A Linear Mixture Analysis-Based Compression for Hyperspectal Image Analysis
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ABSTRACT

In this paper, we present a fully constrained least squares linear spectral mixture analysis-based compression technique for
hyperspectral image analysis, particularly, target detection and classification. Unlike most compression techniques that directly
deal with image gray levels, the proposed compression approach generates the abundance fractional images of potential targets
present in an image scene and then encodes these fractional images so as to achieve data compression. Since the vital
information used for image analysis is generally preserved and retained in the abundance fractional images, the loss of
information may have very little impact on image analysis. In some occasions, it even improves analysis performance. Airborne
visible infrared imaging spectrometer (AVIRIS) data experiments demonstrate that it can effectively detect and classify targets
while achieving very high compression ratios.

1. Introduction

In remotely sensed imagery, lossless and lossy compressions have been studied and investigated extensively in the past. In
object detection and image classification applications, the accuracy in detection and classification is generally determined by
features of objectsin the image data rather than the original data. In this case, lossless compression does not provide additional
advantages over lossy compression in the sense of feature extraction. Success of a lossy compression technique depends on
selecting an appropriate optimal criterion to meet a preset desired goal. In hyperspectral imagery, due to significantly improved
spatial and spectral resolution. Many unknown signal sources can be uncovered by hyperspectral sensors for data analysis, some
of which may be very important, such as anomalies and small targets in image analysis. Accordingly, preserving desired
information is very important to lossy data compression. In this paper we investigate an application of linear spectral mixture
analysis (LSMA) in hyperspectral image compression.

The idea of using the LSMA in hyperspectral image compression is appealing from a feature-extraction point of view because
it takes advantage of the spectral propertiesin a pixel of mixed material substances, referred to as targets. Rather than using the
whole stack of images in a hyperspectral image cube for compression, the proposed approach replaces the image cube by the
abundance fractional images of targets. Because the number of targets is usually smaller than that of spectral bands, a
considerable compression can be achieved. Since the primary interest is in feature extraction for image analysis, the abundance
fractional images of targets may suffice to preserve the necessary information without sacrificing performance analysis. Since
LSMA requires knowledge about the targets of interest in an image scene, a recently developed unsupervised fully constrained
least squares linear unmixing (UFCLSLU) method [1] is used to find potential targets in an unknown scene and estimate their
corresponding abundance fractions. These abundance fractional images are then used to compress the original image data. Since
only targets and their corresponding abundance fractions are required, a high compression ratio can be achieved. In order to
evaluate the LSMA-based compression technique, applications in hyperspectral target detection and image classification are
considered for performance analysis. The experimental results show that the compression ratio (CR) for AVIRIS data can
achieve as high as 76:1 with 34 dB signal-to-noise ratio (SNR) and 46 dB peak SNR (PSNR) after water bands are removed.
For 210-band hyperspectral digital imagery collection experiment (HY DICE) data CR can be 126:1, and it is 106:1 after water
bands are removed with PSNR greater than 40 dB.

II. Linear Spectral Mixture Analysis (LSMA)

Suppose that L is the number of spectral bands. Let r be an L x1 column pixel vector in a multispectral or hyperspectral

image, where the bold face is used for vectors. Assume that there are p targets of interest (objects), t,,t,,--,t, in animage

sceneand let M bean L x p target signature matrix denoted by [t ..,th, where t; isan L*1 column vector represented by
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the signature of the j-th target resident in the pixel r. Let ¢ = [Gl,az,'--,ap]T be a px1 abundance column vector associated



with r, where a; denotes the abundance fraction of the j-th target signature inr. A general approach isto model a pixel vector r
asalinear mixture of t,t,, -t 0 plus noise:
r=Ma+n, @

where n is noise or can be interpreted as measurement error. Using (1) we can compress the image data by encoding r as

o= [al,a2,~-~,ap]T so that an L-band hyperspectral image can be represented by a set of p abundance fractional images. Since

p is usually much smaller than L in hyperspectral imagery, a significant compression can be achieved if a can faithfully
represent r. In order to ensure this, two constraints must be imposed on a in (1), which are (a) abundance sum-to-one constraint,
referred to asthe ASC, a, +---+a, =1 and (b) abundance nonnegativity constraint, a; 20 for all 1< j< p, referred to asthe
ANC. In general, no closed-form solution can be derived for (1) subject to constraints ASC and ANC. Fortunately, a fully

constrained least squares linear unmixing (FCLSLU) method was recently developed in [1] which can be used to generate the
optimal constrained solutions.

III. UFCLSLU

In this section, we will briefly describe the developed fully constrained least squares linear unmixing (FCLSLU) method with
details referred to [1]. First, we find the optimal least squares estimate of a, @, for model (1) without imposing constraints
ASC and ANC. It can be obtained by @, = (M"M) ™M 'r which will be used for an initial estimate. Next, we impose ANC on
model (1) that results in a nonnegatively constrained least squares (NCLS) problem described by
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where a >0 represents the non-negativity constraint: a; 20 for dl 1< j<p. Since a =0 is a set of inequalities, the
Lagrange multiplier method is not applicable to solving optimal solutions. An NCLS algorithm developed in [2] can used to
solve (2). Further, combining the NCLS agorithm with ASC derives an FCLS algorithm that can reliably estimate o while
satisfying both constraints, ANC and ASC [1]. However, the FCLS algorithm requires a complete knowledge of the target
signature matrix M. In order to use it to compress images, an unsupervised process is needed to generate the desired target
information so that the FCLS algorithm is till applicable. A least squares error-based (LSE) unsupervised method was also
developed in [1] to implement FCLS agorithm in an unsupervised manner. The method using the resulting algorithm for

compression is referred to as UFCLSLU. Using the UFCLSLU we can compress a hyperspectral image cube into a set of p
abundance fractional images.

