ heuristic
monitor functions to determine where local refinement should take place to reduce error bounds
to acceptable limits[20]. For instance, the following is useful for determining whether two
neighbouring cells, which provide a pair of left and right states for their common interface, lie
in the vicinity of a numerically smeared contact surface:

'|P1:—le lp- — 21l n “lor = pil
Prt+p @"fm Prtpr

> round off.

This test can be constructed using the command setflags and squirreled away into an Amrita
procedure for general use:

proc ContactSurface tol=0.002, grid={G}
set test = fRHO[]>fP[] && fRHO[]>Stol s
£P  ::= abs(P[+i]-P[]1)/(P[+i]+P[]) .
fRHO ::= abs(RHO[+1]-RHO[])/(RHO[+1]+RHO[])
‘setflags [o0oo|oxx|ooo] $test $grid
fP ' ::= abs(P[+j1-P[1)/(P[+j]1+P[])
fRHO ::= abs(RHO[+j]1-RHO[])/ (RHO[+]j]1+RHO[])
setflags [oxo|oxo|ooo] $test $grid

end proc.

The setflag command provides Amr sol with a $test to apply to a mesh cell in a
-$grid to determine if the cell, or any of its neighbours, should be refined when the time comes
to adapt the grid tier above it5. Thus the line:

_setflags [ooo|oxx|ooo] $test $grid
requests that whenever the test:, |
fREO[]>fP[] && fRHO[]1>S$tol

evaluates as true (that is non-zero) for a cell (7, j), in {G}, then the cells identified by an x in
the flag mask [ooo0 | oxx|ooo] need refining. This flag mask is centred on (%, 5) and is laid
out by rows:

ojl]o]|oO
oO]lX 11X
o|lO]|O

63A classical technique such as Richardson extrapolation[12] is strictly invalid when: (i) the numerical solution
is non-smooth and so not well represented by a Taylor series, e.g. a smeared shock-wave; (ii) the formal order
of accuracy of the integration scheme is not known or varies from point to point, e.g. TVD shock-capturing
schemes. The given reference also stresses that the technique should be “used with caution and discrimination.”
This sound advice applies to any means of error estimation, including the ones presented here. Using Amrita’s
dynamic linking mechanism, a setflags command can make a £n call to a user-supplied routine to compute
any appropriaté error estimate, and so the construct should be able to explmt unpmved techmquw, as and wh-
they are developed.

%The grid Gy is moved by examining the soluuon on Gj—;. This is done because: (i) it reduces the operation
*count, as there are far fewer cells in G;—; than Gi; (ii) smeared discontinuities are steepened when back projected

and so are best detected on G;—3 even though the grid is coarser than G. The subtleties of this second point, which -

runs against the normal grain of accuracy arguments, are detailed in[21].

75




and so the targeted cells are (7, 7) and (i+1, 7). Alternatively, the mask [oxo|xo0|oxo]:

o|X|O
X|o]|o
0|0 |X

targets (4,7 +1), ({ —1,5) and (i +1,5 — 1).

, Although setflags can be given a grid qualifier to determine which subset of the com-
' putational grid will be tested for Tefinement, because of the way the adaptlon process is or-

chestrated, explicit patch indices are excluded. Therefore, for CornerProblem you could

write:

setflags [ooo]|oxo|ooo] 1 {GO0}

to request that Gy be completely refined, but the nominally equivalent:

setflags [ooo|oxo|ooo]l 1 {1,2}

generates an eITor.

To facilitate the development of complex monitor functions, where multiple setflags
commands must be strung together, plot f£lags identifies those grid cells which would be
flagged for refinement, given the current RefinementCriteria. An example of its use
has already been shown in lecture 1. This script, which reads the output from my.script, illus-
trates the principal weakness of heuristic refinement criteria, namely their inevitable reliance on
tunable parameters:

EulerEquations: amrcp vki/tol.l

plugin amr_sol amrita vary toll
postscript on cd - flags

flowin io/Corner5 amrps vary toll.ps
autoscale :
LatexHead pagesize=problem-sheet, dlr—flags file—vary'toll tex
... latex title
LatexNupFig iup=3,jup=4
do n=1,12
. def RefinementCriteria
set tol #= sprintf("%$.2f",$n*0.01)
DensityGradient tolerance=$tol

end def .
plotfile flags/ps/flags$n.ps
PlotDomain
m<0>
plot flags {Gl}
plotfile
LatexNupFig {
file = ps/flags$n.ps
caption = tol=$tol
width ‘= 5cm
}
end do
LatexTail
Latex
76
i
S —— v e R N7 MR N AR IS o g Ve e i e TR




