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Preface

I’'m excited by the power density and efficiency recently achieved by thermoacoustic en-
gines and refrigerators, and fascinated by new developments in thermoacoustics: deliberate
superposition of steady flow, mixture separation via oscillating thermal diffusion. At night
I often dream of a future world in which thermoacoustics is widely practiced. One dream
had loudspeaker-driven thermoacoustic heat pumps atop the hot-water heaters in half the
homes in Phoenix, pumping heat from room air into the hot water—the production of a little
cooling in the homes was a nice by-product. Another dream featured a small thermoacoustic
system next to the liquid-nitrogen and liquid-oxygen dewars in back of our local hospital;
this system had a gas-fired thermoacoustic engine driving several pulse-tube refrigerators,
which provided the cooling necessary to liquefy air, distill it to produce purified nitrogen
and oxygen, and reliquefy them for storage in the dewars. A third dream had hundreds
of enormous combustion-powered thermoacoustic natural-gas liquefiers arrayed on an off-
shore platform, using the methane itself as the thermoacoustic working gas and filling a
vacuum-insulated supertanker with LNG for transport to distant shores. Yet another dream
" showed an extensive thermoacoustic apparatus on Mars—a thermoacoustic engine driven by

a small nuclear reactor produced 100 kW of acoustic power, which was piped to assorted
thermoacoustic mixture separators and refrigerators, splitting atmospheric carbon dioxide
and mined frozen water into pure Hy and O, and liquefying these for use in fuel cells on
“each of the many robots scooting around building a colony for eventual human habitation.

The dreams are always different, but they have some features in common. First, they
all feature low-tech hardware: big pipes and heat exchangers; welded steel, conventional
shell-and-tube heat exchangers, molded plastic, etc. Second, I know that this simplicity
is deceptive, because the technical challenge of designing this easy-to-build hardware is
extreme, Third, there are no people in these dreams...because I know there are few people
who are skilled in thermoacoustic engineering today. So I wake up, afraid that none of this
will ever happen, afraid that integrated thermoacoustic process engineering is an opportunity
that will never have a chance. So, I get up and I write another few paragraphs of this book,
hoping to help newcomers learn basic thermoacoustics quickly, so they can design, build,
and debug wonderful thermoacoustic systems of all kinds.

This is an introductory book, not a full review of the current status of the field of
thermoacoustics. It is evolving from my March 1999 short course on this subject at the Berlin
acoustics méeting. The hardware examples used here to illustrate the elementary principles
are thermoacoustics apparatus developed at Los Alamos or with our close collaborators,
and the mathematical approach to the gas dynamics and power flows closely follows that
pioneered by Nikolaus Rott. (Time pressure induces me to stick with topics most familiar to
me! and, indeed, the Los Alamos approach to thermoacoustics has been quite successful.)
Many aspects of thermoacoustics will be introduced, in an attempt to help the reader acquire
both an intuitive understanding and the ability to design hardware, build it, and diagnose
its performance.

At Los Alamos, we have found it most productive to stay focused on experimental and
development hardware, while maintaining several abstract points of view including phasor
display of acoustic variables, a mental picture of gas motion, and an entropy-generation
perspective on the second law of thermodynamics. Intuition is important because it helps
us humans organize our thoughts. Mathematics is unavoidable, because it is the common




language with which scientists and engineers communicate, and it allows us to interpolate
and extend our knowledge quantitatively. But experiment is the source of all real truth,
so the experiments are our most important and time-consuming activity at Los Alamos.
Weaving intuition, mathematics, and experimental results together in this book, I will at first
put the most emphasis on the mathematics, because without this common vocabulary we
can get nowhere. Intuition gets second-highest emphasis, as appropriate for an introductory
treatment. Experimental results get the least emphasis in this text. But please remember
that the mathematical and intuitive discussions presented here are actually distillations of
many experiments spanning many decades in many countries.

Many readers will find that they have only part of the background needed to learn ther-
moacoustics. Mechanical engineers and chemical engineers may have insufficient acoustics
background; they should study an introductory treatment like Chapters 5-10 (and perhaps
14) in Fundamentals of Acoustics by Kinsler, Frey, Coppens, and Sanders. Acousticians, on
the other hand, may need to study something like the first half of Fundamentals of Classical
Thermodynamics by Van Wylen and Sonntag. Someone for whom the expression i = /—1
is unfamiliar must begin with a review of elementary complex arithmetic in an engineering
mathematics text such as Advanced Fngineering Mathematics by Kreysig,.

The present rough draft of this book can be duplicated freely, and is distributed at no
cost from the Los Alamos thermoacoustics web site, http://rott.esa.lanl.gov (maintained
by Bill Ward). Be sure to get the animations as well as the book—studying this material
without the animations would be as frustrating and ineffective as studying an engineering
text without looking at the figures. On the website, the book is in pdf format, which can
be viewed and printed using Adobe’s free Acrobat Reader software. The photographs in
Chapters 1 and 6 are color, so you might want to print at least some pages with a color
printer.




1. INTRODUCTION

From thermodynamics [1, 2, 3], we know that the heat engine (sometimes known as a prime
mover) produces work from high-temperature heat, and the refrigerator (or heat pump) uses
work to pump heat. These devices are illustrated in Fig. 1.1, where the central rectangles
represent the devices, operating between two thermal reservoirs at different temperatures T.
In the heat engine, heat Qg flows into the device from the reservoir at Ty, while the device
produces work and delivers waste heat @ into the reservoir at Tp. In the refrigerator, work
flows into the device, which lifts heat Q¢ from the reservoir at T and rejects waste heat
Qo into the reservoir at Tj.

The laws of thermodynamics place bounds on the efficiency of such devices. The first
law of thermodynamics is simply energy conservation: If the device is in steady state, what
goes in must come out. So the sum of the energies going into the device must equal the sum
of the energies going out. For the engine, this implies

Qu =W + Qo, (1.1)

while for the refrigerator

Qo =W +Qc. (1.2)

The second law of thermodynamics, more subtle, says that the entropy of the universe can
only increase or stay the same; it can never decrease. Here, the universe consists of three
pieces: the two reservoirs and the device itself. If the device is in steady state then its
entropy doesn’t change with time, and work carries no entropy, so the universe consists
of only the two reservoirs. Hence, for the engine the entropy increase Qo /To of the cold
reservoir has to be greater than or equal to the entropy decrease Qg /Ty of the hot reservoir

QoQ

H
T 27T, (1.3)

2.0 s To
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Figure 1.1: A heat engine (a) and a refrigerator (b), showmg energy flow directions and
thermal reservoirs.




and similarly for the refrigerator

Qo Qc

T2 (1.4)

Combining Eq. (1.1) with Eq. (1.3) by eliminating the uninteresting variable, Q, yields an
inequality for the efficiency. The efficiency is what you want divided by what you have to
spend to get it. For the engine, the efficiency 7 is the work produced by the engine divided
by the heat supplied by the hot reservoir:
W Ty-Tp
n= < .
Qu Ty
The temperature ratio on the right is called the Carnot efficiency, which bounds the actual
efficiency of all engines. Similarly, for the refrigerator the coefficient of performance COP
is the heat of refrigeration divided by the work consumed by the device
Qc Ic
COP = W < T Ty
The temperature ratio on the right is called the Carnot COP, which bounds the actual
COP of all refrigerators.

In the real world, the device of Fig. 1l.la or Fig. 1.1b typically performs its function
by taking an ideal gas or other fluid through a thermodynamic cycle or cycles. The Carnot
cycle shown in Fig. 1.2 is one such cycle, which Carnot himself used to derive his well-known
ultimate efficiency. This cycle is a favorite of textbooks because it is simple to analyze and
has this highest possible efficiency. The Stirling cycle also has the Carnot efficiency, but we
will not examine the idealized Stirling cycle or other textbook cycles in detail here, because
real Stirling engines and refrigerators [4, 5| are so complex that the Stirling cycle itself,
like the Carnot cycle, is of only academic interest. Parcels of gas in different parts of real
Stirling machines experience totally different thermodynamic cycles, as is shown in Ani
Tashe /a. This animation shows a two-piston Stirling engine, with moving pistons taking
the gas through a cycle of compression, rightward displacement, expansion, and leftward
displacement. Between the pistons are two heat exchangers, colored to match the pistons,
at temperatures Ty = 600°C and Tp = 30°C. Between these is a regenerator. The ellipses
above the pistons are “indicator diagrams,” which trace pressure vs volume for each piston;
the difference between their purple elliptical areas is the net work W done by the gas in
each cycle. The red arrows below each of the two heat exchangers show the heats Qg
and Q¢ transfered to or from the gas in each cycle. The three moving vertical blue lines
within the regenerator mark slices of the moving gas itself; together with the piston faces,
these show clearly that the gas motion is small compared to the length of the engine. A
typical slice of gas, such as the one indicated by the central blue line, never contacts either
heat exchanger, so its cycle can hardly be analyzed by reference to a textbook heat-engine
cycle. Furthermore, the smooth time dependences of the motion and pressure in real engines
contrasts starkly with the four discrete steps in textbook cycles.

Nevertheless, the presence of four steps in typical thermodynamic cycles suggests the
need for proper phasing between two or more phenomena. In the Carnot cycle shown in
Fig. 1.2, the relevant phenomena are the pressure changes and the thermal contact to the

(L.5)

(L.6)
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Figure 1.2: The Carnot cycle for an engine. (a)—(d) the four individual steps: isothermal
compression, isentropic compression, isothermal expansion, isentropic expansion, respec-
tively. (e) the combination of (a) through (d) produces a complete cycle, with the area
enclosed on the PV plane equal to the net work produced by the engine. Reproduced from
Walker [4].
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Figure 1.3: Early Stirling engines. Reproduced from Senft [6].

reservoirs; the mechanism by which the thermal contact to the reservoirs is made and broken
is left to our imagination. Conventional heat engines and refrigerators (e.g. Stirling) use
piston motion both to cause pressure changes and to push the working gas through the heat
exchangers, with the phasing between the pressure changes and the resulting thermal contact
in the heat exchangers determined by the phasing of the pistons’ motions, as shown in Ani.
Tashe /a. Thermoacoustic heat engines and refrigerators also use gas motion to control
thermal contact in the heat exchangers, with the phasing between motion and pressure
determined by acoustics.

Figure 1.3 shows the layout typical of a Stirling engine of a century ago. There are many
moving parts: rotating crankshafts, moving connecting rods, reciprocating pistons. The me-
chanical parts dominated the thermal parts—in volume, weight, and visual impact—in the
early Stirling machines. In the intervening century, engineers have sought to simplify such
heat engines and refrigerators by elimination of moving parts. In 1969 William Beale was
thinking about resonance effects when moving pistons bounced against gas compressibility
in Stirling machines, and he realized that under the correct circumstances the forces on the
connecting rods were small while the pistons continued to move correctly. This invention has
led to what are called free-piston (7, 4] Stirling engines and refrigerators, as illustrated in Fig.
1.4, in which the moving pistons bounce against gas springs in resonance, and other moving
parts such as connecting rods and crankshafts are eliminated. Another method to eliminate
moving parts is the liquid-piston Stirling engine, also known as the Fluidyne engine [8}, as
shown in Fig. 1.5. In Fluidyne engines, liquid in two U tubes serves the function of the two
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Figure 1.4: A typical free-piston Stirling engine. Reproduced from Walker [4].

pistons of the ordinary Stirling engine, confining and moving the working gas appropriately;
the resonance phenomena, are similar to those of the free-piston Stirling engines, but with
gravity and liquid density contributing to the effective spring constant of the resonance.
More recently, Peter Ceperley [9, 10] realized that the phasing between pressure and veloc-
ity in the thermodynamic elements of Stirling machines is the same as the phasing between
pressure and velocity in a traveling acoustic wave, so he proposed eliminating everything but
the working gas itself, using acoustics to control the gas motion and gas pressure. Figure
1.6 shows such a device, with two heat exchangers and a regenerator but no pistons or any
other moving parts. :

Ceperley’s work showed the need to consider sound-wave behavior {12, 13] in the working
gas of Stirling devices, with variations in important variables such as pressure p and velocity
u depending importantly and continuously on the coordinate = along the direction of gas
motion, and with these z dependences due to inertial and compressive effects in the gas in
addition to the effects of flow resistance. ‘

Basic sound wave behavior is simple to derive. In acoustics, we often express quantities
like pressure having sinusoidal time dependence in complex notation,

P = Pm + Re [p1 (z) €“7] | Q@

with the pressure p expressed as a mean value py, plus the real part of a complex function of
z times e, We will use this style of notation throughout the book. The simplest acoustics
derivation, for sound propagating along the direction z, starts with three simple equations.
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Figure 1.5: The Fluidyne (liquid piston) Stirling engine. Reproduced from West [11].
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Figure 1.6: The traveling-wave engine concept. Reproduced from one of Ceperley’s patents.
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The first is this version of the momentum equation:

dp,
w = -, .
The force on the gas is the pressure gradient dp; /dz, which according to Newton’s law must
equal the mass density p,, times the acceleration #wu;. The second is this version of the

continuity equation:

. du "
] wpy + pm'd_wl =0, (19)

which expresses mass conservation, with the time derivative of mass density at any point,
iwp,, arising from the gradient of mass flux density d(p,,u1)/dz at that point. The third is
a part of the equation of state of the gas”

P1 6p) 2
Pr_ (9P _ g2 . 1.10
pl (6/) 3 ¢ ( )

which gives the proportionality constant a> —the square of the sound speed—linking pres-
sure changes with density changes under adiabatic conditions. Combining these three equa-
tions by eliminating u; and p, gwes a simple wave equation

2 d2p1

43 =0 (1.11)

P1 +—
whose solution is sines and cosines of z. (Technically this is a Helmholtz equation, since the
time derivatives are written as w's.)

This simple wave equation is appropriate for plane waves under spatially isothermal,
temporally adiabatic conditions—in other words, the gas average temperature is independent
of z and the gas exchanges no heat with its surroundings on the time scale of the acoustic
oscillations. Amazingly, it was only 20 years ago that anyone was able to derive the correct
wave equation for sound waves propagating in a duct with a temperature gradient in the
duct along the direction of propagation, and with significant thermal contact between the
gas and the side walls of the duct. This equation [14]

pud® & (1= fydpr) _ @ fo=fy 1 dTmdpy
w? dz \ p,, dr w?l—0 T, dz dz

1+ —-1)fulm + =0 (1.12)

was published by Nikolaus Rott in 1969. You can see pieces of Eq. (1.11) in it. The f, and
fv factors in Rott’s equation arise from thermal and viscous contact with the walls of the
duct.

In this book, we will try to integrate all of the aforementioned threads together into
a coherent picture, with physical, mathematical, and intuitive foundations. We will try
to develop a vision of these heat engines and refrigerators, using the kind of mathematics
that Rott developed, and with many of the features of the work of Beale, West, and es-
pecially Ceperley—the elimination of moving parts whenever possible to achieve simplicity
and reliability, while maintaining the highest possible efficiency.

11
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Figure 1.7: The type of devices under consideration in this book.

As illustrated in Fig. 1.7, this integration will generally involve devices in which the gas-
enclosing cavity comprises some kind of acoustic resonator that determines the relationship
between gas motion and pressure, in which heat exchangers exchange heat with external
heat reservoirs, and in which a stack or a regenerator between the heat exchangers make the
device function as a thermoacoustic standing-wave device or a Stirling device.

In one respect, thermoacoustic devices are more interesting than crankshaft-based sys-
tems, such as that shown in Fig. 1.3, in which hardware motion was determined, by design,
and exerted direct control on gas motion. In thermoacoustic systems, including linear-motor,
free-piston Stirling systems, oscillating pressure gradients cause the oscillating motion, and
the oscillating motion causes the oscillating pressure gradients; analyzing a dynamical sys-
tem having such interdependent causes and effects is inherently challenging.

1.1. Length scales

The important length scales in thermoacoustic engines and refrigerators are illustrated in
Fig. 1.8.

Along the wave-propagation direction = (the direction of motion of the gas), the wave-
length of sound A = a/f, where f is the oscillation frequency, is an important length scale.
When the gas inertia itself provides the resonance behavior, the whole length of the appa-
ratus may typically be a half wavelength or a quarter wavelength; but when massive me-
chanical components participate meaningfully in the resonance behavior, as in free-piston
Stirling systems, the size of the system is typically much smaller than the wavelength. In
all cases, the lengths of heat-exchange components are much shorter than the wavelength.

Another important length scale in the  direction is the gas displacement amplitude |z],
which is the velocity amplitude |u;| divided by the angular frequency w = 27 f of the wave.
This displacement amplitude is often a very large fraction of the stack length or regenerator
length, and may be larger than the lengths of the heat exchangers at either end of the stack
or regenerator. The displacement amplitude is always shorter than the wavelength.

12




- Figure 1.8: Important length scales in a thermoacoustic device.

Perpendicular to the direction of motion of the gas, the characteristic lengths are the
thermal penetration depth 6, = +/2k/wpc, = \/Qn/w and the viscous penetration depth
6y = \/2p/wp = \/2v[w, where k and k are the thermal conductivity and diffusivity of the
gas, 4 and v are its dynamic and kinematic viscosities, and ¢, is its specific heat per unit
mass at constant pressure. These characteristic lengths tell us how far heat and momentum
can diffuse laterally during a time interval of the order of the period of the acoustic oscillation
divided by w. For gas at distances much greater than these penetration depths from the
nearest solid boundary, the sound wave feels no thermal contact or viscous contact with the
solid boundaries; in parts of the apparatus whose lateral dimensions are of the order of the
viscous and thermal penetration depths, the gas does feel both thermal and viscous effects
from the boundaries. Clearly the heat exchange components in thermoacoustic systems
must have lateral dimensions of the order of 6, or smaller, in order to exchange heat with
the working gas. :

In the ratio of these two penetration depths,

b ooz, ~ (113)
Ox k )
the frequency and the density cancel out, leaving the ratio of viscosity times heat capacity
to thermal conductivity. This ratio is called the Prandtl number o of the gas. It’s close to
unity for typical gases, so viscous and thermal penetration depths are comparable. Hence
thermoacoustic engines and refrigerators will always suffer from substantial viscous effects.
In ordinary audio acoustics, the displacement amplitude of gas is much smaller than the
thermal and viscous penetration depths, which in turn are much smaller than the wavelength.
In thermoacoustic engines and refrigerators typically the gas displacement amplitudes are

much larger than the penetration depths, but still much smaller than acoustic wavelengths:
6:: < I(L‘]‘ L A (114)

[Incidentally, the standard expression for bulk attenuation of sound, o, can easily be
expressed in terms of the viscous and thermal penetration depths. From Eq. 7.36 in Kinsler,
Frey, Coppens, and Sanders (3rd ed.) [12):

w [46% 52
o= 7!'2:1- [g-/'\% + (’Y - 1) X%] . . ) (1.15)

From this viewpoint, viscous bulk sound attenuation is small if the viscous penetration
depth is small compared to the wavelength, and thermal attenuation is small if the thermal

13
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penetration depth is small compared to the wavelength. The ratios of penetration depths
to wavelength are strongly frequency dependent, because the wavelength is proportional
to 1/f while the penetration depths are proportional to \/1/f. So low frequency, long
wavelength sound suffers the least bulk attenuation. The presence of solid boundaries in the
resonators and heat-exchange components of thermoacoustic engines and refrigerators has
thus far caused boundary-based attentuation to far exceed such bulk attenuation.]

1.2. Examples

I will repeat the same four examples of real thermoacoustic hardware in almost every chapter
in this book, introducing the examples briefly here and examining various aspects in greater
detail at appropriate places in subsequent chapters. Mark these pages (with clips or tape
or ...) so you can refer back to them easily. The four examples include two engines and
two refrigerators; two standing wave systems and two traveling wave systems; and two
research systems and two systems bringing thermoacoustics toward a more practical stage
of development. In this chapter, I will just briefly introduce the four examples, discussing
their purpose, overall function, and characteristic dimensions.

Figure 1.9: Standing-wave engine example: Tektronix researchers with a heat-driven re-
frigerator, 1995. The resonator, horizontal, has standing-wave engines on each end. The
two-stage orifice pulse tube refrigerator stands vertically near the right end. Photo courtesy
of Kim Godshalk.

The standing-wave heat engine was part of the heat-driven cryogenic refrigerator
[15] assembled at Tektronix in 1994 and shown in Figs. 1.9 and 1.10. This system was
under development in order to provide a small amount of cryogenic refrigeration for elec-
tronic components, with the system powered by red-hot electric heaters and hence having

14
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Cold heat exchanger

Insulation
— 138 cm

Figure 1.10: Scale drawing of the Tektronix resonator and its standing-wave engines. The
annular spaces around each end are thermal insulation. The spacing in stacks and heat
exchangers is not to scale. The-upward opening near the right end is the connection to the
two-stage pulse tube refrigerator. '

no moving parts. The resonator lies horizontally in the figures, with standing-wave ther-
moacoustic engines on each end, and an upward side branch near the right end connecting
to the two-stage orifice pulse tube refrigerator. Water cooling lines, seen extending through
the tabletop in Fig. 1.9, removed waste heat from the engines and the refrigerator. Our
focus in this book will be on the heat-driven engines and the resonator, which delivered
up to 1 kW of acoustic power to the pulse tube refrigerator, and delivered 500 W to the
“pulse tube refrigerator with an efficiency of 23% of the Carnot efficiency. We hoped to make
the system as small as possible, and sufficiently efficient that the necessary electrical power
could be supplied from an ordinary wall plug. The working gas was helium at a pressure
of 30 atmospheres. The sound speed of helium is about 1000 meters per second at room
temperature, and the horizontal length of the resonator in Figs. 1.9 and 1.10 is about half a
meter, so you would expect that the half-wavelength resonance in this system would be near
500 Hz; and, indeed, the system operated at 350 Hz. At this pressure and frequency, the
thermal penetration depth in helium is approximately 0.2 mm; correspondingly, the spacing
in the heat exchange components was approximately 1 mm. ‘

The key idea in this and other standing-wave engines is that the gas in the stack must
experience thermal expansion when the pressure is high and thermal contraction when the
pressure is low. Thus the gas in the stack does work every acoustic cycle, pumping acoustic
power into the standing wave. The standing wave in turn provides the oscillating pressure,
and the oscillating motion that causes the gas in the stack to experience the oscillating
temperature responsible for the thermal expansion and contraction. The velocity of the gas
along the stack’s temperature gradient is 90° out of phase with the oscillating pressure, so
imperfect thermal contact between gas and stack is required to enable the thermal expansion
and contraction steps to be in phase with the oscillating pressure. These complex, coupled
oscillations appear spontaneously whenever the temperature at the hot ends of the stacks is
high enough.

The standing-wave refrigerator shown in Figs. 1.11 and 1.12 was assembled by Bob
Reid to investigate the deliberate superposition of steady flow [16] with the oscillating flow .
of the standing thermoacoustic refrigeration process. The refrigerator was driven by four
loudspeakers, enclosed in the obvious aluminum housings shown in Fig. 1.11. The left and
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Figure 1.11: Standing-wave refrigerator example: Loudspeaker-driven-research apparatus for
investigating the superposition of deliberate steady flow on the oscillatory thermoacoustic
flow.
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Figure 1.12: Schematic of the standing-wave refrigerator example;

right pairs of loudspeakers were driven 180° out of phase, to produce a standing wave in
the toroidal resonator having essentially one full wavelength around the circumference of
the torus, with pressure nodes centered in the top and bottom sections.of the resonator
and pressure anti-nodes near the loudspeakers. With the resonator filled with a mixture of
02% helium and 8% argon at three atmospheres of pressure, this resonance occurred at 94
Hz. Slow steady flow of the gas mixture from top to bottom through the heat exchange
components, superimposed on the thermoacoustic oscillating flow, produced cold gas leaving
the resonator at the bottom pressure node. The spacing in the heat exchange components
was.about 1 mm, a few times the thermal penetration depth in this gas.

The key idea in this and other standing-wave refrigerators is that the gas in the stack
experiences partly adiabatic temperature oscillations, in phase with the standing-wave pres-
sure oscillations, and oscillating standing-wave displacements in phase with the pressure
oscillations and hence in phase with those temperature oscillations. Thus the gas in the
stack cools a little as it is displaced downward in Fig. 1.12, and warms a little as it is
displaced upwards. Imperfect thermal contact between gas and stack enables the required
heat transfer at the extremes of the motion. (The superimposed steady-flow velocity in this
particular apparatus was much smaller than the standing-wave oscillatory velocity, as we
will discuss in Chapter 5.)

The traveling-wave engine shown in Figs. 1.13 and 1.14 was built by Scott Backhaus
to demonstrate Stirling cycle engine thermodynamics with no moving parts, and to investi-
gate the issues affecting its efficiency [17]. Heat was supplied to the engine electrically, and
waste heat was removed by a water stream, delivering acoustic power to the resonator. Some
of that acoustic power was dissipated in the resonator, but most was delivered to a variable
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acoustic load, the small vertical cylinder near the center of Fig. 1.13. This engine has deliv-
ered power to the resonator with 40% of the Carnot efficiency. Suppression of steady flow
around the small torus containing the heat exchangers is crucial for this high efficiency, as
we will discuss in Chapter 5. Thirty-atmosphere helium fills the system, oscillating at 80
Hz. The resonator is essentially half-wavelength, with pressure oscillations 180° degrees out
of phase at the right end of the fat portion on the right and in the small torus containing
the heat exchangers on the left. The highest velocity occurs in the center of the resonator,
at the small end of the long cone.

Figure 1.13: Traveling-wave engine example: A research apparatus for initial Los Alamos
studies of the performance of a traveling-wave-engine.

The key idea in this and other traveling-wave engines is that the gas in the regenerator
experiences thermal expansion when the pressure is high and thermal contraction when the
pressure is low. Thus the gas in the regenerator does work every acoustic cycle, pumping
acoustic power into the sound wave. The sound wave in turn provides the oscillating pressure,
and oscillating motion that causes the gas in the regenerator to experience the oscillating
temperature responsible for the thermal expansion and contraction. These complex, coupled
oscillations appear spontaneously whenever the temperature at the hot end of the regenerator
is high enough. The velocity of the gas along the regenerator’s temperature gradient is
substantially in phase with the oscillating pressure, so excellent thermal contact between
gas and regenerator is required to cause the thermal expansion and contraction steps to
be in phase with the oscillating pressure. This thermal contact is achieved by making the
channel size in the regenerator much smaller than the thermal penetration depth.

Finally, the traveling-wave refrigerator—an orifice pulse-tube refrigerator—
shown in Figs. 1.15 and 1.16 was built at Cryenco for liquefaction of natural gas [18, 19].
At about 3 atmospheres, natural gas (methane) liquefies at 120 Kelvin; this refrigerator
provided 2 kW of refrigeration at that temperature, with a COP as high as 23% of the
Carnot COP. The working gas was helium at a pressure of thirty atmospheres, driven
at 40 Hz by a thermoacoustic engine through a resonator, not shown in the figures. The
dimensions of the parts shown in the figures are much smaller than the 25 m wavelength of
the sound wave, so resonance phenomena are of no concern in this refrigerator.
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Figure 1.14: The traveling-wave engine. (a) Overview, as in the photo. (b) The heart of the
traveling-wave engine.
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Figure 1.15: Traveling-wave refrigerator example: the Cryenco 2 kW orifice pulse-tube
refrigerator.
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Figure 1.16: Schematic of the Cryenco orifice pulse-tube refrigerator. “P” indicates the

location of a pressure sensor.
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The key idea in this and other Stirling, pulse-tube, or traveling-wave refrigerators is
that gas near the cold heat exchanger must be displaced into the open space of the pulse
tube, adiabatically cooled, and displaced back through the cold heat exchanger where it can
absorb heat from the load. The sound wave must provide oscillating pressure and oscillating
displacement with this required phasing.

1.3. Thermoacoustics and conventional technology

With these four examples of thermoacoustic devices in mind, consider what the advantages
and disadvantages of thermoacoustic systems might be in comparison to the energy conver-
sion systems that are in widespread use, such as the internal combustion engine, the steam
turbine, the reverse Rankine or vapor conipression refrigeration cycle, the gas turbine, etc.

high low

. . Operating
Elficiency cost
low high
low —— high
Capital cost

Figure 1.17: Different technologies exhibit different trade-offs between cost and efficiency.

Those conventional systems have moving parts; from that point of view one might think
of them as being less reliable and more expensive than thermoacoustic devices. However,
decades of investment in engineering development have given these conventional devices high
reliability, and decades of manufacturing experience have given them low cost. Thermoa-
coustic devices seem to have the immediate potential to have comparable high reliability
and low cost, because they use no moving parts, no exotic materials, and no close tolerances.
Realizing this potential is one of our challenges.

Decades of investment in the engineering development of conventional energy-conversion
devices has also given them very high efficiencies. Today’s automobile engines convert
the heat of combustion to shaft work with over 20% efficiency; the largest diesel engines
achieve 40%. Vapor-compression refrigeration systems with COP’s above 50% of Carnot’s
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are common. Thermoacoustic devices haven’t yet achieved such high efficiencies; increasing
thermoacoustic device efficiency into this range is another of our challenges.

It is important to realize that the efficiency of a new technology need not exceed that of
older technologies in order to succeed commercially. This point is illustrated in Fig. 1.17.
The Stirling refrigerator is quite old, and in principle it can have Carnot’s COP. However,
high COP can only be achieved at great expense, as the mass of heat exchange metal, qual-
ity of lubricants, etc. is made exceedingly large. For instance, qualitatively, the efficiency
vs capital cost of a Stirling refrigerator might resemble the Stirling curve in Fig. 1.17, with
very high efficiency possible if you’re willing to spend an exponentially large amount of
money building the refrigerator. However, in the commercial world, energy costs are cur-
rently low enough that no one chooses to invest so much capital to achieve high efficiency.
Instead, vapor-compression refrigeration is used for almost all real-world refrigeration sys-
tems, because it has lower capital cost than Stirling refrigeration, even though the COP
of vapor compression refrigeration can in principle never approach the ultimate COP of
the Stirling cycle. Furthermore, each application requires a different compromise between
construction costs and efficiency; for example, the vapor-compression air-conditioning sys-
tem for a large office building in Phoenix might lie higher on the efficiency-cost curve than
the vapor-compression chiller in a soft-drink vending machine in Seattle. If thermoacoustics
turns out to have an efficiency—cost curve somewhere to the left of existing technologies,
it will succeed in some commercial markets. Whether the terminus of the thermoacoustics
curve is higher or lower than that of older technologies is not as important as whether the
capital costs will be lower at modest efficiencies.

1.4. Notation -

We pause now to carefully establish the notation to be used throughout the book for time-
dependent variables such as pressure. Except in Chapter 5, we will assume that all time
dependence is purely sinusoidal, at frequency f and angular frequency w = 2mf. Then
variables such as pressure could be written

2(,1) = pm + C(2) cos [wt + ¢(z)] (1.16)

Consider this expression carefully. It indicates that we are considering the pressure to be
the sum of a mean value pn,, which is independent of both position z and time ¢, and an
oscillating part that oscillates in time at angular frequency w. Both the amplitude A and
phase ¢ of the time oscillation are functions of position z.

It is much more convenient to rewrite Eq. (1.16) as

p(z,t) = pm + Re [p1(z)e™’], (1.17)

where p;1(z) is a complex function of z such that
@] = C), (118)
phaselp:(z)] = ¢(). ' (1.19)

This notation is convenient because a single symbol with subscript 1 stands for both am-
plitude and phase, and because all the shortcuts of complex arithmetic can be used (with
care). In this book, all variables with subscript 1 will be complex.
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Sometimes we get lazy or forgetful, and we don’t write Re[] explicitly, and we just say
that p;(x) is the oscillating pressure; but of course we really always mean that Re[p; (z)e]
is the oscillating pressure, and p,, + Re [p1(z)e™"] is the pressure. Sometimes we abbreviate
further to simply p1, leaving the fact that is depends on z to memory.

One of the reasons that thermoacoustics is at first confusing is that the acoustic variables
are wavelike functions of both position and time. Remember that the time dependence is
assumed to be exactly sinusoidal in our acoustic approximation; the spatial dependence need
not be sinusoidal but sometimes turns out to be nearly so over portions of an apparatus.
When talking about the phase of such a wave, it is occasionally necessary to explicitly say
temporal phase to identify interest in the phase of the time oscillation, not the x dependence.

To be sure this notation is clear, we will revisit the continuity equation, Eq. (1.9) above.
Consider a lossless acoustic wave oscillating adiabatically along the z direction in a gas with
no overall temperature gradient along z. We can write the pressure p, density p, and velocity
U as

p(z,t) = pm+Re[pm (m)e’:“"] , . (1.20)
p(@,t) = pm+Relp(z)e™], (1.21)
u(z,t) = Re [ui(z)e*’], (1.22)

with the absence of un, in Eq. (1.22) indicating that no steady wind is superimposed on
the oscillating flow. Defining a? as the proportionality constant linking adiabatic density
changes and adiabatic pressure changes,

a’dp = dp, (1.23)

we can simplify the most general continuity equation

op

Bt +V.(pv)=0 ' | (1.24)
in one dimension, yielding

Op ,0 )

=£ —_ = 0. 2

i (pu) =0 (1.25)

Substituting our complex notation expressions Egs. (1.20)-(1.22) into Eq. (1.25), and
neglecting the term involving the product of p; and w;, which is smaller than the other
surviving terms, yields

Re [iwp; (z)e™] + pma2% Re [u;(z)e™*] =0. (1.26)
Note the freedom we have to interchange the orders of space and time derivatives, and to
interchange the order of derivatives and the “real” operator. Hence, we can always write an
equation like Eq. (1.26) in an abbreviated form:

N 2 1 ’
wm + Pm@ ! 0 ( )
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This expression is mathematically true, but in terms of physically realistic variables it is an
abbreviation of Eq. (1.26).

