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Neutron Chain Length Distributions in Subcritical Systems

Steve Nolen and Gregory D. Spriggs
Applied Theoretical and Computational Physics Division
Los Alamos National Laboratory
Los Alamos, NM 87544
sdnolen@lanl.gov ; gspriggs@lanl.gov

Abstract

In this paper, we present the results of the chain-length distribution as a function of % in subcritical
systems. These results were obtained from a point Monte Carlo code and a three-dimensional
Monte Carlo code, MC++. Based on these results, we then attempt to explain why several of the
common neutron noise techniques, such as the Rossi-o and Feynman’s variance-to-mean
techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors.

1 Introduction

Numerous techniques for monitoring subcriticality in multiplying systems have been attempted over
the past 50 years. One general class of these techniques is based on neutron noise theory (Williams,
1974) in which one attempts to observe correlated pairs of prompt neutrons belonging to the same
fission chain. (A neutron chain is defined herein as all the neutrons spawned over time from a single
initiating neutron.) In order to observe correlated pairs, it is, of course, necessary that the detector
efficiency be high enough to allow for the detection of two or more neutrons from most of the
chains that are expected to occur at a particular value of k. Therefore, to better understand detector
efficiency requirements, the chain-length distribution as a function of &, has been calculated using a
point Monte Carlo code and a three-dimensional Monte Carlo code that simulate the random
propagation of promipt fission chains in subcritical assemblies. Previous work in this area has been
conducted by Mihalczo et al. (Mihalczo et al., 1991) in which chain lengths in a BWR for £#=0.9
were studied. In their work, however, they did not discuss the effect of detector efficiency on the
ability to detect correlated pairs of counts. In this work, we have broadened the range of study to
include £A=0.3 to £=0.999. From these results, we then explain why some neutron noise
measurements are difficult to perform in highly subcritical systems using low-efficiency detectors.

2 Theory

2.1 Point Model

In every multiplying system, source neutrons originating in or near the system initiate prompt
fission chains. These source neutrons appear from spontaneous fission sources, (o,n) sources, start-
up sources, (y,n) sources, delayed neutron sources, etc. Once initiated, these prompt fission chains
can die out very quickly or can propagate for relatively long periods of time in which millions of
fission neutrons can be produced before the prompt fission chain eventually dies out. The
propagation of these neutron chains is nearly identical to the process encountered in a much older
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problem that was previously analyzed in the mid-1800s dealing with the growth of families (Harris,
1989). In what Harris denotes as the Galton-Watson process, a family is followed through several
generations with each generation having some associated probability distribution function for
producing an integer number of male offspring. The number of generations passing before the
surname is lost becomes the question of interest.

Without too many modifications, the neutron-chain process encountered in a multiplying system
should exhibit mathematical traits similar to this historical problem. For example, it is assumed in
both problems that the generations (whether they be neutrons or off-springs) act independently of
any other generation (i.e., form a Markov chain) and that the number of neutrons or off-springs
produced in one generation is independent of the existence of any other members. Because of these
similarities, we assume that the solution of the Galton-Watson problem can be applied to the
propagation of prompt fission chains as well. However, because of differences in the probability
distribution required to produce 0, 1, 2, 3, etc. offspring, we have chosen to analyze the neutron
chain length problem numerically rather than analytically.

To ascertain a quantitative measure of the neutron chain length distribution of prompt fission chains
as a function of subcriticality, a simple Monte Carlo computer code was written at Los Alamos
National Laboratory that simulates the evolution of prompt fission chains. In this Monte Carlo
code, it is assumed that all fission neutrons have the same probability, P, of causing another fission.
That is,

P == M
VP

where K is the prompt multiplication factor [defined as K=k(1-4,;) where k is the effective
multiplication factor and £ is the effective delayed neutron fraction], and v, is the average number

of prompt neutrons released per fission. It is also assumed that the source neutrons that initiate the
fission chains correspond to the equivalent-fundamental-mode (EFM) source neutrons (Spriggs et
al., 1999) and, as such, have the same probability of causing a fission as the fission neutrons. When
a neutron interaction results in a fission event, then the number of prompt neutrons released from
that fission is sampled from the neutron number distribution (i.e., P(v) vs. v). In our point model
we have chosen to use Frehaut’s Gaussian model because of its general applicability to a large
number of isotopes and a wide range of ¥, (Frehaut, 1989).

Although Frehaut’s model is an adequate representation to the neutron number distribution for most
isotopes, there were two inconsistencies that had to be corrected prior to its use in the point Monte
Carlo model. First, the probabilities of releasing 0 through 7 neutrons (which we arbitrarily set to be
our maximum number of neutrons released per fission) did not add up to 1.0. And second, the
neutron number probabilities, multiplied by their corresponding v values and then summed, did not
yield the same average V, used to generate the original neutron number probabilities. Table 1

presents an example of this for an input value of v, =2.42.




