
c L/MM?’- 99”1128

Abstract Submitted
for the MAR99 Meeting of

The American Physical Society

Sorting Category:

Multilevel Iterative Methods in Computational Plasma
Physicsl D.A. KNOLL, D.C. BARNES, J.U. BRACKBILL, L.
CHACON, G. LAPENTA, Los Alamos National Laboratory — Plasma
physics phenomena occur on a wide range of spatial scales and on a wide
range of time scales. When attempting to model plasma physics prob-
lems numerically we are inevitably faced with the need for both fine spa-
tial resolution (fine grids) and implicit time integration methods. Fine
grids can tax the efficiency of iterative methods and large time steps
can challenge the robustness of iterative methods. To meet these chal-
lenges we are developing a hybrid approach where multigrid methods
are used as preconditioners to Krylov subspace based iterative methods,
such as conjugate gradients or GMRES. For nonlinear problems we ap-
ply multigrid preconditioning to a matrix-free Newton-GMRES method
[1]. Results are presented for application of these multilevel iterative
methods to the field solves in implicit moment method PIC [2], multidi-
mensional nonlinear Fokker-Planck problems [3], and our initial efforts
in particle MHD.
[1] D.A. Knoll and W.J. Rider, LA-UR-97-4013, to appear in SIAM J.
Sci. Comput.
[2] D.A. Knoll, G. Lapenta and J.U. Brackbill, LA-UR-98-2159, to ap-
pear in J. Comput. Phys.
[3] D.A. Knoll, L. Chacon, D.C. Barnes, APS DPP meeting, Nov. 1998

1Work supported
LANL

❑ Prefer Oral Session
❑ Prefer Poster Session

Date submitted: November 12,

by U.S. DoE under DOE contract W-7405-ENG-36 at
Dana Knoll

nol@lanl.gov
LANL

1998 Electronic form version 1.4



DISCLAIMER

This repofl was,.prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United. States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



. .

1 Jacobian-Free Newton-KryIov Method

Newton’s method requires the solution of the linear system

Jk~uk = –F(uk), Uk+l = Uk+ Ch.lk; (1)

where J is the Jacobian matrix, F(u) is the nonlinear system of

equations, u is the state vector, and k is the nonlinear iteration

index .

In vector notation

(i, ~)’h element of the

(where i is the finite volume index), the

Jacobian matrix is,

~ _ 8Fi(u)
ilj —

~Uj “
(2)

Forming each element of J requires taking analytic or numerical

derivatives of Fi(U) with respect to u at each grid point. This

can be both difficult and time consuming.

1.1 Matrix-fkee Approximation

The Generalized Minimal RESidual (GMRES) algorithm (Saad

and Schultz, SIAM J. Sci. Comput. vol 7, 1986) is used to

solve Eq. (1). GMRES (or any other Krylov method such as

conjugate gradients) defines an initial linear residual, r. given

an initial guess, duo,
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ro = –F(u) – Jduo. (3)

Note that the nonlinear iteration index, k, has been dropped.

The 1~~GMRES iteration minimizes II JJu1+ F(u) 112with

a least squares approach. Jul is constructed from a linear combi-

nation of the Krylov vectors (search directions) {rO,JrOj(J)2~oj “.”>(J)Z–lro}~

which were constructed during the previous 1—1 GMRES itera-

tions. This linear combination of Krylov vectors can be written

as,

1–1

dul = dUo + ~ ~j(J~ro; (4)
“ j=o

where evaluating the scalars Qj is part of the GMRES iteration.

Upon examining Eq.(4) we see that GMRES requires the ac-

tion of the Jacobian only in the form of matrix-vector products,

which can be approximated by (Brown and Saad, SIAM J. Sci.

Comput. vol 11, 1990) ;

JV = [F(u + 6V) - l?(u)] / e, (5)

where visa Krylov vector (i.e. one of {ro, Jro, (J)2ro,.... (J)l–lro}),

and e is a small perturbation.
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Equation 5 is a first order Taylor series expansion approxi-

mation to the Jacobian, J, times a vector, v.

For illustration consider the two coupled nonlinear equations

F1(u1, Us) = 0, F2(u1, u2) = O. The Jacobian for this problem

is;

Working backwards

J=

from

.

F(u + EV) – F(u) =—

Eq.(5), we have;

F1(U1+6V1,U2+EV2 )–F1(U1,U2)

F2(U1+6V1,U2+EV2 )–F2(U1,U2)

.