For further clarification of the complex notation, consider some simple waves. A pure
tra.velmg wave, traveling in the positive duectlon, as shown in Ani. Wave /t, is represented
in complex notation as

pr(z) = Ce™, (1.28)

where |C| is the amplitude, and the phase of the complex number C defines the overall
temporal phasing of the wave relative to our choice of £ = 0. A pure standing wave, as
shown in Ani. Wave /s, is represented in complex notation as

() = C coskz. (1.29)

In a graphical representation of this complex notation known as a phasor diagram, the
complex variables are plotted on the complex plane with the real axis horizontal and the
imaginary axis vertical. Conventionally, arrows from the origin “point” to each such complex
variable, and we will follow this convention here, as shown in Fig. 1.18. If you imagine a
phasor £, in a phasor diagram rotating counterclockwise at angular frequency w, then the
time-dependent variable £(t) = Re [£;€*] represented by the phasor is the projection of the
phasor on the real axis.

Imaginary axis

(b)

AR
\AY)

Figure 1.18: Phasors show complex variables in the complex plane. (a) Two sinusoidally
time-dependent variables p(t) and U(t), with U leading p by 30°. (b) The phasor repre-
sentation of these two variables can be imagined as two vectors whose magnitudes are the
amplitudes of p and U, rotating counterclockwise at angular frequency w. The true, time-
dependent values of the associated variables are the projections on the real axis of these
rotating phasors.

Real axis

Phasor diagrams are extremely useful for indicating the relationships in magnitude and
phase among many variables in complicated thermoacoustic systems, as we shall see later.
For example, if a second variable is proportional to % times a first variable, the phasor for
the second variable will point 90° counter-clockwise from the direction of the phasor for the
first variable, and we say that the second variable “leads” the first variable by 90°. We use
phasor diagrams so frequently that we usually neglect to label the axes “Real part” and
“Imaginary part.” Usually we are only illustrating the relative magnitudes and phases of
variables—not their actual magnitudes—so we also neglect to provide quantitative scale.
In fact, in such cases we often display variables having different units on the same plot, to
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convey phase information without cluttering the figure with scale information, as in Fig.
1.19 where both p, and U are shown for the simple lossless waves of Egs. (1.28) and (1.29).

Ul
@ S R

TN | s T

Figure 1.19: Phasors at seven locations in standing and traveling waves. The pressure p; and
the volumetric velocity U; are shown. (a) Phasor diagram for Ani. Wave /s, corresponding
to Eq.(1.29). (b) Phasor diagram for Ani. Wave /t, corresponding to Eq. (1.28). The phase
of p; at the left edge of the animation screen is arbitrarily chosen to be zero in both cases.

1.5. Computations (DeltaE)

Most of the first half of the book emphasizes the development of intuition, lumped-element
impedance estimates, and the promotion of a particular point of view. However, in daily
practice of thermoacoustics I spend most of my time working with numerical integrations
of the thermoacoustic equations, using DeltaE. It is hard to imagine progress in thermoa-
coustics today without use of such software.

Any one-dimensional acoustic wave equation, such as Eq. (1.11) or (1.12), is derived from
a momentum equation such as Eq. (1.8) and a continuity equation such as Eq. (1.9) with
appropriate details added as needed. Noting that the momentum and continuity equations
can be solved for dp;/dz and dU, /dz respectively, an easy method of numerical integration
suggests itself: p;(z) can be obtained by integrating the momentum equation with respect
to z, while simultaneously U;(z) is obtained by integrating the continuity equation with
respect to . We will see in future chapters that the z dependence of mean temperature
in stacks is subtle and can be determined by consideration of the conservation of energy
flux through the stack, leading to a third fundamental differential equation that can be
integrated to obtain T,,(z) simultaneously with the other two equations.

DeltaE [20] integrates these one-dimensional equations, in a geometry given by the user as
a sequence of segments, such as ducts, compliances, transducers, and thermoacoustic stacks
or regenerators. In each segment, DeltaE uses locally appropriate momentum, continuity,
and energy equations, controlled by local parameters (e.g. area or perimeter) and by global
parameters (e.g. frequency and mean pressure). Solutions p;(z), U(z), and Tin(z) are
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found for each segment and are matched together at the junctions between segments to
piece together p;(z), Ui (z), and Tin(z) for the entire apparatus.

It is clear that this solution Tin(z), p1(z), Ui(z), is only determined uniquely if one
real and two complex boundary conditions are imposed, because the governing equations
comprise one real plus two complex coupled first-order equations in one real plus two complex
variables. This is true whether considering a single segment or a one-dimensional string of
segments with each joined to its neighbor(s) by continuity of T;,, p1, and U;. If all boundary
conditions are known at the intial segment, then the integration is utterly straightforward.
But usually some of the boundary conditions are known elsewhere. Under such conditions,
DeltaE uses a shooting method, by guessing and adjusting any unknown boundary conditions
at the initial segment to achieve desired boundary conditions elsewhere. The user of DeltaE
enjoys considerable freedom in choosing which variables are used as boundary conditions
and which are computed as part of the solution. For example, in a simple plane-wave
resonator, DeltaE can compute the input impedance as a function of frequency, or the
resonance frequency for a given geometry and gas, or the length required to give a desired
resonance frequency, or even the concentration in a binary gas mixture required to give a
desired resonance frequency in a given geometry.

Hoping that the usefulness of this book will greatly outlive version 4 of Deltak, I have
put typical DeltaE i/o files for each-of the four examples that we will re-examine throughout
the book in the Appendix. For interested readers, these show how to configure a simple file
for DeltaE for each of these examples, and may occasionally be consulted to learn a specific
dimension of a piece of apparatus. We find that DeltaEl and experiment agree best when
considerable detail is included in the DeltaE file; often, we have over 50 segments in a file to
account for all the little details in hardware as built. To avoid intimidating the newcomer,
the first two files in the Appendix are stripped of such details; they use only the key segments
necessary to describe the hardware. The third file, for the traveling-wave engine, is fully
encumbered with details, typical of what we actually work with; if you are new to DeltaE or
to thermoacoustics, skip it! The fourth file, for the orifice pulse-tube refrigerator, includes
only about 25% of the segments actually used to model this refrigerator, in order to hide
Cryenco propnetary information.

The user’s guide to DeltaE is available at http: / /rott esa.lanl.gov, and it might be con-
sulted occasionally while studying this book. A beta version of the code itself can be
obtained from Bill Ward at ww@lanl.gov. The use of DeltaE in this book for examples
requiring numerical integration is convenient for me, because it’s the only thermoacoustics
code I routinely use. However, I believe that some other codes, such as Sage by Gedeon
[21], Thermoacoustica by Tominaga [22], and Regen3 by Radebaugh’s group [23], are also
accurate and useful for modeling thermoacoustic devices. Although each code has strengths
and weaknesses, the good ones are in agreement on the fundamentals.

1.6. Animations

The computer animation “Ani. Wave” discussed above is the first of many animations to
be used in this book. Studying them is vital.

These animations run in Windows 95, Windows 98, in full-screen DOS windows in Win-
dows computers, and in raw DOS. They may run’a little jerkily on old 386 computers.
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Unless you have a DOS emulator, Macs are not an option.

Remember to use the “filename /option” form of the command line. Example: “wave /t”
starts the Wave animation with traveling-wave settings; “wave /s” starts it with standing-
wave settings. If you start an animation without typing the option, you may find yourself
automatically sequencing through options in the order that I most often use in lectures.

For Windows 95 or 98, keep the same subdirectory structure on your hard disk as you
received, so that the shortcuts in folder Win95-98 know where to find the executable files.
Open the Win95-98 folder and double-click a shortcut icon to launch the appropriate ani-
mation /option. Example: Clicking "Wave_s (Standing)” executes the DOS command line
“Wave /[s”.

For Windows 3.1, execute these the programs from a DOS-box window, or exit windows
and run in raw DOS. To run the animations, “cd” to the DOS directory and type the
program name with the option character, if any (e.g. /s), as specified here in the text.
Either upper or lower case is acceptable.

Warning: If the typed text in the animations looks scrunched or incorrectly located,
your DOS window is not using its default font settings or is not sized to the full screen.
Edit properties to set font and screen size to defaults, and switch to full-screen DOS window
(alt-enter). Better yet, avoid this problem in the first place by never starting an animation
from a DOS window that’s been modified: If you use Windows 3.1, exit to DOS and change
directories to where the animations are; if you use Windows 95 or 98, start a fresh DOS
window from “Start...Programs...MS-DOS Prompt” and change directories to where the
animations are. These methods apparently cause Windows to open the DOS window in
its default state. (This hassle arises because the animations were written in Microsoft
Quickbasic, which uses DOS settings and fonts for locating and typing text. Hence the
coordinate system where text appears on the screen in the animations depends on the DOS
font settings.)

1.7. Outline

This book will not provide a complete description of how these heat engines and refrigerators
work—for that, consult publications specific to each type, such as Refs. [7, 5, 4, 24, 25].
Instead, this book promotes one point of view allowing an understanding of all these devices.
This point of view is based firmly on acoustics, with thermodynamics added as necessary.
Chapter 2 —Waves—examines the oscillatory pressure and velocity. This includes the
relevant fundamentals of ordinary acoustics, resonance phenomena in resonators, and viscous
damping and thermal contact to the side walls of the channel in which the wave propagates.
One climax of that chapter is Rott's wave equation, Eq. (1.11) above. After studying the
Waves chapter, you should be able to visualize and understand the overall wave behavior
of a thermoacoustic apparatus, based on a drawing or description. This process involves
thinking about all the dimensions of the apparatus in comparison to A, d,, and é,, locating
the nodes and antinodes of p; and U, identifying which parts of the wave are inertial and
which are compliant, identifying which parts are affected by viscous flow resistance or by
thermal relaxation effects, and predicting approximately the relative phases of p; and U;
throughout the apparatus. At a coarse, qualitative level this process can be done by eye and
by hand; quantitative results can be obtained by numerical integration of the momentum -
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and continuity equations.

The power—both thermal and acoustic—is of greatest interest in heat engines and refrig-
erators, so Chapter 3 —Power—adds these concepts to the pressure and velocity discussion.
Acoustic power, the time-averaged product of p; and Uy, is produced in engines and con-
sumed by refrigerators. Total power, which is the power that is subject to the first law
of thermodynamics, is of even greater importance. After studying the Power chapter, you
should be able to understand thermoacoustic engines and refrigerators in terms of energy-
conservation, power flows, and acoustic-power dissipation and production. Quantitative
results can be obtained as desired from products of the dynamical variables of Chapter 2.

This completes the portion of the book based closely on the work of Rott.

The second law of thermodynamics, which puts bounds on the performance of thermoa-
coustic engines and refrigerators, forms the basis of Chapter 4 —Efficiency. Key concepts
are entropy generation, which can be subdivided according to location and mechanism, and
exergy, which provides a quantitative figure of merit for thermodynamic devices and their
interactions with their environment. Together, these concepts provide a standard, formal
accounting method for sources of inefficiency. After studying this chapter, you should have
an understanding of thermodynamic efficiency that goes beyond what is taught in standard
physics courses and undergraduate engineering courses, and you should be able to visu-
alize and understand the locations and mechanisms of irreversibility in a thermoacoustic
apparatus, and account quantitatively for the irreversibilities.

Chapter 5 introduces many important issues that go beyond the low-amplitude, monofre-
quency approximation implicit in Rott’s work. These issues include turbulence, entrance
effects, superimposed steady flow, and harmonics. While the first four chapters stand on a
firm foundation, these high-amplitude issues are at the. frontier of current knowledge. How-
ever, they are of great concern in real devices, which usually operate at high amplitude in
order to achieve high power per unit volume.

Chapter 6 presents practical construction techniques we’ve adopted at Los Alamos, Chap-
ter 7 outlines methods of measurement used to diagnose thermoacoustic behavior, and Chap-
ter 8 describes common pitfalls. An appendix gives some DeltaE files; I may drop this from
the final version of the book, because I suspect they will become obsolete quickly.

A symbol table and references are included at the end.

(General overview references: fluid dynamics [26, 27], thermodynamics [2, 3, 28, 29, 1],
acoustics [12, 13], thermoacoustics [30, 25, 31, 32, 33, Stirling systems [34, 7], pulse-tube
refrigeration (24, 35].)

1.8. Exercises

1.1 Review the ideal-gas equation of state and other properties of ideal gases: For your
favorite working gas, and your favorite temperature and pressure, look up v, calculate the
sound speed, density, and isobaric specific heat. Look up the viscosity and thermal con-
ductivity. Pick your favorite frequency. Calculate A, 6., and 6,. Compare these lengths to
various dimensions in your favorite piece of thermoacoustics hardware. Do you know the
order of magnitude of |z;|? Verify that 6,/6« = +/o. (If you don’t have a personal favorite
gas, etc., then use air at 300 K and atmospheric pressure, 440 Hz, and dimensions in your
office. Estlmate |z;| using the fact that conversational acoustics has |p1| =~ 1076 bar.)
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1.2 Can you think of any other length scale in simple-harmonic oscillatory motion and
thermodynamics in an ideal gas, besides A, |z,|, §,, and 6,? If you can, when would it
be important in thermoacoustics? How can we be sure we haven’t forgotten an important
length?

1.3 Do you know roughly what a kitchen refrigerator costs, and what is the cost of the
electricity it consumes each year? If so, would you expect most people to choose to pay 50%
more to buy a refrigerator that uses 50% less electricity?

1.4 A mixture of helium and argon has a sound speed of 500 m/s at 300 Kelvin. What
is the concentration of argon in the mixture?

1.5 Thermodynamics review: Show that the ratio of isothermal compressibility to adia-
batic compressibility is the same as the ratio -y of isobaric to constant-volume specific heats.
Hence, show that p,,a% = Ypm.

1.6 More thermodynamics review: Derive an expression for isothermal sound speed,
instead of the usual adiabatic sound speed. Show that the isothermal sound speed is about
18% lower than the true, adiabatic speed in air, for which ¥ = 7/5. Can you think of
circumstances in which sound propagates isothermally?

1.7 Review of complex notation: Derive Eq. (1.11) from whatever version of the starting
equations (momentum, continuity, and state) you are most familiar with. Express all vari-
ables as in Eq. (1.7), and justify the neglect of all terms that you have to throw away to get
to the desired answer. Review how the time derivatives in the starting equations become iw
in the complex acoustic approximation.
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2. WAVES

The focus of this chapter will be on the dynamic variables, pressure and velocity, for wave
propagation in the z direction in a channel or duct. Adopting increasingly sophisticated
perspectives on the continuity equation, we will see how oscillations in pressure are cou-
pled to spatial gradients in velocity. Adopting increasingly sophisticated perspectives on
the momentum equation, we will see how oscillations in velocity are coupled to spatial gra-
dients in pressure. Coupling these pictures together yields wave propagation. Initially, we
will examine the lossless concepts of inertia and compressibility, later adding viscous loss
to the momentum equation and thermal hysteresis (and gain) to the continuity equation.
We'll alternate between formal mathematics, figures, and computer animations, to integrate
quantitative tools with intuition. Throughout, we will assume monofrequency, constant-
amplitude, small oscillations—an approximation that we will, for brevity, refer to simply as
“the acoustic approximation.”

The principle variables are oscillatory pressure p; and oscillatory volumetric velocity Us,
which is the integral of the  component of the velocity, u;, over the cross sectional area A of
the channel. At the transition between two channels, U; and p; are taken to be continuous.
For example, at a transition from a first duct to a second duct, U; out of the first duct has
nowhere to go but into the second duct, so Uiy = Us,, and hence if the areas of the ducts
are A; and A, then the velocity (not volumetric velocity!) changes by the factor Ay/A,.
~ At such a junction between two ducts, p; must also be continuous, because any pressure
discontinuity represents a shock front, outside the realm of the acoustic approximation and
today’s thermoacoustics. ' ‘

2.1. Lossless acoustics; ideal resonators

The simplest lossless version of the acoustic continuity equation, Eq. (1.9) or (1.27), can be
rewritten

_ __Pm
1
= - =AU (2.2)

for the short length Az of channel of cross-sectional area A shown in Fig. 2.1a. To arrive at
these equations, we have used Eq. (1.10) to express p; in terms of p;, and used the ideal-gas
identity p,,a® = P, which is derived in one of the exercises at the end of Chapter 1. In

Eq. (2.2), '

C=— | (23)
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Figure 2.1: (a) A short channel in which the compressibility of the gas is important. (b)
Symbolic impedance diagram of the channel. The symbol C indicates compliance. (c) Two
possible phasor diagrams for the channel.

U, +4U,

is called the compliance of the channel. The compliance is the ratio of the volume V = AAz
of the channel to the compressibility 7pm; larger volume or lower (“softer”) compressibility
means greater compliance. This combination of variables gives us the springy, compressive
properties of the gas in the channel.

Similarly, the lossless version of the acoustic momentum equation, Eq. (1.8), can be
rewritten

P AA‘” U (2.4)

= —iwlly, (2.5)

Ap = —iw

for the short length of channel shown in Fig. 2.2a. Note that the channel illustrated is the
same as in Fig. 2.1a; the figures differ only because we’re focusing our attention on different
properties of this channel in the two situations. In Eq. (2.5),

Pm BT
L= 1 (2.6)
is called the inertance of the channel. It is the product of the gas density p,, and the length
Az divided by the cross-sectional area A of the channel. This combination of variables
describes the inertial properties of the gas in the channel. :

Writing the continuity and momentum equations in this way allows an accurate analog
between acoustic systems and ac electrical circuits, motivating the symbolic “circuit” dia-
grams of Figs. 2.1b and 2.2b. The analog of oscillating pressure p; is ac voltage; the analog
of oscillating volumetric velocity U is ac current. The analog of compliance is capacitance
to ground, and the analog of inertance is series inductance. (Note that “inertance” sounds
a little like the electrical word “inductance” and a little like the mechanical word “inertia.”)
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Figure 2.2: (a) A short channel in which the inertia of the gas is important. (b) Symbolic

impedance diagram of the channel. The symbol L signifies the inertance. (¢) Two possible
phasor diagrams for the channel. '

We will rely on this point of view extensively, because I suspect that many readers (espe-
cially physicists and electrical engineers) have some prior experience with ac electric circuits.
However, I've noticed that other engineers and scientists often gain no intuition from what
is to them a totally unfamiliar analog. Such readers, unfamiliar with ac electrical circuits,
can take the “circuit diagrams” to be no more than abstract representations of the acoustic
impedance networks themselves, and I will try to use nothing but acoustic terminology in
referring to these d'iag:ams.v When you look at the symbol for inertance in Fig. 2.2b, think
of a long, coiled tube through which the dense gas must accelerate. When you look at the
symbol for resistance in figures later in this chapter, think of a kinked tube through which
the gas must overcome viscous resistance. When you look at the symbol for compliance in
Fig. 2.1b, think of a spongy cushion between the two parallel lines, whose gap changes in
response to pressure.

Figures 2.1c and 2.2¢ show possible phasor diagrams for a compliance and an inertance,
respectively. In Fig. 2.1c, note that |U; + AU | could be either larger or smaller than |Uh];
the only strict requirement imposed by Eq. (2.2) is that AU; must lag p; by 90°. Similarly,
in Fig. 2.2c, the only strict requirement imposed by Eq. (2.5) is that Ap; must lag U; by
90°. Beyond these requirements, anything is possible, depending on the relative magnitudes
and phases of p; and Uj.

Usually, both the inertance and the compliance of a channel simultaneously contribute to
the behavior of the wave propagation in the channel, as illustrated in Fig. 2.3 for a channel
of differential length dz. As before, note that dp; lags U by 90°, and dU; lags py by 90°.

The complex ratio Z = —p; /Ui, which is called the impedance, is of great utility in
discussing acoustic systems. Sometimes we refer to the impedance at a location in a wave,
but sometimes we refer to the impedance of a component so that Z = —Ap, /U is related

33




P +d
(b) p +dp,
éx dL 1
b—— n +ap, U — —= U+ dU;

(e)  p

P: '*'BE

U
U+ dU\!

Figure 2.3: (a) A very short channel in which both the compressibility and the inertia of the
gas are important. (b) Symbolic impedance diagram of the channel. (c) A possible phasor
diagram for the channel.

to the pressure difference across the component or Z = —p; /AU; describes the change in
volumetric velocity caused by the component. In the latter modes, Eq. (2.5) shows that
the impedance of an inertance is Z = iwL, and Eq. (2.2) shows that the impedance of a
compliance is Z = 1/iwC.

The double Helmholtz resonator, illustrated in Fig. 2.4, is a simple acoustic resonator
consisting of two bulbs, each of volume V, connected by a short neck with length Az and
cross-sectional area A. All dimensions are shorter than the acoustic wavelength, so the
lumped-impedance models of Figs. 2.1 and 2.2 are directly applicable: Each bulb is a com-
pliance C, and the neck connecting the two bulbs is an inertance L. (In the simple, textbook
Helmholtz resonator, the compliance of the neck and inertial effects in the compliances are
assumed negligible.) Imagine the inertial mass of gas in the neck bouncing back and forth
sinusoidally against forces exerted by the gas springs in the two bulbs. Combining Egs.
(2.2) and (2.5) appropriately (or remembering that series ac electric circuits are resonant
when the sum of the impedances is zero), it is easy to show that p; and U are nonzero only

if
iwL + 2/iwC =0, (2.7)

and hence that the resonance frequency of the Helmholtz resonator is given by
2

2_2_ 2 _,OPm_ A
@rf) =w =16 =2—Vas

(2.8)

At this frequency, either Eq. (2.2) or (2.5) gives the relative magnitudes of p; and Uy, and
their relative phases. The relative phases are illustrated in the phasor diagram in Fig. 2.4c,
where we have arbitrarily picked the phase of U; in the inertance to be zero.

In lossless acoustic resonators more complicated than the Helmholtz resonator, the
acoustic waves are described by the coupled differential equations (1.8) and (1.9). Hence,
to understand lossless acoustic waves in a duct or resonator, we must simultaneously keep
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Figure 2.4: The double Helmholtz resonator. (a) Schematic of the resonator, comprising two
bulbs connected by a neck. (b) Impedance diegram of the resonator. (c) Phasor diagram.

in mind the concepts of compliance and inertance. First consider the standing wave shown
. in Ani. Wave /s. This animation illustrates a wave oscillating horizontally in a duct of
uniform cross section. The uppermost graph shows the pressure of the gas in the wave as a
function of position and time. The middle graph shows the velocity in the gas as a function
of position and time (with positive velocity to the right). The lower part of the display
shows the motion, or displacement, of the gas in the duct. The moving vertical lines move
with the gas; imagine that these lines are massless sheets of cellophane or thin clouds of
smoke moving with the gas.

First focus attention on the velocity node, where the gas never moves. This region of the
duct is functionally similar to a bulb of the double Helmholtz resonator described above.
With zero velocity, Eq. (2.5) indicates that there should be no spatial pressure gradient,
and indeed the animation shows that the oscillating pressure has no gradient in the vicinity.
Hence, the inertance per unit length in the duct is irrelevant in this vicinity. The nonzero
oscillating p; in this vicinity, however, indicates that Eqs. (2.1) and (2.2) are important.
This region of the duct has compliance per unit length, so that the oscillating pressure can
only occur in the presence of a spatial gradient in velocity, which is needed to supply and
remove the mass necessary to cause the local density to increase and decrease. The presence
of i in Eq. (2.2) indicates a 90° temporal phase shift between the pressure oscillations
and the oscillating velocity gradient; this temporal phase relationship is also evident in the
animation.

Now focus attention on one of the pressure nodes in Ani. Wave /s. This region of the
duct is functionally similar to the neck of the double Helmholtz resonator described above.
Here, py = 0, so Eq. (2.2) indicates that gradients in velocity must be zero and that the
compliance per unit length in this portion of the duct is irrelevant. However, the nonzero
oscillating velocity in this region and Eq. (2.5) show that here the oscillating pressure must
have nonzero gradients, as'seen in the animation; additionally, both Eq. (2.5) and the
animation indicate a 90° temporal phase shift between pressure gradient and velocity.

Precisely at the pressure node in the standing wave, the compliance per unit length
is irrelevant. Precisely at the velocity node, the inertance per unit length is irrelevant.
Everywhere else in the standing wave, where neither p; nor U; are zero, both inertance and
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compliance per unit length contribute to the behavior of the wave. (This is, in fact, what
makes it a wave instead of a lumped-impedance oscillator such as the double Helmholtz
resonator.) Near the pressure antinodes, the compliance per unit length is more important
than the inertance per unit length; near the velocity antinodes, the inertance per unit length
is more important than the compliance per unit length.

While separate regions of predominantly compliance and predominantly inertance are
apparent in the standing wave, in the traveling wave illustrated in Ani. Wave /t each loca-
tion is a time-shifted replica of any other location, with inertance and compliance temporally
alternating in importance at each location. If you focus your attention on one location in
the animation, you should be able to “see” this alternation. In wave propagation, the ther-
mophysical properties responsible for compliance, vp,,, and for inertance, p,,, are combined

to form the sound speed a = \/YDm/ppm-
Phasor diagrams for both wave animations are shown in Fig. 1.19.

Example: standing-wave engine. The resonator of the standing wave engine illus-
trated in Figs. 1.9 and 1.10 is particularly simple. It is essentially a half-wavelength-long
resonator, closed at both ends so that the velocity nodes are at the ends and the pressure
node is in the center. This overall wave shape is illustrated roughly in Ani. Standing /k.
However, note in Fig. 1.10 that the diameter of the central portion of the resonator is
slightly smaller than the diameter of the two ends. This diameter variation serves several
functions, most of which we will discuss in Chapter 5. One of those functions is to lower
the resonance frequency slightly below f = a/2Az, where Az is the overall length of the
resonator. This frequency reduction is considered quantitatively in one of the exercises at
the end of this chapter. However, using the concepts of inertance and compliance, it is easy
to see qualitatively how this diameter variation leads to a lower resonance frequency: The
half-wavelength resonator can be thought of crudely as consisting of two compliances on the
two ends with an inertance the middle, so that the resonance crudely resembles that of the
double Helmholtz resonator shown in Fig. 2.4. If the diameter of the inertance is reduced,
L goes up according to Eq. (2.6), and hence the resonance frequency of the CLC resonator
goes down as suggested by Eq. (2.8). From an alternative point of view, if the diameter of
the compliances is increased, the value of C goes up according to Eq. (2.3), and again the
resonance frequency of the CLC circuit goes down according to Eq. (2.8). In the example
drawn to scale in Fig. 1.10, but with the branch to the refrigerators sealed off, the resonance
frequency was 10% lower than the frequency for which the half wavelength equals the length
of the apparatus. (Nevertheless, we will continue to speak loosely of such a resonator as a
half wavelength resonator, because this phrase captures the essential nature of the standing
wave: pressure maxima at the two ends and a velocity maximum in the center.)

Example: standing-wave refrigerator. The standing-wave refrigerator resonator,
shown in Figs. 1.11 and 1.12, also employs variations in diameter (visible in Fig. 1.11)
to reduce the resonance frequency below that for which a full wavelength would equal the
total path length around the resonator. The apparatus has left-to-right symmetry, so that
driving the loudspeaker pairs 180° out of phase ensures that pressure nodes appear at the
top center and bottom center of the resonator. Hence, these are the locations of high
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velocity, where inertance is important.- The parts of the resonator near the loudspeakers
have high pressure amplitude and hence are the regions where compliance is important.
These compliance portions are enlarged in diameter relative to the inertance portions, so
the resonance frequency is reduced.

Example: lumped approximation to half~wavelength resonator. For the uniform-
diameter half-wavelength resonator shown in Fig. 2.5a, the most accurate impedance di-
agram would have an infinite number of inertances dL and compliances dC, as suggested
by the large number of them in Fig. 2.5a, which would yield the sinusoidal  dependences
of p; and U; shown. Numerical integrations for accurate results might have 10 or 20 such
segments, with each being integrated by a Runge-Kutta method so that each is effectively
subdivided even further. However, the essence of the resonance is simply what is shown in
the phasor diagram of Fig. 2.5b, with pressure oscillations at the two ends having equal
magnitudes and opposite phases, and the velocity in the center phased 90° from the pres-
sures. Hence, if numerically accurate results are not needed, the essence can be captured
with the simpler impedance diagram shown in Fig. 2.5c, in which the central third of the
resonator is modeled as an inertance and the two ends as compliances. The accuracy of this
crude approximation is suggested by the close resemblance of the trapezoidal distributions
for p; and Us, as compared to the sinusoids of Fig. 2.5a. (For further consideration of the
accuracy of this crude approximation, see one of the exercises at the end of the chapter.)

(a)

st A/2 - (c)

I N —
b b s bl b s b b
TTTTTTTTT 1 1
P4 Uy ‘ ps|

p; (left end)
o !

————— e

U; (center) l
p; (right end)

Figure 2.5: (a) The half-wavelength resonator, with sinusoidal p;(z) and Ui(z), is prop-
erly regarded as an infinite series of infinitely small inertances and compliances. (b) The
phasors at the ends and center are particularly simple. (c¢) Two compliances and one iner-
tance capture these simple end .behaviors, with reduced accuracy in values of p; and Uj at
intermediate z.
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2.2. Viscous and thermal effects in large channels

To introduce the key concepts of dissipation and gain into the lossless acoustics picture
developed so far, we'll start with a simple “complete” thermoacoustics problem: the ordinary
viscous and thermal attenuation of sound propagating in a large channel due to the sound
wave’s interaction with the solid channel wall.

‘We consider sound. propagating in the z direction in an ideal gas within a channel with
constant cross-sectional area A and perimeter II. The hydraulic radius

R, = A/TI (2.9)

is conventionally defined as the ratio of cross-sectional area to perimeter. (The hydraulic
radius can also be thought of as the ratio of gas volume to gas-solid contact area, or as the
distance from a typical parcel of gas to the nearest solid surface. Note that the hydraulic
radius of a circular channel is half the circle’s actual radius!) In this section, we will consider
only channels for which R, > §, and R; > 6, : the boundary-layer approximation. We
use our usual complex notation for time-oscillatory quantities (pressure p, temperature T,
velocity component « in the z direction, density p, entropy per unit mass s) : ’

P = Pm+Re[p(z)e] + ..., (2.10)
u = Relui(z,y)e™] +..., (2.11)
T = Tm+Re[Ni(z,y)e] +..., (2.12)
p, S, etc. = similar to T, (2.13)

with p, k, etc. constant. In this section, the channel is assumed to be spatially isothermal,
so T, is independent of z in Eq. (2.12). The coordinate y measures the distance from the
wall of the channel, with y = 0 at the wall, as shown in Fig. 2.6.

2.2.1. Viscous resistance

To develop quantitative understanding of viscous effects, we consider the situation illustrated
in Fig. 2.6 to find the y dependence of the gas velocity, using the z-component of the
momentum equation, for which the acoustic approximation is

. g 0w (z,
Wwp,, wi(z,y) = — p;iil?) +u uéj((;: y) . (2.14)

The z derivatives of u; have been neglected because they are of order 1/)\, and hence
are much smaller than the y derivatives, of order 1/§,. This equation is the appropriate
approximation to Newton’s law, F' = ma, for a differential volume of gas: The left hand side
is mass times acceleration, and the right hand side is the sum of the forces—the pressure
force and the viscous force.

Equation (2.14) is an ordinary differential equation for u;(z,y) as a function of y. With
two boundary conditions, u;(y = 0) = 0 at the solid surface and u; finite as y — oo, its
solution is

i ~(+i)y/657 AP
U = —— [ e ] (2.15)
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Figure 2.6: The coordinate system used in this section. In the boundary-layer approxi-
mation, the opposite wall of the channel is at such large y that it doesn’t appear in this
figure.
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Figure 2.7: The momentum equation describes inertial and resistive effects in a channel. (a)
A short channel, of length Az and cross-sectional area A. (b) Impedance diagram showing

inertance L and resistance R,. (c) A typical phasor diagrams for this situation, showing
that the pressure difference Ap, is the sum of inertial and resistive components.

This function shows how viscosity reduces the magnitude of the oscillatory velocity and
shifts its phase. :

The complex notation is compact and easy to manipulate, but difficult to interpret intu-
itively. To gain a visual appreciation for the boundary-layer velocity expression, Eq. (2.15),
study Ani. Viscous /m, which displays the particle displacement z(y,t) = Re [u; (y)e™*/iw] o«
Re [(1 — e~(#9v/bv) %] with y vertical and the acoustic oscillation direction z horizontal.
The moving line can be imagined to be a very thin cloud of smoke moving with the oscil-
lating gas. The tic mark spacing on the vertical axis is the viscous penetration depth 6,.
Gas that is much closer than §, to the solid boundary is nearly at rest. Gas that is much
farther than 6, from the solid boundary experiences essentially no viscous shear; it moves
with a velocity and displacement that are independent of y. This inviscid motion is purely
inertial; the acceleration is in phase with the force, which is —dp, /dx, so the displacement
is in phase with +dp; /dz. Gas that is roughly §, from the nearest solid surface moves with
a modified, y-dependent velocity and a significant, y-dependent phase shift.

In boundary-layer approximation, we often need the spatial average, over the cross-
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sectional area A, of a boundary-layer function F (y) such as Eq. (2.15). Using Eq. (2.9)
defining the hydraulic radius, we can write such an average as

1 1 [ I e
S - —— ~ . 1
(F) A/FdA HRh/o F(y)dy Rh./o F(y)dy (2.16)
Thus, the spatial average of Eq. (2.15) is
_ i \ 8, ] dp
(wy) = oo [1 (1-1) 2Rh] I (2.17)

In the previous section, the lossless momentum equation led to Eq. (2.5) and to the concept
of inertance for a short channel with length Az and area S. Now, including losses, Eq. (2.17)
shows that the corresponding expression is

_ wp, Az[A .