R IR Loic 7~ Ay o 7L ML R N T2 i M AU, Biie Tt 7 AN PRESRVEPL o WP e M M DA SN

DensityGradient Uses A Tunable Parameter

tol=0.01 tol=0.02

tol=0.05 tol=0.06

tol=0.08 tol=0.09

tol=0.10 tol=0.11 tol=0.12

Figure 40: Page output by vary_toll. Regardless of how small the tolerance is made, Density-
Gradient does not do a good job of picking out the contact-surface. Consequently, choosing a toler-
ance based on an analysis of the distribution of the density gradient (e.g. [9]), although mathematically
more rigorous than chosing one by experience, will be no more successful. If the contact surface is
deemed to be an important feature of the flow, then a change in refinement criteria is called for, see
Figure 41. . S :

N




ContactSurface Uses A Tunable Parameter

t01=0.0010 t0l=0.0015

t0l1=0.0020 tol=0.0025 t01=0.0030

t0l=0.0045

t0l=0.0050 t01=0.0055 t0l1=0.0060

Figure 41: Page output by vary_tol2. The ContactSurface criteria is more adept at picking out
the vortex core and slip line than DensityGradient, see Figure 40. Also, experience shows it re-
quires less re-tuning between problems. This is not unexpected because the tolerance acts primarily as
a noise filter for round-off errors and so does not play as active a selection role as the threshold used in
DensityGradient.

78

R i e e A e




References

[1] G.K. BATCHELOR, An Introduction to Fluid Dynamics, Cambridge University Press, 1967.

[2] J.B BDZIL & S.F. SON, Engineering Models of Deflagration-to-Detonation Transition,
Los Alamos National Laboratory Report LA-12794-MS, 1995.

[3] G. BEN-DOR, Shock Wave Re_ﬂectwn Phenomena, Spnnger 1991.

[4] M.J. BERGER, Adaptive Mesh Reﬁnement for H)gzerbolzc Partial Dtﬁ’erentzal Equations,
Ph.D. thesis, Computer Science Dept., Stanford University, 1982.

[5] M.J. BERGER & P. COLELLA, Local Adaptive Mesh Refinement for Shock Hydrodynamics,
J. Comput. Phys., 82 67-84, 1989.

[6] M.J. BERGER & J. OLIGER, Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations, J. Comput. Phys. 53, 482-512, 1984.

[7] Y.-L. CHIANG, B. VAN LEER & K.G. POWELL, Simulation of Unsteady Inviscid Flow on
an Adaptively Refined Cartesian Grid, ATAA Paper 92-0443, 1992.

[8] J.F. CLARKE, S. m, J.J. QUIRK; P.L. ROE, L.G. SIMMONDS & E.F. TORO, Nu-
merical Computation of 2-Dimensional Unsteady Detonation-Waves in High-Energy Solids,
J. Comput. Phys. 106, 215-233, 1993.

[9] J.F. DANNENHOFFER IIl, Grid Adaptation for Complex Two-Dimensional Transonic
Flows, Sc.D. thesis, Massachusetts Institute of Technology, 1987.

[10] J.L. HALL, P.E. DIMOTAKIS, H. ROSEMAN, Experiments in Nonreacting Compressible
Shear Layers, AIAA 1. 31, 2247-2254, 1993, :

[11] W. FICKETT & W. DAVIS, Detonation, University of California Press, Berkeley, 1979.
[12] C-E. FROBERG, Introduction to Numerical Analysis, Addison-Wesley, 1965.

[13] A. HARTEN, Multiresolution Algorithms for the Numerical Solution of Hyperbolzc Con-
servation Laws, UCLA CAM Report 93-03, 1993.

[14] L.F. HENDERSON, W.Y. CRUTCHFIELD & R.J. VIRGONA, The effects of thermal-
conductivity and viscosity of argon on shock-waves diffracting over rigid ramps, J. Fluid
Mech. 331, 1-36, 1997.

[15] R.J. LEVEQUE, Numerical Methods for Conservation Laws, Birkhéuser, 1992.

[16] R. LOHNER, K. MORGAN & O. ZIENKIEWICZ, Adaptive Grid Refinement for the Com-
pressible Euler Equations.In Accuracy Estimates and Adaptivity for Finite Elements, Wiley,
1994.