Approximating F(u + w) with a first order Taylor series expan-

Fl(ul,u2)+6vlg+ ev2g–Fl(ul,u2)

sion about u, we have;

e

F2(ul,u2)+6vl~+ 6v2g–F2(u11u2)

.
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This expression can be simplified to;

= Jv

This matrix-free approach, besides its obvious memory ad-

vantage, has many unique capabilities.

nonlinear convergence without forming or

Namely, Newton-1ike

inverting the true Ja-

cobian.

To complete the description of this technique we provide a

prescription for evaluating the scalar perturbation. In this study

e is given by,

(6)

where IV is the linear system dimension and b is a constant whose

magnitude is approximately the square root of machine roundoff

(ZI= 10-5 for most of this study).
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. Preconditioned GMRES

● Compare to CG, work and storage, as a function of iteration

CG: work scales linearly, storage is constant

GMRES: work scales quadratically, storage scales linearly

● Restart, GMRES(k) : (results in constant storage)

An often employed “fix” is to store only k, Krylov vectors. If

linear convergence is not achieved after k iterations a new tempo-

rary linear solution is constructed from the existing k vectors and

GMRES is restarted. This restarting can significantly effect linear

convergence rate.

● Preconditioning: (AP-’)(Pg$) = p

Each GMR13S iterations

w

Step 1, Preconditioning

Step 2, “ matvec”:

requires a preconditioned” matvec”

= (AP-l)v (1)

(iterative solve):

Py=v (2)

w=Ay (3)

1
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2-Grid V-cycle

Iterative solution to Py = v with j- - fine, and c a coarse.

1.

. 2.

3.

4.

5.

Relax Pfy~ = v for y; (Jacobi, Gauss-Seidel ...)

Evaluate linear residual resf = v — Pf y;, and restrict to

coarse grid, rest = R * resf

Solve coarse grid problem, PcdyC = rest, for coarse grid

correction Jyc.

Prolongate coarse grid correction and update fine grid so-

lution vector, y; = y: + P * Jyc

Relax Pfy~ = v for y: (Jacobi, Gauss-Seidel ...)

What are P and Z ?

How does one form P= ?

Note: A multigrid (greater than 2) V-Cycle is realized by recur-

sively inserting steps 1-5 into step 3 until a “very coarse” grid

has been reached.
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Additive

Assume a simple 2-D 5

Correction Multigrid

point operator, penta-diagonal matrix.

Pf = (Plf, P2f, P3f, P4f, P5q (4)

(5)

Want solution to Py = v.

Pl{j * y~-~j + P2{j * ?Jij-~ + P3{j * 7Ji,j? ~ ? > )

+~4{j * Yi,j+l + ‘5{j * Yi+l,j = ‘%j)

Have initial fine grid solution y* ;

f – P2{j * !J~j-1TeSi,j = Vi,j

– Pl{j * YF-l,j ,9

P@j * y~j+~‘P3{j * y~j – , – Ps[j * y~+l,j9 (6)

Define (piece-wise constant

correction.

prolongation, T), for coarse grid

Yi,j = Y{j + ~YI,J

Yi+l,j = Yi?+l,j + ‘~I,J

Yi,j+l = Y~j+l + ~YI,J

Yi+l,j+l = y;+l,j+~ y 6YI,J

3
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Additive Correction Multigrid (cont.)

Add the four equations (perhaps volume weighted) for cells

(~,~), (~+ 1,~), (~,~ + 1), (~+ 1,~ + 1) that result from inserting

Eq. (7) into Eq. (5).

(resulting equation for cell (i,j) )

‘Uj * (YL1 j + 6YI-l,J) + ‘2{j * (Y~j-1 + 6YI,J-1)> Y 1

+Ps{j * (Y~j + ~YI,J) + Pd[j * (Y~j+l + ~YI,J)

After adding equations, collect like terms, using the definition

(also perhaps volume weighted) for the coarse grid residual.

(pieceTwise constant Restriction, 7?.)

f ft. + TeS;+l,j + ~es{j+l + ‘esi+l,j+l~res~,~ = resZ,J (9)

The following coarse grid correction equation results for cell

(I, J).
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Additive Correction Multigrid (cont.)

The coarse grid matrix is defined as follows,

P5; J f= Ps{+l,j + ‘5i+,j+l
>

AU Pfs

– P5; J
1

(11)

Thus a simple, straight forward to form, coarse grid matrix
. .

has resulted from simple choices for %3and 7.

This multigrid preconditioned is easy to add to an existing

preconditioned GMRES solver.