Ap 1= (1—14)6,/2R; U (2.18)
—-ZU; (2.19)
—(iwL+ R,) Uy, (2.20)

so viscosity adds viscous resistance R, in series with inertance L to comprise total series
impedance Z = R, + iwL as shown in Fig. 2.7b. In this boundary-layer approximation, the
inertance and resistance are

Pm BT

L ~ i (2.21)
pllAz  pAS
R, =~ 275, = s, (2.22)

to lowest order in 8,/Rs; I is the perimeter of the channel and AS = II Az is its surface
area. Note that R, and L are real; hence, the “” in Eq. (2.20) implies that the inertial
contribution to the pressure difference leads the resistive contribution by 90°, as shown in
Fig. 2.7c. )

So think of any length of channel as having resistance caused by viscosity and inertance
caused by mass. A fat channel, with R, > §,, has wL > R,. In fact, in that limit the
ratio wL/R, is proportional to A/II§,, so it is useful to think of the core of the channel,
with volume A Az, as being responsible for the inertance, while the lossy inner skin of the
channel, with volume of order IIé, Az equal to the channel’s surface area times the viscous
penetration depth, as being responsible for the resistance.

Example: orifice pulse-tube refrigerator. Consider the lumped-element compo-
nents at the top of the orifice pulse-tube refrigerator shown in Fig. 1.16: a compliance, an
inertance, and two valves. The purpose of these components is to provide an adjustable
acoustic impedance at the top of the pulse-tube refrigerator, with the adjustments made by
the valve settings. To make a simple example, we will neglect resistances in the inertance
and compliance, so that the network will be regarded as shown in Fig. 2.8a. We consider
a 40-Hz, 3.1-MPa helium operating point, with the network at 300 K. The compliance has
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a volume of 9.8 liters, so according to Eq. (2.3) C = 1.9 x 10~® m3/Pa and its impedance
1/wC = 2.1 MPa-s/m®. The inertance has a length of 2.5 m and a diameter of 2.4 cm, so
according to Eq. (2.6) L = 26800 Pa-s’>/m® and its impedance wL = 6.7 MPa-s/m®. To
keep this example simple, regard the two valves as resistances R, and R,, adjustable from
zero to infinity. Then the net impedance provided by the network is '

7= 1 4L
" 1/(wL+ Rs)+1/R, ' wC’

Plotting Eq. (2.23) for all values of R, and R, shows that adjustment of the two valves
allows access to the entire region of complex Z that is shaded in Fig. 2.8b.

(2.23)

(a) L (b)
Ra? L—1/wCf-v,
P: ﬂ. € ? @ ? /////
""4 E o
- \W\ —I/GJC"/ ] e(Z /A

(0) Rtul
i

iGJLUl Py

1
* wcY%

Figure 2.8: (a) Impedance diagram for the acoustic network at the top of the orifice pulse-
tube refrigerator. (b) The shaded zone of the plot shows values of Z accessible by adjusting
the two valves. (c) Phasor diagram for one case in which the valve labeled “R,” is closed.

Suppose the valves were set so that R, = co (i.e. closed) and R; = 3.35 MPa-s/m>.
Then Eq. (2.23) shows that Z = (3.35 +i4.6) MPa-s/m?3, so the phase of Z is 54°. The
phasor diagram for this case is shown in Fig. 2.8b, where we have arbitrarily chosen the
phase of U; to be zero.

If we use DeltaE to model the inertance, we can account for its series resistance R,,. For
one operating point, such a DeltaE model is 4

BEGIN the setup

3.1114E+06 a Mean P Pa
42.000 b Freq. Hz
305.20 c T-beg K

9.3205E+04 d |pl@0 Pa

0.0000 e Ph(p)O deg
4.3536E-02 £ |U|Q0 m~3/s
-98.944 g Ph(U)0 deg
helium Gas type
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ideal Solid type

! 1
ISODUCT the inertance
4.6400E-04 a Area m~2 2.0075E+05 A |pl Pa
7.6360E-02 b Perim m 159.47 B Ph(p) deg
2.4900 c¢ Length m 4.,0435E-02 C |U| m~3/s
5.0000E-04 d Srough -96.129 D Ph(W) deg

We compute Z = Ap, /U, where Ap; = (281 —470) kPa is the pressure difference across the
inertance and U; = (0.0055+170.0416) m®/s is the average of the volumetric velocities at the
two ends of the inertance. The result is Z = (0.78 + 6.86) MPa-s/m3, so that L = 27300
Pa-s?/m?, wL = 6.86 MPa-s/m?, and R, = 0.78 MPa-s/m®. Our neglect of R, with respect
to wL in the previous paragraph was reasonable but not excellent; this calculated R, is
larger than we would guess from wLé, /Ry, because DeltaE includes the effect of turbulence,
which we will discuss in Chapter 5. Our estimate of L in the previous paragraph differed
only 2% from the result of this numerical integration.

Example: standing-wave refrigerator. Consider one of the central tees in the
standing-wave refrigerator of Fig. 1.11. These locations are pressure nodes, so compli-
ance (though it could be calculated) is irrelevant here; these are locations of high velocity,
so inertance and series resistance are important. Because of the way the black cones fit into
the tees, the horizontal passage through each tee actually comprises three ducts in series: a
12.7-cm-long, 11.2-cm-diam duct between two 5.7-cm-long, 10.2-cm-diam ducts. We com-
pute L and R, for each of these at a typical operating point: 300 K, 92 Hz, 8% argon and
92% helium at a mean pressure of 324 kPa. Since §, is only 0.3 mm, the boundary-layer
Eqgs. (2.21) and (2.22) are appropriate. The results are L = 24.1 Pa-s/m?, wL = 13900
Pa-s/m3, and R, = 75 Pa-s/m®. Indeed, wL > R, as expected for a large-diameter com-
ponent. These two tees, with parts of the cones nearby, contribute the inertance necessary
for the full-wave resonance. Although the resonator is not really lumped-element, we could
represent it crudely as such, as shown in Fig. 2.9.

AN

AH e

Figure 2.9: Crudest representation of the resonator of the standing-wave refrigerator.

2.2.2. Thermal-relaxation conductance

The viscous effects discussed thus far are only one component of acoustic attenuation at
a solid boundary; thermal relaxation effects can be equally important wherever oscillating
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pressure exists, as it causes an oscillating temperature. The general equation of heat transfer

[26]

PCp (% +v. ‘VT) - (%Z’ +v- Vp) = V-(kVT)
+(terms quadratic in velocity) (2.24)

expresses the fact that the temperature changes with time because of the sum of three
effects: pressure changes, thermal conduction, and some velocity terms that don’t concern
us in the acoustic approximation. An example of the pressure-induced temperature changes
is shown in Ani. Thermal /w. The animation shows temperature, pressure, and gas motion
in a half-wavelength resonance; the temperature oscillations are both proportional to and in
temporal phase with the pressure oscillations. Such adiabatic temperature oscillations are
present in all sound waves in free space, although for typical “audio” amplitudes they are
too small to be readily noticed.

Adopting the usual complex notation for the relevant variables, as expressed a.bove in

Egs. (2.10)—(2.13), we find that Eq. (2.24) reduces to

2

uupmcp T1 - iwp; = k% (225)
in the channel. Similar to the viscous derivation above, we have neglected the x derivatives
of T} because they are of order 1/, and hence are much smaller than the y derivatives, of
order 1/6,.. The solid usually has sufficient heat capacity and thermal conductivity to enforce
T, = 0 on the gas at the solid surface y = 0; the other necessary boundary condition is that
T; (o) is finite. Equation (2.25) is an ordinary differential equation for Tj(y), identical in
form and boundary condition to Eq. (2.14) for u;(y). Exploiting the similarity, the solution
can be written -

1

Ty = —— [1 — e~ W+u/6] 5, 2.26
! pch[ IES (2.26)

and its spatial average can be written

<T1) - %’; [1 — (1 i) ] (2.27)

Equation (2.26) shows how thermal contact with the solid surface reduces the magnitude
and shifts the phase of the oscillatory temperature, similar to the effect of viscosity on
oscillatory velocity discussed above. Gas that is much farther than é, from the nearest
solid surface is essentially adiabatic, experiencing adiabatic temperature oscillations T} =
(1/pcp) 1 in phase with the pressure oscillations (as shown in Ani. Thermal /w). The
temperature of gas that is much closer than , to the nearest solid surface oscillates little;
it is locked to the time-independent wall temperature Ty, by the heat capacity of the solid
wall. At approximately &, from the nearest-solid surface, these oscillations are reduced in
magnitude and shifted in phase. In this boundary-layer limit, the functional dependence of
Eq. (2.26) is shown in Ani. Thermal /y, in which the tics on the y axis are separated by 6.
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This animation shows the oscillating temperature as a function of time and distance y from
the wall,

1% Re [(1 — e+0/6<) pyeiot] | (2.28)

T(y,t) = T +
(v,t) p

m

with the motion of the gas toward and away from the wall illustrated by the vertical straight
lines moving left and right.

Using
P P
dp=—=dT + =d 2
p=—gdT+ dp | (2.29)
we can express the spatially averaged density as
Pm Pm
{p1) = T (Th) + a2 : (2.30)

Now we are finally ready to work with the continuity equation. Averaging Eq. (1.9) over
the cross-sectional area of the channel gives

iw (p1) + P dg:) = 0. (2.31)

Using Eqgs. (2.30) and (2.27), and eliminating ¢, by using

=T _Pm_
Y —1pnTm’ (2.52)
yields
Ox d
w [1 +(v-1)(1-9) 2Rh] ’5: + ézl) =0 (2.33)

as an acoustic expression of the continuity equation in the presence of thermal relaxation
effects.

In the previous section, the lossless continuity equation led to Eq. (2.2) and the concept
of compliance. Here, the continuity equation leads to Eq. (2.33), which includes both com-
pliance and thermal relaxation. Equation (2.33) can be rewritten for a short channel shown
in Fig. 2.10a with volume V = AAz as

p=—Z AU, (2.34)
where Z is the parallel combination .of a compliance and a resistance,
1 1 '

as shown in Fig. 2.10b. The effective compliance is given by

¢~ (2.36)

YPm
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(e)

AU, (compliance)
U, +AU,
AU, (resistance)

Figure 2.10: The continuity equation describes compliant and resistive effects in a channel.
(2) A short channel, of length Az and cross-sectional area A. (b) Impedance diagram showing
compliance C and parallel resistance R.. (c) A typical phasor diagram for this situation,
showing that the volumetric velocity change AU; is the sum of compliant and resistive
components. - ’

to lowest order in 6,/ R}. The effective resistance R, that is in parallel with the compliance
is

o~ 2MPm
Ry =~ G =155’ (2.37)
inversely proportional to the volume S§, which experiences thermal relaxation.

So think of any channel as having compliance and thermal-relaxation resistance, which
cause AU; to change from one end of the channel to the other. A wide open volume, with
V > 86, has wC > 1/R,, so the compliance dominates the net impedance. It is useful
to think of the core of the volume V, with adiabatic compressibility, as being responsible
for the compliance, while the vicinity of the inner surface, with effective volume 56, equal
to the channel’s surface area times the thermal penetration depth, has a compressibility
intermediate between the adiabatic and isothermal compressibilities and is responsible for
the thermal-relaxation resistance.

Example: standing-wave engine. Consider one of the outer “hot ducts” (outboard
of the hot heat exchangers) in the standing-wave engine of Fig. 1.10. This location is near
a velocity node, so inertance and series resistance are unimportant. We will compute the
compliance and its parallel thermal-relaxation resistance at a typical operating point: 3
MPa helium, 390 Hz, 800 K. Each hot duct has a volume of 120 cm® and a surface area
of 130 cm? (accounting properly for the surface area and blocked volume due to electrical
feedthroughs passing through this space). Since é, is only 0.2 mm, we can use boundary-
layer Eqs. (2.36) and (2.37), finding C = 2.4 x 107! m3®/Pa, 1/wC = 17 MPa-s/m®, and
R, = 2350 MPa-s/m3.
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Figure 2.11: The coordinate system used in this section. In the boundary-layer approxima-
tion, the opposite wall of the channel is at such large y >> 6, that it doesn’t apear in this

figure.

Example: orifice pulse-tube refrigerator. The compliance at the top of the orifice
pulse-tube refrigerator of Fig. 1.16 has a volume of 9.8 liters and a surface area of approx-
imately 0.3 m? At 40 Hz with 3.1 MPa helium, we calculated a few pages ago that its
compliance is C = 1.9 x 107° m®/Pa and 1/wC = 2.1 MPa-s/m3. Equation (2.37) shows
that R, = 950 MPa-s/m3. Hence, 1/R; can be safely neglected in comparison to wC.

2.3. Inviscid boundary-layer thermoacoustics

Now we’ll finally proceed to thermoacoustics problems in which a mean temperature gradient
along the direction of acoustic oscillation is significant. The simplest such problem that I
know of is not perfectly realistic, because viscosity is neglected. (However, viscosity can’t
really be neglected, because viscous and thermal penetration depths in gases are typically
about the same size.) Nevertheless, to gain intuition about thermoacoustics, we’ll begin
with a brief consideration of this unrealistic inviscid problem.

Consider a nonzero temperature gradient dT,/dz along the direction z of acoustic os-
cillations, with a plane solid boundary at ¥y = 0, as shown in Fig. 2.11. Start from the
general equation of heat transfer, Eq. (2.24), substitute the appropriate form of the acoustic
approximation

P = pm+Re[p(z)e™]+ ..., (2.38)
u = Relui(z,y)e"] +..., (2.39)
T = Tn(z)+Re[Ti(z,y)e"] + ..., (2.40)
p, 8, etc. = similar to T, (2.41)

and keep first-order terms to obtain the appropriate acoustic equation of heat transfer,

, dTp ,
PmCp (sz1 + E) —wp =k 5 (2.42)

This differential equation for T;(y) is similar to Eq. (2.25) but with an additional nonzero
dTy,/dz term. Remember we are assuming that the gas viscosity is zero, so u, is independent
of y in this section. The necessary boundary conditions are T1(0) = 0 and T3(c0) is finite.
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The solution is

_ (. wdlm — o= (1 4i)y/bx
Ty = (pmc,, - dm>[1 e /o] (2.43)

P

which resembles Eq. (2.26), but with more complexity arising from the u; dT,/dz term.
This solution is the product of two factors. The first factor gives the overall magnitude of the

oscillating temperature at distances y >> 6, from the solid boundary, and the second factor

describes the y dependence of that oscillating temperature close to the solid boundary.

The y-dependent factor is the same complex boundary-layer function that we’ve seen
before, in Eqs. (2.15) and (2.26), and in Anis. Viscous /m and Thermal /y. View Ani.
Thermal /y again, and consider Fig. 2.12, which shows the real and imaginary parts of the
second factor in Eq. (2.43). You should be able to visualize the time evolution shown in the
animation being a smooth progression in time between the real and imaginary parts shown
in Fig. 2.12, from real part to minus imaginary part to minus real part to imaginary part
and back to real part.

The magnitude factor in Eq. (2.43) is itself the sum of two terms, each of which is easy
to understand. The first term is simply the adiabatic temperature oscillation: When the
pressure goes up the temperature goes up, and when the pressure goes down the temperature
goes down. The second term is due to gas motion along z, along the temperature gradient,
and is due to the fact that the Eulerian, fixed-in-the-laboratory point of view used in the
conventional formulation of the equations of fluid mechanics that we use. In all of our
equations, such as Eqgs. (2.38)—(2.43) in the present section, (z,y) refers to a fixed location
in space, past which gas moves. The u;dT,,/dz term in Eq. (2.43) simply reflects this
reference frame: When a gas with a temperature gradient moves adiabatically past that
point in space, the temperature at that point in space changes. (The alternative, Lagragian
point of view focuses greater attention on a particular parcel of gas as it moves, not on a
fixed location in space. The Lagrangian viewpoint is often better for developing intuition,
so we rely on it in most of the animations. In the Lagrangian viewpoint, a parcel of gas at
y > 6, experiences Ti = p1/p,,¢p, quite independent of its velocity or whether a nonzero
dT,,/dz exists.) '

So the magnitude factor in Eq. (2.43) is simply the linear superposition of adiabatic
pressure-induced temperature oscillations and adiabatic motion-induced temperature oscil-
lations. - The magnitude factor is complex: It can have any sign and phase, depending on
the relative phases of p; and %; and the relative magnitude of the pressure term relative to
the motion term.

. For standing-wave phasing, the entire magnitude factor in Eq. (2.43) can be zero, if

Il _ | 4T

PmCy W dz

(2.44)

In this special circumstance, the gas properties, standing-wave impedance, and temperature
gradient conspire so that the pressure-induced temperature oscillation and motion-induced
temperature oscillation are equal in magnitude but opposite in sign. This circumstance is
illustrated in Ani. Standing /c, where the upper part of the display shows a standing wave
in a resonator with a stack near the left end, with blue marker lines showing the moving gas.
One particular piece of gas is highlighted with a moving white dot in the stack. The yellow
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Figure 2.12: The real and imaginary part of the y-dependent factor in Eq.(2.43).

oval marks the region that is shown magnified at the left center of the display, which shows
that same parcel of moving gas and short fragments of the two stack plates adjacent to it.
The volume of that parcel of gas changes in response to pressure and temperature. At the
bottom left of the display is a plot of temperature vs position, in which the temperature of
the parcel is the blue trace, and that of the nearby plate in the stack is the white line. Here,
Ry, ~ &, so the thermal contact is poor; the parcel’s temperature oscillation is due entirely
to adiabatic pressure oscillation, and its temperature oscillation and motion just happen to
match the local temperature gradient dT,,/dz exactly, so that the temperature at a fized
location is independent of time.

This circumstance'is sufficiently important for standing-wave engines and refrigerators
that we give it a specific name, the critical temperature gradient:

wA |pi]

Vg = —77-
t PmCp |U1|

(2.45)

[The notation (VT )erit, though more precise, is too awkward.] We will see later that inviscid
standing-wave engines have dT,,/dz > VT, and inviscid standing-wave refrigerators have
dT/dz < V1. Although the reality of nonzero viscosity blurs this boundary considerably,
VT as defined in Eq. (2.45) still provides a useful benchmark.

Equation (2.43) is complex enough—in the literal sense of “complex” with real and
imaginary parts, and in the common English meaning of “complex”—that the combination
of the complex y dependent factor with the complex magnitude factor can yield essentially
any sign, phase, and overall magnitude that you might want. Much of the rich variety
encountered in thermoacoustics—standing wave behavior, traveling wave behavior, small-
pore behavior and well-spaced behavior—fundamentally arises from the complexity of Eq.
(2.43), expressing the simple thermal contact between an acoustic wave and an adjacent
solid boundary parallel to the wave propagation direction.

2.4. General thermoacoustics

Having gained some intuition with the inviscid, boundary-layer thermoacoustics problem in
the previous section and the boundary-layer dissipation problem earlier, we now proceed with
a fully general derivation of the dynamic equations of thermoacoustics, including viscosity
and arbitrary shape and size of channels.
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2.4.1. The math

Naturally, the equations are based on the acoustic approximation, with the relevant variables
now written as : .

P = Pm+Re[p(z)e*’], (2.46)

U = Re[Ui(z)e™], (2.47)

u = Relu(z,y,2)e""], (2.48)

v,w = similar to u, (2.49)

T = Tm(z)+ Re[Ti(z,y,2)e™"], (2.50)

p,s = similarto T, (2.51)
"= ), (2.52)

a, k, etc. = similar to u (2.53)

In this section, we are most interested in p, and U;, as described by the momentum and
continuity equations.

For clarity, we continue to consider here only the case of large solid heat capacity, so that
the temperature of the solid material in the stack is simply Tr,(z), independent of time, y,
and z; and we continue to restrict our attention to ideal gases. (For finite solid heat capacity
or non-ideal gas effects, see [25).)

The presence of nonzero dT,, /dz has no effect on the momentum equation in the acoustic
approximation. Hence, we have for the z-component of the momentum equation

. dp1 32u1 62U1
uupm'u,-] = +u [Fyé— + 2 (2.54)
The z derivatives of u; have been neglected because they are of order 1/, and hence are
much smaller than the y or z derivatives, of order 1/6,. Regarding Eq. (2.54) as a differential
equation for u(y, 2), with boundary condition u; = 0 at the solid surface, the solution is

i dps '
=—1[1-h - 2.
Uz WP, [ u(y) Z)] dz’ ( 55)
where h,(y, 2z) depends on the specific geometry under consideration.

Integrating both sides of Eq. (2.55) with respect to ¥ and z over the cross-sectional area
A of the channel, we obtain the volumetric velocity U; on-the left side and we convert h,
on the right side into its spatial average f,. Solving for dp, yields

_iwpy, dz/A
1-1.

In effect, we regard this approximation to the momentum equation as the origin of pressure
gradient in thermoacoustics: The motion U; of the gas causes the pressure gradient. If
fv = 0, the pressure gradient is entirely “inertial”, as indicated by the “4” in Eq. (2.56),
but when f, # 0 the presence of viscosity and the stationary boundaries adds a resistive
component to the pressure gradient and also effectively changes the magnitude of the inertial
contribution.

dp, = Uy (2.56)
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The function h, and its spatial average f, are known for many geometries. The complex
function f, is plotted for some of these geometries in Fig. 2.13. As we saw above, for
wide-open channels for which the boundary-layer approximation is appropriate,

ho= e G (2.57)
;=822 (2.58)

If we take y = 0 to be the center between parallel plates of separation 2yp = 2R,
ccj:}}: [[((11 : :));//fs]] (2:59)
f o= tanzll[(j ;;;Z/yg/ 3 (2.60)

For circular pores of radius R = 2R,
Jo[(E—1)r/é)
Jo[(i —1) R/6)’
2J; [(i — 1) R/6)

f = RG=DRE G-LRE (262)

where the coordinate » = 1/y2 + 22. These functions are also known for rectangular channels
[36] of dimensions 2yp X 22 :

h =

(2.61)

_ 16 sin (m7y /2yo) sin (nmz/2z)
2

h =1 2.
m,nodd mnymn ’ ( 63)
64 1
f=1- Py Z men2Y,. (2.64)
m,n odd
where
726" 2.2 2 9
Yo =1— zm (m?25 + n*y3) , (2.65)

and for the spaces between pins oriented along the direction of acoustic oscillations, each of
radius ; and arranged in a triangular array [37] with center-to-center spacing v27 7, / V3~
1.9057, :

L Y1(&) Jo(€) — J1 (&) Yo (€)

U A AP AESAATAR) (2.66)
R AR AR

Ny S AARA A ESA YA (267)

where £ = (i — 1)1 /6.

In the continuity equation, an expression for the spatial average over y and z of the
oscillatory temperature, (T}), is required. As above, it is derived from the general equation
of heat transfer, for which the acoustic approximation is

wTi + u % —Wwp; = K & +———62T1
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Figure 2.13: Spatial-average function f for several geometries. The rectangle here has 6:1
aspect ratio, and the pin array has r,/r; = 6. The boundary-layer limit is approached at
large R}, in all geometries.

when dT;, /dz # 0. Regarding this as a differential equation for the y and z dependences of
Ty, and following the same procedure as before but now including the y and z dependences
of u; and allowing-for arbitrary channel cross section, we find that

1 1 dlm hgy—oh,\ U
L e il Gl ) b G
and
1 1 dTn, fe—0fu\ U
() = P (1~ f)pr— — 0=7.) dx (1 — ) = (2.69)
which are comparable to Egs. (2.26), (2.27), and especially (2.43).
In the continuity equation, we must now include the = dependence of p,, :
. d '
i (pr) + == (o {12)) = 0. (270)
Substituting Eqgs. (2.69) and (2.30) into this yields
) iwAdz (fe—f») dTn
aUu; = — 14 (y—=1)felp1 + U;. 2.71

This expression finds easy physical interpretation as a complete thermoacoustic approxima-
tion to the continuity equation. The two terms in Eq. (2.71) show that a gradient in U,
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can be caused either by pressure or by velocity along the temperature gradient. Consider
the pressure term first. If f, = 0, there is no thermal contact between gas and solid, so
the density oscillations are adiabatic; in this case, 1/vpn, is the correct compressibility, and
the compliance of the segment of channel of length dz must be Adz/vp, = dV/vpm, as
we found in Eq. (2.3). At the other extreme, if f, = 1, the thermal contact between gas
and solid is perfect, so the gas is anchored at the local solid temperature. In this case,
the isothermal compressibility 1/p,, is appropriate. For intermediate thermal contact, an
effective compressibility [1 + (y — 1) fc]/7Pm, intermediate in magnitude and with nontrivial
phase, describes the spatial average of the density oscillations in response to pressure oscil-
lations. Next consider the velocity term, in the easily interpreted inviscid limit (with f, =0
and o = 0) so that it is simply f.U; dTp/Th. If f = 0, there is no thermal contact between
gas and solid, the velocity term is zero, and the gas density does not change as it moves
along z. In the other extreme, if f, = 1, the gas is always at the local solid temperature,
so that as it flows toward higher T, its density decreases and its velocity increases. In the
more general, and more interesting, intermediate regime, oscillatory motion of the gas along
the temperature gradient leads to complex density oscillations.

Equations (2.56) and (2.71) are applicable to a wide variety of thermoacoustic circum-
stances, and may be considered two of the principal tools of thermoacoustic analysis. Many
earlier expressions in this chapter are simplified limits of these equations, and in the next
subsection we will closely examine the effective compliance, inertance, and resistances indi-
cated by these two equations.

[One more detail: The graphs and equations for f versus R,/é that we’ve seen so far
have listed several different geometries of interest mostly for standing-wave thermoacoustics.
It is possible to follow through the same kind of analysis for the stacked-screen regenerators
that are usually used in Stirling systems. Here’s an outline of the derivation [38]. Assuming
a sinusoidal volumetric velocity through a stacked-screen regenerator, and assuming that
published steady-flow data [39] for stacked-screen viscous pressure drop and heat transfer
are valid at each instant of time during this oscillation, a Fourier transform of the appropriate
continuity and momentum equations can be taken, with those very complicated published
curves of pressure drop and heat transfer built in. The results can be rearranged to yield
fx and f, as a function of R, /6. and R} /6,, the volumetric porosity of the screens, and the
peak Reynolds number of the flow. The results are only valid for small R /6., which is the
regime of interest for traveling-wave devices. The results look qualitatively like the low-R}, /6
parts of the curves in Fig. 2.13, with slightly different results for different porosities in the
screen bed and for different Reynolds numbers (i.e., different acoustic amplitudes). Another
minor detail that you can find in the Ref. [38]: the fx that shows up in the p; term of
continuity equation is actually a little different than the f, that shows up in the U; term.]

Finally, at this point we could combine Eqs. (2.56) and (2.71), eliminating Uj, to obtain
a second-order differential equation in p;:

YPm d 1 fu dpl a? fn fv 1 dT5, dpl
1 —1)f. - )y 2 — bt s}
1+ (y—Vfipm+—= l ( l

w?2 l—0 T, dz dz =0 (2.72)

This is Rott’s wave equation, a milestone in the development of thermoacoustics. (Strictly,
we should call it a Helmholtz equation, because the time derivatives have been replaced by
iw’s.) For numerical computations, it is easiest to use Eqs. (2.56) and (2.71) separately; and
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I think that greater intuition can be gained by considering Eqgs. (2.56) and (2.71) separately,
as we shall do in the next subsection.

o
Y

2.4.2. The ideas

The principal results of the last subsection were the thermoacoustic versions of the momen-
tum and continuity equations, Egs. (2.56) and (2.71):

dpy = wf":d;/AUl,
- _ _wAdz 5 (fs—f») dTn
dvy = -~ 1+ (v 1)f~]p1+(1_ TR

In this subsection, we will try to gain a deep intuitive appreciation of these two equations,
following the outline indicated in Fig. 2.14. In the figure, the channel of length Az is
considered in two ways: in terms of the momentum equation to obtain its inertance and
viscous resistance, and in terms of the continuity equation to obtain its compliance, thermal-
relaxation resistance, and thermally induced volumetric velocity source. Combining these
two points of view yields a.complete impedance picture for thermoacoustics, just as the
momentum and continuity equations provide a complete description of the dynamics linking
Y4l and U1. -
We begin with the momentum equation. If we rewrite Eq. (2.56) in the form

dp; = — (iwldz + r, dz) Uy, (2.73)

as shown schematically in the left part of Fig. 2.14, then the inertance and viscous resistance
per unit length of channel can be written

1-Relf,

= p7m~l_1;f:[lé_] S (2
and 7
Im |- v

, = w_ﬁﬂﬁ_—['ﬁ' (2.75)

The boundary-layer expressions earlier in this chapter, Egs.” (2.21) and (2.22), are simply
limiting forms of Egs. (2.74) and (2.75) for large Ry/6,.

Study Eqs. (2.74) and (2.75) and Fig. 2.13 carefully, and think of any channel as having
inertance and resistance, with the details depending on f,. Both I and r, are always positive
(and real). Hence, the momentum equation can never give behavior that looks like negative
inertial mass, nor can it give a negative flow resistance. From the limiting behavior of f, for
large Ry, shown in Fig. 2.13, it is clear that in that limit I — p,,,/A and 7, — 0. At less-
than-infinite but still large Ry, r, rises above zero as the importance of viscous drag at the
wall increase, and [ rises above p,,, /A as the viscous penetration depth at the wall effectively
reduces the available flow area. This is the regime of interest in resonator components and
in pulse tubes. Forming the ratio

my, _ Im[-f)]

Wl = T-Relf,]’ (276)
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we can easily see that in the vicinity of R, =~ 6, the resistive and inertial parts of the
impedance are of comparable magnitude. This is the regime of interest in the stacks of
standing-wave thermoacoustic devices. In the smallest passages, such as in the regenerators
of traveling-wave devices, the inertial part of the impedance is negligible compared to the
resistive part.

Now examine the continuity equation. We rewrite Eq. (2.71) in the form

1
dUy = — <iwcd:n + ;—da:) m +edz Uy, (2.77)

as shown schematically in the right part of Fig. 2.14. The two familar symbols in the figure
represent the compliance per unit length

c= - 1+ b= R[] (2.78)

and the thermal-relaxation conductance per unit length, which is the inverse of a resistance

v—1wA Im[—f]
v Pm .

1
e (2.79)
The boundary-layer expressions earlier in this chapter, such as Eqs. (2.36) and (2.37), are
simply limiting forms of Eqgs. (2.78) and (2.79) for R, /6, — oo.

Study Egs. (2.78) and (2.79) and Fig. 2.13 carefully. Both ¢ and r, are always positive
(and real). From the limiting behavior of f, for large channel size shown in Fig. 2.13,
it is clear that in that limit ¢ — A/vyp, and r, — oo0. At less-than-infinite but still
large channel size, 1/r, rises above zero as the importance of thermal relaxation at the wall
increase, and c rises above A/7vp., as the thermal penetration depth at the wall contributes
a greater compressibility per unit volume than the compressibility far from the wall. This
is the regime of interest in resonator components and in pulse tubes. Forming the ratio

1 = (7_1)Im["'fn]
wree 1+ (y—1)Relf,]’

(2.80)

we can easily see that in the vicinity of R; ~ 6, the thermal-relaxation resistance and the
compliance parts of the impedance are of comparable magnitude. This is the regime of
interest in the stacks of standing-wave thermoacoustic devices. In the smallest passages,
such as in the regenerators of traveling-wave devices, the thermal-relaxation-resistance part
of the impedance is negligible compared to the compliance part.

The third, new symbol in the impedance diagram represents a controlled source edz U,
(or sink, depending on sign) of volumetric velocity, proportional to the local volumetric
velocity Uh itself, with proportionality constant

(fn_fV) _1__dTm
1-f)A—0)Tm dz

e =

(2.81)

which represents a sort of complex gain/attenuation constant for volumetric velocity, and
which arises only when the temperature gradient dT;,/dz along the channel is nonzero.
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Figure 2.14: Summary of the most important concepts of this chapter.

55

7 ) IS AT % T v
I A I T S A NN LR STRS ¥ R I S At S e e et e



The eU; term in the continuity equation has no dependence on p;, so it must not represent
any sort of compressibility. To understand this term, let p; = 0 so that ¢ and r,, don’t confuse
the issues in this paragraph. The dependence of the eU; term on dT;,/dz is key. In a pulse
tube or other large-diameter thermal buffer column, f, and f, are very small, so that e ~ 0
even though dT,,/dz 5. 0. In this case, the eU; term in the continuity equation simply says
that whatever volumetric velocity goes in one end comes out the other end. The behavior is
essentially the same as the displacement of a solid piston with a temperature gradient and
mass-density gradient. At the opposite extreme, if a nonzero temperature gradient d7,,/dz
exists along a channel with very small pore size, such as in a regenerator, the volumetric-
velocity source term el); is very important. The small-channel limit of Eq. (2.81) is most
important and most easy to appreciate: For R, < 6, and R < §,,

1 d7T5,
In this case, the eU; term in the continuity equation says that dU,/U; = dTm /T : The
volumetric velocity is amplified in proportion to the temperature rise (or attenuated in
proportion to a temperature drop). This is easy to understand as constancy of first-order
mass flux p,,,U;, which for an ideal gas is equivalent to constancy of Uy /T,, : Whatever mass
flux goes in one end must come out the other. In this limit of good thermal contact, 73 =0
so there can be no oscillating mass density in the volume dV.

The even greater complications of the intermediate regime, R/é, ~ 1, encountered in
the stacks of standing-wave systems, is suggested by the boundary-layer limit of Eq. (2.81):

1-4 1 6, 1dT,

In this case, the volumetric velocity source is proportional to the volumetric velocity itself,
but with a phase shift of —45°.

If now we combine the momentum and continuity pictures as shown at the bottom of Fig.
2.14, we arrive at a complete, general impedance picture of thermoacoustics in any channel.
We can think of p;, Uz, T, dTm, and the geometry as given, so that the impedance diagram
serves as a reminder of how the continuity and momentum equations yield dp; and dUj.