[17] NASA CP-3316, ICASE/LaRC Workshop on Adaptive Grid Methods, Edited by
J.C. South Jr,, J.L. Thomas & J. Van Rosendale, 1995.

[18] M. PARASCHIVOIU J.-Y. TREPANIER, M. REGGIO & R. CAMARERO, A Conservative
Dynamic Discontinuity Tracking Algonthm for the Euler Equations, AIAA Paper 94-0081,
1994.

79




[19] S. PIRZADEH, Unstructured Viscous Grid Generation by the Advancing-Layers Method,
ATAA L. 32, 17-19, 1994,

[20] K.G. POWELL, P.L. ROE & J.J. QUIRK, Adaptive-Mesh Algorithms for Computational
Fluid Dynamics. In Algorithmic Trends in Computational Fluid Dynamics, edited by M.
Y. Hussaini, A. Kumar & M. D. Salas., 303-337, Springer, 1993.

[21] 1.J. QUIRK, An Adaptive Grid Algorithm for Computational Shock Hydrodynamics, Ph.D.
thesis, College of Aeronantics, Cranfield Institute of technology, 1991.

[22] J.J. QUIRK, A Contribution to the Great Riemann Solver Debate, Int. J. Numer. Methods
Fluids 18, 555-574, 1994.

[23] J.J. QUIRK, A Cartesian Grid Approach with Hierarchical Refinement for Compressible
Flows. In Computational Fluid Dynamics *94, Invited Lectures and Special Technological
Sessions of the Second European Computational Fluid Dynamics Conference, edited by S.
Wagner, J. Périaux and E.H. Hirschel, Wiley, pp. 200209, 1994.

[24] J.J. QUIRK, T.L. JACKSON & A.K KAPILA, Numerical Study of the Evolution of a
Compressive Pulse in an Exploding Atmosphere. In Transition, Turbulence and Combus-
tion, edited by M.Y. Hussaini, T.B. Gatski and T.L. Jackson, Vol. II, pp. 313-329, Kluwer
Academic Publishers, 1994.

[25] J.J. QUIRK, A Parallel Adaptive Grid Algorithm for Computational Shock Hydrodynam-
ics, Appl. Numer. Math.. 20, 427453, 1996.

[26] J.J. QUIRK & S. KARNI On the Dynamics of a Shock-Bubble Interaction. J. Fluid Mech.
318, 129-163, 1997.

[27] J.J. QUIRK, An Introduction to Amrita, in preparation.

[28] M.M. RAI1, A Conservative Treatment of Zonal Boundaries for Euler Equation Calcula-
tions, J. Comput Phys. 62, 472-503, 1986.

[29] V. RUPERT, 1992 Shock-Interface Interaction: Current Research on the Richtmyer-
Meshkov Problem. In Shock Waves, Proceedings of the 18th Intl. Symp. on Shock Waves,
held at Sendai, Japan 1991 (ed. K. Takayama), 83-94, Springer, 1991.

[30] M. SHORT & J.J. QUIRK, On the Nonlinear Stability and Detonability Limit of a
Detonation-Wave for a Model 3-Step Chain-Branching Reaction, J. Fluid Mech. 339, 89—
119, 1997.

[31]1 G. Sob, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyper-
bolic Conservation Laws, J. Comput. Phys. 27, 1-31, 1978.

[32] K. TAKAYAMA, O. ONODERA & G. BEN-DOR, Holographic Interferometric Study of
Shock Transition over Wedges, SPIE 491, 976-983, 1984.

[33] J.F. THOMPSON & N.P. WEATHERILL, Aspects of Numerical Grid Generation: Current
Science and Art, ATIAA Paper 93-3539, 1993.

[34] J. Van Rosendale, Floating Shock Fitting via Lagrangian Adaptive Meshes, ICASE Report
No. 94-89, 1994.

80




[35] G. WARREN, W.K. ANDERSON, J. THOMAS & S. KRIST, Grid Convergence for Adap-
tive Methods, ATAA Paper 91-1592, 1991. ,

[36] G. WHITHAM, Linear and Nonlinear Waves, Wiley-Tnterscience, 1974,

[371 S. XU, T. ASLAM & D.S. STEWART, High Resolution Numerical Simulations of Ideal
and Non-Ideal Compressible Reacting Flows with Embedded Internal Boundaries.,

81