The UFCL SL U-based compression method can be described as follows:
1.Use the LSE unsupervised method in [1] to generate a set of potential targets, denoted by {t,,t, -t } to form an

estimated target signature matrix, denoted by M = [El,fz,.--,fp].
2.For the i-th image pixel vector, r, = [ril,r12 ,---,riL]T, use the FCLS algorithm to estimate the corresponding target
abundance fractions, denoted by, {a, (r,).a,(r;),--d, (r;)}
3. Construct p abundance fractional images, {a, (r;),d,(r;) - ,(r,)} for the pixel vector r; .
4._Use any spatial-based coding method such as Huffman coding, DPCM, DCT to encode the p abundance fractional
Thelngnag(?ﬁéd abundance images are stored or transmitted as well as the p target signatures. The original data can be
reproduced by r, = Ma, -

IV. Experiments

In this section, two error criteria, referred to as SNR and PSNR defined in [3] and compression ratio (CR) defined by the ratio
of origina image file size to compressed file size are used for performance evaluation. The AVIRIS data used in the
experiments is a subscene of 200 x 200 pixels extracted from the upper left corner of the Lunar Crater Volcanic Field (LCVF)
in Northern Nye County, Nevada shown in Figure 1. The five signatures of interest in these images are “red oxidized basaltic
cinders’, “rhyolite”, “playa (dry lakebed)”, “shade” and “vegetation”. Another two methods were used to compare with
UFCLSLU-based compression. One is based on Orthogonal Subspace Projection (OSP) result, another referred to as Least



Squares (LS) OSP uses the least squares solution of (1) without imposing any constraints to abundances. These two methods
needed the priori information of these 5 signatures. Asfor UFCLSLU it automatically generated 6 signatures (the additional one
isan anomaly). Table 1 tabulates the resulting SNR, PSNR and CR where UFCLSLU produced the best results and achieved the
highest SNR, PSNR and CR. Figure 2 shows the classification results based on reproduced images by the two unconstrained
supervised methods while Figure 3 was the classification based on UFCLSLU. As shown, no appreciable classification
difference results from OSP and L SOSP-based compression. UFCL SLU-based compression can even improve the classification
results.

Figure 1. AVIRIS LCVF scene (200x200)

Table 1. SNR, PSNR and CR resulting from three methods

OSP LSOSP | UFCLSLU
SNR(dB) 35.74 35.00 34.98
PSNR(dB) 47.79 47.04 46.03
CR 16.69:1 | 56.55:1 75.77:1

(c) Using the ori ginal image (no compression)

Figure 2. The classification results with OSP and LSOSP-based compression (1st column: cinder; 2nd column: playa, 3rd
column: rhyolite; 4th column: shade; 5th column: vegetation.)



’ (b) Using the original image (no compression)

Figure 3. The classification results with UFCLSLU-based compression (1st column: playa; 2nd column: shade; 3rd column:
cinder; 4th column: anomaly; 5th column: vegetation; 6th column: rhyolite.)

V. Conclusion

This paper presented a linear mixture analysis-based data compression technique for hyperspectral image analysis. It first
identifies potential targets in a hyperspectral image scene in an unsupervised fashion, then compressed the entire image cube
using the abundance fractional images of targets present in the image scene. In order to reliably estimate target abundance
fractions, an FCLSLU method developed for material quantification in [1] was used. Since the number of targets of interest is
generally much smaller than the number of bands in a hyperspectral image, high compression ratio and SNR can be achieved.
Furthermore, only abundance fractional images are encoded and unknown signal sources are suppressed by compression. As a
result, in some occasions the performance analysis based on the reproduced images can be improved on that yielded by the
original images. One major disadvantage of the proposed method is the identification of targets of interest present in an image
scene. This has been an unresolved issue and very difficult to solve without prior knowledge.

Acknowledgments

The authors would like to thank Bechtel Nevada under contract No. DE-ACO08-96NV 11718 through the U.S. Department
of Energy for their support, and Dr. J.C. Harsanyi for providing the AVIRIS data.

References

[1] D. Heinz and C.-I Chang, “Fully constrained least squares linear mixture analysis method for material quantification in
hyperspectral imagery,” |EEE Trans. on Geoscience and Remote Sensing. (revised)

[2] C.-1 Chang and D. Heinz, “Subpixel spectral detection for remotely sensed images,” | EEE Trans. on Geoscience and Remote
Sensing, vol. 38, no. 3, May 2000.

[3] W.K. Pratt, Digital Image Processing, 2nd ed., pp.685-686, 1991.



	Introduction
	III. UFCLSLU
	IV. Experiments
	Table 1.  SNR, PSNR and CR resulting from three methods
	OSP
	V. Conclusion
	Acknowledgments

	References