In most circumstances in a given location in a thermoacoustic system, many or most of
the components in this general impedance picture can be neglected. Recalling that 6, ~ 6,
for ideal gases, we can form a table that summarizes relative sizes and importance:

resonator Rp>6 wl>r, we>1/r, e=0
pulsetube Ry, >6 wli>r, we>1/r, e~0
stack Ry~6 wl~r, we~1/r, e complex
regenerator R, €6 wl<Kr, we>1l/r, exVT,/Tn

Further simplification in understanding thermoacoustic devices can be achieved by consid-
ering the relative sizes of p; and U, in a given component, to determine whether either L or
C can be neglected.

Example: Standing-wave engine. Each stack in the engine of Figs. 1.9 and 1.10
was of parallel-plate construction, with gaps between plates of 0.010 inch, so B; = 0.13
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hot duct.:.--....................: resonator .:. ............... q: ;.......................: hot duct

Figure 2.15: Schematic impedance diagram for the standing-wave engine example.

mm. At the stack center, where the temperature is about 550 K, the thermal and viscous
penetration depths are 6, = 0.12 mm and 6, = 0.10 mm at a typical operating point with
3 MPa helium at 390 Hz. Hence, with R,/é, = 1.1 and R,/6, = 1.3, we know that all of
the impedance components—inertance, viscous resistance, compliance, thermal-relaxation
resistance, and volumetric-velocity source—could be important. However, the stacks are
close to the velocity nodes of the standing wave, so it is likely that the inertance and viscous
resistance will be less important than the other three components. The impedance diagram
shown in Fig. 2.15 probably has adequate detail to convey the most important features
of the apparatus. The overall resonance is portrayed as Helmholtz-like, with an inertance
between two compliances. Although this level of detail does not show the wave nature of the
z dependences of p; and U in the apparatus, it does successfully show that the pressures
on the left and right halves of the apparatus are 180° out of phase, with the pressure on
the left half of the apparatus leading the volumetric velocity through the inertance by 90°
and the pressure on the right half of the apparatus lagging the volumetric velocity through
the inertance by 90°. Judging by eye in Fig. 1.10 that the volumes of gas in each stack and
hot duct are comparable, we know that the stack compliance must be as important as the
hot-duct compliance; the stack compliance causes AU, across the stack t6 be nearly as large
as U itself at the hot end of the stack. It turns out that the thermal-relaxation resistance
and volume velocity source in the stack cause a smaller change in |U;| and only about a 5°
phase shift between U; at the left and right ends of each stack; the effects of the branch to
the refrigerators are comparable.

To obtain more detailed information about p; and U in this system, I gave DeltaE all
the geometry of half of the apparatus, the helium pressure, temperatures, etc., picked one
particular operating amplitude, and asked DeltaE to tabulate p; and U; as a function of
position in the apparatus. (See Appendix for details.) The result is shown in Fig. 2.16.
(In anticipation of the next chapter, the figure is flipped left—to-right relative to previous
figures of this apparatus.) I chose the phase of p; to be zero at = 0. Then for a standing
wave, we expect the pressure to remain real and to look largely like a cosine of z, and the
volumetric velocity to be imaginary and look largely like a sine of z, as shown in the figure.
The dependence of A on x, appararent in the scale drawing, causes |p;| and |U;| to deviate
from perfect trigonometric functions, but these deviations are not visible to the naked eye
in the figure. For the most part, dp;/dz is due to inertance and Ui, and dU; /dz is due to
compliance and p;.

However, there are small out-of-phase components to p; and U;, which have been multi-
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Figure 2.16: Results of numerical integration of the momentum and continuity equations
for the standing-wave engine example. (a) Relevant portions of crude impedance diagram.

(b) Scale drawing of apparatus. (c) ps. (d) U
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plied by 20 and 10 respectively in Fig. 2.16 in order to display them clearly. As with most
standing-wave systems, the phase différence between p; and U; remains so close to 90° that
phasor diagrams are of limited usefulness. The step in Re[U;] occurs at the branch to the
refrigerators, and accounts for the U; flowing into the refrigerators. The upward slope of
Re[U;] through the stack is due to the volumetric-velocity source term throughout the stack,
and the upward slope of Im[p;] is due to 7, in the stack. The weaker slopes of Re[U;] and
Im(p;] elsewhere are partly due to 7, and 7, elsewhere, but also from ¢ and [ interacting
with Im[p;] and Re[U;), respectively.

Example: Traveling-wave engine. The regenerator in the engine of Figs. 1.13 and
1.14 is a bed of stainless-steel screen with a hydraulic radius of 42 pm. At a typical operating
point, 80 Hz and 3 MPa helium gas, and with the center of the regenerator at 650 K, the
penetration depths are §,, = 300 pm and 6, = 250 um. Hence, we have R; < 6, so inertance
and thermal-relaxation resistance are negligible, and the volumetric velocity source is well
described by Eq. (2.82). The regenerator is adequately modeled with the three components
labeled “regenerator” in Fig. 2.17. The thermal buffer column is 9 cm diam, so it has
Ry > 6, so its most important dynamic characteristic is its compliance, also shown in Fig,
2.17. The feedback path is most roughly modeled as an inertance (the straight section) in
series with a compliance (the 180-degree U bend at the left end); we neglect the resistances
associated with these two components for now. The resonator to the right of the junction is
approximately an inertance (the uniform-diam section) in series with a compliance (the big
volume on the end), with both of these components having associated resistances. Neither
of these resonator components is really lumped, but we will neglect those details for now.
The adjustable load on the system, comprising an adjustable valve in series with a tank,
can be modeled as a resistance in-series with a compliance. Hence, the impedance diagram
of Fig. 2.17 shows the most important features of this system.

regenerator

thermal
buffer column

180° bend main resonator
: : l N .

= T T T

........................

inertance tube

extern,alf
load : <=

........

Figufe 2.17: Impedance diagram for traveling-wave engine example.

Animation Tashe /t shows these same features for the traveling-wave engine, omitting
the resonator and adjustable load. Study the animation and Fig. 2.17 together. In the
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animation, you should be able to “see” many features that we have discussed in this chapter.
The expected behavior of each of the two large compliances should be apparent, with U;
“in” differing from U; “out”; close examination will show the 90° phase difference between
AU; and p;. The joining conditions—conservation of p; and U; at the transitions between
components—should be apparent, such as'at the-ends of the inertance and at the three-way
junction. It should be apparent that the velocity through the regenerator, which is resistive,
is in phase with Ap,, while the velocity through the inertance lags Ap; by 90°. I know that
the compliance and volumetric-velocity source associated with the regenerator are correctly
programmed in this animation too, but I confess they are too subtle for me to see here.

Example: Standing-wave refrigerator. Figure 2.18 shows a lumped-impedance di-
agram for the standing-wave refrigerator of Figs. 1.11 and 1.12. The stacks have R, /§ ~ 1,
so all of the impedance components—inertance, viscous resistance, compliance, thermal-
relaxation resistance, and volumetric-velocity source—could be important in them. In the
standing-wave engine above, we argued that the stacks were close to the velocity nodes of the
standing wave, so we neglected their inertance and viscous resistance. In this refrigerator,
the stacks are not so close to the velocity nodes, so we cannot neglect these momentum-
equation contributions. The loudspeakers contribute significantly to the dynamics, so we
should at least include the mass and spring constant of each; I’ve made up new symbols
for these—a rectangular brick for mass, and something that reminds me of automotive leaf
springs for the spring constant.

e 5
b
|
P ke aaeans s s e e e ol
driver and
its case
. stack

Figure 2.18: Schematic impedance diagram for the standing-wave refrigerator example.
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Example: Traveling-wave refrigerator. The impedance diagram of Fig. 2.19a sym-
bolically represents the most important dynamic features of the orifice pulse-tube refrigerator
of Figs. 1.15 and 1.16. The rightmost compliance C is the so-called compliance itself. The
adjacent inertance L and resistance R, represent the refrigerator’s inertance tube and two
valves, with valve settings the same as in the related example near Fig. 2.8 above: The
parallel valve R, in Fig. 2.8 is closed, and the series valve R, in Fig. 2.8 is adjusted so
that R, = wL/2. The compliance of the pulse tube is significant, and is shown as Cp;. With
Ry, /6 ~ 0.1 in the regenerator, its compliance C,e, Viscous resistance Ry,, and volumetric

velocity source AUys = —Ujin (Tin — Teora) /Tin represent the regenerator well.
U Uteo Usout
(a) Piin — i Pipt —_— Pic
YAAVAS B B Bhasm
Reeg | 1 R, L e
Creg—_— AUIS B Cpt C -1
(b)
Utin
- 1
et p!p?n
 Ureotg- "
' Uloul

Figure 2.19: (a) Schematic impedance diagram of the orifice pulse-tube refrigerator. (b)
Phasor diagram, with the phase of U}y, set to zero. (c) Same phasor diagram, but rotated
so that the phase of pi is set to zero.

I used the impedance diagram of Fig. 2.19a and quantitative information about the
hardware geometry to construct the phasor diagram of Fig. 2.19b, starting from the right
end of the impedance network and working to the left. We already did part of the work in
Fig. 2.8c above; pic, Uiout, and pyy, are copied from that figure. The compliance of the pulse
tube then determines Uy quq; next Ciez and AU s determine Uy,y; finally R, determines py;,.

Example: imperfect inertance. Sometimes it is impossible to provide a desired
phase shift in Z = p;/U; using an inertance, because the unavoidable compliance and
viscous resistance can cause phase shifts of the opposite sign, as illustrated in Fig. 2.20.

61

Y O U O L U2 i T TE M M A P N A SN S T s



These variables are not completely independent, because the cross-sectional area, volume,
and surface area of a tube are not independent. Suppose that the viscous resistance r, and
the compliance ¢ per unit length of this inertance are not negligible, as shown in the figure,
and suppose it is desired that Z;, should lead Zp,;. Figure 2.20b shows that, even though
[ works in the correct direction, causing pi11, to lead p1ou:, the compliance ¢ works to shift
Ui ahead of Ujpyt, so that the impact on the phase of Z could have either sign, depending
on the quantitative details of [, 7, and c.

() r—dx—e
U, U, —aU U
(®) prdp —u R prdp, —u' B —
S AT — -
vy dx 1dx ndx 1dx
T edx
—r,dxU;
) prdp ~iwl dxUj
R
o

Figure 2.20: (a) A lossy inertance and a compliance, such as might be used at the end
of a small pulse-tube refrigerator. A short length dz of the lossy inertance is highlighted.
(b) Impedance diagrams for the short length dz of the lossy inertance; on the left, the
compliance per unit length is negligible, while on the right it is not negligible. (c) Phasor
diagrams for the short length dz of the lossy inertance; on the left, the compliance per unit
length is negligible, while on the right it is not negligible.

2.5. Exercises

2.1 Review complex notation: show that p(t)u(t) = Re[p141]/2 = |p1] |u1| (cos ¢) /2, where
¢ is the phase angle between p;, and u;.

2.2 Morereview: show that the phase of the ratio of two complex numbers is the difference
between the phases of the numbers. Consider Z = p; /U;. What is the phase of the impedance
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of a traveling wave? If pressure oscillations lead velocity oscillations in a more general wave,
is the phase of the impedance positive or negative?

2.3 The sealed resonator shown in Fig. 2.21, consisting of a central duct of length 24z,
and area A; between two other ducts each of length Az, and area A,, is intermediate between
a double Helmholtz resonator and a plane wave resonator. Show that the fundamental
frequency is given by

% tan w—f-l— tan ﬂaL_z_ =1. (2.84)
Show that this reduces to something spnsible when Ay = A;. Show that it reduces to the
expression for a double Helmholtz resonator for A; < Ag, Az; < A, and Azy K A

lv 24x%, ——'c— Axy, ——e
| I :

I 1
f |
area A, area A,

Figure 2.21: Geometry for exercise 2.3.

2.4 Does p; () = Csin kz represent a standing wave or a traveling wave? Does p;(z) =
Ce™*® represent a standing wave or a traveling wavé? Use the lossless first-order momentum
equation to write down u;(z) in both cases. Use the lossless first-order continuity equation
to check your expressions for u;(z). How would you write p;(x) for a standing wave with a
temporal phase shift of 90° relative to this standing wave? What about a quarter-wavelength
spatial shift in the node locations?

2.5 Consider a lossless duct of uniform cross-sectional area, sealed at both ends, of length
Az. The fundamental resonance frequency is f = a/2 Az, because that is the frequency for
which a half-wavelength wave “fits” in the pipe, with velocity nodes at the sealed ends.
If you knew nothing about waves, you might think this resonator was essentially like the
double Helmholtz resonator, with an inertial mass of gas in the central third of the resonator
bouncing against the compliances of gas in the outer thirds of the resonator. If you calculated
the resonance frequency using this lumped-impedance picture, how different would your
result be from the true resonance frequency a/2 Az? What if you used the central half and
the outer quarters?

2.6 Verify that Egs. (2.59) and (2.60) approach Egs. (2.57) and (2.58) as Ry/6 — co.
2.7 Combine Egs. (2.56) and (2.71) to obtain Rott’s wave equation.
2.8 Check the derivations of all equations in this chapter, except Egs. (2.59)—(2.67).

2.9 Look closely at the computer animations Viscous and Oscwall. Use “pause” on your
keyboard to study “viscous” very carefully. It looks like the gas motion about a penetration
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depth away from the wall leads the motion farther from the wall. Does this make sense, or
did the author make a minus-sign mistake when he made the animation?

2.10 The specific acoustic impedance of a wave is defined as

_4n

Uy’

Show that the specific acoustic impedance of a lossless plane traveling wave is +pa. Show that
the specific acoustic impedance of a lossless plane standing wave is +patan [w (z — zo) /a} .

As the wave crosses from a first duct of area Ay to a second duct of area A,, which impedance
is continuous—z or Z7?

(2.85)

2.12 Show that T} /T,, = (7 — 1)p; /¥pm for an ideal gas experiencing adiabatic pressure
oscillations. What is the value of (7 — 1)/ for your favorite gas? What is proportionality
constant links T1/Ty, and p;/pm for an ideal gas experiencing isothermal pressure oscilla-
tions? How big is T7 at a few locations in your favorite hardware? How big is 7 for “audio”
acoustics in air?

2.13 Sketch |p1] and either |U| or |{u1)| for your favorite piece of hardware.

2.14 Estimate the inertance, compliance, and resistances of some components in your
favorite piece of thermoacoustics hardware. Compare R,, wL, 1/wC, and 1 /G’ Do the
relative magnitudes make sense?

2.15 A Helmholtz resonator consists of a 4 liter spherical volume V and a cylindrical
neck having a diameter of 2r = 2 cm and a length Az = 5 cm. It is filled with air at 300
Kelvin and 1 bar.

What is the inertance of the neck? How does it compare with the mass of gas in the neck?
What is the compliance of the volume? What is the resonance frequency? At resonance,
how does wL compare with 1/wC? How does A compare with the various dimensions in the
problem? How do 6, and 8, compare with the other dimensions?

2.16 Draw a reasonably detailed impedance diagram for your favorite piece of thermoa-
coustics hardware.

2.17 In this chapter, my choice of U; and p; as the variables of greatest interest led to the
forms of the momentum and continuity equations that we used, and from there to the forms
of the impedance diagrams that we used. However, other choices can be made, with equal
success if employed self consistently. Your task: reconstruct some of the important results
and figures of this chapter from a different point of view, with the variables of greatest
interest being the average gas velocity (u;) and the force F; = Ap; exerted by the gas at z
on the gas at £ +dz. To construct impedance diagrams, invent symbols for moving mass m,
spring k, dashpots R, and Gy, and thermally induced velocity source d (u;5). Draw your
version of the impedance diagram for the most general thermoacoustic element of length dz,
thinking carefully which components should be drawn in parallel (sharing the same (u;))
and in series (sharing the same Fj). What are the joining conditions from one segment to
the next, corresponding to our use of continuity of p; and U; in the text? Do you think your
version is more intuitively understandable than the version used in the text? Why or why
not?

2.18 Assign names to the pressures and volumetric velocities at key locations in Fig. 2.17.
(Remember to define a positive direction for each velocity.) Construct a phasor diagram, by
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examining the figure and Ani. Tashe /t Don’t worry about details; just try to get relative
phase angles correct to within £45°. Repeat this exercise for Fig. 2.18.

“ & N
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3. POWER

Products of first-order variables (such as p; and U;) represent power, which is of paramount
importance in thermoacoustic engines and refrigerators. Introductory acoustics textbooks
teach that

2 j{ p(e)v(t)di = 3 Relpi¥il, (3.1)

which is called the acoustic intensity, is the time-averaged “power per unit area” in a sound
wave. It’s not so simple in thermoacoustics. We must be very careful to identify which type
of power we are talking about, because there are so many important types of energy and
power in thermodynamics—enthalpy, heat, Gibbs free energy, etc., etc.

The concept of acoustic intensity is so familiar to acousticians that we are reluctant to
abandon it. Hence, in this book we will make as much use as possible of the integral of the
acoustic intensity across the cross-sectional area of the channel:

By(z) = 5“—;; ]{ Re [p1(z)e"] Re [U1(z)e™"] dt (3.2)
= S Re[pTi] = 3 Re[filH (33)
= 5lpl Ul cos o, (34

where ¢,y is the phase angle between p; and U;. We call this the acoustic power flowing in
the 2 direction, giving it the subscript 2 to remind us that it is second order—the product
of two first-order quantities. Note also that it is a time average; we're not interested in
instantaneous power delivered along z, only the power averaged over an integer number of
cycles of the sound wave.

Similarly, enthalpy is very familiar to mechanical and chemical engineers, because it is the
key energy of fluid dynamics, of great use when considering the first law of thermodynamics.
We will see below that

. 1 ~ dT, '
Hy(@) = 5pm Re U1 | — (Ak + Asaiabioia) 72, (3.5)
where h is the enthalpy per unit mass, is the acoustic approximation to the time-averaged
total power flowing in the positive = direction.

-In this chapter and Chapter 4 our understanding of the use and meaning of E, and H,
will grow. i
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Figure 3.1: (a) Typical phasor diagrams for positive acoustic power flow in the positive =
direction. The angle between p; and U, is acute. (b) Typical phasor diagrams for zero

acoustic power flow. The angle between p; and U is 90°. (c) Typical phasor diagrams for
acoustic power flow in the negative z direction. The angle between p; and U, is obtuse.
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3.1. Acoustic power

Acoustic power depends strongly on the phase angle between p; and U;. Whether using Eq.
(3.2), (3.3), or (3.4) for acoustic power Es, it is immediately apparent that E, = 0 when
the phase between pressure and volumetric velocity is 90°, i.e. for standing-wave phasing,
For a pure rightward traveling wave, E, > 0. For a pure leftward traveling wave, Ep < 0.
Whenever ¢pU| < 90°, acoustic power flows in the positive z direction; when this angle is
between 90° and 180°, acoustic power flows in the negative z direction, as illustrated in Fig.
3.1.

The utility of F, (z) in acoustics is due largely to its intuitive appeal as describing a sort
of flux of mechanical power past the location z. This interpretation is possible because the
volumetric velocity U;(z) is equal (to first order only!) to the volumetric velocity of the
particular slab of gas whose average position is at z. Letting V be the oscillating part of
the volume of gas to the left of this slab of gas, so U = dV/dt,

. w
Ey(z) = % }{pUdt -0 j{pdv, . (3.6)
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Figure 3.2: Acoustic power flows down a channel of area A. The absorption of acoustic
power within the length dz is of interest.

which we recognize as the standard thermodynamic expression for the time-averaged rate
at which work is done by a piston. Hence, F»(z) can be interpreted as giving the work done
by a slab of gas, whose average position is z, on the gas in front of it, as if the slab of gas
whose average position is = were a solid piston. ’

These points are illustrated in Anis. Wave /v and Wave /u. Animation Wave /v is
the same rightward-traveling wave we examined in Chapter 1, but with additional purple
ellipses representing E, at two typical locations. The horizontal coordinate of the small
white dot tracing the ellipse is equal to the location of the slab of gas in question; the
vertical coordinate is p. Hence, the purple area of the ellipse is proportional to §pdV, and
so this area can be taken as a representation of E;. The clockwise rotation of the small
white dot tracing the ellipse indicates that E5 > 0. Recalling from Fig. 1.19 that p; and Uy
are exactly in phase for this animation, i.e. p; and V; are 90° out of phase, we see that this
case gives the fattest ellipse possible for these amplitudes |p;| and |U}].

Similarly, Ani. Wave /u is the same standing-wave animation we examined in Chapter
1, but with the addition of pV traces at two typical locations. Recalling from Fig, 1.19
that p, and Uy are exactly 90° out of phase for this animation, i.e. p; and V; are exactly in
phase, we see why the pV “ellipses” are nothing but reciprocating lines. Since these lines
enclose no area, they show that E, = 0. Pure standing waves carry no acoustic power.

Typical waves of interest in thermoacoustic engines and refrigerators are neither pure
standing wave nor pure traveling wave. In the typical so-called standing wave engine or
refrigerator, the phase between pressure and volumetric velocity is typically in the range of
85° to 95° in the stack. Such a wave is illustrated in Ani. Wave /k. At first glance this wave
is barely distinguishable from a pure standing wave, but close examination shows nonzero
area in the pV ellipses, i.e. nonzero acoustic power transmitted to the right by the wave.
Also note that there are no longer true nodes of pressure or velocity; the locations that
at first appear to be nodes are actually regions of small amplitude having a slight nonzero
oscillation everywhere.

Animation Wave, with any of its /options, assumes that Ej is constant; dE,/dz = 0.
However, the interaction of a sound wave in a channel with the channel walls leads to
dFE,/dz # 0. As in Chapter 2, we consider sound propagating in the z direction in an ideal
gas within a channel with constant cross sectional area A, as shown in Fig. 3.2. We adopt
the usual complex notation for time-oscillatory quantities, namely Eqs. (2.10)-(2.13). To
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find the time-averaged acoustic power dF produced in a length dz of the channel, we write
dE d (pa)
— = [ ——*dyd 3.7
dz / dz dydz 3.7)

where the overbar denotes time averaging and the integral is over the cross-sectional area
A of the channel. Rewriting Eq. (3.7) in complex notation and expanding the z derivative
gives

dE2 _ 1 dp1 . dU;

dr ~ 2 Re [U +91 dz |’ (38)
where the tilde denotes complex conjugation. We can obtain dp; /dz and dU, /dz from the

momentum and continuity equations in Chapter 2; Equations. (2.73) and (2. 77) provide a
convement form. Making these substitutions, we obtain

B T - il + 5 ReleBiU). (39)
When you look at an impedance diagram for a thermoacoustic component, such as the
general impedance diagram of Fig. 2.14, realize that Eq. (3.9) shows that only three of
the five impedance components affect acoustic power; inertance and compliance have no
dlrect effect on acoustic power; they only cause p; () and Ui (z) to evolve in ways that keep
3 Re[p1U1] independent of z.

- The first two terms in Eq. (3.9) are always negative; the first term gives the viscous dis-
sipation of sound and the second term gives the less intuitively obvious thermal-relaxation
dissipation. The third term, which can have either sign, is of the greatest interest in ther-
moacoustic engines and refrigerators. We will spend the rest of this section interpreting
these three terms.

3.1.1. Acoustic power dissipation with dT, /dz =0
With dT.,/dz = 0, Eq. (3.9) reduces to

dE.
=R -5l (3.10)

This expression gives the ordinary dissipation of acoustic power per unit length in a channel.
Fortunately, this expression is easy to interpret because it is so simple. Both terms are
negative, so both always represent dissipation: If power flows in the positive z direction,
then |Ey(z +dz)| < |E(z)], while if power flows in the negative « direction, then |By(z)| <
|Ea(z + dz)|. Both terms in dk,/dz are independent of By ~ p,U; itself; ie., the local
dissipation of acoustic power is independent of the transmission of acoustic power. There is
a clean separation between viscous and thermal-relaxation effects: The first term, describing
viscous dissipation, is proportional to |U:|? and is independent of thermal conductivity, while
the second term, describing thermal-relaxation dissipation, is proportional to lp1l2 and is
independent of viscosity.
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In the boundary-layer approximation, in which all dimensions of the channel are much
larger than the penetration depths, Eq. (3.10) can be written
db, _ 1

dE; _ A
s~ aPm

A

1 lpa*

Jw — —1)6,w, 3.11

where S is the surface area of the channel. This expression gives the ordinary dissipation of
acoustic power in a large channel, and is easily remembered in terms of the energy density.
The mean kinetic energy per unit volume p,, |U; JAJ? /4 times 6, is roughly the kinetic
energy in the gas within a viscous penetration depth of the solid surface, per unit area of
the surface; the viscous dissipation term shows that this energy is dissipated by viscous shear

at an average rate w. Slmﬂarly, the thermal-relaxation term shows that the mean adiabatic -

compressive energy density |p1| /4’ypm stored in unit volume of the gas is dissipated at an

average rate (y — 1) w within a region of thickness 6, near the solid surface. The extra factor -

(y—1) appears because this thermal dissipation is proportional to the difference between
the isothermal and adiabatic compressibilities, which is proportional to (y —1).
The viscous term arose from the
~d
Re [Ul pl]

term in Eq. (3.8), and can be better appreciated by considering Ani. Viscous /m. Close
examination of the animation shows that the gas motion far from the solid boundary is in
phase with dp;/dz, so the velocity u;(o00) far from the solid boundary is 90° out of phase
from dp;/dz. Hence, the gas far from the solid boundary, where the dynamics is purely
inertial, has Reli; dp;/dz] = 0 and contributes nothing to dE,/dz. The dissipation arises
close to the solid boundary, where the phase of u; is shifted by viscous interaction with the
wall. Naively, when I watch Ani. Viscous I see layers of gas sliding relative to one another,
with viscous “friction” between the layers turning mechanical energy into heat.

Example: Standing-wave refrigerator. In Chapter 2, we calculated the viscous
resistance of the lower central tee of the standing-wave refrigerator to be R, = 75 Pa-s/m?>.
At a typical operating point, |U;| = 0.16 m®/s. Hence this component dissipates 1.0 Watt
of acoustic power, due to viscosity. (There is negligible p; in this component, and hence
negligible thermal-relaxation dissipation.) This is less than 2% of the total acoustic power
supplied to the resonator by the loudspeakers. The center of this component is a center of
symmetry of the apparatus, so it must be that E, = 0 at the center. Hence, 0.5 W must
flow into the tee from each side. Taking the positive z direction toward the right, we would
say that By = 40.5 W at the left end of the tee, and Ey = —0.5 W at the right end of the
tee. ’

Example: Traveling-wave refrigerator. Near Fig. 2.8, we introduced the impedance
network at the end of the traveling-wave refrigerator, with an example in which R, = 3.35
MPa-s/m3. At a typical operating point, with |U;| = 0.04 m®/s, the flow resistance R,
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dissipates 2700 W of acoustic power. This impedance network consumes a significant fraction
of the 9000 W of acoustic power supplied to the entire refrigerator.

Compared to viscous dissipation, the dissipation of acoustic power by thermal relaxation
is more difficult to appreciate. Since thermal-relaxation dissipation is independent of Uj,
we can clarify the issues by considering a location in the wave where u; = 0. Consider Ani.
Thermal /e, showing a such a wave near a wall in boundary-layer approximation. (Note that
we have made the wave-propagation direction z vertical in this animation, so everything fits
on the display.) As we saw in Chapter 2, the temperature oscillates in phase with p,; far
from the wall; close to the wall, the wall’s heat capacity provides a thermal anchor that
reduces the amplitude of the temperature oscillation and shifts its phase.

To consider dissipation of acoustic power in this region, imagine a piston moving with
the gas, and compute the work done by that piston on the gas to the left of it. The work
done by a piston is § pdV. In the animation, the small dot traces out the intersection of
the pressure line and the volume between the wall and the imaginary piston (whose average
position is 46, from the wall), so the area of the little ellipse drawn by the moving dot
is proportional to § pdV. That slim elliptical area represents the work that the imaginary
piston does on the gas between it and the wall. It’s not zero, because of thermal relaxation of
the gas to the wall. Gas immediately adjacent to the surface experiences isothermal density
and pressure oscillations, which are perfectly springy; gas far from the surface experiences
adiabatic density and pressure oscillations, which are also perfectly springy. In between,
the gas approximately 6, from the surface experiences a complex, hysteretic cycle of density
changes in response to the pressure oscillations: first an increase in density due to quasi-
adiabatic compression by the sound wave, then a further increase in density as thermal
relaxation to the surface removes heat from the gas, then a decrease in density due to
quasi-adiabatic expansion by the sound wave, and finally a further decrease in density as
thermal relaxation to the surface delivers heat to the gas. Since this gas experiences thermal
expansion at low pressure and thermal contraction at high pressure, it absorbs work from the
sound wave. This gas, approximately 6, from the surface, is the most effective at absorbing
work from the sound wave, whereas in the case of viscous dissipation the gas at the surface
is most effective.

The lowest plot in Ani. Thermal /e shows the area of such a work ellipse as a function
of the distance of the imaginary piston from the wall. This curve is steepest at y/6, =~ 1,
which indicates that the gas approximately §, from the surface d1ss1pates the most acoustic
power.

Example: Standing-wave engine. In Chapter 2 we calculated that the thermal-
relaxation resistance of one of the hot ducts in the standing-wave engine is R, = 2350 MPa-
s/m3. At a typical operating point of |p1| = 300 kPa, the thermal relaxation dissipation is
Ip1|* /2R, = 20 W. Hence, if this loss could be eliminated in both hot ducts, the 1 kW of
acoustic power delivered to the refrigerator could rise by 4%.

Example: Orifice pulse-tube refrigerator. The compliance at the top of the orifice
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pulse-tube refrigerator has only |p;| = 90 kPa. Hence, even though it has 0.3 m? of surface
area, the thermal-relaxation dissipation of acoustic power, obtained from the second term
of Eq. (3.11), is only 5 W.

3.1.2. Acoustlc power—general thermoacoustlcs, with p = 0

Equation (3.9), two sections above, was

dE2

7',, 2 1 - 2 1 ~
- =73 |Ua| o |p1| +2Re[€P1U1]-

We have just examined the first two terms, which always consume acoustic power, ex-
ist independent of any temperature gradient along z, and represent viscous and thermal-
relaxation dissipation, respectively. Next we will examine the third term, which we will call
the source/sink term because it can either produce or consume acoustic power and which
exists only if dT}, /dz # 0. This term is difficult to fully understand, especially because dU;s
involves both f, and f,. To build understanding, our qualitative discussion in this subsection
will neglect viscosity in dUis, setting f, = 0. In this limit, the third term of Eq. (3.9) can
be written

SRelAl] = o LT Re[UNRe[f] + g7 g2 WAl I (-f]  (312)
14T, dT:,
= EIEBRelf]+ g " 1m0 Im ] (3.13)

Expressing it this way shows that Re [fy] is important for acoustic power in traveling-wave
engines and refrigerators, in which Re [p;U}] is large, while Im [~ ] is important for acoustic
power in standing-wave engines and refrigerators, in which Im [p,U}] is large.

Traveling waves

Begin by considering the regenerator of a traveling-wave engine. To make the most of the
first term on the right side of Eq. (3.12) or (3.13), we should make Re [f,] as large as possible;
examination of Fig. 2.13 shows that this is accomplished at R, < 8., where Re[f,] ~ 1.
Under these circumstances, thermal-relaxation resistance 7, is negligible, as shown by Eq.
(2.79). To generate (not dissipate) acoustic power requires that dT;,/dz and E» share the
same sign; i.e. the temperature must increase through the regenerator in the direction of
acoustic power flow. This situation is illustrated in Anis. Tashe /s and Tashe /r. Animation
Tashe /s shows an overview of a traveling-wave engine, namely a traditional Stirling engine.
The sign of the circulation of the pV ellipses indicates that acoustic power flows from left to
right. The temperature rises in the direction of this acoustic power flow, so the first term in
Eq. (3.12) or (3.13) shows that the acoustic power should increase fromi left to right; indeed,
the right pV ellipse has greater area than the left pV ellipse, showing this increase in acoustic
power. If these two pistons were connected to a common crankshaft, that crankshaft would
supply acoustic power to the gas at the left and remove it from the gas at the right. The
extra acoustic power, represented by the difference between the right and left ellipse areas,
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is the net acoustic power generated by the engine, available to do external work such as
generating electricity.

Animation Tashe /r shows a close-up view inside the regenerator of Ani. Tashe /s.
One small piece of gas is highlighted, oscillating left and right while experiencing oscillating
pressure. The phasing between pressure and motion is predominantly traveling wave: The
gas moves to the right while the pressure is high, and moves to the left while the pressure is
low, so the acoustic power flows from left to right. Temperatures are shown in the lower-left
plot, where the temperature of the highlighted piece of gas, shown as the blue trace, is
always locked to the local solid temperature, represented by the white line. This indicates
that Ry < 0 ; equivalently, fi. = 1. The volume of the highlighted piece of gas is shown
on the horizontal axis of the lower-right plot, with the pressure plotted vertically. The gas
expands while it moves to the right, because its temperature rises; it contracts while it
moves to the left, because its temperature falls. This is the physical effect responsible for
the volume source el; in a traveling-wave engine. The net effect—clockwise circulation on
the pV diagram—is the production of acoustic power, because the expansion takes place
while the gas is at high pressure and the contraction takes place while the gas is at low
pressure. The difference between the right piston’s work and the left piston’s work in Ani.
Tashe /s is the total acoustic power produced by all the pieces of gas in the regenerator,
each behaving as shown in Ani. Tashe /r.

