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Multilevel Iterative Methods in Computational Plasma
Physics’ D.A. KNOLL, D.C. BARNES, J.U. BRACKBILL, L.
CHACON, G. LAPENTA, Los Alamos National Laboratory — Plasma
physics phenomena occur on a wide range of spatial scales and on a wide
range of time scales. When attempting to model plasma physics prob-
lems numerically we are inevitably faced with the need for both fine spa-
tial resolution (fine grids) and implicit time integration methods. Fine
grids can tax the efficiency of iterative methods and large time steps
can challenge the robustness of iterative methods. To meet these chal-

- lenges we are developing a hybrid approach where multigrid methods
are used as preconditioners to Krylov subspace based iterative methods,
such as conjugate gradients or GMRES. For nonlinear problems we ap-
ply multigrid preconditioning to a matrix-free Newton-GMRES method
{1]. Results are presented for application of these multilevel iterative
methods to the field solves in implicit moment method PIC [2], multidi-
mensional nonlinear Fokker-Planck problems {3}, and our initial efforts
in particle MHD.
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1 Jacobian-Free Newton-Krylov Method

Newton’s method requires the solution of the linear system

JEsuf = —F(uf), of = uf + suf; (1)
where J is the Jacobian matrix, F(u) is the nonlinear system of
equations, u is the state vector, and k is the nonlinear iteration
index .

In vector notation (where ¢ is the finite volume index), the

(1,7)" element of the Jacobian matrix is,

- BF,(U)
_Jzﬂ - auJ * (2)

Forming each element of J requires taking analytic or numerical

derivatives of F;(u) with respect to u at each grid point. This

can be both difficult and time consuming.

1.1 Matrix-free Approximation

The Generalized Minimal RESidual (GMRES) algorithm (Saad
and Schultz, SIAM J. Sci. Comput. vol 7, 1986) is used to
solve Eq. (1). GMRES (or any other Krylov method such as

conjugate gradients) defines an initial linear residual, ry given

an initial guess, duy,




ro = —F(u) — Jéu,. (3)

Note that the nonlinear iteration index, &k, has been dropped.
The I** GMRES iteration minimizes || Jéu; + F(u) ||z with
a least squares approach. éu is constructed from a linear combi-
nation of the Krylov vectors (search directions) {rg, Jrg, (J)?r, ..., (J)"1ro},
which were constructed during the previous { — 1 GMRES itera-
tions. This linear combination of Krylov vectors can be written

as,

du; = dug +§;1)aj(.])jro; (4)

C i
where evaluating the scalars «; is part of the GMRES iteration.
Upon examining Eq.(4) we see that GMRES requires the ac-
tion of the Jacobian only in the form of matrix-vector products,

which can be approximated by (Brown and Saad, SIAM J. Sci.
Comput. vol 11, 1990) ;

Jv = [F(u+ev) — F(u)] / ¢, (5)

where v is a Krylov vector (i.e. one of {rg, Jrg, (J)2ry, ..., (J)!Ire}),

and ¢ is a small perturbation.




Equation 5 is a first order Taylor series expansion approxi-
mation to the Jacobian, J, times a vector, v.

' For illustration consider the two coupled nonlinear equations

Fi(ui,up) = 0, Fo(uj,up) = 0. The Jacobian for this problem

is;

on 8K

Ou; Ous
J =

o, oF,

| Ou;  Ouy |

Working backwards from Eq.(5), we have;

( Fl(ul-l—evl,ug—l—evz)—Fl(ul,uz) \
€

F(u+ev) — F(u) _

Fy(ug+evyugteve)—Fo(ug,u)
€

Approximating F(u+ ev) with a first order Taylor series expan-

sion about u, we have;

OF F
( F1(u1,'u2)+€v15;11+6v2%,721—F1(u1,u2) )

€

F(u+ev) — F(u)

S
S

dF. aF.
Fz(ul,u2)+€vlag%+ev2a;§—F2(u1,u2)

\ ¢ J




This expression can be simplified to;

aF; ;2%
'U 6u1 + vza‘u,z
=Jv

dF. dF.
'Ula 2+U %‘3

This matrix-free approach, besides its obvious memory ad-
vantage, has many unique capabilities. Namely, Newton-like
nonlinear convergence without forming or inverting the true Ja-
cobian.