This simple multigrid concept originates from

Aziz, SIAM J. Num. Anal., vol 10, 1973 and

and Raithby, Num. Heat Tran., vol 9, 1986.

5
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Figure 2: Two-level finite volume grid
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Implicit Moment Method

Potential Equation

Work with G. Lapenta and J.U.

for CELEST2D and CELEST3D

J. Comput. Phys.j vol 149 1999).

Brackbill on elliptic field solver

(Knoll, Lapenta, and Brackbill,

Maximum allowable time step is often governed by the ability to

solve the electrostatic potential equation [H.X. Vu and J.U. Brack-

bill, Comput. Phys. Comm., Vol. 69 (1992)]:

V . [(1+ /@)) ● V#] = p(?). (12)

Here, F is the position vector, p(F) is a spatially varying electric

susceptibility TENSOR, and p(r~ is the space charge.

The potential equation is discretized using

general coordinate system, which produces

finite volumes, in a

a 9-point numerical

stencil in 2-D and a 27-point stencil in 3-D (Sulsky and Brackbi

J. Comput. Phys. , vol 96, 1991).

1,

The major difficulty arises from the fact that the off diagonal com-

ponents of p(~, which are proportional to 6$ cause the resulting

matrix equation for # ( A# = p ) to be NON-SYMMETRIC.

In some cases diagonal dominance may be lost.
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RESULT 1

A single grid Jacobi based preconditioned is compared to a multi-

grid

The

Jacobi based preconditioned.

number of sweeps (Jacobi iterations) is 3

5 GMRES vectors are stored and restart is employed with a linear

convergence tolerance of 1.0 x 10–G.

Same time step on all grids, data averaged over 3 time steps

UNIFORM grid, CRAY Y-MP

Single Grid (SG) Multigrid (MG) CPU ratio

Grid Precond. Precond. SG / MG

GMRES Its. GMRES Its.

32 X 32 48 8.7 1.8

64 X 64 116 9 2.8

128 X 128 398 11 5.65
I

256 X 256 691 9 10.5 I

7

—



-.

.
.

Grid

RESULT 2

NON-UNIFORM grid (matrix may not be diagonally dominant)

A single grid Jacobi based preconditioned is compared to a multi-

grid Jacobi based preconditioned.

The number of sweeps (Jacobi iterations) is 1

5 GMRES vectors are stored and restart is employed with a linear

convergence tolerance of 1.0 x 10–G.

Same time step on all grids, data averaged over 3 time steps

32 X 32

64 X 64

128 X 128

256 X 256

Single Grid (SG) Multigrid (MG)

Precond. Precond

451 24

1672 39.5

6217 64

7322 39

CPU ratio

SG / MG

8.2

11.5

14.5

19.8

● On 128x 128, with 10 GMRES vectors 39 iterations required, with

20 GMRES vectors stored 33 iterations required.
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Multilevel Preconditioning and Newton-Krylov

methods for 2-D Fokker-Planck Problems

. Work with L. Chac6n and D.C Barnes on an efficient and energy

conserving nonlinear solver for 2-D Fokker-Planck (single species,

ions only) Problems. This is a nonlinear integro-differential prob-

lem ! (Chac6n, Barnes, Knoll, Miley, LA-UR-99-????, submitted

to J. Comput. Phys.)

● Problem statement:

af

[

3H(f) 1 B
:“ f ~~ -~~””E = % (~:~)f)l“3)

Here, f the distribution function, Z = (vl, Vr), I’ = ~, and e, m

are the charge and mass, G and H are the RosenbIuth potentials

which satisfy:

V;H = –/J*f

V:G =H

(14)

(15)

● A typical, Non-energy conserving, implicit time integration is:

fn+l,k _ fn

At =
–r

[
& . fn+l,AaH(f n+l,k-1)

W

la

(

&G(fn+l,k-1)

‘z% “ Wa$
fn+l,k)1 (16)
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2-D Fokker-Planck cent.

Here, k is an iteration index, and the effects of the Rosenbluth

potential are lagged on iteration level to produce a 9 banded matrix

instead of a dense matrix. For acceptable energy conservation

small time steps must be used.

NOTE: MG preconditioned GMRES applied to solve Eq (16), is

by itself a new and useful contribution.

We employ matrix-free Newton-GMRES methods to solve an en-

ergy conservative form,

F(fn+l~k) = fn+lIk _ p
a

[

+ I&. f ~+l,ka~(fn+l’k)
At w

la

(

&G(fn+Lk)

‘m “ )1~;~; f ‘+1’k q

Eq (16), and the simple multigrid method of the previous section,

are used as a preconditioned, thus the dense matrix is never formed.