Example: Traveling-wave engine. The traveling-wave engine of Figs. 1.13 and 1.14
follows the same thermodynamic cycle as discussed in the previous two paragraphs, but
without pistons. The acoustic network that serves the function of the two pistons and their
crankshaft is shown schematically in Ani. Tashe /u. The acoustic power at several key
locations is shown as purple ellipses. The size and signs of these pV ellipses show how
acoustic power is produced in the regenerator, with some of the produced power flowing
out of the display to the right and the remainder fed back to the left end of the regenerator
through the inertance. In this animation, we assume that the regenerator is the only location
where acoustic power is produced or dissipated. Hence, the areas of the lower two pV ellipses
and the pV ellipse to the left of the regenerator are equal; the shape change at equal areas is
due to C and L. Similarly, the areas of the two pV ellipses at the ends of the thermal buffer
column are equal, but with a shape change due to the intervening C. Continuity of p; and
U; at the three-way junction on the right ensures that the area of the pV ellipse representing
power flowing out of the display to the right is the difference between the areas of the pV'
ellipses at the right end of the thermal buffer column and the right end of the inertance.

For a typical operating point of the actual engine of Figs. 1.13 and 1.14, 1250 W
of acoustic power flows into the ambient end of the regenerator and 3150 W of acoustic
power flows out of the hot end of the regenerator. The dT;, /Ty factor in Eq. (3.12) shows
that, ideally, the ratio of these two powers, 2.5, could be the ratio of the engine’s hot and
ambient temperatures, (1000 K)/(300 K) = 3.3. The other two terms in Eq. (3.9), especially
the viscous term, account for this missing acoustic power in the regenerator. In addition,
some 400 W of acoustic power is dissipated in viscous and thermal-relaxation effects in the
inertance and compliance that form the acoustic network at the bottom of the display in
Ani. Tashe; these losses are not shown in the ideal case shown in the animation.
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The regenerator of a traveling-wave refrigerator is very similar to that of a traveling-wave
engine; the primary difference is that T;;, decreases in the direction of positive acoustic power
in the refrigerator, so the third term in Eq. (3.9) is negative, so this term consiimes acoustic
power. As with the engine, Re [f,] should be as large as possible, so we want Ry, < . This
situation is illustrated in Anis. Ptr /s and Ptr /r. Animation Ptr /s shows an overview of
a Stirling refrigerator. The sign of the circulation of the pV ellipses indicates that acoustic
power flows from left to right. The temperature decreases in the direction of this power
flow, so the first term in Eq. (3.12) shows that the acoustic power should decrease from left
to right; indeed, the right pV ellipse has smaller area than the left pV ellipse, showing this
decrease in acoustic power. If these two pistons were connected to a common crankshaft,
that crankshaft would supply acoustic power to the gas at the left and remove it from the gas
at the right. The difference between these two powers, represented by the difference between
the left and right ellipse areas, is the net power required by the refrigerator, supplied by
external means such as an electric motor.

Animation Ptr /r shows a close-up view inside the regenerator of Ani. Ptr /s. One-small
piece of gas is highlighted, oscillating left and right while experiencing oscillating pressure.
The phasing between pressure and motion is predominantly traveling wave: The gas moves
to the right while the pressure is high, and moves to the left while the pressure is low, so
the acoustic power flows from left to right. Temperatures are shown in the lower-left plot,
where the temperature of the highlighted piece of gas, shown as the blue trace, is always
locked to the local solid temperature, represented by the white line. This indicates that
Ry, < 6, ; equivalently, fi = 1. The volume of the highlighted piece of gas is shown on the
horizontal axis of the lower-right plot, with the pressure plotted vertically. The gas expands
while it moves to the left, because its temperature rises; it contracts while it moves to the
right, because its temperature falls. The net effect—counterclockwise circulation on the pV’
diagram—is the consumption of acoustic power, because the expansion takes place while
the gas is at low pressure and the contraction takes place while the gas is at high pressure.
The difference between the right piston’s work and the left piston’s work in Ani. Ptr /sis
the total acoustic power consumed by all the pieces of gas in the regenerator, each behaving
as shown in Ani. Ptr /r.

Example: Orifice pulse-tube refrigerator. The orifice pulse-tube refrigerator of
Figs. 1.15 and 1.16 follows the same thermodynamic cycle as discussed in the previous
two paragraphs, but without pistons. The acoustic network that allows the apparatus to
follow this cycle is shown schematically in Ani. Ptr /p. The acoustic power at several key
locations is indicated by purple ellipses. The: size and signs of these pV ellipses show how
acoustic power flows into the system from the left (supplied by external means, such as a
motored piston or a thermoacoustic engine) and is absorbed in the regenerator and the LRC
impedance network at the right end of the display. The areas of the two pV ellipses at the
ends of the thermal buffer column (a.k.a. pulse tube) are equal.

For a typical operating point of the actual refrigerator of Figs. 1.15 and 1.16, 8800 W
of acoustic power flows into the ambient end of the regenerator and 3000 W of acoustic
power flows out of the cold end of the regenerator. The dT;,/T,, factor in Eq. (3.12) shows
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that, ideally, the ratio of these two powers, 2.9, could be the ratio of the engine’s hot and
ambient temperatures, (300 K)/(120 K) = 2.5. The other two terms in Eq. (3.9), especially
the viscous term, account for the additional absorption of acoustic power in the regenerator.

Standing waves

Next we will consider the stacks of standing-wave engines and refrigerators, continuing to
imagine zero viscosity so that the source/sink term in dE,/dz is tractable. The first term
in Eq. (3.12) or (3.13) is zero for standing-wave phasing. To make the most of the second
term in Eq. (3.12) or (3.13), we should make Im [—f] as large as possible; examination of
Fig. 2.13 shows that this is accomplished at Ry ~ 6, where Im [— f,] ~ 0.4. Equation (2.79)
shows that G, cannot be neglected in this situation, so we should consider the source/sink

term and the thermal-relaxation term in Eq. (3.9) together. Neglecting viscosity, we have
from Eqgs. (3.12), (3.9), and (2.79)

1dT,

L tm [p1 ’U“l] g I =] (3.14)

dz 2" YPm 2

Using Eqs. (2.45) and (2.32) to rearrange this expression, and assuming standing-wave
phasing, leads to

dEy 1 »/ dTn/dz
o = S ifeAT - fn](w,cm 1), (3.15)

where

lplt /Pmcp
VTcrlt lUll /ALU

is the critical temperature gradient we first encountered in Chapter 2, Eq. (2.45).

The situation where dT},/dx = VT, for which Eq. (3.15) shows that acoustic power
is neither produced nor absorbed, is illustrated in Ani. Standing /c. In the upper left of
the display is a stack, with blue marker lines showing the moving gas. One particular piece
of gas is highlighted in white in the stack. The yellow oval marks the region that is shown
magnified at the left center of the display, which shows that same piece of moving gas and
short fragments of the two stack plates adjacent to it. The volume of that parcel of gas
changes in response to pressure and temperature. At the bottom of the display are plots of
pressure vs volume of the parcel of gas, and temperature vs position. In the temperature
plot, the temperature of the parcel is the blue trace, and that of the nearby plate in the
stack is the white line. In the previous, traveling-wave, animations, the blue trace and white
line were superimposed because small R, ensured good thermal contact between gas and
solid. Here, R; ~ 6, so the thermal contact is not so good; the alignment of the gas and
solid temperatures is due only to the fact that we chose dT},/dzx = VT, for this animation.
The parcel’s temperature oscillation is due entirely to adiabatic pressure oscillation, and its
temperature oscillation and motion just happen to match the local temperature gradient
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dT,,/dz exactly. Since the gas oscillations are merely adiabatic, the pV trace for this parcel
is simply a reciprocating adiabat, so this parcel of gas neither produces nor absorbs acoustic
power. This operating condition does not appear in useful thermoacoustic engines and
refrigerators; d1y,/dx = V1. is only of academic interest, as it separates the regimes of
standing-wave engine and standing-wave refrigerator.

Animation Standing /e shows an overview of a standing-wave engine. The display is
basically the same as for Ani. Standing /c discussed above, but now the temperature
gradient is steeper, with dT},,/dz > VT, so that Eq. (3.15) indicates that acoustic power is
produced. The steep temperature gradient means that the gas parcel’s adiabatic temperature
oscillation and motion do not match the local solid temperature gradient, so oscillatory heat
transfer between the gas and the solid occurs, as indicated by the time-dependent red arrows
in the magnified view of the stack. The phasing is such that thermal expansion occurs at
high pressure and thermal contraction at low pressure, so the result is that the pV ellipse
circulates clockwise, indicating that the parcel produces acoustic power. The acoustic power
thus generated by all the parcels of gas in the stack is the power generated by the engine,
available to do external work. ‘

Similarly, Ani. Standing /r shows an overview of a standing-wave refrigerator. The
display is basically the same as for Anis. Standing /c and Standing /e discussed above,
but now the temperature gradient is less steep, with dTp,/dz < VT, so that Eq. (3.15)
indicates that acoustic power is absorbed. The shallow temperature gradient means that
the gas parcel’s adiabatic temperature oscillation and motion do not match the local solid
temperature gradient, so oscillatory heat transfer between the gas and the solid occurs,
as indicated by the time-dependent red arrows in the magnified view of the stack. The
phasing is such that thermal expansion occurs at low pressure and thermal contraction at
high pressure, so the result is that the pV ellipse circulates counterclockwise, indicating that
the parcel produces acoustic power. The acoustic power thus absorbed by all the parcels of
gas in the stack must be supplied by and external agent, such as a loudspeaker.

Example: Standing-wave engine. The standing-wave engine of Figs. 1.9 and 1.10
operates just as Ani. Standing /e discussed above, but at 350 Hz instead of the 0.1 Hz
frequency of the animation. For a typical operating point, almost 700 W of acoustic power
flow is produced in each stack. Under these conditions, the temperature gradient in the
stack is  dependent, but it is approximately equal to (Ty — Tp)/Az = 60 K/cm. This is
indeed larger than the critical temperature gradient, which we estimate to be 35 K/cm at
the stack midpoint using Eq. (2.45).

3.2. Total power

Acoustic power is not the only power that is important in thermoacoustics; total power is
perhaps of greater importance. Hence, we have to consider exactly what we mean by energy
in thermoacoustics.

Engineers have long employed the concept of “control volume” for careful thought about
energy balance issues in thermodynamic systems. A control volume is a space of-interest,
surrounded by a well-defined imaginary boundary, to which we can apply the first law of
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thermodynamics and similar principles.

(Apologies for the English language: We do not have short, distinct terms for “rate at
which work is done” or “rate at which heat is transferred.” Most thermodynamics texts
avoid this issue by sticking as much as possible with the variables having units of Joules, not
Watts, but I prefer to focus attention on power. So, in the interest of brevity and readability,
some of my vocabulary will be a little awkward or ambiguous. When in doubt, look at the
variables: Those with overdots, W, Q, E», H,, and Chapter 4’s X,, are powers. However,
for brevity I will refer to W simply as work, and to Q simply as heat.)

(a) heat power
r——4-1 work = heat + total
work power S=f{otal power
| ==:
[ ?
control volume
(b) ? S total in = total out
| —Tola Eéwer
S

(c) i

acoustic power

X

total power

Figure 3.3: A standing-wave refrigerator, insulated everywhere except at the heat exchang-
ers. (a) A useful control volume for thermoacoustics, enclosing the left end. (b) Another
useful control volume, enclosing part of the stack. (¢) Graph of E» and H, in the refrigerator.
The discontinuities in H, are the heats transferred at the heat exchangers.

Figure 3.3 introduces the topic of total power, showing two typical control volumes of
interest in thermoacoustics. Consider the thermoacoustic refrigerator shown in Figs. 3.3a
and 3.3b, driven by a piston or loudspeaker at the left and having thermal insulation around
everything except the heat exchangers, so that heat can be exchanged with the outside world
only at the two heat exchangers, and work can be exchanged with the outside world only at
the piston. We can apply the principle of energy conservation to the control volume shown
by the dotted line in Fig. 3.3a. In steady state, time-averaged over an integer number of
acoustic cycles, the energy inside the control volume cannot change, so the rate at which
energy flows into that control volume must equal the rate at which energy flows out. What
flows in is clearly the time-averaged pV piston work power (which is exactly equal to the
acoustic power flowing from the face of the piston into the gas). That must equal the sum
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Figure 3.4: Merkli and Thomann’s experiment, which detected cooling at the velocity antin-
ode of a standing wave. Thermometers along the wall of the resonator detected temperature;
these were used to infer local heat flux g to or from the wall. The negative values of g near
the center of the resonance tube represent cooling.

of the two outflowing powers, labeled heat power and total power. The heat is easy to think
about—it’s simply heat. It’s always easiest to discuss such heatflowing via conduction
through a solid, so I like to imagine the control-volume boundary being within the metal
case that separates the thermoacoustic gas from the outside world. The power flowing down
the stack is much more subtle: It’s not acoustic power, and it’s not heat, and it’s not work—
but we’d better understand it, because it’s what counts in conservation of energy. Another
typical important control volume is shown in Fig. 3.3b, intersecting a stack or regenerator in
two places, with insulation around the side walls. Here the only powers flowing are the total
powers in and out of the two end surfaces of the control volume. Applying the principle of
energy conservation (again, steady state; time-averaged) to this control volume shows that
total power in equals total power out. So total power can’t depend on = within a stack or
regenerator—it has to be constant, independent of z, even while acoustic power depends
strongly with z, as we saw in the previous section.
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Figure 3.5: An irregular parcel of gas passing through an imaginary rectangular opening
fixed in space. As the parcel of gas passes through the imaginary opening, the energy
that passes through that opening has several parts. The kinetic and internal energies are
convected along with the gas. The pressure does work on the gas ahead as the parcel pushes
other gas out of its way in order to pass through the opening. If a temperature gradient in
the correct direction exists, heat is conducted through the opening. If the directions of the
velocity and its gradients are suitable, viscous shear forces do work on the gas on the other
side of the opening,.

The 1975 experiment of Merkli and Thomann [40] also helps motivate this discussion of
total power. As shown in Fig. 3.4, an acoustic resonator was driven at the half-wavelength
resonance, using an oscillating piston and employing sensitive thermometers all along the
resonator side wall. Merkli and Thomann were surprised to find that the central ther-
mometers cooled, at the location of greatest dissipation of acoustic power per unit length,
3|0 |> dR, /dz. That won’t seem so surprising when we understand the important difference
between total power and acoustic power.

So, what do we mean by total power? In moving gases (and liquids), the enthalpy is the
correct energy to consider [26]. This is because the energy flux density in fluid mechanics is

v (pv?/2+ ph) —kVT - v. I, (3.16)

where h is the enthalpy per unit mass, pv?/2 is the kinetic-energy density, and ¥ is the
viscous shear tensor. The enthalpy itself is the sum of other energies:

h=¢e+p/p, (3.17)

where € is internal energy per unit mass, so the energy flux density can be thought of as the
superposition of three flux densities: kinetic energy, internal energy, and “p/p.” Looking
at Fig. 3.5, you can imagine the first two of these as being attached to the gas and hence
being convected along with the gas at velocity v, and you can imagine the pressure term
to represent the rate at which the pressure of the gas “does work” on the gas it is pushing
ahead of it. You can imagine the thermal conduction term as giving the rate at which
heat is conducted across the cross section, and you might vaguely imagine the final term as
representing work that viscous shear does across the cross section. Any thermodynamic/fluid
mechanics text should explain this more carefully.

To simplify this to a usable form, we take the z component of Eq. (3.16), substitute
our usual acoustic approximations, Eqgs. (2.46)-(2.53), for all variables, keep terms through
second order, take the time average, and integrate over the cross-sectional area of the channel.
The viscous-shear term is generally much smaller than the other surviving terms. We will
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call the result Hy, the acoustic approximation to the total power flowing in the positive =
direction in the channel—“total power” for short. This result is

Hz({l}) 2pm /Re [h]'l'l:i] dA -— (Ak -+ Asolidksolid _%n_. (3.18)
This acoustic approximation to the total power flowing in the z direction will suffice until
we encounter streaming in Chapter 5. ’

The final term is simple conduction of heat, in which we’ve included conduction both in
the gas and in whatever solid (e.g. stack or regenerator) is present. The first term is more
interesting. Professor Thomann (of Merkli and Thomann) said that the energy equation is
like a kaleidoscope: Every time you shake it, it looks completely different. There are many
good ways to look at Hy :

First, if we know Hj, and work, we can deduce the heat transferred at heat exchangers
in thermoacoustic engines and refrigerators, as illustrated in Fig. 3.3a. Alternatively, if we
know both work and heat, we can deduce H,. -

Second, if we think of enthalpy as a function of temperature and pressure,

dh = poc,dT +(1—TB)dp - (3.19)
= pncpdT (3.20)

and use the second version, which is true for an ideal gas, we find that Eq. (3.18) becomes
. 1 ~ dly, -
Hy(z) = -é-pmcp Re [T1%1) dA — (Ak + Asotiaksolia) e (3.21)

This point of view is useful for calculations of H,, and is especially useful for thinking about
nearly ideal regenerators, in which T; =~ 0. For example, consider the control volume shown
by the dotted yellow box in the Stirling refrigerator shown in Ani. Ptr /c. For an ideal
regenerator, the heat capacity of the regenerator solid and the good thermal contact in the
small pores there maintain temporally isothermal conditions at every location, so 71 = 0.
If we can neglect the conduction of heat through the regenerator, Eq. (3.21) shows that
H, = 0. Hence, the time-averaged cooling power of the refrigerator must equal the time-
averaged mechanical power extracted by the cold piston. That is, in suitable units, the area
of the pV ellipse for the cold piston must equal the time-averagéd width of the red heat
arrow at the cold heat exchanger.

Using Eqgs. (2.68) and (2.55) for T3 and u;, we can perform the integration in Eq. (3.21)
to obtain

H = -;-Re [Pla; (1— (fn_ﬁ)~ ):l
1+0) (1—f,,)
dT.,

pmcp |[jll2 alm
+2 Aw(l — a2 [1 - f,|? 5Im (f wtof ") (Ak + Asohdksohd) = (3.22)

first obtained by Rott [41].
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Figure 3.6: The fact that H, is independent of = within an insulated stack or regenerator
determines the temperature distribution Ty,(z) within the stack or regenerator.

If dT,, /dz = 0, such as in a water-jacketed resonator component, Eq. (3.22) gives Ha(z);
in that case, dH, /dz tells how much energy per unit length is deposited in (or removed
from) the water jacket.

Third, if we think of enthalpy as a function of entropy and pressure,

dh =Tds+dp/p, (3.23)

we find that the total power can be written
. 1 ~ 1 N dT,
Hy = =Re [plUl} + —Pme / Re [slul] dA — (Ak + Aso]idksolid) —7 (324)
2 2 dz
. 1 - dlm
= E2 -+ Emem / Re [S]’Uq] dA - (Ak + Ago]idksolid) —C—im—' (325)

The first term is clearly nothing but acoustic power. The second term is T, times the
second-order hydrodynamic entropy flux, and the final term is simply conduction of heat.
Many of us have found it helpful to our intuition to identify the sum of the last two terms

. . 1 ~ dlm
H2 - Eg = §mem/Re [slul] dA — (Ak + Asondksolid)—l-i-x—. (3.26)

as a sort of thermoacoustic heat-pumping power, with the s;u; term generally by far the
largest contributor. Many of us who have worked in standing-wave thermoacoustics for a
decade loosely refer to this as “thermoacoustic heat flux,” and we have been criticized for
this practice by careful people who know thermodynamics. Such careful people correctly
point out that multiplying a hydrodynamic entropy flux by T" does not make a heat flux.
The usual description of “bucket-brigade” standing-wave thermoacoustic “heat transport”
as shown in Ani. Standing indeed shows heat flowing from plate to gas at one part of
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the cycle and heat flowing from gas to a different part of the plate 180° later in time, but
careful people correctly point out that it is not accurate to say that the gas carries heat from
the first location to the second, because there is more to gas thermodynamics than simply
heat capacity. I no longer use such careless vocabulary when talking with experts, both to
avoid controversy and to avoid a false sense of simple understanding. On the other hand, I
continue to use this careless vocabulary often [25], mostly because it allows thermoacoustics
novices to understand the phenomena without bogging them down in details.

In wide-open isothermal channels, like most resonator components, most of the gas should
experience adiabatic oscillations and s; should be near zero over most of the area A. Hence,
Eq. (3.24) suggests that in this situation the total power and the acoustic power are nearly
equal. This contributes to our ability to deduce a heat-exchanger’s heat, from knowledge of
the adjacent stack’s total power and adjacent duct’s acoustic power.

3.2.1. Traveling waves

Like a kaleidoscope: Shake the energy equation a little, and you see a new picture. If the
total power through a good regenerator is approximately zero, then 3PmTm [ Re[s111] dA

must be approximately equal and opposite to the acoustic power 3 Re[pla'z] at each location
z. This is another way of imagining the “cause” of the Stirling refrigerator’s cooling power—
as due to the large acoustic power flowing through the regenerator plus the fact that the
total power flowing through the regenerator is nearly zero. In Ani. Ptr /r, which shows a
close-up view inside the regenerator of an orifice pulse-tube refrigerator, the red arrows show
heat flow into and out of the parcel of gas; these heat flows cause the oscillating entropy s,
and its phasing relative to u;, and hence cause Re [s;%;] to be nonzero.

In a pulse tube or thermal buffer column, s; is due almost entirely to (u;/iw) dsm/dz,
so Re{s;%;] =~ 0. Hence H, =~ E» in a pulse tube or thermal buffer column.

In the regenerators of traveling-wave systems, 17 =~ 0, and hence H, ~ 0. Hence, if a
heat exchanger is sandwiched between a regenerator and a pulse tube or thermal buffer
column, or between a regenerator and a resonator component, the heat-exchanger heat and
the acoustic power flowing through it must be nearly equal. (In contrast, standing-wave
systems have no such constraint on H, and so the heat-exchanger heat can be significantly
larger than the acoustic power.)

3.2.2. Standing_ waves

For standing-wave phasing, the inviscid limit of Eq. (3.22),

dln/dz
vT::rit

is simple and interesting, especially when considered in concert. with the standing-wave
version of Eq. (3.24):

N 1 dTm
Hz o~ 5 Ipll IUll Im [_fn] ( 1) - (Ak + Asolidksolid) _c—i.'z:_’ (327)

dT,,
dz

The first term of Eq. (3.27) resembles Eq. (3.15) for dF,/dz derived above: It has the same
dependence on f, and on dT},/dz. Hence, aside from the less interesting thermal-conduction

. 1 -
H, = §mem / Re [s1%1] dA — (Ak + Asotiaksotia) (3.28)

82




term, the total power and the rate of change of acoustic power have the same dependences
on channel geometry in standing waves; and both are zero when dT5,/dz = VT,,;,, positive
when dTp,/dz > VT, and negative when dTy,/dz < V1.

Furthermore, this term must be identified with the hydrodynamic entropy transport
represented by the Re[s;@;] term in Eq. (3.28). Animation Standing /r illustrates this
Re [s1%;] contribution to the total power in a standing-wave refrigerator. The parcel of gas
absorbs a little heat from the solid walls at the right extreme of its motion, as shown by the
red arrows, carries entropy to the left, and gives heat to the solid walls at the left extreme
of its motion, and returns to the right with less entropy. In this case, H, is negative. In
moving left, the gas has moved up the temperature gradient, so it deposits its heat to the
walls at a location of higher temperature than that at which it absorbed heat from the walls.
Loosely speaking, the gas moves heat from right to left, up the temperature gradient. So
this is a refrigerator, moving heat from right to left, up the temperature gradient. Overall,
every parcel of gas in the entire stack, each cycle of the wave, picks up a little heat from
solid, moves it a little to the left and deposits it again at a slightly higher temperature. The
parcels in mid stack are like the middle members of a bucket brigade, passing heat along,
At either end are parcels that oscillate between the stack and one of the heat exchangers.
At the right end, such parcels absorb heat from the cold heat exchanger and deposit heat in
the stack; at the left end, such parcels absorb heat from the stack and deposit heat in the
ambient heat exchanger. So the net effect is to absorb heat from the cold heat exchanger,
and reject waste heat at the ambient heat exchanger.

The process illustrated in Ani. Standing /r occurs in standing-wave refrigerators, for
which dT;,/dz < VT,,;. If the temperature gradient in the stack is steeper, the signs of all
the heat transfers change, as shown for the standing-wave engine of Ani. Standing /e. In
this case, even though the gas is heated adiabatically as it moves left, it’s not hot enough at
the left extreme of its motion to match the local solid temperature when it gets there. So at
the left extreme of its motion, at high pressure, it’s still cooler than the solid, so heat flows
into it, which increases its entropy. Similarly, at the right extreme of its motion, heat flows
out of the gas into the solid, decreasing the entropy of the gas. The gas effectively shuttles
heat from hot to cold, left to right, down the temperature gradient; Hp is positive.

3.3. A point of view for computations

In Chapter 2, we developed the momentum equation to relate U; and dp;/dz, as in Eq.
(2.56) or (2.73). The momentum equation can be interpreted in two ways, either as an
expression of how flow causes a pressure gradient or as an expression of how a pressure
gradient causes flow, and both points of view are useful. In steady-flow hydrodynamics, it is
usually obvious which point of view is preferable in a given circumstance—the flow of water
down a dam’s spillway is caused by the gravitational pressure gradient, while the pressure
gradients in the oil pumped through the passages of an automobile engine are caused by
the volumetric velocity coming from the positive-displacement oil pump. In acoustics, the
“correct” point of view is more subtle, as the momentum equation relates U; and dp, /dz
while simultaneously the continuity equation relates p; and dU; /dz.

Similarly, two interpretations of the thermoacoustic total-power equation are possible and
useful, whether Eq. (3.18), (3.21), (3.22), or (3.24). In one interpretation, the temperature
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gradient dT,,/dz (and all the other relevant variables, such as channel geometry, p;, and
Us) cause total power H, to flow through a stack or regenerator. In another interpretation,
H, (and all the other variables) cause the temperature gradient in the stack or regenerator.
Both points of view are useful. For example, if you put a fixed heater power into the hot
heat exchanger of the standing-wave engine of Fig. 1.10, that power has nowhere else to go
but through the stack, so it determines the temperature gradient in the stack, in concert
with many other variables such as those of the acoustic wave. On the other hand, if you
power that heater using a thermostat set at a fixed Ty, the temperature difference across
the stack determines the power flowing through the stack and hence determines the heater
power that must be supplied.

The first interpretation of the total-power equation is particularly important because it
shows that the total-power equation can be regarded as a first-order differential equation for

Tm(z) in a stack or regenerator, if p; and U; and the geometry are known. This is evident
in the control-volume picture of Fig. 3.3b, which shows that the total power, H, must be
a constant, independent of z, throughout the stack or regenerator whenever the side walls
of the stack or regenerator are insulated. The other variables in Eq. (3.22) are presumably
known from the considerations of Chapter 2. Although the temperatures at the ends of a
stack or regenerator are often known, there is no better way than Eq. (3.22) to calculate
the distribution of temperature at intermediate z.

Our numerical integrations in DeltaE rely on the first interpretation of the total-power,

momentum, and continuity equations. DeltaEl performs simultaneous integrations along z
of the momentum, continuity, and total-power equations, in the form

dp; = Fpom(Tm,Us;w, gas properties, geometry) dz (3.29)
dUy = Feoni(Tm, 01, Uh;w, gas properties, geometry) dz (3.30)
AT, = Foow(Tm,p1,Us; H,,w, gas properties, geometry) dz. (3.31)

to find pi(z), Ui(z), and T,,(z). These complicated functions Fiom, Feont, and Fio, are
appropriate functional forms of the momentum, continuity, and total-power equations. In
Eq. (3.31), H, is taken to be independent of z within each stack or regenerator; its value
may assigned based on nearby heat-exchanger heats, or may be found self-consistently. Once
p1(z), Us(z), and T,,(z) are found, other results such as Ey(z) are straightforward.

3.4. Examples

Example: Standing-wave engine. While producing the curves of p; and U; shown in
Fig. 2.16 for the standing-wave engine, DeltaE also computed T;,(z) and the powers. The
results are shown in Fig. 3.7. Within the stack, total power H, is constant at 2380 W,
because of the sidewall insulation and the first law of thermodynamics. Its magnitude is the
same as the heater power supplied at the hot heat exchanger. DeltaE used this value of Hy
and the total-power equation to determine T,,(z) in the stack; it deviates noticeably from a
straight line.

The calculated values of acoustic power Fy(z) follow directly from the values of p;(z)
and Uy (x) plotted in Fig. 2.16. Note that Re[p;] Im[U;] contributes nothing to Fs; nonzero
acoustic power arises from Re[p;] times the small Re[U;] and from Re[U}] times the small
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Figure 3.7: Acoustic power E,, total power H,, and mean temperature T}, as functions of
position z for the standing-wave engine, under the same conditions as Fig. 2.16.
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Irn[p;]. A total of 670 W of acoustic power is generated throughout the stack, but especially
near the hot end, and 500 W of acoustic power is assumed to flow from right to left at the
right end of the figure, from the other ‘acoustic engine shown in Fig. 1.10. This total of
1170 W of acoustic power is consumed elsewhere, most dramatically at the side branch to
the refrigerators, where 1000 W is delivered. Acoustic power dissipation elsewhere is more
subtle, as evidenced by the small negative slope of Ez(:l)) throughout the resonator; this
negative slope is somewhat larger in the two heat exchangers. The small negative slope
of Ey(z) in the hot duct, to the left of the stack and hot heat exchanger, which is almost
invisible in the figure except as a slight change in line width between £ = 0 and = = 0.05
m, shows the dissipation of 20 W estimated at the end of Section 3.1.1 above.

Example: Orifice pulse-fube refrigerator. A similar plot of results of DeltaE'’s
numerical integration is shown in Fig. 3.8 for the orifice pulse-tube refrigerator, under
conditions similar to those shown in the phasor diagram of Fig. 2.19. )

Tapered pulse tube

Regenerator

Tm (Kelvin)
N
o
S

Power (kW)

_\\

o i i " i
-0.1 0.0 0.5
position from left end of aftercooler (m)

Figure 3.8: Temperature Tp,, total power H,, and acoustic power B, throughout the orifice
pulse-tube refrigerator of Fig. 1.16. Horizontal dimensions in the sketch above are aligned
with corresponding locations in the graphs.

In the regenerator and the pulse tube, T, (z) is obtained by integration of the total-power
equation, for a total power Hy = 0.48 kW in the regenerator and of 2.92 kW in the pulse
tube. In the regenerator, this results in only slight deviation of T;,(z) from a straight line.
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The value of 0.48 kW is obtained self-consistently by the calculation, in order to allow the
regenerator to reach from its ambient temperature of 292 K to its cold temperature of 128
K. Both terms in Eq. (3.21) contribute to H, in the regenerator; the sum is small compared
with other powers in the problem. The pulse tube radius is much greater than 6., so we
expect Hy ~ E, as shown in the figure. The small difference between these two is due
primarily to Asoyaksciia @Tm/dz in Eq. (3.24). The large changes in H, at each of the three
heat exchangers represent the heats exchanged at these heat exchangers. The cooling power
at 128 K is 2.92 — 0.48 = 2.44 kW.

About 2/3 of the 8.77 kW of acoustic power is consumed in the regenerator, and about
1/3 is consumed in the flow resistance of the LRC network at the end of the refrigerator.
These powers are calculated from the calculated values of p;(z) and U;(z) throughout, and
are consistent with the phasors in Fig. 2.19 showing p; and U; at a few locations. Small
amounts of acoustic power are also consumed in the two largest heat exchangers, and a
negligible amount of acoustic power is consumed in the pulse tube and in the large duct to
the left of all the heat-exchange components.

3.5. Exercises

3.1 In the spirit of Fig. 1.19, draw phasor diagrams for several locations of the wave shown
in Ani. Wave /k. Discuss how your diagrams are consistent with positive acoustic power
flow in the positive z direction, and with dF,/dz = 0.

3.2 In a double Helmholtz resonator, how much kinetic energy is in the gas in the neck
when it is moving with velocity |u;|? Express your answer in terms of L and U;. A quarter
cycle later, all that kinetic energy is converted to potential energy stored in the compliances.
Express that energy in terms of p; and C.

Using Eq. (3.11), write down expressions for the time-averaged viscous absorption of
acoustic power in the neck, and the time-averaged thermal-relaxation absorption of acoustic
power the bulbs. Which is typically bigger?

The quality factor of a resonance is given by @ = 27(Stored energy)/(Energy dissipated
per cycle). Write down an expression for the Q of this double Helmholtz resonator.

Acoustics experts only: In a simple acoustics textbook, look up the radiation impedance
from a circular orifice whose diameter is much smaller than A. There is an imaginary part,
which adds to the inertance of the neck, and a real part, which adds to the dissipation. Esti-
mate how much this “end effect” shifts the resonance frequency of the Helmholtz resonator.
How much does it change the Q7

3.3 If your favorite piece of thermoacoustics hardware has a stack or regenerator, estimate
the heat deposited and removed from the solid during each half cycle of the oscillation. If
you don’t have a favorite, estimate the heat deposited and removed during each half cycle
of an audio-amplitude sound wave in air per square meter of a solid boundary.

3.4 Estimate the critical temperature gradient in the stack or regenerator of your favorite
piece of hardware. If you don’t have a favorite, estimate the critical temperature gradient
halfway between the pressure node and adjacent velocity node in a 240 Hz standing wave in
air at atmospheric pressure. How much of the information given in the preceding sentence
was unnecessary to find the answer?
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3.5 If your favorite acoustic hardware has a power transducer such as a loudspeaker,
estimate the acoustic power it transduces, using its |z|, area, frequency, etc.

3.6 Draw a few control volumes for your favorite thermoacoustics hardware. Discuss
thermal insulation, and where energy can.cross the boundaries of the control volumes.. .

3.7 Estimate H, for the stack or regenerator in your favorite piece of thermoacoustics
hardware. Black-body radiation is another contributor to total power, which was not in-
cluded in our discussion. Estimate it for the same component.