To complete the description of this technique we provide a
prescription for evaluating the scalar perturbation. In this study

€ is given by,

€= Z b|u, 6
NTvIl Iv e |4 (6)
where N is the linear system dimension and b is a constant whose

magnitude is approximately the square root of machine roundoff

(b= 107" for most of this study).




Preconditioned GMRES

e Compare to CG, work and storage, as a function of iteration
CG: work scales linearly, storage is constant

GMRES: work scales quadratically, storage scales linearly

e Restart, GMRES(k) : (results in constant storage)

An often employed "fix” is to store only k, Krylov vectors. If
linear convergence is not achieved after k iterations a new tempo-
rary linear solution is constructed from the existing k vectors and
GMRES is restarted. This restarting can significantly effect linear

convergence rate.
. ‘Pr»econditioning: (AP Y)(Pg)=p
Each GMRES iterations requires a preconditioned ” matvec”
w = (AP l)v (1)
Step 1, Preconditioning (iterative soive):

Py=v | (2)

Step 2, "matvec”:




2-Grid V-cycle
Tterative solution to Py = v with f = fine, and ¢ = coarse.

1. Relax Pfy? = v for y} (Jacobi, Gauss-Seidel ...)

2. Evaluate linear residual resf = v — Pfyl, and restrict to

coarse grid, res® = R * res’

3. Solve coarse grid problem, P%y. = res®, for coarse grid

correction dy,.

4. Prolongate coarse grid correction and update fine grid so-

lution vector, yZ = yi + P * dy.

5. Relax Pfy2 = v for y (Jacobi, Gauss-Seidel ...)

What are P and R ?

How does one form P, ?

Note: A multigrid (greater than 2) V-Cycle is realized by recur-

sively inserting steps 1-5 into step 3 until a ”very coarse” grid

has been reached.




Additive Correction Multigrid
Assume a simple 2-D 5 point operator, penta-diagonal matrix.
Pf = (P17, P2, P3f, P4f, P5Y) (4)
Want solution to Py = v.

Plz{j *Yi-15 + Pz{,j *Yij—1t P3,{j * Yi

+P41{j *Yij+ P 5{,]' * Yitl,j = Vij) (5)

Have initial fine grid solution y* ;

resl; =vij = Pl*yl,;— P2lxyl;
—P3l; xyi; — Pal;x gl — P5Lix ufy (6)

Define (piece-wise constant prolongation, P), for coarse grid

correction.
%
Yij = Yi; +0yrJg

*
Yitlj = Yip1j +0YLJ

%
Yij+1 = Y41+ 0YLg

Yitl 1 = Yip1i01 + YL (7)




Additive Correction Multigrid (cont.)

Add the four equations (perhaps volume weighted) for cells
(2,7),(¢+1,7), (5,5 +1),(i+1,7+1) that result from inserting
Eq. (7) into Eq. (5).

(resulting equation for cell (z, 7) )

P x (yiyj + Syrv,g) + P2l x (g1 + 6yr,0-1)
+P5L; % (i1 + 0yrg) = vy (8)
After adding equations, collect like terms, using the definition

(also perhaps volume weighted) for the coarse grid residual.

(piece;wise constant Restriction, R)

¢ _ rpef f f foo
resy y =resij+resiyyj+resiig+resiig,  (9)

The following coarse grid correction equation results for cell

(I,J).

P1§ ;% 8yr_1,5+ P2 ;% 6y s_1+ P35 ;% 6y1 s

+P45 y % 8yrg41 + P57 ;% dyrpg =resy;  (10)



Additive Correction Multigrid (cont.)
The coarse grid matrix is defined as follows,

P 1§,J =P 1zf,j +P 1zf,j+1

P25 ;=P2;+ P2},
P4} ;=P 4zf,j+1 + P 4zf+1,j+1
P53 ;= Pl + PS5l
P35 ; = Sum of All P's

—Ply ;= P2 ;— P47 ; — P5p 5 (11)

e Thus a simple, straight forward to form, coarse grid matrix

has resulted from simple choices for R and P.

e This multigrid preconditioner is easy to add to an existing

preconditioned GMRES solver.

e This simple multigrid concept originates from Settari and

Aziz, SIAM J. Num. Anal., vol 10, 1973 and Hutchinson

and Raithby, Num. Heat Tran., vol 9, 1986.
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Figure 2: Two-level finite volume grid




Implicit Moment Method

Potential Equation

e Work with G. Lapenta and J.U. Brackbill on elliptic field solver
for CELEST2D and CELEST3D (Knoll, Lapenta, and Brackbill,
J. Comput. Phys., vol 149 1999).

