
,
. c

Approved forpubfic release;
distribution is urvimited.

@cq/Eo
$FIJfllh
%p,

i%le: Optimizing Transformations of Stencil Operations for Parallel
Cache-based Architectures

Author(s): Federico Bassetti, CIC- 19
Kei Davis, CIC-19

Submitted to: 1999 International Conference on par~el and Distributed

Processing Techniques and Applications
June 28- July 1, 1999
Monte Carlo Reso~ Las Vegas, NV

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative actiordequal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratov requests that the publisher ident”~ this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supporta academic freadom and a researchers right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

DISCLAIMER

This report was,.prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disciosed, or
represents that its use wouid not infringe privateiy owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or impiy its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or refiect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

. c

Optimizing Transformations of Stencil Operations for Parallel

Cache-based Architectures
ABSTRACT

Federico Bassetti and Kei Davis

Scientific Computing Group, CIC-19,
Los Alamos NM, 87545, USA

Tel: (505) 667-7492, Fax: (505) 667-1126
{fede,kei}@lanl.gov

Keywords: parallel stencil operations, opti-
mizing transformation, parallel cache-based ar-
chitectures.

Abstract

Thk paper describes a new technique for opti-
mizing serial and parallel stencil- and stencil-
like operations for cache-based architectures.
This technique takes advantage of the seman-
tic knowledge implicitly in stencil-like compu-
tations. The technique is implemented as a
source-to-source program transformation; be-
cause of its specificity it could not be expected
of a conventional compiler.

Empirical results demonstrate a uniform fac-
tor of two speedup. The experiments clearly
show the benefits of thk technique to be a
consequence, as intended, of the reduction in
cache misses. The test codes are based on
a 5-point stencil obtained by the discretiza-
tion of the Poisson equation and applied to
a two-dimensional uniform grid using the Ja-
cobi method as an iterative solver. Results are
presented for a 1-D tiling for a single proces-
sor, and in parallel using 1-D data partition.
For the parallel case both blocking and non-
blocking communication are tested- The same
scheme of experiments has been performed for

the 2-D tiling case. However, for the parallel
case the 2-D partitioning is not discussed here,
so the parallel case handled for 2-D is 2-D tiling
with 1-D data partitioning.

1

All
the

Introduction

general purpose computer systems, from
ubiquitous PC to the largest supercomput-

ers, rely on a multilevel memory hierarchy to
achieve a reasonable fraction of the theoreti-
cal performance of the CPU core. Excluding
the bottom of the hierarchy (disk storage and
backing store) this typically comprises a reg-
ister file, one or more levels of cache, and a
nominal main memory; on the largest of such
machines, e.g. the DOE ASCI Blue distributed
shared memory multiprocessor, main memory
is further divided into local&on-box, faster,
smaller-and remote-off-box, slower, larger. It
is clear to those that create the large-scale sci-
entific (numerically intensive, array-oriented)
applications for such large parallel machines
that careful data management with respect to
inter-processor communication and the mem-
ory hierarchy is crit ical to achieving acceptable
or even useful—literally more than a few per-
cent of peak theoretical—performance.

In the context of larg-scale parallel scien-

1

.

tific applications, research and experience has
shown that the greatest performance gains are
realized by directing the most effort toward ef-
ficient utilization of the uppermost levels of
the memory hierarchy, namely the register file
and the L1 (primary) cache, and data distri-
bution/interprocessor communication. Bench-
marking has shown that even more than is the
case for more mainstream application areas, for
numerical codes the bulk of the computation
is represented by a very small fraction
code.

of the

2 Stencil-like Operations

For several families of numerical algorithms
the dominant computational kernels are stencil
and stencil-like operations, made conspicuous
and amenable to parallelization and optimizing
transformation by their repetitive and regular
access of (typically) very large arrays.

Numerical algorithms used for solving par-
tial differential equations—multigrid methods
and those entailed by linear solvers—are rich
with stencil-like operations to effect smoothing
and relaxation. The distinguishhg characteris-
tic of stencil-like operations is the evaluation of
a computationally inexpensive expression, for
each element of a (possibly multi-dimensional)
array, in which the arguments are all of the
elements within a given radius of that element.

In this paper Jacobi relaxation is used as
a canonical example, using a two-dimensional
array and a five-point stencil (diagonal ele-
ments are excluded). A single iteration or
sweep of the stencil computation is of the form

for (int i=l; i != I-1; i++)
for (int j=l; j != J-1; j++)

A[iI [j] = wl*A[i-11 [j] + w2*A[i+l] [j] +
w3*A[i] [j-l] + w4*A[i] [j+l] ;

where A is dimensioned [0. .w, O. . nj]. Gen-
erally several sweeps are made, with A and B
swapping roles to avoid copying. In a paral-

lel environment the arrays are typically dis-
tributed across multiple processors.

3 Efficiency

Naively implemented, stencil operations are
severely memory-bound, hence very inefficient,
even in the presence of a cache. In essence the
problem is that the arrays, being many times
the size of the cache, cycle through the cache
with minimal (only the overlapping of the sten-
cil arguments) spatial or temporal reuse. Hard-
ware ‘prefetching’ of cache lines or blocks, and
compiler-inserted prefetch instructions on su-
perscalar architectures, is of little help [1].

Optimizing compilers attempt to improve
performance by Ming--reordering array access
such that one or more blocks remain cache res-
ident for several sweeps. Again, in this context
improvement is measurable but minimal [1].