The Rosenbluth potentials are solved as

residual of Eq (17), as required from the

tion.

10

part of evaluating the

Newton-GMRES itera-
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2-D

● MG preconditioned

Fokker-Planck cent.

uses 2 V-cycles and the smoother is 5 passes of

symmetric Gauss-Seidel (SGS). Compare performance with single

grid 10 SGS preconditioned for 2 different time steps.

● For time steps on the order of the collision frequency MG precon-

ditioning is providing more than a factor of 5 reduction in GMRES

iterations and CPU time.

● Note: Energy conservative discretization in velocity space is very

important. See (Chac6n, Barnes, Knoll, Miley, LA-UR-99-????,

submitted to J. Comput. Phys.)

11
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Multilevel Newton-Krylov Methods

for 3-D MHD

..

.

‘

.

1

k

Work with J.U. Brackbill starting with 3-D FLIP-MHD code (J.U.

Brackbill, J. Cornput. Phys., VOI.96, 163-192, 1991).

FLIP-MHD solves the field equations in a Lagrangian frame and

advection is done with a particle method.

(1)

u = [P,V,B, E] (2)

Goal: Multilevel Newton-Krylov applied to non-Ideal MHD in 3-D

for trans-sonic, tans-Alfv6nic Applications

Start: Replace existing conjugate residual (CR) solver (P.J. O’Rourke

and A.A. Amsden LANL Report LA-10849-MS) with matrix-free

Newton-GMRES solver and benchmark performance on 3-D Ideal

MHD problem
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Ideal MHD Equations in

Lagrangian Frame

dp
~+p(v”v)==o

~+!-[VP+JXB]=O

dB
~+(Bc V)V+B(V” V)=O

de P
~+--(v”v)=o

1
J=–VXB

P = pRT

(3)

(4)

(5)

(6)

(7)

(8)

E = CUT (9)

FLIP-MHD is a finite volume code. In this code p, E and B are at

cell centers and velocities, V, are at cell vertices.

2
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3-D MHD cont.

● For trans-sonic and trans-A1fv&nic problems there is often a desire

to step over stiff time scales. In order to achieve this Eq (4 is

discretized implicitly,

~n+l = Vn - ~[V~n+l + (J X B)”+l]
P

(lo)

● Currently the ICE method is used to help remove time step re-

strictions due to sound waves (this approximation will be removed

by solving the energy equation coupled inside the Newton-Krylov

method)

AP = ApRT +- pRAT w ApRT (11)

P“+l = p“ +- (P”+l _ #)RTn (12)

● Inserting Eq. (12) into Eq. (10 ) results in Vn+l being a function

of pn+l and B“+l >

Vn+l = Vn
- &[V(Pn + (Pn+l

P
– pn)RTn) + (J X

● Then inserting this into implicitly discretized forms

and (5) results in

FP(p, B) = pn+l– p“ + Atpn+l(V . Vn+l)

B)n+l] (13)

of Eqs. (3)

(14)

FB(p, B) = Bn+l–Bn+At[(Bn+ l”V)Vn+l+Bn+l(V *Vn+l)] (15)

3
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3-D MHD cont.

In 3-D this results in 4 coupled equations,

four unknowns p, l?x, By, Bz.

~p, $“B.,FBV, FB. and

Now we apply Newton’s method J6x = –F(x) with

x = [PI,Bxl, BYl, ~z’1,....pN. BXN, BYN, BZN] (16)

I? = [~P,, &al ~FBylyFBZl,“.”,FpN,FBZN j‘BYN ) FBZN] (17)

matrix-free Newton-GMRES

below some tolerance.

is used to drive the residual, F(x)

Right preconditioning is used (same as with the previous CR method).

The block diagonal of the Jacobian (a 4x4 at each cell) is formed

numerically and the preconditioning step is block diagonal scaling

( same as before). For celI i the block diagonal is,

Di =

8FPi 8FPi 8FP~
c9Bzi aByi 8Bzi

aFB=. 8FBZ. 8F&.
8Bxi 8Byi 6’Bzi
c?FBY. 8FBYi aFBYi
t3Bzi 8Byi 8Bzi

6’&’Bz. 8F’Z. 8FBZ.

t?Bzi dByi aBzi
J

Problem: 3-D Kelvin-Helmholtz instability in the earth’s magneto-

sphere.

4


