

LA-UR-99-1284

Approved for public release;
distribution is unlimited.

REC
SEP 11 1999
OSTI

Title: TIME SERIES BASED MODEL UPDATING IN NONLINEAR SYSTEMS USING SINGULAR VALUE DECOMPOSITION

Author(s): Francois M. Hemez, ESA-EA
Paula Beardsley, ESA-EA
Winston Rhee, ESA-EA
Thomas D. Burton, Texas Tech University

Submitted to: 1999 ASME Mechanics and Materials Conference
June 27-30, 1999
Virginia Tech University

Los Alamos NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Time Series Based Model Updating in Nonlinear Systems Using Singular Value Decomposition

T.D. Burton*, F.M. Hemez, P. Beardsley, and W. Rhee*

*Department of Mechanical Engineering

Texas Tech University, Lubbock, TX

and

ESA-EA, Los Alamos National Laboratory

Los Alamos, NM

The problem considered is the use of time series data to do model updating in nonlinear structural systems for which the mathematical form of the system nonlinearities is known ahead of time. This work is a departure from most classical model updating work, which utilizes modal data to update linear structural dynamics models. In the present application a singular value decomposition (SVD) of the measured data (e.g., m of the N coordinates are measured at n sampling times) is the basis of the updating. The SVD produces a representation of the data as a linear combination of the so-called principal components, which are analogous to modal coordinate time histories in a linear system. The structural dynamics model parameters are updated by minimizing the differences in the SVD's of the experimental data and the model simulations. This method, proposed by Hasselman et al (IMAC 1998), has been applied to both simulated and actual experimental data for low degree of freedom spring-mass systems with cubic nonlinearity and light damping. The main results that will be presented are the following: 1) the SVD updating is robust in the presence of noise, 2) SVD based updating is effective for both linear and nonlinear systems, and 3) in some cases the nonlinear updating problem is actually easier to do than the linear problem because of the additional "information" contained in the harmonics produced by the nonlinearity. A possible limitation of the approach is the computing time needed to do the parameter optimization.

References

Hasselman, T.K., Anderson, M.C., and Wenshui, G., "Principal Components Analysis For Nonlinear Model Correlation, Updating and Uncertainty Evaluation," *16th International Modal Analysis Conference*, Santa Barbara, California, Feb. 2-5, 1998, pp. 664-651.

Abstract Submitted to the 1999 ASME Mechanics and Materials Conference, Virginia Tech University, June 27-30, 1999

Time Series Based Model Updating in Nonlinear Systems Using Singular Value Decomposition

T.D. Burton*, F.M. Hemez, P. Beardsley, and W. Rhee*

*Department of Mechanical Engineering

Texas Tech University, Lubbock, TX

and

ESA-EA, Los Alamos National Laboratory

Los Alamos, NM

The problem considered is the use of time series data to do model updating in nonlinear structural systems for which the mathematical form of the system nonlinearities is known ahead of time. This work is a departure from most classical model updating work, which utilizes modal data to update linear structural dynamics models. In the present application a singular value decomposition (SVD) of the measured data (e.g., m of the N coordinates are measured at n sampling times) is the basis of the updating. The SVD produces a representation of the data as a linear combination of the so-called principal components, which are analogous to modal coordinate time histories in a linear system. The structural dynamics model parameters are updated by minimizing the differences in the SVD's of the experimental data and the model simulations. This method, proposed by Hasselman et al (IMAC 1998), has been applied to both simulated and actual experimental data for low degree of freedom spring-mass systems with cubic nonlinearity and light damping. The main results that will be presented are the following: 1) the SVD updating is robust in the presence of noise, 2) SVD based updating is effective for both linear and nonlinear systems, and 3) in some cases the nonlinear updating problem is actually easier to do than the linear problem because of the additional "information" contained in the harmonics produced by the nonlinearity. A possible limitation of the approach is the computing time needed to do the parameter optimization.

References

Hasselman, T.K., Anderson, M.C., and Wenshui, G., "Principal Components Analysis For Nonlinear Model Correlation, Updating and Uncertainty Evaluation," *16th International Modal Analysis Conference*, Santa Barbara, California, Feb. 2-5, 1998, pp. 664-651.