3.8 Sketch Hg and B, vs z for your favorite thermoacoustics hardware. Don’t worry
about the actual magnitudes of things; just try to get the overall qualitative picture right:
the signs of the powers, the signs and locations of discontinuities, the signs of slopes. Also
sketch |p;| and |Uy].

3.9 Look closely at Ani. Thermal /e. It looks like the power curve shows negative
slope at about y/6, = 4. This suggests that thermal relaxation in gas at that distance
from a solid wall does not dissipate acoustic power—it generates acoustic power!—because
the imaginary piston at a distance 56, from the wall has to supply less power to the gas
between it and the wall than does the imaginary piston at a distance 49, from the wall.
Was the author was sloppy in programming the animation, or does the math confirm this

surprising observation? Does something similar occur in boundary-layer viscous dissipation
as illustrated in Ani. Viscous?

3.10 Can nonzero acoustic power pass a true pressure node in a standing wave? Can it
pass a velocity node? Can nonzero total energy pass either a pressure node or a velocity
node?

3.11 Consider a large-diameter channel with a nonzero temperature gradient, such as the
thermal isolation tube or pulse tube of Figs. 1.14 or 1.16. Show that H, o F, if you can
neglect boundary-layer effects at the walls and ordinary thermal conduction along z (and
if streaming, to be discussed in Chapter 6, is negligible). Discuss this resuit from several
points of view: Eq. (3.21), Eq. (3.24), and a Lagrangian picture of moving parcels of gas.
With respect to Eq. (3.24), be sure to notice that s; # 0.

3.12 Consider a channel large enough that the boundary-layer approximation is valid.
The channel has a spatially uniform T;,, maintained by water flowing in a jacket around the
channel. Suppose p;"and U; are known. Use Eq. (3.22) for Hy and the principle of energy
conservation to derive an expression for the heat d@ delivered to (or removed from?) the
water in a length dz of the channel. In your answer, use results from Chapter 2 to express
dp1/dz in terms of U; and to express dU;/dz in terms of p;. Interpret the Merkli-Thomann
experiment, Fig. 3.4, from this perspective—are their experimental results consistent with
your answer?

3.13 Show that Hj = Ej when dT},/dz = 0, p = 0, and k = 0, independent of the size of
the channel. .

3.14 Simplify Eq. (3.22) using boundary-layer expressions for f,; and f, and assuming
standing-wave phasing.

3.15 Evaluate [ Re[s;4;] dA in boundary-layer approximation. Make a graph, with the
vertical axis A |p1|/p,,a |U1| running from 0 to 10, and- the horizontal axis (AT, /dz)/V et
running from 0 to 4. On the graph, for p; and U in phase, draw a line indicating where
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[ Re[s11;] dA = 0. Show which side of this line has [ Re[s;43] dA > 0 and which side has
J Re[s1%;] dA < 0. Repeat for phase differences between p; and U of 45°, 90°, 135°, ....
Interpret some of these graphs in terms of Ani. standing,




4. EFFICIENCY

Both the raw efficiency and the “fraction of Carnot” serves as a useful measure of efficiency
for the simplest thermodynamic systems, such as the simple heat engine or the simple
refrigerator [2] shown in Fig. 1.1 at the beginning of the book and reproduced here in
Fig. 4.1a. The raw efficiency is what you want divided by what you must spend, and in
Chapter 1 we reviewed the well known bounds on raw efficiency given by Carnot’s ratio of
temperatures, which we quickly derived from the first and second laws of thermodynamics.
So it is natural to also cite the fraction of Carnot, which is the ratio of the actual raw
efficiency to the maximum raw efficiency allowed by the laws of thermodynamics. The
physicists’ ideal is 100%, but reality reduces this significantly. Typically, thermoacoustic
engines and refrigerators that were designed for high efficiency have operated at or above
20% of Carnot; we expect to increase this to 40% of Carnot in the future.

Fraction of Carnot is fine for such simple systems. However, more complex systems need
a more sophisticated measure of merit. For instance, consider the machine shown in Fig.
4.1b, which takes air at atmospheric temperature and pressure, and separates and cools
it to produce liquid oxygen, liquid nitrogen, liquid argon, solid carbon dioxide, and liquid
water. The machine is driven with some work power, and it dumps waste heat power to
ambient temperature. How should we measure the efficiency of a complicated system like
this? What we want to do and what we must spend in order to do it don’t even have
the same units. How can we understand what limit on the performance of such a system
is imposed by the two laws of thermodynamics? This chapter introduces some advanced
concepts in thermodynamics that can be used to answer these questions.

4.1. Lost work and entropy generation

In one common and powerful method of accounting for efficiency in complex thermody-
namic systems [28, 42, all losses are measured in terms of equivalent lost work, and one
température Tp is identified as a special temperature, the environment temperature at which
arbitrary amounts of heat of no value can be freely exchanged. (If two different environ-
mental temperatures existed, with which heat of no value could be freely exchanged, then it
would be possible to run a heat engine between them, producing unlimited work—of great
value—from heat of no value. Hence, identification of a single “ambient” temperature Tj is
not at all artificial.) We begin this section with several examples illustrating the use of this
method of accounting. \ ‘

First consider a simple a heat engine as shown in Fig. 4.2a. The engine’s cold temper-
ature is labeled with the subscript 0, to specify it as the environment temperature where
waste heat of no value is rejected. We can write the engine’s work as the hot heat times the
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Figure 4.1: (2) The simplest engine and refrigerator, for which simple measures of efficiency
suffice. (b) An air separator-liquefier, requiring a more sophisticated approach to efficiency.

Carnot efficiency minus something we’ll call lost work:

H

W =Quy (1 - %) — Wicet. (4.1)

The first term is the maximum work that an ideal engine could produce, according to the
bounds imposed by the first and second laws of thermodynamics, as we reviewed at the
beginning of Chapter 1. If the engine is not so ideal, the work it actually produces must be
lower; we'll call the difference the lost work Wiee. Similarly, for the simple refrigerator shown
in Fig. 4.2b, the work required is the sum of the minimum work that an ideal refrigerator
would require plus extra work we call Wieet -

To—Tc

ot Wicet- (4.2)

W =

A third example, a very simple example of lost work, is illustrated in Fig. 4.2c: Friction
in machinery at ambient temperature dissipates work, all of which is clearly lost, so

VVlost = Wfric . (43)

The fourth example, illustrated in Fig. 4.2d, is more subtle, and begins to show how
challenging and how powerful this point of view can be. Figure 4.2d shows a refrigerator,
within which some frictional dissipation occurs at a temperature less than the environment
temperature Tp. (Such dissipation could be due to drag on a piston in the cold part of the
refrigerator.) How much lost work must be assigned to that frictional dissipation? Suppose
that this friction is the only non-ideal feature in the system, so the system can be treated
like an ideal refrigerator with Carnot’s COP, powered by a drive mechanism with friction,
with the drive mechanism thermally anchored to the cold temperature T, as shown in Fig,.
4.2d. Some of the drive power W is dissipated into heat at T by friction; the remaining
power drives an ideal refrigerator, which must pump the heat generated by friction plus the
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Figure 4.2: Several examples to illustrate the concept of lost work. (a) A simple engine. (b)
A simple refrigerator. (c) Friction at temperature Tp. (d) Friction at a temperature T’ < To.
(e) Heat transfer across a small thermal resistance.

external cooling load Q¢ from the low temperature to the environment temperature. Since
the ideal refrigerator has Carnot’s COP, we have

L. : . N\NTo—Teo
W — Whie = + Whic ) —— 44
I (Qc t ) To (44)
which can be rewritten as
A To=Tc | , To
W= QC TC + I/Vfrxc TC. (45)
Hence, the lost work in this system is
. . T ‘
Wioat = Wi (4.6)
c

Indeed, it seems reasonable that the lost work should be greater than the frictional dissipa-
tion, by a factor depending on the temperatures, because intuitively we expect that dissi-
pating work at low temperature should be worse than dissipating it at room temperature:
If work is “lost” at low temperature, pumping the resulting heat up to room temperature
costs even more work. '

A fifth example—imperfect heat transfer—is shown in Fig. 4.2e. Two thermal reservoirs,
at nearly equal temperatures T' + 6T and T, are connected by a thermal resistance through
which heat () flows. The work lost in this process is the excess work that could have been
produced by an ideal engine driving an ideal heat pump, with the engine operating between
T + 6T and Ty and the heat pump operating between T and Ty, with the same heat Q
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exchanged with both reservoirs:

I/Vlost, = Wengine - Wpump (47)
o1 \_p(1_-D
=0 (1 = 6T> Q <1 T) (4.8)
. To 6T
& Q_T’Z—’ (4.9)

which is small if the temperature difference 6T is small. (For illustration here, we assumed
T > T, but the same conclusion follows from assuming T' < Tp.) Imperfect thermal contact
in heat exchangers is responsible for this type of lost work.

These ideas are important because the lost work can be expressed as the product of the
environment temperature Ty and the sum of all the entropy generated in the system,

VVlost = TO E Sgen ) (410)

a result known as the Guoy-Stodola theorem [29]. This theorem is presented clearly in
the physics literature [42], but without reference to the decades-earlier work of Guoy and
Stodola. We won’t prove this theorem here, but we use some of the examples of Fig. 4.2 to
illustrate it. First: The entropy generated by imperfect thermal contact in Fig. 4.2e must
be the difference between the entropy Q /T gained by the lower reservoir and the entropy
Q/(T + 6T) lost by the upper reservoir. The difference is Q 6T/T? to lowest order in 6T;
multiplying by Tp indeed yields the lost work given in Eq. (4.9). Second: For friction at a
temperature T as illustrated in Fig. 4.2c, the entropy generation must be the heat generated,
which is exactly Wy, divided by T'. Multiplying by Tp as prescribed by Eq. (4.10), yields

I’Vlost = Wfric_fztzl-(,)'a (411)
in agreement with both Eq. (4.3) and Eq. (4.6).

This method and theorem are important because entropy is an extensive quantity. The
sum ¥ in Eq. (4.10) can be performed any of a number of ways. The sum can be performed
component by component throughout a piece of experimental hardware, tabulating how
much entropy is generated in each heat exchanger, stack, resonator, etc. It can even be
performed by location within a component, e.g. to determine whether the hot end of the
stack, the middle of the stack, or the cold end of the stack is the lossiest. This sum can
be performed process by process, tabulating how much entropy is generated by viscous
processes, thermal processes, frictional processes, etc., either within each component or
system-wide. There seems to be no limit to how finely this sum can be subdivided; one
could even ask how much of the thermal entropy generation at a given location is due to
heat diffusing in the z direction, and how much is due to heat diffusing perpendicular to z.
The sum can be performed with respect to time instead of location or process, e.g. to learn
whether the entropy generated by thermal relaxation in a regenerator occurs mostly during

the compression and expansion phases of the cycle or during the gas-motion phases of the
cycle.

Taken to extreme, this point of view would let us write

. w 2rfw '
Sgen = o /0 /v PSgen AV di (4.12)
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where the instantaneous rate of entropy generation per unit volume is

E(VT) 2/
T2

This displays the time-averaged rate of entropy generation as an integral, over time and over
the whole volume of an apparatus, of the instantaneous rate of entropy generation, which is
itself the sum effects coming from different processes: viscous, thermal, electrical, frictional,
chemical, etc. Having this in mind will let you think about where and how the inefficiencies
arise in a system. Quoting from a clear review [42] of this method: “In accordance with
the circumstance that entropy is a quantity having extensive magnitude, it is evident that
[ToSen] can be calculated by adding together separate terms of the form [TpSyen) for each
of the irreversible processes that accompany a total operation. This then allows us to take
each of these separate terms ... as a measure of the loss in potential work that results
from the corresponding particular irreversible processes in the total operation. This is an
important principle, since it allows us to determine the reduction in efficiency resulting from
any particular cause without making an analysis of the whole operation.”

PSgen = %@ + -+ friction + chemistry + .... (4.13)

Source Wiest (macroscopic) - pSgen (microscopic)
Electrical I*RT,/T §%/oT
Friction Wi To/T vo /T (per unit area)
- Viscosity UApT,/T p@/T+¢ (V- v)2 /T
where ® = -% (8zk + 51kaz,)
Imperfect heat -
transfer (67 < T) QTo 6T/ T? k(VT)? /T2
Heat leak QTo (Ty — Te) /TuTe k(VT)? /T?
Thermal mixing  rhe,Tplog[(z + 7(1 — z)) /7177 where m = m; + my,
Tr= ml/mg, and T= T1/T2
Free expansion 1MepT0 108 [Phinal /Pinitial]
Mass mixing
Mass diffusion
‘Chemical reaction
.. BEte.!

The table above gives expressions for lost work and entropy generation for some dissi-
pative processes encountered in thermoacoustics. (Watch out for factors of two if you use
the macroscopic column for time-averaged acoustic situations.) For example, if dc electrical
power is dissipated by resistance, the dissipated electrical power is I2R, and the lost work
is To/T times the dissipated power. Microscopically, the entropy generation is given by the
heat generation rate j2/o per unit volume, divided by the temperature at which the heat
is generated. Integrating that entropy generation over the whole volume of a resistor, and
multiplying by Tp to convert from entropy generation to lost work, yields the macroscopic ex-
pression for lost work. As a second example, viscous flow down a pipe, if we are not concerned
about microscopic details such as whether the flow is turbulent or laminar, we can compute
the lost work with the macroscopic expression. If instead we are concerned with microscopic
details, perhaps to understand the spatial distribution of dissipation within a channel of a
stack, then we can use the microscopic expression. This list of entropy-generating processes
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could be extended greatly—it’s amazing how many mechanisms contribute to the increase
of the entropy of the universe!

Imperfect heat transfer is one of the most important loss mechanisms in engines and
refrigerators, so consider the k(VT')2/T? term in more detail. If £ = 0 —perfect insulation—
there is no entropy generation. In the other extreme, k = oo, there is also no loss, because
in that case VT is zero. Only the in-between case is lossy. Unfortunately, all real gases
and materials have nonzero, finite thermal conductivity, so all are lossy! In standing-wave
systems, the situation is severe, because we depend on such imperfect thermal contact to get
useful thermodynamic behavior, with heat being transferred irreversibly across a thermal
penctration depth, throughout the stack, every cycle of the wave. For this reason, standing-
wave systems have sometimes been called “intrinsically irreversible” [43].

In our experience at Los Alamos, the important types of processes that are responsible
for irreversibility in thermoacoustic engines and refrigerators are:

(1) Thermal relaxation occurs within the stack in any standing-wave system, because
imperfect thermal contact characterized by Im|f,] # 0 in the stack is necessary for nonzero
power in standing-wave systems. In traveling-wave systems, those losses are in principle
and in practice smaller, giving traveling-wave systems an inherent efficiency advantage over
standing-wave systems.

(2) Viscous drag in stacks and regenerators is important in both standing- and traveling-
wave systems. Some viscous loss is unavoidable, because for anything except liquid metals
[44] the Prandtl number is of order one so the viscous penetration depth is of the same order
as the thermal penetration depth.

(3) Ordinary conduction of heat in the z direction from hot to cold along stacks and
regenerators is conceptually a very simple loss. However, it is unavoidable, especially in the
wall of the pressure vessel.

(4) Thermal-relaxation loss and viscous loss occurs not only in stacks and regenerators
but also on resonator walls and in heat exchangers.

(5) Serious thermal bottlenecks can occur elsewhere in heat exchangers, in the solid
metal parts and in the fluids such as water flowing through them to carry heat to or from
the system. '

(6) When used, electroacoustic transducers contribute significantly to system loss, through
electrical dissipation and sometimes through piston friction.

(7) Finally, there are things that we don’t yet understand; our systems never perform
as well as we think they should. And effects beyond the acoustic approximation add to the
severity of many of the items in this list; for example, turbulence in resonators adds to the
viscous losses there.

4.2. Exergy

Consider the system shown in Fig. 4.3, processing a mass flow 7h of fluid from one tempera-
ture and pressure to another temperature and pressure. Liquefaction of nitrogen or methane
is typical of such a process. The system consumes work W, and waste heat Qp is rejected
at temperature Ty. The first law of thermodynamics indicates that the sum of the powers
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Figure 4.3: A thermodynamic device using work to process a flowing stream of material 7
from an input condition to an output condition. The device rejects waste heat at Tp.

going in must equal the sum of the powers going out:
W + b = Qo + mhou. . (4.14)

Note the use of enthalpy here; it is the correct energy to use in the first law for open systems,
as discussed briefly in Chapter 3 and extensively in most thermodynamics texts [29]. The
second law of thermodynamics indicates that the entropy leaving the system must equal the
sum of the entropy entering the system plus entropy generation within the system:
‘@ + msout = 'l’hSin + TO Z Sgen. (4.15)
To
The sources .S"ge,1 inside the system are viscous, frictional, and other dissipative processes as
discussed in the previous section. .
Combining these two equations by eliminating the uninteresting quantity Qo yields

W =1 [(h — Tos)ou, — (b — Tos)iu] + To D, Seen- (4.16)

This shows that h—Tys is another important, special energy in thermodynamics problems. If
the system is ideal—if there are no entropy-generating processes in the system, so XSge, =0
—then the work needed to process unit mass of the fluid is given by the difference between
the outgoing and incoming h — Tps.. Any real system must use at least that much work to
perform this process. Physicists note: This is not the Gibbs energy h—T's. This energy per
unit mass b = h — Tys is called the flow availability, well known to mechanical engineers and
especially to chemical engineers. It is invaluable in evaluating the minimum work required
to perform a complex process, such as that shown in Fig. 4.1b.

We can follow a similar philosophy [29] to derive an acoustic approximation to the Guoy-
Stodola theorem, and to introduce the important concept of exergy X, an important energy
that keeps track of the ability to do useful work when a thermal reservoir at temperature
To is freely accessible. Consider the schematic of a generalized portion of thermoacoustic
system shown in Fig. 4.4. If the portion shown is in steady-state operation, the first law
of thermodynamics shows that the difference between energy fluxes going out and going in
must be zero:

0= Hyou + W — Horn — Qo — ZQ: (4.17)
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Figure 4.4: A generalized portion of thermoacoustic apparatus. The z direction is horizontal,
and the portion, with length Az, has acoustic power Ern and total power Ho,;, flowing into
the left open end and acoustic power E20u: and total power Haous flowing out of the right
open end. In between, the portion produces (or receives) time-averaged work power W,
absorbs (or rejects) heat power Qo to ambient at Tp, and absorbs (or rejects) one or more
other heat powers Q; to other temperature(s) T;. The sign conventions are indicated by the
arrows.

The second law of thermodynamics says that the difference between the entropy fluxes going
out and going in must equal the entropy generated within the portion:

: Hoow — Faows  Hom — Fon Qo Qz
Spen = — 1
& TmOut. TmIn Z (4 8)

In Eq. (4.18), we use (Hy — E,)/Tin, as the second-order entropy flux, as shown in Eq. (3.26)
where the first term is T}, times the second-order hydrodynamic entropy flux and the second
term is the conduction of heat along z through the gas and solid parts. Combining Eqgs.
(4.17) and (4.18) by eliminating the uninteresting heat @ easily yields

. T . T ) T . T .
ToSgen = TOI Eor, + (1 -7 2 ) Hop, — T :; Eoout + (1 - :; ) Hoout
min min mQOut mOut

-W+ Z Q: (1 -~ %) (4.19)

This is written in terms of exergy as

ToSgen = Xom — Xoow = Xw + Z Xao: (4.20)

where the acoustic approximation to the time-averaged exergy flux X,(z) in the z direction
in a channel is

. T To
X, = T—mE2+(1 i) H,. (4.21)
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Similarly, the exergy flux Xy associated with work power is the work power W itself,
Xw =W, _ (4.22)
and the exergy flux XQ associated with a heat power Q flowing from temperature T is
Xo=0Q(1—To/T). (4.23)

Each of these three expressions for exergy flux gives the ability of the associated power to
do work, in the presence of a thermal reservoir at Tp. If .S'gen = 0, these expressions prescribe
how work power, heat power, and oscillatory thermohydrodynamic power could be freely
interchanged within the bounds of the first and second laws of thermodynamics.

Reminiscent of the total-power equation discussed in Chapter 3, the acoustic-approximation
exergy-flux equation (4.21) is like a kaleidoscope, giving many different views depending on
how it is shaken. We will look at a few:

In a stack, regenerator, or thermal buffer column, laterally insulated and bounded so
that no exergy can flow out perpendicular to z, we have a thermoacoustic approximation to
the Guoy-Stodola theorem:

7.0 S _ X

To dz dz ’

This equation expresses the combined first and second laws of thermodynamics in thermoa-
coustics, showing that

(4.24)

dX,
dzx

<0 (4.25)
always, just like 0 = dH, /dz expresses the first law in a stack, regenerator, or thermal buffer
column. Exergy is conserved if and only if no entropy is generated.

If T,, = Tp, then Eq. (4.21) shows that X, = E,. In words, acoustic power at Tp
represents the ability to do work, in the thermodynamic sense. Thus far in this book, we
may have tacitly assumed that this is true, but we have not proven it until this point! In this
simplest situation, lost work and entropy generation are related in the most straightforward
manner,

dXy ., d) Seen  dEp
dz To de dz (4.26)
Now suppose that Ty, 5 Tp, and consider an ideal regenerator with Hp =0. Then X, =

BTy /Tm- Hence, acoustic power in a temporally isothermal space, such as a regenerator, at
temperature T}, < Tp has an ability to do work that is greater than E, itself. (This may make
acousticians uneasy, but it is true, because a limitless source of heat at temperature Tp is
presumed to be available. The first law shows that some such source of heat must be utilized
if work is to be extracted from an ideal regenerator, in which H, =0. ) Similarly, acoustic
power in a temporally isothermal space at temperature T, > To represents a reduced ability
to do work; the full E, cannot be converted to W without adding exergy from another
source, such as heat at temperature T;,, > Tg.
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Figure 4.5: Schematic of an ideal orifice pulse tube refrigerator, showing the total power,
acoustic power, and exergy flux as functions of position. The apparatus is insulated except
at the heat exchangers, so the piston work W, aftercooler heat Qoa, refrigeration load Qc,
and final waste heat Qg are the only energies entering or leaving the apparatus.

Continuing to suppose that Ty, # To, consider an ideal thermal buffer column or pulse
tube, for which E‘2 H,. Then X, = E2, 1ndependent of Trm. In this case, Eq. (4.26) holds,
with dF, /dz =0 only if S’gen = 0. Again, B, represents the ability to do work.

These points are illustrated in Fig. 4.5 for an ideal orifice pulse-tube refrigerator, as-
sumed to be thermally insulated except at the three heat exchangers. The total power must
be piecewise constant, with discontinuities at the heat exchangers equal to the heats trans-
ferred there. The acoustic power must be continuous, decreasing through the regenerator
not because of viscosity but rather because U; decreases as T,, decreases, and decreasing
again in the flow resistance R due to viscosity. The exergy flux is constant throughout the
regenerator. It decreases at the cold heat exchanger by Q¢ (1 —Ty/T¢), which is the amount
of exergy carried out of the system by the heat load Q¢. It is constant again along the pulse
tube, finally dropping to zero smoothly in the flow resistance R, which is the only location
with nonzero Sgen.

Using Eq. (4.21) to write an explicit expression for dX,/dz in a stack, regenerator, or
thermal buffer column, in which dH,/dz = 0, yields

G (o B)

dX, T

dx Tm

. (4.27)

In the inviscid limit, x4 = 0, and using appropriate expressions from Chapters 2 and 3, Eq.
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(4.27) becomes

X, 1, . AT, /dz T Jdz\
i = ol | i st ( Vo
dT../dz)?
—(Ak + Asolidksolid)(_'_T/_) (4.28)

which is always < 0, for any values of dT;,/dz and ¢, as expected. The angle ¢y, is the
phase difference by which p; leads U;. The interpretation of the second term (i.e., seoond
line) of Eq. (4.28) is trivial based on our discussion of heat-transfer ln'evers1b1hty in the
previous section. The first term (i.e., first line) is more interesting. It can be reduced to zero
by making r, = o0, as is apprommately the case for traveling-wave systems. However, the
intrinsic 1rrever51b111ty of standing-wave systems is apparent here, as 1/r, o< Im[— f,] must
be nonnegligible for standing-wave systems; otherwise they develop no power, as shown by
the discussion near Eq. (3.27). In thiscase, the only way to make the first term in Eq. (4.28)
zero is-by setting sin ¢,y = 1 (i.e., pure standing waves) and dTp, /dz = VT, exactly the
situation for which standing-wave systems have zero power.

Thus far I have been unable to grind through the algebra to find a pretty version of
dX,/dz for p # 0. I had hoped it would depend cleanly on 7y, 7, and (dTm/dz) [V e,
because the only sources of irreversibility are viscous shear, imperfect thermal contact, and
the trivial term arising from ordinary conduction of heat along x.

4.3. Examples

Example: orifice pulse-tube refrigerator: The orifice pulse-tube refrigerator of Figs.
1.15 and 1.16 provides a realistic example similar to the ideal orifice pulse-tube refrigerator
considered above. The flows of exergy, acoustic power, and total power are shown in Fig.
4.6, for the same operating point as that used to generate the power plots in Fig. 3.8 and
the phasors in Fig. 2.19. The exergy curve was calculated using Eq. (4.21), using DeltaE'’s

values for H,, E,, and Ty,. Incoming from the left, the acoustic power, total power, and
exergy flux are all nearly equal at 8.8 kW in the large-diameter entrance duct. The ambient-
temperature aftercooler removes 8.3 kW of heat at Tp, which reduces the total power by that
amount but has no effect on the exergy because heat-at Ty carries no ability to do work.
There is a small reduction in acoustic power in the aftercooler, and the exergy decreases
in step with this acoustic power, as required in a channel at temperature Tp. Next, in the
regenerator the acoustic power drops considerably, but only part of this drop represents a
loss in exergy (mostly due to viscosity); much of this decrease in acoustic power would occur
even for p = 0, as a result of the mean temperature gradient. The exergy flux drops through
the cold heat exchanger, but this represents no loss—only the flow of exergy out of the
thermoacoustic part of the system and into the refrigeration load. Through the pulse tube,
exergy decreases only a little, due largely to the heat leak down the walls of the pulse tube.
At the end of the apparatus, exergy is destroyed in viscous flow in the orifice, although
thermal insulation around the orifice, inertance, and compliance ensure that the energy
associated with that exergy destruction shows up at the adjacent heat exchanger. Overall,
the exergy losses in the orifice and in the regenerator are comparable, and are larger than
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that in the aftercooler. The fact that almost half the exergy loss in this system occurs in the
orifice motivated our research [45] into methods of feeding acoustic power from the hot end
of the pulse tube back to the left of the heat exchange components instead of dissipating it
in the orifice.
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Figure 4.6: Schematic of Cryenco pulse-tube refrigerator, with lengths along z to scale, and
diagram showing acoustic power, total power, and exergy flux at a representative operating
point.

Example: standing-wave engine: The engine of Figs. 1.9 and 1.10 serves as an
additional illustration of the use of exergy. In Fig. 4.7, we have added an exergy curve
calculated using Eq. (4.21) to the energy plot of Fig. 3.7. At the hot heat exchanger, 2380
W of heat was added, causing 2380 W of total power to flow down the stack. This heat, at
a temperature of 760 K, carried only 1440 W of exergy into the system. Some 720 W of this
exergy is lost in the stack, due to viscosity, imperfect thermal contact, and conduction of
heat along z, in the process of generating 670 W of acoustic power. A full 1000 W of exergy
flows into the refrigerator at the side branch, in the form of 1000 W of acoustic power at
To.

At another operating point for the standing-wave engine, one which received both ex-
perimental and calculational attention, a total of 3000 W of electric power was supplied to
the heaters of the two engines, and 490 W of acoustic power was delivered to the pulse-tube
refrigerator. The lost work is the difference between these: 2510 W. Although we didn’t
measure it, we would infer that 2510 W of heat was showing up in the room-temperature
cooling-water streams at Tg.
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Figure 4.7: Powers for the standing-wave engine, at the same operating point as in Fig. 3.7,
with an exergy curve added.

Q, = 2510 Watts waste heat out

W = 3000 Watts ,
electric power in W= 490 Watts

acoustic power out

Figure 4.8: At one experimental operating point, the standing wave engine accepted 3000

W of input electrical power and rejected 2510 W of waste heat at Tp. Hence, 2510 W of
work was lost.
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To gain understanding of the sources of irreversibility in the system at this operating
point, I made an arbitrary choice of how to break up this lost work: mostly by component,
but with some subdividing according to process. Making intelligent estimates based partly
on measurement and partly on a corresponding DeltaEl model of this system generated this
table.

Source Wiost

I’R  T30W

room heat leak 300 W

hot heat exchgs acoustics 20W
hot heat exchgs §T 10 W

stacks 950 W

stacks pressure vessel heat leak 150 W
cold heat exchgs acoustics 10W
cold heat exchgs 6T 0w
resonator 35 W

unknown 235 W

Total: 2510 W

Such a table can serve as one guide when contemplating improvements to a thermoa-
coustic system, to help decide which components are responsible for losses, and maybe to
help decide how to spend time and money most effectively to improve the overall system
efficiency. In this case, consider the sources of lost work starting with the largest: The stacks
contribute 950 W. I believe I optimized the gaps, lengths, and positions of these parallel-
plate stacks well during the design of this system, so I doubt that rebuilding the stacks with
different gaps or lengths would improve performance much. However, most of that 950 W
is thermal-relaxation loss, not viscous losses. The thermal-relaxation loss is large in this
system because of the size constraint imposed by the project’s sponsor; if we were free to
make the system bigger, we could operate closer to the critical temperature gradient and
thus have a more efficient thermoacoustic engine. Hence, this table strongly suggests that
we should re-negotiate the size constraint with the sponsor. We might consider trying to
build a pin-array stack, because computer calculations usually show that a pin-array stack
should perform about 20% better than a parallel-plate stack. However, building such an
intricate pin array, with supports for the pins that don’t block the sound wave badly, seems
daunting (i.e. expensive). The second-largest loss in the table is the I2R loss in the NiCr
heaters in the two thermoacoustic engines. What does this mean, that 730 W is lost to I%R,
when 3000 W is converted from electricity to heat in the heaters? We're turning 3000 W of
electrical power into 3000 W of heat at temperature T. The formula in the previous table
shows that the lost work in that process is I2RTy/Ty. “Work is lost” in this process because
the first and second laws allow for a more efficient way to deliver 3000 W of heat to T, in
principle: This 3000 W of heat could be delivered to the engine at Ty = 1230 Kelvin by
spending only 2270 W of electric power, driving a heat pump with Carnot’s COP operating
between Ty and Ty. The difference, 3000 W — 2270 W, is_the lost work. Reducing lost
work from this source also sounds expensive. The next largest sources seem more promising.
Heat leak from Ty to the room contributes 300 W, which might be reduced simply by more
insulation, if the sponsor’s size constraint is not compromised. Unknown sources contribute
235 W, which might serve as justification for asking the sponsor for more funds for funda-
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mental research in thermoacoustics. The heat leaks along the two pressure vessels enclosing
the two stacks contribute 150 W, which suggests that we might look for a reasonable-cost
alloy with greater strength or lower thermal conductivity than the Incolloy 800H used here.

[

4.4. Exercises

4.1 A simple heat engine operates between temperatures Ty and Tp. Its work output is used
to drive a simple refrigerator, which pumps heat from a load at temperature ¢ ; it rejects
waste heat at temperature Tp. The efficiency of this composite system is the ratio of heat
pumped from T to heat consumed from Ty. What is the limit on efficiency imposed by the
first and second laws of thermodynamics?

4.2 An ideal gas, with temperature-independent specific heat c,, flowing with mass flow
rate 7, must be cooled from Ty to T¢. In case 1, the cooling is provided by a Carnot
refrigerator removing heat from T¢ and rejecting waste heat to Tp. In case 2; the cooling
power is provided by two Carnot refrigerators rejecting waste heat to Tp; the gas stream
first encounters the first refrigerator, whose cold end is at (To + T¢)/2, and then encounters
the second refrigerator, whose cold end is at T¢. Case 3 is similar to case 2, except that
the colder refrigerator rejects its waste heat at (Tp + T¢)/2 and the first refrigerator must
absorb that heat in addition to the heat from the gas stream. Calculate the work required
in all three cases, and compare it to the minimum work given by Eq. (4.16). How might
you design cooling hardware that would approach the minimum work more closely?

4.3 Demonstrate the Guoy-Stodola theorem for the system of Fig. 4.2d, by showing that
the difference between the entropy increase of the reservoir at Ty and the entropy decrease
of the reservoir at T equals the lost work given by Eq. (4.6) divided by Tp.

4.4 Investigate p3gen for the simplest thermal-penetration-depth problem, with u; = 0 and
boundary-layer approximation. Make a plot of the time-average of the entropy generation
per unit volume, as a function of distance from the wall. How does this plot compare with
the plot of power dissipated per unit volume shown in Ani. Thermal? Does this make sense?
Compare [ pgen dy with the results of exercise 4.8, to verify the Guoy-Stodola theorem in
this context.

4.5 Pick one process, one component, or one process within one component of your
favorite thermoacoustic system, and estimate (order of magnitude) the lost work. What
fraction of the total lost work for the whole system does this represent?

4.6 In Chapter 3, we demonstrated the “intrinsic irreversibility” of standing-wave engines
and refrigerators, even in the inviscid limit 4 = 0, by showing that both the useful eU; term
and the harmful r term in d B, are proportional to Im[f,]. With £ = 0 and ignoring thermal
conduction along z, re-examine the question of intrinsic irreversibility from the point of view
of the exergy flux X», showing that within a stack (where Hy is independent of x) exergy is
destroyed unless the temperature gradient equals VT

.4.7 On a trans-Pacific airplane flight, you are surprised to see your rich uncle, a banker,
whom you haven’t seen in 10 years. He tells you that he is about to invest heavily in a
natural-gas recovery project that will make him unimaginably wealthy.

