RECEIVEp
LA-UR- 99“*1348 SEP"’W

Bounds on the Strength Distriﬁisg«.af Prnidirectional Fiber
Composites

Title:

Author(s): | Sivasambu Mahesh (MST-CMS), Los Alamos, New Mexico
Irene J. Beyerlein (MST-8), Los Alamos, New Mexico
S. Leigh Phoenix(Cornell University),Ithaca, New York

Submitted to: | ASCE Engineering Mechanics Division Conference,
Baltimore June 13-16, 1999

Los Alamos

NATIONAL LABORATORY

Los Alamos Nationaf Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By
acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexciusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
cthers to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of

Energy.

Form No. 836 R5
ST 2620 10199




Sivasambu Mahesh* Irene J.

Bounds on the Strength Distribution of
Unidirectional Fiber Composites

Beyerlein! S. Leigh Phoenix?

¥ Theoretical and Applied Mechanics, Cornell University, Ithaca NY 14853.
TMaterials Science and Technology, MS G755,
Los Alamos National Laboratory, Los Alamos NM 87545.

Abstract

Failure mechanisms under tensile loading
of unidirectional fiber composites compris-
ing of Weibull fibers embedded in a ma-
trix are studied using Monte-Carlo sim-
ulations. Two fundamental mechanisms
of failure are recognized — stress concen-
tration driven failure and strength driven
failure. It is shown that the cumula-
tive distribution function for composite
strength predicted by the stressconcentra-
tion -driven failure and strength-driven
failure form apparent upper and lower
bounds respectively and also that failure
mechanism switches from one to the other
as fiber strength variability changes.
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1 Introduction

Unidirectional (UD) fiber composite
failure is a complex stochastic process.
Primarily due to the randomness of
fiber strengths, UD composite tensile
strength is itself a random quantity and
methods to determine its distribution
are of considerable significance in assur-
ing composite reliability.

Idealizations of composite structure
and material properties are found to be
inevitable before further analysis can
be attempted. In this study, we as-
sume linear elastic fibers arranged in a
hexagonal array and embedded in an
linear elastic non-debonding matrix so
that material damage in our idealized
composite is restricted to fiber failures
alone. Although in a real fiber, flaws of
random strengths are distributed along
the fiber, we confine fiber failures to a
plane perpendicular to the fiber direc-
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tion. This allows us to simulate com-
posites consisting of a greater number
fibers and a wider range of fiber prop-
erties than otherwise possible. Finally,
we assume that fiber strengths (X)
are Weibull distributed, an assump-
tion experimentally well established
([Beyerlein and Phoenix (1996)]). Ac-
cordingly,

F(z) = Pr{X <z} = 1—e~ /=) (1)

where zg is the scale parameter and p,
the shape parameter. From the vari-
ance of this distribution,

of =z {T'(1 + %) -1+ %)} (2)

one observes that smaller p corresponds
to a higher fiber strength variance.
The in-plane failure of our idealized
composite model takes place as follows.
Consider a rhombus-shaped patch of
s? hexagonally-arranged Weibull fibers
loaded with stress per fiber z. If z is
instantaneously applied to the compos-
ite and the progression of fiber breaks
in “time increments” is monitored (dy-
namic effects are ignored) those fibers
that have strengths smaller than z fail
at time 1. The load dropped by these
fibers is now redistributed among the
intact fibers. This overload may cause
more fiber failures (at time 2) which in
turn overload yet another set of fibers
beyond their strengths and fail them (at
time 3) and so on. The smallest applied

load per fiber z that will cause all the
fibers in a particular specimen to fail is
its tensile strength.

Exact solution of this process de-
spite its Markov nature is impossible
for composites of realistic sizes due to
computational limitations. We there-
fore take the following approach: from
Monte-Carlo simulations of the failure
process, we obtain the dominant mech-
anisms of failure (§2) and model these
mechanisms to get an estimate of the
failure probabilities (§3).

2  Failure Simulation

2.1 Simulation Algorithm

Failure simulations are carried out on a
rhombus shaped patch (Fig. 1) consist-
ing of s? hexagonally arrayed Weibull
fibers on which periodic boundary con-
ditions are imposed. An increasing load
is applied on the composite until all
fibers in it fail by the process described
in §1. A detailed description of the sim-
ulation procedure used in this work can
be found in [Mahesh et al. (1999)].

An important component of the sim-
ulations is the manner in which the
load dropped by a broken fiber is re-
distributed amongst other fibers. Two
load sharing
models are used — the Hedgepeth and
Van Dyke load sharing model(HVLS)
[Hedgepeth and Van Dyke (1967)] and
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Figure 1: HVLS stress concentrations near
a single break in a 30 x 30 periodic patch.
The hatched fiber is broken. For this patch,
the ELS stress concentration on the surviving
fibers is 1 + gis ~ 1.0011.

the Equal Load Sharing (ELS) model
[Daniels (1945)]. While the HVLS is
a local load sharing model — a large

" part of the load dropped by a broken
fiber is distributed amongst its nearest
neighbors, the ELS model is global in
its load sharing — broken fibers trans-
fer their load equally amongst all the
surviving fibers. Fig. 1 shows the stress
concentrations on the fibers surround-
ing a broken fiber. While HVLS is con-
sidered a realistic model for load trans-
fer in a composite with matrix, the ELS
model is considered realistic in the case
of a loose bundle of fibers (without ma-
trix).

2.2 Simulation Results

Simulations were performed on rhom-
bus shaped patches of a range of com-

Figure 2:
W(z) = 1 - (1 - F.(z))* on Normal prob-
ability paper.