Our target machine is the DOE ASCI Blue
SGI Origin 2000 distributed shared memory
multiprocessor, for which the N MB L1 cache
has access time of one clock cycle; the N MB
L2 cache 10 clock cycles, and the local main
memory 80 clock cycles. Analysis and experi-
ments show that for perfectly uniform sequen-
tial single-array access the amortized cost is
approximately 6 cycles per wor~ for simple Ja-
cobi relaxation approximately 10 cycles. This
latter’is entirely the cost of memory access: on
this superscalar architecture the stencil com-
putation is effectively free, the arithmetic is
performed in (instruction-level) parallel with
memory accesses. In principle average access
time could be ciose to one cycle.

Elsewhere we have shown how processor
time can be traded for communication time [2]
for net performance gain, and shown simple se-
quential optimizations (also applicable in the
parallel case), to give significant improvement
in performance. Others have also proposed
various optimizations in this context [5, 3, 4].
This paper describes a new technique which we
call sliding block temporal tding, and give per-

2

.
,. .

formance figures for a number of architectures:
a network of workstations, single workstation,
and the ASCI Blue Origin 2000.

4 Sliding Block

Following is a sketch of the algorithm for a
2D tiling for a 2D Jacobi 5-point stencil. The
terms are defined as follows. Mixed-Relaxation
performs the relaxation on points that are on
the frontier of adjacent blocks. In order to
compute correct results the needed values were
previously stored. Thus, one of the four points
comes from a different array (Figure 1). Each
dimension of the bIock has an associated stor-
age array. Jacobi-.t?elaxatiion performs the Ja-
cobi 5-point stencil relaxation using only the
interior points of a block. Store stores the
points on the frontier of a block and its ad-
jacent” blocks. Slide modifies the position of
the block so that the points on the frontier of
the current block can overlap with points on
the frontier of adjacent blocks.

INPUT

Problem Size: X_size, Y-size

Total Iteration: Titer

Block Iteration: Biter ,

Block Size: X-block, Y_block

RSPSAT T_iter / B-iter times

Move along X dimension in X_block increments

Move along Y dimension in Y_block increments

REPEAT B-iter times

Mixed-Relazat ion along X-edge

Mixed_Relexation along Y-edge

JacobiJtelszat ion on

cnrrent block (X-block, Y-block)

Store Y-edge

Store X-edge

Update solution on
current block (X_block, Y_block)

Slide current block

5 Performance

Only a sketch of performance results are given
here. Figure 2 shows the reduction in L1
misses; Figure 3 shows that the optimization
gives slightly iess than a factor of two improve-
ment over compiler tiling (somewhat better

than a factor of two is obtained if the compiler
does not perform tiling).

6 Content of Full Paper

The full paper will present more detail on
the following: motivation, development, and
description of the algorithm, and comparison
with related work; the memory-centric perfor-
mance model and its comparison to empirical
results; issues related to the data layout and to
determining best blocking partitioning, and a
description of our program transformation tool
ROSE used to automate this and other opti-
mization. Performance data on various hard-
ware platforms and with various compilers will
be presented as graphs and tables.

7 Future Work

There is scope for generalizing the algorithm
to N-dimensional tiling with M (J/f < IV)
data partitioning. While the analytical per-
formance predictions agree with the empirical
data, it will be revealing to make use of sophis-
ticated architectural simulators to both study
potential performance gains on proposed hy-
pothetical architectures as well as validate the
model. Also of interest is the performance im-
pact when using different compilers: though
not discussed here, register allocation has a sig-
nificant impact on both overall performance,
and optimized relative to unoptimized perfor-
mance.

The parallel aspect of this technique is a sub-
ject of ongoing investigation. Currently only
explicit message passing using the MPI library
has been evaluated; in future other paradigms
such as threads and OpenMP pragmas will be
investigated.

References

[1]Federico Bassetti, Kei Davis, Madhav

3

.
‘. .

Figure problem.

2.5+4

2.-9

~

.?3
, se..

0.0

Problem Size: i M P&Its

,“0s3 .4060 E.37”0

M* S1- - Itontic+n

Figure 2: L1 misses as a function of block Figure 3: CPU cycles as a function
size/number of iterations. size/number of iterations.

[2]

Marathe, and Dan Quinlan. Loop trans-
formations for performance and message
latency hiding in parallel object-oriented
frameworks. In International Confer-
ence on Parallel and Distributed Processing [3]

Techniques and Applications (PDPTA ‘98),
1998.

Federico 13assetti, Kei Davis, and Dan
Quinlan.

[4]
Optimizing transformations

of stencil operations for parallel object-
oriented scientific frameworks on cache-
based architectures. In D. Caromel et al., [5]
editor, International Scientific Comput-

>

of block

ing in Object-Oriented Parallel Environ-
ments, ISCOP33 98, volume 1505 of LIVCS.
Springer, 1998.

Craig Douglas, Johathan Hu, Ulrich Reude,
and Marco Bittencourt. Cache based multi-
grid on unstructured two dimensional grids,
1998.

Uklch Reude. Iterative algorithms on
high performance architectures. In EU-
ROPAR ’97, LNCS. Springer Verlag, 1997.

Christian Weiss, Markus Kowarschik, Ul-
rich Ruede, and Wolfgang Karl. Cache-

4

aware multigrid methods for solving pois-
son’s equation in two dimensions, 1999.