The project involves a huge, high-pressure natural-gas reservoir under the Arctic Ocean.
The gas will arrive at the floating platform on the ocean surface in a pipe, at a pressure of

104

T v—
R S RSN



100 bar and a temperature of zero degrees Centigrade, which is the temperature of the ocean.
He says that the brilliant scientist he will be investing in has invented two special machines.
One machine will use the gas pressure to drive a special turbine, to generate power from the
100 bar gas. As it does work on the turbine, the gas will expand to atmospheric pressure,
and cool. He doesn’t remember how much it will cool. The second machine will use some of
the power from the turbine to further cool the gas and liquefy it. There will be power left
over, to run the lights, water pumps, radios, computers, heaters, etc. for the workers on the
platform. The liquefied gas will be carried in cryogenic tankers to Tokyo.

He is certain that the planned platform will require no external source of power, nor will
it need to burn any of the gas. It will be completely powered by the expansion of the gas
from 100 bar. He remembers that one or both of the two machines will have a large heat
exchanger connected to the ocean water.

You remember that methane liquefies at 112 Kelvin at atmospheric pressure, and that
the latent heat is approximately equal to the total heat that must be removed to cool
gaseous methane from zero degrees Centigrade to 112 Kelvin. You assume that the gaseous
methane, CHy, can be treated as an ideal gas. You remember that changes in enthalpy of
an ideal gas are given by dh = ¢, dT, and that changes in entropy of an ideal gas are given
by ds = (¢,/T) dT — (1/pT) dp.

Evaluate the feasibility of this scheme using the first and second laws of thermodynamics.
Convince your uncle that the first and second laws of thermodynamics are applicable to this
scheme, and that you can decide that his investment plan is unwise without understanding
any of the details of the two machines.

4.8 Derive the boundary-layer expression for dX, /dz in a stack. Express your answer
using the same variables as in Eq. (4.28) plus 7, and o. Then assume standing-wave phasing
to simplify your result, showing that it is < 0.

4.9 Resolve this paradox: For an ideal gas, § pudt = $(p/p)pudt = R§ Tpudt. In
a perfect regenerator, T is independent of time, so it can be pulled outside the integral,
leaving RT ¢ pudt. But § pudt = 0 because there is no net time-averaged mass flux through
a perfect regenerator. Hence, ¢ pudt = 0. So acoustic power cannot flow through a perfect
regenerator. (If you get stuck, wait until Chapter 5.)

4.10 NASA probes to the outer planets require electric power generators that operate
for a decade with extremely high reliability. Currently, this electricity is generated with the
thermoelectric effect in a solid. The high-temperature heat is supplied to the thermoelectric
component by radioactive decay of a plutonium isotope, and waste heat carried away from
the thermoelectric component by a heat pipe and finally rejected by means of black-body
radiation to space. The efficiency, i.e. the ratio of electric power to plutonium heat, is 7%.

Consider a thermoacoustic engine as an alternative to the thermoelectric component, per-
haps with piezoelectric or electrodynamic transduction of acoustic to electric power. Your
assignment: Decide whether this idea might be worth pursuing. Make some plausible as-
sumptions, and make a few rough estimates using various approximate relations throughout
the book, to see if a thermoacoustic system might have an efficiency greater than 7%, while
maintaining extremely high reliability. If you decide this idea might be worth pursuing, write
a letter to your friend the program manager at NASA, explaining why you think it’s worth
pursuing—try to convince her that her office should provide you with financial support to
attempt a meaningful design. If you decide the idea is not worth pursuing, write a letter to

105




her explaining why she should reject any half-baked thermoacoustics proposals she receives.

4.11 A simple thermoacoustic refrigérator, with COP equal to 0.3 times Carnot’s COP,
lifts heat from 276 K and rejects waste heat at To = 300 K. The refrigerator is used to cool
a stream of 10 grams/sec of water from 300 K to 276 K; this cooling load is the only load
on the refrigerator.

In addition to the obv1ous 1rrever51b1hty within the thermoacoustic refrigerator, the heat
transfer in the cold heat exchanger must be irreversible, because this heat exchanger is at
276 K but the water enters it at 300 K. (Assume water’s heat capacity is 4.2 Joule/gm-K,
independent of temperature.)

How much heat must be removed from the water stream? How much work power is used
to run this refrigerator? Calculate the lost work in the refrigerator and the lost work in the
irreversible heat transfer. Compare the appropriate sum/difference of these three numbers
with the minimum work required to cool this stream, using Eq. (4.16). How much exergy is
added to the water stream? (Comment on the sign of this exergy term, rega.rdmg the ability
of the cold water stream to do work.)

To reduce the irreversibility in the heat exchanger, it is proposed to use two refrigerators
instead of one; the first will operate at 288 K and remove half the heat load from the water
stream and the second will operate at 276 K and remove the other half of the heat load
from the water stream. (Hence, each refrigerator will have half the cooling power of the
original refrigerator.) Assume that both refrigerators reject heat to 300 K, and both have
COP/COPgamor = 0.3. What is the total work power required by this system? Tabulate
the lost work in four locations: the two refrigerators, and the two cold heat exchangers.

Now suppose the colder of the two refrigerators rejects its waste heat at 288 K instead of
300 K, so that the warmer of the two refrigerators must pump this heat load in addition to
the heat load due to the water stream. Again calculate the total work required, and tabulate
the lost work in the four locations. Discuss some of this in terms of exergy; for example,
where is exergy destroyed, where does it flow into and out of the apparatus, etc.

4.12 Show that heat exergy Q(1 — Tp/T') indeed represents the maximum ability to do
work, by considering a Carnot engine operating between T and Tp when T' > T.

4.13 A machine absorbs heat at a rate Q¢ at temperature Tc. Show that a Carnot engine
attached to this machine could produce work at a rate W = (To/T¢c — 1)(Q¢- Interpret this
result in terms of the heat exergy associated with Qc.
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5. BEYOND ROTT’S THERMOACOUSTICS

We have now completed our review of the well-established foundations of thermoacoustics,
as based mostly on the work of Nikolaus Rott. In Chapter 2, as summarized in Fig. 2.14,
we came to regard any thermoacoustic apparatus as a series of short channels (possibly with
internal structure, such as in a stack), each of which can be analyzed using the momentum
and continuity equations. This allows us to view a short length of arbitrary thermoacoustic
component as a combination of only five impedance elements: series inertance, series vis-
cous resistance, parallel compliance, parallel thermal-relaxation resistance, and the parallel
current-controlled current source that appears when a nonzero temperature gradient exists
along the channel. In this representation, each dynamical variable, such as pressure p, is
assumed to have a sinusoidally oscillating part, with the amplitude and phase of the os-
cillation the only variables of interest. Once oscillating pressure and oscillating velocity
are understood in this context, other oscillating variables such as temperature and density
follow easily. The acoustic power E,, the second-order total power H,, the time-averaged
heats Q transferred at heat exchangers, and the second-order exergy flux X, can be calcu-
lated without controversy from these oscillating variables, when the first and second laws of
thermodynamics are brought into consideration.

If an engine or refrigerator is built according to these principles, and no mistakes are
made (see Chapter 8), it will work as designed—but only in the limit of low amplitudes.
Figure 5.1 illustrates this typical behavior, showing data obtained during early debugging
of the standing-wave engine of Figs. 1.9 and 1.10, using only one engine and no load on
the resonator. Heater power, displayed on the horizontal axis, was applied, resulting in
measured pressure oscillations and hot temperatures as shown by the circles. The lines are
calculations using DeltaE, based on the acoustic approximation and hence consistent with
the discussion in Chapters 2 and 3. At low power, measurements and calculations agree,
but at the highest powers the measured and calculated temperatures differ by almost 200°C
and the measured and calculated pressure amplitudes differ by almost 25%. Thermoacoustic
engines and refrigerators with practical levels of power per unit volume and per unit mass
must operate at high amplitudes such as these, where actual behavior deviates significantly
from the acoustic approximation. In the early days of thermoacoustic research, we were
impressed that the acoustic approximation came so close to the truth at high amplitudes,
but our standards are higher now: We hope to understand such deviations quantitatively.

In this chapter, we will examine some of the gas-dynamics phenomena leading to high-
amplitude deviations from the acoustic approximation. We know all the fundamental physics
involved. Most of the relevant gas dynamics and thermodynamics are believed to be included
in the general momentum, continuity, and energy equations
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Figure 5.1: Pressure amplitude and hot temperature as functions of heater power, during
early debugging of the standing-wave engine of Figs. 1.9 and 1.10, with the side branch to
the refrigerators blocked, and using one spiral stack with its heat exchangers in one end of
the resonator but no stack or hot heat exchanger in the other end of the resonator. Helium,
3 MPa, 370 Hz. The points are measurements; the lines are calculations using DeltaE,

assuming laminar flow in the resonator.
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rr +V.(pv) = 0, (6.1)
p [& +(v- V) v] = —Vp+ViuVue+V((V - v), (5.2)
aat ( pv? + p6> = -V. [—pv v+phv—v.L— kVT] (5.3)
with appropriate boundary conditions, and in the propertiés of the gas
p = pRT, (5.4)
p = pp7T), (5.5)

ko= k@T), (56)
4 = constant. (5.7)

The time-averaged total power [26] flowing in the = direction

i = [ [wn - P Ty 4 (53)

and the time-averaged exergy flux [29] in the = direction

X=/lpu[v2/2+(h—ho)]—TopU(s—so)—k(1—-7%) 2D ] d4, (59

where hg and sp are the enthalpy and entropy per unit mass in the so-called dead state
[29], are also unambiguous. However, knowing that all the fundamental physics involved
is captured in these deceptively simple equations is of little use in the day-to-day practice
of high-amplitude thermoacoustics, because personal computers and human brains are in-
capable of processing such complicated equations and truths quickly. The challenge is to
find the relevant aspects of the truths expressed in Eqs. (5.1)-(5.9) and to distill them into
comprehensible, compact forms and into usable design procedures and analysis procedures.
Our “acoustic approximation” of Chapters 2-4 is one such distillation, represented in the
computer code DeltaE, but data like those displayed in Fig. 5.1 demonstrate that this ap-
proximation omits some important phenomena. Other computer codes include more physics
and hence work better at high amplitudes, but sacrifice speed to do so.

While the first four chapters of the book are built on a well-established foundation,
the topics discussed in this chapter are at the frontiers of current understanding. If this
chapter seems inelegant or confused, it may be due to the fact that these issues are indeed
complicated, and are not well understood. I will not be surprised if some of this chapter
turns out to be wrong.

Our approach here will be to build upon and extend our acoustic approximation, adding
(you might say kludging) various phenomena onto it. One strength of this approach is
that it builds on a firm foundation. One danger of this approach is that it will never find
dramatically new phenomena, no matter how interesting or important they might be.

This chapter is still under construction. I have not yet incorporated examples tied to the
“example” hardware of Chapter 1. I have not done sections on porous media, harmonics, or
similitude.
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5.1. Tortuous porous media

In preparation. Screens [38], steel wool, sandstone?, power-law correlations.

5.2. Turbulence

Figure 5.2 is the well-known friction-factor diagram [27] for steady flow in a circular pipe.
[Here “steady” means that U is independent of time, although u(z,y,z2,t) may fluctuate
rapidly.] The figure summarizes all practical knowledge about pressure drops in such flows.
Although Eq. (5.2) includes all the physics displayed in Fig. 5.2, Eq. (5.2) is too far removed
from the engineering reality of turbulent steady flow to be useful in daily engineering work.

o T
0.09 IC:iti(:al :Transitiu{
0.08 [-Laminar 3=, zon; -, one e Fully rough 20ne
0.07[H : LT 0.05
H . 0.04
0.0 = = 0.03
X am T
0.05 AW y 002
S | P ou !
=5 3 = . . 0.015
0.04 ::Z%a; : S =i 0.01
5 - :% TR <1 - AT ooae e
3 —- Reo 11 N RNt i 0.006 i
g oo03 3 x {
< : SR ; 0.004 £
2 =% 2 T ]
2 0.025 = =H I 2
e A == 0.002 %
\ - £
RS TS o001 B
0.0 B, e + X &
? SRIamE < 0.0008
N = 0.0006
LARM - N
S h pipes N 0.0004
0.015 Sie -
N3N = 0.0002
NSl el s, 0.0001
P ~K
0 SN - 0.000,05
.01 NSy 5
0.009 ﬁ\\ S ——
1T 5 0.000,01
0.008

103 2 34568108 2 343568j05 2 2 4568106 2 3 456 “&WM
: Reynolds number, Re = 2Y2. —5~ =0.000,001 ~-"=0.000,005

Figure 5.2: Friction factor vs Reynolds number in steady flow in a circular pipe. Reproduced
from Fox and McDonald [27]. The different curves in the turbulent regime are for different
surface roughnesses in the pipe. This figure (and everything else in Ref. [27]) uses Re to

signify the Reynolds number on the horizontal axis, but we will use Ng to avoid confusion
with the real part of a variable.

Note the use of dimensionless groups of variables in Fig. 5.2. Engineers have long
realized that correlating data using such dimensionless groups provides the only practical,
compact approach for sharing data. The Reynolds number Ng = p (u) D/u is a dimensionless
measure of the average velocity, where D is the diameter of the pipe. The vertical axis is
the dimensionless Moody friction factor fas, which is the ratio of pressure drop Ap to
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%p ('u,)2 L/D, where L is the pipe length. The dimensionless relative roughness ¢ is the
roughness height on the pipe’s inner surface divided by the pipe diameter. We will often use
such dimensionless groups in this chapter, and in the last section we will outline a formal
approach to the selection of dimensionless groups for thermoacoustic phenomena.

Figure 5.2 shows that steady flow in a smooth circular pipe has two regimes. Below
Ng ~ 2000, the flow is laminar. In this regime, the second term on the left side of Eq. 5.2
can be neglected, and the equation is simple enough for analysis leading to a closed-form
solution for the friction factor,

fu =64/Ng, (5.10)

which is the straight line in the left part of Fig. 5.2. Above Ni ~ 2000 the flow is turbulent.
Roughness € > 0 gives higher friction factors in the turbulent regime.

For such steady flow in a circular pipe, two dimensionless parameters—Npg and e—are
sufficient to span the space of all possible flows, so the friction factor of any steady flow can
be obtained from Fig. 5.2 by specifying these two parameters. In oscillating flow, however,
one additional parameter is needed, which must be related to the frequency of oscillations.
The viscous penetration depth is a familiar frequency-dependent variable, so R/, (where
R is pipe radius) provides a convenient dimensionless form for this third parameter. [The
Womersley number D/v/26, is also commonly used [46] for this third parameter.) One slice
through the three-dimensional parameter space of oscillating flow is shown in Fig. 5.3 for a
circular pipe; this slice is for € = 0, and shows the regimes of behavior as a function of peak
Reynolds number Npgpeax = |Ui| Dp/Ap and R/S,.

Figure 5.3 represents more complicated behavior than Fig. 5.2 represents. The laminar
regime of Fig. 5.3 was the subject of chapter 2, and is well understood. We believe that
the weakly turbulent regime shares the laminar regime’s mathematically simple behavior
in the boundary layers, with the turbulence essentially confined to the center of the tube,
not in the boundary layers. A transitional zone exists between the weakly turbulent and
conditionally turbulent regimes. In the conditionally turbulent regime, hot-wire anemometer
measurements [48] show that the flow alternates between weakly turbulent and violently
turbulent behavior, with the transition to turbulence occurring at the peak velocity and
the return to weak turbulent flow occurring at the zero crossings of velocity. At higher
Reynolds numbers, the flow is fully turbulent, essentially resembling the steady turbulent
flow at high Reynolds number in Fig. 5.2. The mathematics we developed in Chapters 2 and
3 is probably inapplicable in the transitional, conditionally turbulent, and fully turbulent
regimes, because in these regimes the turbulence disturbs the boundary layer deeply and
violently.

At the high amplitudes necessary to achieve high power density, various components in
thermoacoustic engines and refrigerators operate in all regimes shown in Fig. 5.3, and it is
important to calculate peak Reynolds numbers at typical locations in each component to get
a rough idea whether deviations from the acoustic approximation might be expected. Pulse
tubes and thermal buffer tubes typically operate in the weakly turbulent regime. Resonator
components are often fully turbulent, conditionally turbulent, or in the transition regime.
Inertances in pulse-tube refrigerators are usually fully turbulent. For other components
having non-circular cross sections but with parallel walls, we can only hope that Fig. 5.3
gives reasonable guidance, using R ~ 2r,; with this criterion, we often find that standing-
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Figure 5.3: Regimes of oscillating flow, in a smooth circular pipe, as a function of peak
Reynolds number Re (= Ngpeax in text) and the ratio of pipe radius R to viscous penetration
depth 6,. Adapted from [47].
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wave stacks are in the high-Reynolds part of the laminar regime, sometimes with their cold
ends extending into the conditionally turbulent regime, and heat exchangers may fall in
any regime except fully turbulent. (As discussed in the previous section, the screen beds of
regenerators typically have 75/, < 1 and Npgpesk ~ 500, but Fig. 5.3 offers no guidance
for the microscopically tortured geometry of séreen beds.)

In Chapters 2 through 4, we learned how useful it is to have expressions for dp, /dz,
dU, /dz, dE, /dz, and H, everywhere. Reality today is not satisfactory in this regard. We're
only certain of these expressions in the laminar regime in Fig. 5.3 (and even there en-
trance effects, to be discussed later this chapter, confuse the issue). We believe that the
mathematical expressions developed in Chapter 2 are applicable in the distorted laminar
regime, because we believe that the weak turbulence doesn’t penetrate significantly into
the boundary layer, and because we have some experimental evidence [49, 50] that lami-
nar boundary-layer mathematics predicts phenomena accurately. Everywhere else in Fig.
5.3, our present understanding is too incomplete to give complete, quantitatively accurate
predictions.

However, in the fully turbulent regime, Iguchi’s hypothesis gives partial, quantitatively
accurate guidance. In this regime, the displacement amplitude |z;| of the gas is much larger
_ than both §, and R, so Iguchi [47] suggested that the flow at any instant of time should
have little memory of its past history: The flow at each instant of time should be identical
to that of fully developed steady flow with that same velocity, represented by Fig. 5.2. This
hypothesis must be excellent in the low frequency limit, in which B/5,, — 0, a limit that is
approached in the inertances of many pulse-tube refrigerators. We do not know how good
the assumption is for large R/6,, which is of interest in many resonators.

To incorporate Iguchi’s hypothesis into the impedance framework of Chapter 2, we can
derive an expression for dp; /dz, modified to account for the turbulence. If the volumetric
velocity and hence Reynolds number Np vary sinusoidally in time, then the instantaneous
friction factor fas(t) obtained from Fig. 5.2 has a complicated time dependence. We can
‘simplify this time dependence by using a Taylor-series expansion around the peak Reynolds
number: :

d Re [U- twi
fM(t) =~ fM + dﬁl NR,peak <l—%§J - 1> 3 (511)

where f)s and the derivative on the right-hand side are evaluated at the peak Reynolds
number. It is then straightforward to integrate the instantaneous power dissipation over a
full cycle, obtaining for the time-averaged dissipation of acoustic power per unit length

dB, p|ULP o dfm
-71-; = 3’/!{3_;25 f 1-— ’3—2' NR,peade (5'12)

where, again, fys and dfas/dNp are evaluated at the peak Reynolds number.
When this is compared to the equivalent result for laminar flow

. 9 .
dE2 —_ P IUII wRe ¢
dz 21 R? 1-f,

(5.13)
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it is apparent that turbulence multiplies the power dissipation and the effective viscous
resistance per unit length, r,,, by a factor m given by the ratio of the two expressions above:

. 62Ng [far — (1 — 97/32) Np peak dfar /A NR]
~ 6mR2 Re[i/ (1 - f,)] '

(5.14)

We can evaluate fas and dfy/dNg as a function of Ng and ¢ directly from Fig. 5.2, or
by using the iterative expression

1 18.7
s —174-210 (2e + ——-————) , 5.15
V fM €10 NRVfM ( )

which is a remarkably good approximation to the friction factor [51).
At low enough velocities, m — 1 and the flow is laminar. According to Eq. (5.14), the
m = 1 boundary between laminar and turbulent zones occurs roughly at

Nppeax =~ 2000 for R/6, < 2, (5.16)

NR peak

NALL) A a7
R/, 1000 for R/6, > 2, (5.17)

which is in general agreement with the transitions from laminar or weakly laminar to tran-
sitional or conditionally turbulent in Fig. 5.3.

Turbulence must also affect the other parts of the impedance picture of Chapter 2:
the inertance per unit length [, the compliance per unit length ¢, the thermal-relaxation
resistance 7y, and the source/sink factor e. As turbulence increases 7, it probably changes
the average velocity gradient at the wall, so the boundary-layer thickness probably changes,
changing the effective area in the center of the duct that is available to carry the plug
flow responsible for most of the inertance. Turbulence must also allow the influence of the
isothermal boundary condition at the wall to reach farther into the gas, making more of the
channel appear isothermal and hence increasing c. With more volume affected by thermal
relaxation, r, probably decreases, and e may increase.

This analysis does not inspire confidence. Experimental confirmation exists only for
T, [47], and only in a limited regime. Even in the fully turbulent regime, where Iguchi’s
hypothesis is most credible, we have no expression for H, and only qualitative ideas of the
corrections to inertance, compliance, and thermal-relaxation resistance. Experiments and
more careful analysis are clearly needed to improve the situation. Accurate estimates or
experiments are needed for u;(y) and T1(y) in and near the boundary layer.

5.2.1. Minor losses

In flow at high Reynolds number, additional pressure drops are associated with the transi-
tions between channels, and with changes in direction of channels. These effects are known as
“minor losses” because in long piping systems such transitions are indeed minor contributors
to overall pressure drop. However, in thermoacoustic engines and refrigerators operating at
high amplitudes, these so-called minor losses can be major, as in the traveling-wave engine
of Figs. 1.13 and 1.14, where minor losses are severe in the tee and in the 180° and 90°
bends.
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Figure 5.4: Typical chart giving minor loss coefficient K. Reproduced from Fox and Mc-
Donald [27]. .

For steady flow, the pressure drop arising from minor losses is characterized by the
dimensionless minor-loss coefficient K,

_ el o o pU >

Ap = Kgpu” = Koos,

with K tabulated for a wide variety of geometries [51, 52], as illustrated in Fig. 5.4. These

losses arise from turbulence and other types of “secondary” flow, as illustrated in Figs. 5.5
and 5.6. )

For flow of such high amplitude that the displacement amplitude |z;| is far larger than

all other dimensions in the vicinity, Iguchi’s hypothesis should be applicable: We can assume

that Eq. (5.18) holds at each instance of time-dependent flow, so that

(5.18)

K
Ap(t) = 5P U @N* (5.19)
Using sinusoidal velocity
U(t) = |Uh]sinwt - (5.20)
and constant p, we can quickly calculate the fundamental Fourier component of Ap(t),
_ 4 K Pm | 2
|Ap1| = 5 =2m o (5.21)
and the acoustic power dissipated by minor loss in the gas,
. o 2 Kppn o
AEz = Ap(t) U(t) = -3_71’ A2 IU]I . ~ (522)
Hence, in the impedance viéwpoint of Chapter 2 we can assign a viscous flow resistance
4 Kp, _
Ro=g— [Th] (5.23)
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Figure 5.6: Illustrations of turbulent losses and dissipation at unions and in an elbow.
Reproduced from Idelchik [52].
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to each minor-loss location, if we can take K to be independent of velocity. In the Deltaks
. file for the traveling-wave engine included in the Appendix, many such minor-loss resistances
are included, using Idelchik’s extensive tabulations [52] of K.

This type of nonlinear flow, with an amplitude*dependent resistance, is also present in
the orifice (typically an adjustable valve) ‘of an orifice pulse-tube refrigerator. Handbooks
give typical values for the dimensionless head-loss coefficient K for valves and fittings, but
American valve manufacturers usually spec1fy a valve’s flow impedance by Cy. Although
catalogs give values for Cy without units, it is not a dimensionless number: Cy is defined
by the equation

Ap = pU?/CE (5.24)

for steady flow, using gallons per minute, pounds per square inch, and gm/ cm?® for U, Ap,
and p respectively, so Cy has units of

gal [gm/cm3
min psi

, (5.25)

which is a unit of area equal to 24 X 107 m?. The use of Cy instead of K in valve
catalogs eliminates ambiguity about whether the area A appearing in Eq. (5.18) is the
inside diameter of the pipes entering the valve, the smallest cross section inside the valve
itself, or the “nominal” pipe size of the valve. To convert between K, Cy, and R, for steady
flow, use any of
A2
K - 2 ., (5.26)
[(24 x 10-6m?)Cy/]
U NI
R, = p s = P (5.27)
[(24 x 10 m2)Cy)*  [(24 x 1076 m?)Cy]

_ KpU _ [KpAp,
B = 5=\ 2z (5.28)

for sinusoidal flow, use any of

K = 247 (5.29)
[(24 x 10-6 m2)Cy]*’ - |
8pm |U1] V/80m |Ap:] /3
Ry —_ = s 5.30
3r[(24 x 10-6m?)Cy]>  [(24 x 10~ m?)Cv] (5.30)
4Kpm |U1I — 4I{pm IAPII
By 3wAz 3mA? - (5:31)

. We hope that Eq. (5.23) and its variants incorporate the most important features of
minor losses for thermoacoustics, but our understanding is very incomplete.. When minor-
loss locations are close together, such as the tee and elbow of Fig. 1.13, we do not know
how their minor-loss phenomena interact, so we do not know what effective R, to assign.
Sometimes we know that minor losses are large even when |z;| is small enough that Iguchi’s
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Figure 5.7: Illustration of entrance effects for steady laminar flow, from [27]. The flow has
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hypothesis may not be applicable and hence Eq. (5.23) is questionable. We do not know
whether to assign to each minor-loss location some correction for inertance, compliance, or
thermal-relaxation resistance in addition to the correction to viscous resistance given by

Eq. (5.23). When both U(t) and Ap(¢) contain harmonics, Eq. (5.23) is much too simple.

5.3. Entrance effects and joining conditions

One of the unspoken assumptions of our acoustic approximation is that the gas displace-
ment amplitude |z;| is much smaller than all other relevant dimensions in the z direction.
This assumption is violated in thermoacoustic engines and refrigerators operating high am-
plitudes, where the displacement amplitude is typically comparable to the entire length of
heat exchangers and may be one-tenth of the length of the stack.

5.3.1. Entrance effects

Figure 5.7 illustrates one aspect of this situation for steady flow. Flow enters a channel from
wide open space to the left with a flat velocity profile. It takes time for viscosity to diffuse
the influence of the zero-velocity boundary condition at the wall into the flow, and time is
equivalent to distance along the flow. For laminar flow, the entrance length [27] is given by

Lentr = 0.06 N D. (5.32)

To our knowledge, this phenomenon has not been carefully investigated for oscillating
flow. However, a rough estimate is very illuminating. Let us assume that the entrance
length for oscillating laminar flow is comparable to that for steady laminar flow. Then with

D= 47’};, (533)

pln| D _ 8ra |z
52 ’

(5.34)

N R,peak =
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1| = |Ui| JwA, ‘ (5.35)

we have

9 ;

Hence, in a stack where typically 7, ~ §,, the entrance length is of the order of the dis-
placement amplitude. At the 10% pressure amplitudes typical of the standing-wave engine
of Figs. 1.9 and 1.10, roughly 10% of the length of the stack may be affected. In this region,
the assumptions underlying all the derivations of Chapter 2 and 3 are violated.

5.3.2. Joining conditions

Some thermoacoustic computation algorithms have used continuity of complex pressure
amplitude p;, complex volumetric velocity amplitude U;, and mean gas temperature Tp,
as “joining conditions,” i.e., boundary conditions to match solutions across the interface
between two adjacent thermoacoustic components. For example, DeltaE [20] has used these
joining conditions to pass from the end of one segment to the beginning of the next. There are
many situations for which we already know that these.traditional acoustic joining conditions
may be inadequate. We saw above that continuity of p; is inappropriate if minor losses are
important. Storch et al. [53] observed a distorted temperature profile near the ends of a pulse
tube, as shown in Fig. 5.8, which we will attribute to an effective mismatch in T, between
the end of the pulse tube and the adjacent heat exchanger. Swift [54] observed a similar
discontinuity in T}, between a hot heat exchanger and the adjacent duct in a standing-wave
engine; the discontinuity in 7}, was proportional to |p;|. As a hypothetical example, consider
two adjacent heat exchangers, with separation (along the direction of oscillatory gas motion)
much less than the gas displacement amplitude, and each having plate spacing much smaller
than the thermal penetration depth 6. If the two heat exchangers are at equal temperatures,
then Uj is continuous across the interface between them. However, if the temperatures of
the two heat exchangers differ by 6T, continuity of first-order mass flux p, Uy (with p,,
the mean gas density) more accurately describes flow across the interface. Hence, U; is
discontinuous, with & |U1| ~ |Us| 6Tm/Tm.
As an alternative to continuity of Uy, Rott [55, 14] proposed continuity of

wtel [elsfiln  em

The plausibility of 1; as a joining variable is easily examined for some simple cases. For
example, Eq. (5.37) becomes
w fodln
n=g [1 -5

for an inviscid ideal gas, if the integral is much smaller than unity. Then, in the adiabatic
limit (f, — 0) of traditional acoustics, continuity of 1; and of U are identical, so the 9,

] Uy (5.38)
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Figure 5.8: Temperature profile in the pulse tube of a pulse tube refrigerator, reproduced
from Storch et al. [53]. Naively one might expect a smooth profile, without the overshoots at
the ends, whose magnitude is of the order of the adiabatic temperature oscillation amplitude.

joining condition reduces to the traditional acoustic U; joining condition. In contrast, in the
isothermal limit (f, — 1), Eq. (5.38) becomes

Yy = — [1 + 5—’)2] Ui, (5.39)
1 m

so that in this case continuity of ¥; and of first-order mass flux p,,U; are identical. As we

argued in the preceding paragraph, this is the correct joining condition between two heat

exchangers at different temperatures, with plate spacing < é,.

Although continuity of 9, appears plausible in these two limiting situations, we do not
believe that it is generally correct. To demonstrate this, we will derive joining conditions
for the interface between an isothermal space (f; = 1, such as a good heat exchanger) and
an adiabatic space (f; = 0, such as a pulse tube, thermal buffer tube, or resonator duct),
as shown in Fig. 5.9. We seck expressions for the discontinuities to lowest order, hence we
seek a first-order expression for 675, and second-order expressions for 6U; and ép;. We will
assume that flow in the adiabatic space is stratified, as it would be for a pulse tube or buffer
tube with adequate flow straightening (see “Jet-driven streaming” below).

Mean temperature

Following Smith and Romm [56] (see also Kittel [57]), consider the interface, illustrated
in Fig. 5.9, between an isothermal heat exchanger at temperature Ty and an open space
in which the gas is stratified (such an ideal pulse tube). Neglect viscosity, and let the
frequency be low so that the acoustic wavelength is much larger than any other distance of
interest. Suppose that pistons or other external means cause the mass flux (positive to the
right) across the interface at = 0 to be exactly wM, sinwt and the pressure to be exactly
Pm+|p1]sin (wt — ). Assume that the gas displacement amplitude is much greater than 6.
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Figure 5.9: A guide to the discussion of joining conditions. (a) The geometry under consid-
eration. The interface between an isothermal heat exchanger (left) and an adiabatic duct
(right) of area A is at = 0, with z increasing to the right. In the duct, the peak-to-peak
gas displacement is 2|U;| /wA. Locations “L” and “R” are just to the left and right, respec-
tively, of the interface. (b) For 8 = 90°, the gas motion is essentially that of a standing wave,
with pressure and displacement in phase. The “particular” slice of gas has both z(t) and
T(t) — To proportional to 1 — coswt. The heavy line shows T'(t) vs () for this slice. Slices
to the.right of the “particular” slice have similar T'(t) vs z(t) traces, shown as parallel lines.
Slices to the left follow a portion of the “particular” slice’s line while z(t) > 0, and have
T = Tp while z(t) < 0. (c) For § = 0, the gas motion is essentially that of a traveling wave,
with pressure and velocity in phase. The “particular” slice of gas has z(t) & 1 — coswt and
T(t) — To  sinwt. The heavy ellipse shows T'(t) vs z(t) for this slice. Slices to the right of
the “particular” slice follow similar T°(¢) vs z(t) ellipses; slices to the left follow truncated
ellipses while z(t) > 0 and T’ = T while z(t) < 0. In both (b) and (c), the resulting Eulerian
Tm(2) is shown as the solid curve; extrapolating it from large  to z = 0 gives the effective
discontinuity 67}, in mean temperature. '
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Because the gas in the open cylinder is stratified, we can (in principle) follow each dif-
ferential slice of gas d M as it moves, considering its temperature, position, etc. as functions
of time . We begin by considering T'(t) for the slice of gas that is at =0 at t = 0. This
particular slice touches the heat exchanger only at ¢ = 0; slices to the right of it never touch
the heat exchanger; slices to the left of it spend a nonzero fraction of their time inside the
heat exchanger. At t = 0, this particular slice has temperature Tp, because at that mo-
ment it is in thermal contact with the heat exchanger. Thereafter, its temperature evolves
adiabatically in response to the changing pressure:

P + || sin (wt — )17
= A4
IO =To [ Pm — |p1|siné (540)
To first order in p;, Eq. (5.40) becomes

Tt) =T {1 + l;-ll—;ll [sin (wt — 0) + sin 9]} . (5.41)

Meanwhile, the position of that slice of gas is

_ M, _|th]

z(t) = o A (1 - coswt) = ) (1 — coswt) (5.42)

to first order, where A is the cross-sectional area of the open space. The path T(z)
traced out by this particular slice of gas is shown as the heavy solid line with attached
arrowheads in Figs. 5.9(b) and 5.9(c) for two choices of 6. Its average temperature is
To+ [(v — 1) |p1| /7Pm) Tosin 8, and its average location is |U;| /wA.