¢ Maximum allowable time step is often governed by the ability to
solve the electrostatic potential equation [H.X. Vu and J.U. Brack-
bill, Comput. Phys. Comm., Vol. 69 (1992)]:

V- [+ p) - V] = p(F). (12
Here, 7 is the position vector, u(7) is a spatially varying electric

- susceptibility TENSOR, and p(7) is the space charge.

e The potential equation is discretized using finite volumes, in a
general coordinate system, which produces a 9-point numerical
stencil in 2-D and a 27-point sténcil in 3-D (Sulsky and Brackbill,
J. Comput. Phys. , vol 96, 1991).

e The major difficulty arises from the fact that the off diagonal com-
ponents of u(7), which are proportional to ¢, cause the resulting

matrix equation for ¢ ( A¢ = p ) to be NON-SYMMETRIC.

In some cases diagonal dominance may be lost.




RESULT 1

o A single grid Jacobi based preconditioner is compared to a multi-

grid Jacobi based preconditioner.
e The number of sweeps (Jacobi iterations) is 3

¢ 5 GMRES vectors are stored and restart is employed with a linear

convergence tolerance of 1.0 x 1076,
e Same time step on all grids, data averaged over 3 time steps

e UNIFORM grid, CRAY Y-MP

Single Grid (SG) | Multigrid (MG) | CPU ratio

Grid Precond. ~ Precond. SG / MG
GMRES Its. GMRES Its. |
32 x 32 48 8.7 1.8
64 x 64 116 9 2.8
128 x 128 398 11 5.65
256 x 256 691 9 105




RESULT 2

e NON-UNIFORM grid (matrix may not be diagonally dominant)

e A single grid Jacobi based preconditioner is compared to a multi-

grid Jacobi based preconditioner.
e The number of sweeps (Jacobi iterations) is 1

e 5 GMRES vectors are stored and restart is employed with a linear

convergence tolerance of 1.0 x 1078,

e Same time step on all grids, data avera,ged'over 3 time steps

| Single Grid (SG) | Multigrid (MG) | CPU ratio
Grid Precond. Precond | SG / MG
l 32 x 32 451 24 82 |
64 x 64 1672 39;5 11.5
128 x 128 6217 64 14.5
256 x 256 l - 7322 39 19.8

e On 128 x 128, with 10 GMRES vectors 39 iterations required, with

20 GMRES vectors stored 33 iterations required.



Maultilevel Preconditioning and Newton-Krylov

methods for 2-D Fokker—Planck Problems

e Work with L. Chacén and D.C Barnes on an efficient and energy
conserving nonlinear solver for 2-D Fokker-Planck (single species,
ions only) Problems. This is a nonlinear integro-differential prob-
lem ! (Chacén, Barnes, Knoll, Miley, LA-UR-99-7???, submitted
to J. Comput. Phys.)

e Problem statement:

of 0 [.8H(f) 18. (8°G(f)
'a_t—“ré?{f_év?‘_iﬁ'(aaaaf)] (13)

Here, f the distribution function, ¥ = (v ,v,), ' = 5%43, and e, m
are the charge and mass, G and H are the Rosenbluth potentials

which satisfy:

ViH = -8xf (14)

ViGg = H (15)

e A typical, Non-energy conserving, implicit time integration is:

fn+1,k _ fn _ _]_"_?_ - fn+1,kaH(fn+1'k_1)
At ov ov
18 (8GN s
207 ( ovar ! ) (16)




2-D Fokker-Planck cont.

e Here, k is an iteration index, and the effects of the Rosenbluth
potential are lagged on iteration level to produce a 9 banded matrix
instead of a dense matrix. For acceptable energy conservation

small time steps must be used.

e NOTE: MG preconditioned GMRES applied to solve Eq (16), is

by itself a new and useful contribution.

e We employ matrix-free Newton-GMRES methods to solve an en-

ergy conservative form,

niipy SR — O | a1 OH(S )
F(f") =77 + Tz | 5%
10 azG(fn+1’k) n+1lk
“5%"( T )}17)

e Eq (16), and the simple multigrid method of the previous section,

are used as a preconditioner, thus the dense matrix is never formed.

e The Rosenbluth potentials are solved as part of evaluating the

residual of Eq (17), as required from the Newton-GMRES itera-

tion.