Table 1. Frehaut's unmodified multiplicity distribution

v, =242

Probability
0.0436
0.1720
0.3313
0.3051

- 0.1296
0.0337
0.0048
0.0003

~N N bW~ Ol

Total 1.0205
v, 2.4680

The problem now becomes to preserve ¥, while producing a normalized probability distribution. -

To correct these two deficiencies, the shape of the probability distribution had to be altered slightly.
This was accomplished as follows. First, the distribution was normalized before computing the new
7,. Then the values of the probabilities for +=0 and v=7 were adjusted to retain the normalization
while increasing or decreasing the computed ¥, to match the input value. In some cases, the
adjustment to the tail probabilities, Eq. (2), exceeded their magnitude and the remainder of the
adjustment was applied to probability associated with the next inner vvalue.

P, =P, +AV
—_ @
P, =P, —Av
where P, 1is the probability of having v, neutrons emerge from fission,
AT/ — I_/actual - —l;computed (3)

Ve =V,

and v, < v,. This approach of adjusting values in the tails was adopted to lessen the impact on the

shape of the curve because the last values modified will be those with the highest probabilities. The
results of this methodology appear in Table 2.




Table 2. Corrected distribution

T/p =242
\ Normalized Corrected

0 0.0428 0.0425

1 0.1685 0.1685

2 0.3246 0.3246

3 0.2990 0.2990

4 0.1270 0.1270

5 0.0330 0.0330

6 0.0047 0.0047

7 0.0003 0.0006

Total 1.0000 1.0000

v, 2.4184 2.4200
Correction 0.0016

2.2 Validation of Point Model

The point Monte Carlo code was run for a user specified number of source neutrons (1 < S < 2x10°).
The chain length distribution was then obtained by dividing the number of times a chain of a
particular length was observed by the number of source neutrons specified in the problem. One
means of verifying the accuracy of the chain length distribution was to compute the multiplication
of the system, M, by integrating over the entire distribution. The system multiplication is identically
equal to

1

-k,

M = ) 4)

where &, is the system multiplication factor. M is also identically equal to the average chain
length. In a multiplied fixed source Monte Carlo algorithm, the calculated A will only match that
predicted in Eq. (4) when the source neutrons are distributed as the fission source fundamental
mode. Because the point model assumes that the source neutrons are equivalent fundamental mode
source neutrons, then the multiplication calculated by integrating of the chain length distribution
agreed with Eq. (4).

We also validated the point solution by comparing its chain length distribution with the chain length
distribution obtained using a 3D Monte Carlo code, MC++, developed at the Los Alamos National
Laboratory (Lee et al., 1997). MC++ tracks particles across any arbitrary three-dimensional
geometry using an Eulerian mesh. When computing the chain-length distribution, the code is run in
the multiplied fixed source mode using a user specified source distribution corresponding to either a
point source, a uniform source in a shell, or a uniform source in the fissile material. Each neutron in
MC++ is tracked until it is either captured or escapes, while new neutrons are introduced after
fission and (n,xn) events. When computing the chain length distribution, MC++ uses a similar chain
generation mechanism based on Frehaut’s distributions. MC++ also computes either k. or the
prompt multiplication factor, K, depending on whether the specific cross section library provides
vor v However, the current code does not store the spatial locationis of the subsequent fission

prompt*



source points from the final cycles. Hence, a fundamental mode source cannot be simulated.
Therefore, the number of source particles run in MC++ had to be converted to an equivalent
fundamental source strength in order to perform the comparison. Hence, the g* factor for the given
source distribution used in the simulation had to be determined. This was accomplished by taking
the ratio of the calculated multiplication to that predicted using Eq. (4) based on a k-eigenvalue
solution. That is,

M
* computed
= 5
g M, )

where the k-eigenvalues reported in this paper were based on v,,,,,. To compare the two chain
length distributions, it was necessary to multiply the MC++ chain lengths by their probability of
occurrence, divide the value by g*, and sum to find the multiplication. One such comparison is
shown in Figure 1 for a spherical metal uranium system in which two different fixed source
distributions were assumed in MC++: a point source, and a uniform spatial distribution. Using the
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Figure 1 Distribution comparison between point model and MC++



“values of K=0.5 and V,=2.84 as calculated per MC++ using a one-group cross section set

corresponding to an analytical benchmark (Sood, 1998), the corresponding point model chain length
distribution was also calculated.