The weakest-link distribution

posite sizes s2 and fiber Weibull moduli,
p- Empirical composite strength dis-
tributions generated from these simu-
lations are denoted by F,(z).

Figure 2 shows a plot of the weakest-
link distribution function W (z) derived
from F,(z) on normal probability paper
where,

W(z) =1-(1-F(@)/" (3)
Note that in the probability range of
simulation, W (z) is independent of the
composite size for p > 3. However, for
p < 3, agreement between the weakest-
link distributions ceases.

The reason behind the independence
of W(z) on s? for higher p and its de-
pendence on s? for lower p is seen by
examining the breaks in the composite
just prior to catastrophic crack growth




or the critical cluster (see Fig. 3). In
the p = 10 and p = 5 cases the critical
cluster is much smaller than the com-
posite itself (comprising of two to five
breaks) and is therefore not affected by
the finite composite size (or boundary
effects). However, in the p = 1/2 case,
the critical cluster occupies a substan-
tial portion of the composite. There-
fore, if W(z) is identified with the prob-
ability of formation of the critical clus-
ter, it will be strongly influenced by the
composite size. The size independence
of W(z) will be used in obtaining the
upper bound on strength in §3. Note
here that the dependence or indepen-
dence of W(z) on s? is a function of s?
as well. W(z) derived from F(z) for a
5 x 5 with p = 10 fibers for example,
is found not to coincide with the W (z)
plots shown in Fig. 2. Similarly, we ex-
pect that among large enough patches,
the p = 1 strength distributions will
also show a weakest link nature.

Fig. 4 compares HVLS and ELS com-
posite strengths. As seen, the agree-
ment between the composite strengths
predicted by the two different load shar-
ing models gets increasingly better as
p 4 0. In a qualitative manner, this can
again be understood by observing that
as p decreases, fiber failure becomes in-
creasingly insensitive to z. For exam-
ple, using (1), for a fiber with p = 1/2,
F(0.5) = 0.5069 and F(1) = 0.6321.
Contrast this with the case of a p =
10 fiber, with F(0.5) = 0.000936 and
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Figure 3: Failure patterns in a 10 x 10 com-
posite patch. (al) and (a2) are p = 10 lower
and upper tail specimens respectively, (bl)

.and (b2) are p = 5 lower and upper tail speci-

men respectively, and (c1) and (c2) are p =
lower and upper tails respectively. Open cir-
cles denote intact fibers and circles with a “x”
in them denote broken fibers.

F(1) = 0.6321. Thus, in this case, the
ELS assumption for stress redistribu-
tion agrees quite well with the simu-
lated HVLS composite strength distri-
bution.

3 Strength Bounds

In this section, we will develop an ex-
pression that will always be an up-
per bound on the simulated distribu-
tion function, one that gets tighter as
p 1 0o. On the other hand, we will use
an analytical solution to the ELS prob-
lem [Smith (1982)] as the lower bound
on composite strength; this bound get-
ting tighter as p | 0.
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Figure 4: Comparison of HVLS and ELS
strength distributions for s> = 30 x 30 com-
posite. Strengths are normalized with respect
to mean fiber strength on Normal probability

paper.

3.1 Upper Bound

The upper bound is arrived at by view-
ing composite failure as described be-
low and computing its probability of
occurrence. Composite failure occurs
when at least one of the following s?
events occur: one of the s? fibers fail, it
drops part of its stress on its six nearest
neighbors of which one fails, the pair of
breaks thus formed fails another of its
two most overloaded neighbors, the re-
sulting triplet then fails one of its four
most overloaded neighbors and so on
until all the s? fibers in the compos-
ite are broken. If the probability of

this event under applied load per fiber
z is W*(z), the estimated probability

of composite failure, F*(z) is (see (3))

F(2)=1-(1-W*@)" (4
- W*(z) may thus be evaluated as:
W*(z) = F(z)x (5)
(1-(1 - F(Kz))™) x
(1= (1 = F(Kapz))™?) x
(1 (1 - F(K5z))™) x ---
where K, = 4/1+ %_’é— is approxi-

mately the maximum stress concentra-
tion around a tight cluster of n fibers,
N, = V4nr is the number of neigh-
bors around a cluster of n breaks and
7 is a parameter to account for non-
uniformity of stresses on.the fibers sur-
rounding the cluster. Physically, n €
(0,1] is approximately the fraction of
neighbors of the cluster that are the
most overloaded.

3.2 Lower Bound

As mentioned in §2, at smaller p, the
failure process is dominated more by
fiber strengths than by the stress con-
centrations. Composite strength calcu-
lated by assuming ELS stress concen-
trations is found to result in a tight
lower bound on the simulated stress of
a composite of low p.

The Smith corrected Daniel’s for-
mula [Smith (1982)] predicts very accu-
rately that the strength of an ELS bun-
dle comprising of s? fibers is normally
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Figure 5: Upper and lower bounds on s? =
30 x 30 composite strength on Normal prob-
ability paper. Note that the upper bound for

p = % lies well outside this plot.

distributed, N(u*,o*) where,

* 2/, \-1/p -4/3 e/’ 1/3
p* = 00s*(pe) P (1+0.9965°(—)"/")

(6)

and

or = aop'l/”\/s?e‘l/ﬁ(l —e~te) (7)

4 Conclusion

Fig. 5 compares the simulated strengths
with the two bounds proposed in §3
for composite strength. Although, not
all p cases are shown, it is found that
the upper bound given by (4) — (6) fits
the simulations quite tightly for p > 5.
Also, the lower bound given by (6) and
(7) is found to fit the simulations very
well for p < 2. 1t is further noted that

composite failure process is a combina-
tion of the two mechanisms that yielded
the upper and lower bounds.
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