10




2-D Fokker-Planck cont.

e MG preconditioner uses 2 V-cycles and the smoother is 5 passes of
symmetric Gauss-Seidel (SGS). Compare performance with single

grid 10 SGS preconditioner for 2 different time steps.

e For time steps on the order of the collision frequency MG precon-
ditioning is providing more than a factor of § reduction in GMRES

iterations and CPU time.

e Note: Energy conservative discretization in velocity space is very
important. See (Chacén, Barnes, Knoll, Miley, LA-UR-99-7?77,

submitted to J. Comput. Phys.)

11
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Multilevel Newton-Krylov Methods
for 3-D MHD

¢ Work with J.U. Brackbill starting with 3-D FLIP-MHD code (J.U.
Brackbill, J. Comput. Phys., vol. 96, 163-192, 1991).

e FLIP-MHD solves the field equations in a Lagrangian frame and

advection is done with a particle method.

oU dU
=g~ V'VU (1)
U=[p,V,B, | (2)

e Goal: Multilevel Newton-Krylov applied to non-Ideal MHD in 3-D

for trans-sonic, tans-Alfvénic Applications

e Start: Replace existing conjugate residual (CR) solver (P.J. O’Rourke
and A.A. Amsden LANL Report LA-10849-MS) with matrix-free
Newton~GMRES solver and benchmark performance on 3-D Ideal

MHD problem




Ideal MHD Equations in

Lagrangian Frame

%—}—p(V-V):O (3)
%+%[VP+JXB]=O (4
%?+(B.v)v+3(v-v)=0 (5)
%+§(V-V)=O (6)
JziVxB (7)

P = pRT (8)

e=C,T (9)

FLIP-MHD is a finite volume code. In this code p,e and B are at

cell centers and velocities, -V, are at cell vertices.




3-D MHD cont.

e For trans-sonic and trans-Alfvénic problems there is often a desire
to step over stiff time scales. In order to achieve this Eq (4 is
discretized implicitly,

A

= VP 4 (3 x B)™] (10)

Vn+1 =V™"

e Currently the ICE method is used to help remove time step re-
strictions due to sound waves (this approximation will be removed
by solving the energy equation coupled inside the Newton-Krylov
method) |

AP = ApRT + pRAT = ApRT (11)

Pn+1 = P"+ (pn+1 _ pn)RTn (12)

e Inserting Eq. (12) into Eq. (10 ) results in V**! being a function
of p"t! and B**!,

Vn+1 : Vn _ At
pn+1

[V(P" + (p™* — p")RT™) + (I x B)™*] (13)

e Then inserting this into implicitly discretized forms of Egs. (3)

and (5) results in

F,(p,B) = p"*' — o + Atp"™ (V. V™) (14)

Fg(p,B) = B*1—B "+ At[(B™*1.V) V14 B*(V.V™1)] (15)




3-D MHD cont.

e In 3-D this results in 4 coupled equations, F,, Fp,, Fpy, Fg, and

four unknowns p, Bz, By, Bz.

e Now we apply Newton’s method Jéx = —F(x) with

x = [p1, Bzy, By1, Bz, ...,pn, Bzn, Byn,Bzy]  (16)
F:[ pnFBvaBynFBZN"-a puaFanaFByNaFBZN] (17)

o matrix-free Newton-GMRES is used to drive the residual, F(x)

below some tolerance.

e Right preconditioning is used (same as with the previous CR method).
The block diagonal of the Jacobian (a 4x4 at each cell) is formed
numerically and the preconditioning step is block diagonal scaling

( same as before). For cell i the block diagonal is,
[ OF, OF, OF, OF, |
Op; 0Bz; 0By; 0Bz
aFBzi aFBzi aFBzi aFBzi
Op; 0Bz; 0OBy; 0Bz
aF, By; OF By; ar By; JaF, By;
dp; OBz; O8By; 0Bz
aFBzi 6FBzi aFB.Z.,: 8FBzi
dp; 0Bz; O0OBy; 0Bz |

e Problem: 3-D Kelvin-Helmholtz instability in the earth’s magneto-

sphere.