Figure 1 clearly shows that the spatial distribution of the neutron source has an impact on the chain
length distribution. As expected, the probability of seeing a chain of only 1 neutron decreases as the
average importance of the source neutrons increases beyond that of EFM neutrons. However, the
area under the curve, M, is the same when the probabilities are reported per EFM source neutron.
The reduction in the contribution from shorter chain lengths is equally compensated by an increase
in the probability of observing chains of length greater than one. This shift in the chain length
distribution makes physical sense because the point source would, of course, have a lower
probability of seeing a chain length of 1 while having a greater probability for longer chains as
compared to an EFM source.

Although there are small differences in the chain length distribution as predicted by the point model
and the 3D solution, the point model yields a reasonably accurate representation of the chain length
distribution. When coupled with the significantly faster running time of the point model code, we
have chosen to study the chain length distribution as a function of K using the point model. These
results are presented in the following section.

3 Results

Figure 2 shows the results of the chain length distribution in a plutonium system for five different
prompt multiplication factors. As can be observed, the chain length distribution near delayed
critical (i.e., K=0.999) follows the classical solution obtained from the Galton-Watson problem for
K=1.0; that is, the probability, P(L), of obtaining a chain length L falls off as

C

P(L)Niﬁ

(6)

where C is a proportionality constant that is dependent on the neutron number distribution.

When X is less than 1.0 (i.e., below prompt critical), it is theoretically impossible for a prompt
neutron chain to grow to infinity, and the chain must eventually die out. This effect is clearly
demonstrated in Fig. 2 in which we observe that the maximum neutron chain length for K=0.999 is
~100 million neutrons. We also note that when K<1.0, the maximum neutron chain length decrease
dramatically.
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Figure 2. Chain length distribution for a plutonium system.

4 Discussion

When performing neutron noise measurements, such as Rossi-o and variance-to-mean techniques,
one attempts to achieve high neutron-detection efficiency by placing a detector in a region of high
flux or by distributing several detectors throughout the system and then summing their signals
together. Even under the best of circumstances, it is usually difficult to achieve detector efficiencies
greater than 10®. Hence, with an efficiency this low, the probability of detecting several fission
neutrons belonging to the same fission chain is very low for those fission chains that spawn less
than 10° neutrons. In the vicinity of delayed critical, this, of course, is not a problem; chains as long
as 10° neutrons occur with reasonable frequency. With a chain of that length, it is expected that, on
an average, 1000 neutrons would be detected. However, if K were to drop much below 0.7, we note
that the maximum chain length would decrease to 1000 or less. Consequently, with a detector
efficiency of 10, one would not expect to detect very many correlated pairs of counts for this
combination of K and detector efficiency.

The ability to perform a neutron noise measurement with a low-efficiency detector in a system that
is far subcritical is further hampered by the presence of a normal background of uncorrelated counts
(i.e., random counts from other source neutrons and/or unrelated fission chains spawning elsewhere




"in the system). If the uncorrelated background is significant, such as in a plutonium system, the
correlated counts may only represent a small percentage of the total signal. Hence, the ability to
resolve the correlated counts from the uncorrelated counts becomes a real challenge.

5 Conclusions

Although the point Monte Carlo model described in this report is useful for gaining a basic
understanding of neutron noise theory, the 3D Monte Carlo code, MC++, is a better choice for
modeling and analyzing most real world problems. Yet, while MC++ can be generally applied to
any system for which the cross sections are available, tracking a large neutron population can
become a problem. Unlike the point model, which only follows one source neutron at a time (or
one per processor when running in parallel), MC++ actually follows all of the source neutrons
simultaneously. To see extremely rare chains, it requires at least as many neutrons as the inverse of
the probability. To see them with any frequency means even more initial source neutrons. While
MC++ can handle this in some degree by batching the source neutrons into separate cycles, it will
still run mto memory problems when K nears 1.0 and longer chain lengths become more frequent.
Because MC++ stores a variety of attributes for each particle, memory problems begin when
attempting to simultaneously track ~5 million neutrons on LANL’s Bluemountain platform. No
such memory limits associated with K have been seen for the point model, but speed is naturally
affected in both. '

In conclusion, both the point Monte Carlo code and the 3D Monte Carlo code, MC++, have
provided additional insight into neutron noise theory. In addition to allowing us to study the spatial
effects of the initial source distribution, MC++ also provides the means for studying energy and
angular distribution effects of the source. For its part, the point model has been shown to be
invaluable for exploring the chain length distributions as a function of K, particularly for values of
K in the vicinity of prompt critical in which a large number of source particles are necessary to
establish an accurate distribution. In combination, both Monte Carlo simulations of prompt fission
chains have provided some means of determining when a neutron noise technique can be performed
successfully with low-efficiency detectors.
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