Slices of gas to the right of the particular slice essentially share its oscillating motion and
oscillating temperature, but with. different average values. For z > 2|U;| /wA, the slope of
their average temperatures dT},/dz is determined by phenomena outside the scope of this
paper (such as heat conduction in the gas). Slices of gas to the left of the particular slice
we have considered have complicated temperature histories, with constant temperatures for
times when z(t) < 0, and temperatures evolving according to trigonometric functions of ¢
(to first order) when z(t) > 0. The net effect of all such slices is to produce an average
temperature profile T;,(z), shown in Figs. 5.9(b) and 5.9(c), which is unremarkable for
z > 2|Uy| /wA but which is rather complicated for 0 < z < 2|U;| /wA. Experimental
evidence of such complicated T;,,(z) in a pulse tube is shown in Fig. 5.8.

A suitable joining condition for Ty, would allow convenient matching of the £ < 0 and
z > 2|Usi| /wA solutions, each extrapolated to £ = 0. Examination of Figs. 1(b) and 1(c)
shows that this occurs if T}, is given a discontinuity 6T, at z = 0:

Tt = Ton = 6T = T T2 122l i g _ [V 4T

— . (5.43)

The discontinuity is first order in the acoustic amplitudes, and it can have either sign.
Equation (5.43) is in reasonable agreement with the measurements of Storch [53] (as far as
I can tell) and Swift [54].

It turns out that Eq. (5.43) works whether the open cylinder is on the right [as in Fig.
1(a)] or on the left, as long as these conventions are followed: 6 is the angle by which U;
leads p;, Uy is positive in the +z direction, and dT5,/dz is positive if T}, increases with z.
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Oscillating volumetric velocity

To deduce a suitable joining condition for volumetric velocity, we must consider in more
detail the slices to the left of the “particular” shce of the previous section. We label each
such slice by t*, the time at which it crosses z = 0 from right to left; thus 7 < wt* < 27
includes all shces, and the “particular” slice of the previous section has wi* = 27. BEach
slice crosses £ = 0 from left to right at time {** given by wt** = 27 — wt*. While each slice
enjoys adiabatic conditions at z > 0, its pressure changes from pp, +|p1| sin (27 — wt* — 0) to
Pm+|p1|sin (wt* — 6), a net pressure change of 2 |p; | cos @ sinwt*. Hence, just before that slice
enters the heat exchanger, its temperature is To {1 + 2 [(7 — 1) |p1| /7Pm] cos Osinwt*}. Asit
enters the heat exchanger, returning to temperature T, its volume dM/p,, changes abruptly
by —=2[(y— 1) |p1| /vpm) cosOsinwt* dM/p,,. The discontinuity in volumetric velocity is
obtained by dividing by dt*:

sU@*) = y 1oM, —2 |p1| cos O sin® wi*, m<wt* <27
TPm  Pm
sU@Y) = 0, O<wt*<m (5.44)
The fundamental Fourier component of this function of ¢* is
~ 8 (r—1wh,
oU(t) = T3 e — |p1| cos f sin wt
8 (v—1)
~3 o |p1} |U1] cos @ sin wi. (5.45)

Hence, the discontinuity of volumetric velomty contains a Fourier component at frequency
w; we may correctly refer to it as 6U;. This discontinuity is in phase with the volumetric
velocity itself, so there is no discontinuity in the phase of U;. The discontinuity in |U;] is

-~ 1|pa| [Uh]

Uil — Uil = 6|0 = “3—71,'7— o cos @ (5.46)
16y —1E,
= T3y o (5.47)-

where By = 2 |p1| U] cos @ is the acoustic power. This expression may be used whether the
open cylinder is on the right or on the left, as long as E, is taken to be positive when power
flows in the +z direction. Note that § |U;| is second order in the acoustic amplitudes, and it
is zero for standing-wave phasing. Hence, it larger for pulse-tube and Stirling refrigerators
than for low-amplitude standing-wave thermoacoustic engines and refrigerators.

The overall form of Eq. (5.46) is not surprising. In the geometry under consideration,
there is a volume of order |U;| /w in the open cylinder, adjacent to the heat exchanger,
that might naively be considered adiabatic; in fact, the gas occupying this volume behaves
as near to isothermally as to adiabatically. Hence, its response to changing pressure must
be corrected in rough proportion to the difference between the adiabatic and isothermal
compressibilities:

|U1| < 1 )
oV ~ _——. 5.48
l l TP DPm ( )
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With multiplication by w to convert from §V to 6 |U;], and by cos# to eliminate the effect
for standing-wave phasing, we recover the form of Eq. (5.46).

Note that § = 0 and dT},,/dz = 0 makes 6Ty, = 0 in Eq. (5.43). In that case, examination
of Eq. (5.37) or (5.38) shows that continuity of ; implies continuity of Uy, yet Eq. (5.45)
or (5.46) shows a maximum (with respect to 6) discontinuity in |U;]|. Hence, the joining
condition derived here is fundamentally different from continuity of ;. We suspect these
two joining conditions are applicable in different circumstances.

Oscillating pressure

Consistent with the previous section, we might expect a pressure discontinuity
op ~ U, 8Uy (5.49)

at the interface, due to the (v -+ V)V term in the momentum equation. Since this pressure
discontinuity would apparently be third order in the acoustic amplitude, we will neglect it.
Acoustic power dissipation and entropy generation

With spatially uniform oscillatory pressure, the discontinuity in volumetric velocity causes
a third-order dissipation of acoustic power

27
6B, = Eyr—Eop= ‘-217; / p(t) 6 |Uy| sinwt d(wt)
0

= A=l e 2 .
il [p1]|” U | cos® 8. (5.50)

Naturally, this expression is never negative. It represents an inherent irreversibility at such
an interface due to irreversible heat transfer in slices of gas approaching z = 0 from the right
with temperatures different from Tp. This irreversibility was discussed by Smith and Romm
[56] from the point of view of entropy generation. Combining our notation and their results,
the interface dissipation per cycle 27 6§ E; Jw = ToSgen, Where Sgen is the entropy generation
per cycle, obtained from the second law of thermodynamics

Syen = / SrdM — / SpdM — -;- / dQ (5.51)
0

where Sk and Sy are the entropies per unit mass just right and left of the interface, and
dQ = ¢,(Tr — T1) dM is the heat absorbed by mass dM crossing the interface. Smith and
Romm numerically integrated Eq. (5.51) for a monatomic ideal gas (y = 5/3), without
making the acoustic approximation, and they display a graph of their results as a function
of 8 and |p1| /pm- Our Eq. (5.50) is indistinguishable from their results at |p;1| /pm ~ 0.1,
and disagrees with their more accurate results by at most 10% at |p1| /pm ~ 0.3.

[An expression similar to Eq. (5.50), but with 8 = 0, was derived incorrectly by Swift
[58]. The error in that derivation arises on page 4162, where the equation in the second line
should be 8S = 6Q 6T /2T2. This error propagated through that analysis, to Egs. (27) and
(28), which should have been divided by two.]
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Summary

This rather intricate derivation provides higher-order joining conditions between an isother-
mal channel and a stratified adiabatic channel. It lacks careful experimental confirmation,
and it provides no guidance for higher-order joining conditions between other types of chan-
nels encountered throughout thermoacoustic engines and refrigerators.

5.4. Streaming

In acoustics, the term “streaming” refers to steady velocity that is superimposed on the larger
oscillating acoustic velocity [59). When streaming exists, it is useful to think of the motion of
a parcel of gas during each cycle as something like 102 steps forward and 98 steps backward,
equivalent to the superposition of a steady drift forward of 4 steps and an oscillating motion
with a peak—to-peak amplitude of 100 steps. In thermoacoustic engines and refrigerators,
streaming is important because it is a mechanism for convective heat transfer. Carrying
heat, streaming can be either an undesirable loss mechanism or an essential heat-transfer
method. i

Pulse tubes and thermal buffer tubes are usually oriented vertically to avoid gravity-
driven convection, which is one form of time-independent velocity superimposed on the
oscillating velocity. In this section, we will consider four other undesirable steady flows,
which can be called streaming because they are driven by the first-order acoustic phenom-
ena. I will refer to the first two of these as Gedeon streaming and Olson streaming, because
David Gedeon [60] and Jeff Olson [49] wrote clear papers on these subjects in the context of
engines and refrigerators. Gedeon streaming is a time-averaged mass flux along z through
a regenerator, pulse tube, etc. that accompanies F,. Olson streaming is a time-averaged
toroidal circulation within a pulse tube or thermal buffer tube, driven by boundary-layer
effects at the side walls. Jet-driven streaming is a third type, which is also a toroidal circula-
tion within a pulse tube or buffer tube, but which is driven by inadequate flow straightening
at an end of the tube. A fourth type, toroidal streaming within a regenerator or stack,
presumably might also-occur under some circumstances. These generally undesirable types
of streaming are illustrated in Fig. 5.10.

On the other hand, we can deliberately use superimposed steady flow to advantage in
some circumstances, to deliberately transfer heat. This steady flow can be either parallel or
perpendicular to z, as illustrated in Fig. 5.11. The purpose of such flow is to carry heat,
which is a second-order quantity in thermoacoustics, so we will think of these flows as second
order, refer to them as streaming, and treat them in this section.

To discuss streaming, we extend the perturbation-series expansion of relevant variables
one step beyond the acoustic approximation:

E(t) = &m + Re [£:6%7] + 50 + Re [€06™] . (5.52)

The subscript “2,0” identifies the streaming term, which is independent of time. (The
second-order oscillating term, which oscillates at 2w, is of no interest in this section, but will
be considered in “Harmonics” below.) The second-order time-averaged mass flux density
My 0(%,y,2) is of primary interest, because it- convects a time-averaged heat flux density
meocpl. As illustrated in Figs. 5.10 and 5.11, the second-order time-averaged mass flow .
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Figure 5.10: Illustration of some types of streaming, generally harmful to thermoacoustic
engines and refrigerators. Arrows indicate the time-averaged velocity, which is superimposed
on the much larger oscillating velocity discussed in Chapter 2. (a) Gedeon streaming. (b)
Olson streaming. (c) Jet-driven streaming. (d) Streaming within a regenerator or stack.
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Figure 5.11: Illustration of streaming that might be beneficial. Note the elimination of a
heat exchanger in each case. (a) Flow parallel to z, through a stack or regenerator. (b)
Flow perpendicular to z, across one end of a stack or regenerator.
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M, = f ThgodA in the z direction may be either zero or nonzero, depending on the circum-
stances. Gradients in the second-order time-averaged pressure pyg are also important, and
can be either large or small, depending on the unpedance of the space through which g9
flows.

5.4.1. Gedeon streaming

It is important that the time-averaged mass flow M in the z direction through a regenerator,
pulse tube, stack, etc. should be near zero, to prevent a large time-averaged convective heat
flux Mcp(Ty — To) or Mc,(To — Te) from flowing from hot to cold. In a refrigerator, such
a steady energy flux would add an unwanted thermal load to the cold heat exchanger; in
an engine, it would wastefully remove high-temperature heat from the hot heat exchanger
without creating acoustic power. This type of streaming is illustrated in Fig. 5.10a.

In a traditional orifice pulse-tube refrigerator such as shown in Fig. 1.16 or in something
like the standing-wave engine shown in Fig. 1.10, M is exactly zero in steady state operation:
Otherwise, mass would steadily accumulate (or deplete, depending on sign) in the dead-end
components. This means that every time-averaged term in the perturbation expansion of
M must be zero; in particular, M, = 0 in Eq. (5.52). In terms of density and volumetric
velocity,

. 1 ~
M, = SRe [pl Ul] +p, Uso. (5.53)
Hence, in a traditional orifice pulse-tube refrigerator or standing-wave thermoacoustic engine
or refrigerator, the two terms on the right hand side must turn out to be equal and opposite.
The two first-order factors p,'and U; are “known” from the considerations of Chapter 2, so

setting M;=0in Eq. (5.53) determines what Uy must be. The second-order time average
of the momentum equation,
_ dpap
wpyvyterm + p,,viVvyterm = i +7,Usz0 (5.54)

must also be true, so a nonzero dp,o/dz will generally also exist in a regenerator or stack
whenever M, = 0 through it. It is helpful to think of the Ap,q that exists across the
regenerator as causing the viscous flow of Uz g through the regenerator. In a traditional orifice
pulse-tube refrigerator, this small time-averaged pressure difference appears automatically,
because the topology imposes M, =0.

However, as shown in Fig. 5.10, any system with the topology of a torus, such as the
traveling-wave engine of Fig. 1.14, can have M, # 0 if the two terms on the right side of Eq.
(5.53) are not in balance. To estimate how severe the time-averaged convective heat flux

carried by such streaming might be in a cryogenic refrigerator if this requirement is ignored,
Gedeon [60] showed that

1 ~ .
> Re [0,01| = p B/ (5.55)

in a regenerator, where By = -% Re[plﬁz] is the acoustic power passing through the regenera-
tor. Hence, 1 Re[p,U;] must be nonzéro in traveling-wave engines and refrigerators. Setting
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Eq. (5.53) equal to zero shows that efficient regenerator operation requires
1 —~ .
Uso =~ Re [plUl] /p. = —Es/pm. | (5.56)

‘The consequences of ignoring this requirement can be severe indeed. If M, > 0, an undesired,
streaming-induced heat load

Qloss ~ -A.l2cp (TO - TC) (557)

flows from ambient to cold through the regenerator. (If M, < 0, such heat flows from hot
to cold through the pulse tube, with equally harmful effect.) For Upg = 0, the ratio of Qo
to the ordinary regenerator loss Hy e, is of the order of

Qo v (To-Tc) B v (To—Tc)Qogroes (5.58)

H2,reg v—1 To H 2,reg v—1 Ic H2,reg ’ .
where Qc,gmss is the gross cooling power, equal to Ej in the cold heat exchanger [see Chapter
3]. In the final expression in Eq. (5.58), each of the three fractions is > 1 for cryocoolers;
hence their product is > 1, and the unmitigated streaming-induced heat load would be
much greater than the ordinary regenerator loss.

A toroidal topology, such as shown in Fig. 5.10a, ensures that the path integral of Vp
around the torus must be zero, in order that the pressure p at any location will be uniquely
defined. At second order, this means that § (dpeo/dz) dz = 0 around the torus. Equation
(5.54) shows what Ap, o must exist across the regenerator to obtain the desired Upg in the
regenerator. Hence, we must design the other components of the loop so that their aggregate
Ap, o is equal and opposite to the Aps o desired across the regenerator.

The desired Apy can be estimated using the low-Reynolds-number limit of Fig. 7-9 of
Kays and London[39)

d . _SUk

de ~—  Ar? (5:59)

for the pressure gradient in a screen bed of cross-sectional area A and hydraulic radius 7,
where U is the volumetric velocity and g is the viscosity. (The numerical factor depends
weakly on the volumetric porosity of the bed.) With Eq. (5.56) for U, this yields

6 .
Bpag e g /  n(e)i(a) do (5.60)

for the pressure difference across the regenerator when M, = 0. (The = dependence of the
viscosity is due to the temperature gradient.) For the apparatus of Figs. 1.14 and 1.16
and for other traveling-wave systems having pn, of tens of bar and |p| /pm ~ 0.1, Apsp is
typically of the order of a few hundred Pa. 4

In the limit of low viscosity or large tube diameters and in the absence of turbulence, py o
would be described by some acoustic version of the Bernoulli equation. This suggests that
an acoustically ideal path through the torus from one end of the regenerator to the other
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Figure 5.12: Asymmetry of high-Reynolds-number flow at a transistion between a small tube
and wide-open space. (a) For outflow, a jet extends far into the open space, and downstream
turbulence dissipates kinetic energy. (b) For inflow with a well-rounded entrance lip, there
is little dissipation. '

would impose across the regenerator a pressure difference of the order of A [pmulﬁi ] . (Such
an ideal loop might include a pulse tube or thermal buffer tube, inertance or transmission
line, and compliance, without heat exchangers or other components with small passages.)
This pressure difference is typically much smaller than the Ap, ¢ given in Eq. (5.60) that is
required for M, = 0. Hence, to produce the required Ap; g, we need an additional physical
effect or structure in the torus, relying on turbulence, viscosity, or some other physical
phenomenon not included in the Bernoulli equation.

Asymmetry in hydrodynamic end effects can produce this required Apsp. In a tapered
transition between a small-diameter tube, where |u,| is large, and a large-diameter tube,
where |u;| is small, turbulence would be avoided and Bernoulli’s equation would hold if
the taper were sufficiently gentle. At the opposite extreme, for an abrupt transition, we
expect large |u;| to generate significant turbulence, and further we expect the oscillatory
pressure drop across-the transition to exhibit minor losses. Hence, the minor-loss coefficient
K depends strongly on the direction of flow through the transition. In the example shown
in Fig. 5.12, a small tube is connected to an essentially infinite open space. When the gas
(at velocity u inside the tube) flows out of the tube, a jet occurs, and kinetic energy is lost
to turbulence downstream of the jet; Ko, = 1. In contrast, when gas flows into the tube,
the streamlines in the open space are widely and smoothly dispersed; K;, varies from 0.5
to 0.04, with smaller values for larger radius r of rounding of the edge of the entrance. For
such asymmetric transitions, we must allow K to have time dependence in Eq. (5.19), which
becomes

1

KOO TR (5.61)

Ap(t) =
-If U = |Uy|sinwt, we can calculate the time-averaged pressure drop by integrating Eq.
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(5.61) in time:

- w 7w 1 2 . o 27r/wK1 U2.2 p
Apry = A2 A Kwt§p|Ul| sinwtdt — ,-,,§p| 1] sin® wt dt

w/w

1 , x
= 5" UL (Kot — Kin) - (5.62)

This is the source of Ap, o that we will use. Such simple control of M, is not without penalty,
however; acoustic power is dissipated at a rate

w 27 fw

5;; A Apm; Udt

7 fw
= Y L U Psintwtdt —
= 55 (/0 Kwt2p|U1| sin® wtdt
1
= 5 A2p|U1|2 [Us| (Kout + Kin) (5.63)
Kout+Kin

8 Kowr + Kin
3 Kou.t s I{i‘n ’

AFE,

2 fw

T[w

Ki’";'/’ [U4)? sin® wt dt)

Appm (Ui (5.64)

where A is the area of the small tube. Equation (5.64) shows that the best way to produce
a desired Ap is to insert the device at a location where |U;| is small, and to shape it so
that K,u: — Kin is as large as possible. Even though the acoustic power dissipation given in
Egs. (5.63) and (5.64) is formally of third order, it is large if u; is large enough to generate
a substantial Ap,,.

Our measurements -at Los Alamos provide qualitative support of most of the features
discussed here, but quantitative agreement between Egs. (5.62) and (5.60) is poor. Once
again, there is something important that we do not understand well.

5.4.2. Olson streaming

Ideally, the gas in a pulse tube or thermal buffer tube acts as a long (and slightly com-
pressible) piston, transmitting pressure and velocity oscillations from one end to the other.
The gas must also thermally insulate the ends of the tube from each other. Unfortunately,
convective heat transfer within the tube can carry heat from one end to the other, adding
a heat load to the cold heat exchanger in a refrigerator or consuming heat at the hot heat
exchanger of an engine. If Gedeon streaming is eliminated, there can be no net mass flux
M, through the tube, but the possibility remains that mass flux density 7hg(r) can stream
upward near the side walls of the tube and downward in the central portion of the tube.
Such streaming can be caused by jetting due to inadequate flow straightening at either end
of the tube, as described in the next subsection, but here we review Olson streaming, which
is convection confined within the tube and driven by viscous and thermal boundary-layer
phenomena, at the side walls of the tube, as illustrated in Fig. 5.10c. The boundary-layer
calculation [49] of streaming in such a geometry, based on the earlier work of Rott [61]
and incorporating variable cross-sectional area A(z) = w[R(z)]?, yields a prediction for the
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side-wall t;aper angle that suppresses streaming:
¢  wRw|p 2(y—1) (1 —bo?)
tan 2 = U] 14 30 (1+0) cos @
(12D g, ) BB R

3(14+0) 6(1+0)(1++0)Tm dz
. B3 || R dT,,
~ (7. . —— 4+ 0.0029 57— ——. o.
(7.4 cos8 + 6.3sin6) PTIA + 0.00 ng el (5.66)

In Eq. (5.66), f is frequency and numerical values for helium gas are used: 7y = 5/3,
o =0.69, and b= (T'/p) dp/dT = 0.68.

When Eq. (5.65) or (5.66) is satisfied, a large number of side-wall boundary-layer effects
are in delicate balance, with some trying to cause streaming up along the side walls and
down through the center, while others try to cause streaming down along the side walls and
up through the center. One such effect is easily imagined and is illustrated in Fig. 5.13c.
Consider a small parcel of gas oscillating up and down along the wall, at a distance from
the wall of the order of the relevant boundary layer: the viscous penetration depth §,. On
average, the gas between the parcel and wall will have a different temperature during the
parcel’s upward motion than during its downward motion, due to imperfect thermal contact
with the wall’s temperature gradient and due to the adiabatic temperature oscillations with
time phasing between oscillatory motion and oscillatory pressure. The moving parcel will
experience a different amount of viscous drag during its upward motion than during its
downward motion because the viscosity depends on temperature, so it will undergo a different
displacement during its upward motion than during its downward motion. After a full
cycle, the parcel does not return to its starting point; it experiences a small net drift which
contributes to ug at its location. This process is represented by terms proportional to the
product of b, T, and u; in the nonlinear equations of the derivation, and is responsible for
the presence of b in Eq. (5.65).

The effect of a taper on streaming can also be imagined, with reference to Fig. 5.13d.
In general, a gas parcel close to the wall will be farther from the wall during, say, its
upward motion than during its downward motion, due to, for example, the compressibility
of the gas in thé boundary layer and the phasing between oscillatory motion and pressure.
Hence, again the moving parcel will experience a different amount of viscous drag during its
upward motion than during its downward motion, and so the parcel will again fail to return
to its starting point after a full cycle. This effect is represented in the starting equations of
the derivation by terms proportional to the product of u; and v;. However, the boundary-
layer continuity equation couples v; and du; /dz, while the y-averaged continuity equation
iwA (p,) + pd (Aw;) /dz = 0 couples du, /dz to dA/dz. Hence, the process shown in Fig.
5.13d is controlled in part by the taper dA/dz, and is responsible for the presence of ¢ in
Eq. (5.65). ,

Including all such second-order streaming effects in the calculations allow determination
of the conditions under which they all add to zero, represented by Eq. (5.65). -Note that
all the variables in the right hand side of Eq. (5.65) or (5.66) should be known during the
design of a pulse tube refrigerator and are experimentally. accessible.

The effort necessary to obtain expressions for p or u at second order, describing streaming,

131

T T T R R e R VR e R e S T T T R R




@) 10y,

e R
e
AN
Central axis of pulse tube  Wail of pulse tube

v

(b)

mz,o
(=]
[~

© @ @

Oscillatory motion

Net
drift

Oy ——p

Figure 5.13: (a) The net drift near the wall, illustrated in (c) and (d), affects the entire
tube, causing an offset parabolic velocity profile which contributes to a second-order mass
flux density 7hg0(r). For the signs chosen here for illustration, the gas moving downward in
the center of the tube is hotter than the gas moving upward around it, so that heat is carried
downward. The coordinate » measures the distance from the center of the tube, of radius R.
The calculations are for R > §,, but, for clarity, §, is exaggerated in the figure. (b) Mass
flux density for the case where the streaming is suppressed by tapering the tube. Although
there is still some streaming near the wall and a correspondingly small offset mass flux in the
rest of the tube, they carry negligible heat. (c) Illustration of net drift caused by one process
within &, of the tube wall. A parcel of gas is shown in three consecutive positions. Here we
imagine that the temperature dependence of the viscosity is the only important effect, and
assume that the temperature is lower during upward motion than during downward motion.
(d) Illustration of net drift caused by a different process, as discussed in the text.
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is far greater than the effort of Chapter 2 to obtain first-order expressions for these variables.
For example, Olson’s calculation begins with the z component of the general momentum
equation [26]

ou _ O, 0 (40 ov) O (ou 8
[ +(v-V) ]— 3 +6.’1:[ <33 +5y>+3y<6y+3:v)J’ (5.67)
which becomes, to second order, _
1 .~ Ou,y .0
_Re [_wplul +pmu1 9z +pm 1 3“1]
_ dpzo 9’ U2,0 0 0ty
= a0 TRy Re [3 ( ay)] (5.68)

This is far more complicated than the first-order £ component of the momentum equation,
Eq. (2.54). In particular, to obtain correct answers at second order, viscosity must be kept
inside the derivative on the right-hand side; this aspect of the present problem differs from
most problems in acoustics and fluid dynamics.

The fact that Olson streaming in a pulse tube or thermal buffer tube can be suppressed
so simply and conveniently is the result of a remarkable series of fortunate coincidences.
First, there is no a priori guarantee that tapering the tube would have a large enough effect
on streaming to cancel streaming’s other causes. Second, it might have turned out that
rather large taper angles (say, greater than 10° or 20°) were required; in this case, jet-like
flow separation of the high-Reynolds-number first-order velocity from the tube wall would
have invalidated the entire laminar, boundary-layer approach. Third, it is fortunate that
most tubes operate in the "weakly turbulent” regime of oscillatory flow, and with tube
surface roughness much smaller than the boundary-layer thickness, so that laminar analysis
is adequate in'the boundary layer.

Fourth, the perturbation expansion upon which this calculation is based is only valid for
zero or extremely weak streaming—the very situation we are most interested in. This point
is subtle. Strong streaming (but nevertheless with streaming velocity small compared to
the oscillatory velocity) distorts the axial temperature profile of the pulse tube significantly,
contradicting the fundamental assumption that the time-averaged temperature, density,
etc. in the boundary layer are well approximated by their zero-oscillation values Tp,(z),
pm(z), ete. This fundamental assumption requires that the streaming be so weak that the
temperature profile in the pulse tube is unperturbed by the streaming—or, equivalently,
that the streaming is so weak that it carries negligible heat! Hence, the calculation self-
consistently predicts the conditions of zero streaming, but it cannot be relied on to accurately
predict the magnitude of strong streaming,

Fifth, there are numerous other fourth-order energy flux terms in addition to g e, To0
which would in principle have to be considered to obtain a formally correct fourth-order
result. Fortunately, the only other large term, p, oc, Re[TiU), is zero at the same taper angle
that makes 1y gcpT5 0 zero, while the remaining terms, such as those involving products of
first and third order quantities, are small for all angles. Hence, the supplessmn of 1 is
sufficient to suppress all fourth-order heat transport.

Finally, as a practical matter, it is extremely convenient that the streaming-suppression
taper is independent of oscillation amplitude and is only weakly dependent on temperature
gradient. .
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5.4.3. Jet-driven tube streaming

Ideally, the gas in a pulse tube or thermal buffer tube would do nothing more than oscillate
in plug flow, transmitting E, = H, from one end to the other. In reality, several nonidealities
can cause Fy # H,, carrying heat down the temperature gradient: ordinary conduction along
z (discussed in Chapter 3), ordinary thermoacoustic boundary-layer phenomena carrying
entropy along z near the wall, bucket-brigade fashion (discussed in Chapter 3), Gedeon
streaming (discussed in this chapter), Olson streaming (discussed in this chapter), gravity-
driven convection, and jet-driven convection (discussed here). Simultaneous suppression of
all these heat-transport mechanisms is not trivial.

A rough estimate indicates how easily Olson streaming or other convection internal to a
pulse tube or thermal buffer tube can ruin Ep = H,. In a tube with reasonably large diameter,
such as 1006, there is little radial thermal contact in the gas, so any time-averaged flow
ug,0 from end to end carries a full AT load of heat the length of the tube. If we desire a
08% effective pulse tube, this heat must be only 2% of Es:

pepua o AT ~ (0.02) 5 |p1] ] - (5.69)
Using pcp, = vp/ (v — 1)T and solving for us ¢ yields
-1T
U0 ~~ 10_21—-—"-—'M |u1| . (570)

o AT Pm

Hence, in a typical case we might need us0 < 1072 m/s in the presence of |u;| = 10 m/s.
In terms of displacements, this means that we need gas displacements in the +z and —z
directions be matched to within 1074

We want this “imaginary piston” of gas in the tube to execute plug flow, but it is a
very fragile object. Working to miz up this plug flow are the various streaming mechanisms
listed in the first paragraph of this subsection. Working to maintain the plug flow are only
a few subtle effects. First, gravity and the mean density gradient tend to keep this fragile
imaginary piston stratified. With a typical mean-density difference of only a few kg/m3,
only Ap ~ Apg Az ~ 1 Pa is available, in the presence of oscillations typically at least 10*
times larger. Viscous shear forces caused by gradients in usp also tend to reduce usp, but
the pressure differences available from this source are only of order u Az uyo/R?, which is
typically much smaller than 1 Pa.

Good radial thermal contact in the tube could prevent us g from carrying the full AT from
end to end, essentially allowing the upflowing and downflowing streams of Olson streaming
or jet-driven streaming to experience counterflow heat exchange, so that the tube would
enjoy By ~ H, even in the presence of a ugo greater than the value estimated above. If
uggo ~ 0.1 m/s and Az ~ 0.1 m, then 1 second is available while the stream traverses the
length of the tube. If the oscillation frequency is of order 100 Hz, then 100 acoustic periods
are available; during this time, heat can diffuse roughly 106,. Only the pulse tubes of the
smallest cryocoolers are this small; most tubes are too large to enjoy substantial benefit
from this mechanism. [However, note that the weak turbulence of most pulse tubes and
buffer tubes may enhance such radial heat transport slightly.]

If either end of the tube has a small-diameter entrance, a jet may blow into the tube when
gas enters, driving streaming within the tube, as illustrated in Fig. 5.10d. The spreading
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angle [51] of a high-Reynolds-number jet in free space is roughly 10°, so such a jet can extend
a large distance, and even the array of small jets fcrmed by flow out of a heat exchanger
or similar periodic structure requires some distance to heal into plug flow. Hence, flow
straighteners are typically employed to break up such jets. A nonlinear impedance, such as
that of a short stack of screens in which Ngpeak 2 102, is most effective at straightening jets.
We typically employ such a flow straightener whenever a jet, spreading at an angle of 10°,
would reach more than about 2 |z, | into the tube; we choose the flow straightener’s resistance
Rtraightener DY simply making the peak pressure drop across the straightener (assuming well-
straightened Us) equal to about a fifth of the Bernoulli pressure of the strongest jet in the
vicinity:

|U1|
raj er ™~ . 5.7].
Because flow straighteners dissipate acoustic power, research leading to more quantitative
design methods for flow straighteners will help improve the efficiency of thermoacoustic
engines and refrigerators.

5.4.4. Streaming within a regenerator or stack

We know little about streaming within a regenerator or stack, except that it should be
avoided for the same reasons that Olson streaming should be avoided. We know it can
occur, because we once suffered from harmful toroidal stfean;ing within a regenerator when
a narrow jet blew strongly on the heat exchanger at one end of the regenerator, due to an
abrupt transition from a small duct to the diameter of the regenerator and heat exchanger.
We fear that such toroidal time-averaged flows might also occur spontaneously, as has been
observed when two or more regenerators are operated in parallel.

5.4.5. Deliberate streaming

Thermoacoustic systems suffer from a practical difficulty: They need heat exchangers to
transfer heat between the thermodynamic working gas and the process fluid (usually air,
combustion products, or water). Heat exchangers are expensive, and contribute to system
inefficiency via temperature differences and viscous effects in the working fluid, in the process
fluid, and often in an intermediate heat-exchange fluid. This difficulty is serious. For
example, the decline of the Stirling engine and the rise of the Diesel and other internal
combustion engines occurred in large part because the internal combustion engine needs
no combustion-temperature heat exchanger (and also rejects most of its waste heat in its
exhaust instead of through heat exchangers).

For some applications, we hope that some or all of the heat exchangers can be ehmmated
from thermoacoustic systems, by superposing the steady flow needed to deliver the process
gas with the oscillatory flow needed for the thermodynamic cycle in the gas. We hope
this idea will lead ultimately to thermoacoustic equipment for purposes such as drying of
compressed air, combustion-powered air conditioning, cornbustlon-powered dehumidification
drying (such as for lumber), gas purification, or cryogen liquefaction.

To introduce some of the expected features that thermoacoustic systems with deliberate
steady flow might have, we will focus attention on one specific case: a thermoacoustic air
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Figure 5.14: A half-wavelength standing-wave thermoacoustic refrigerator, thermally cou-
pled to two air ducts to form an air conditioner. ‘

conditioning system. The ideas we illustrate using this example are equally applicable to
other thermoacoustic engines and refrigerators and to Stirling engines and refrigerators.

Parallel flow

As a point of departure, Fig. 5.14 shows the main parts of an air conditioning system using
conventional thermoacoustic refrigeration. Four heat exchangers are required: two in the
thermoacoustic working gas and one in each of the two air streams. Heat transfer between
working-gas heat exchangers and air heat exchangers, indicated by heavy black arrows, is
accomplished via pumped water loops (or heat pipes, thermosyphons, etc.). The four heat
exchangers and two water loops account for most of the capital cost of the system.

The air conditioning system in Fig. 5.15 illustrates a simplification that is possible by
using the indoor air itself as the thermoacoustic gas. A midwall in the indoor-air duct
separates two acoustic resonators, driven 180° out of phase from each other by an oscillating
piston in the center of the midwall. The drive frequency is chosen to make the acoustic
wavelength equal to twice the midwall length, so there will be pressure nodes at the ends
of the midwall and, hence, negligible acoustic power radiated to distant parts of the duct.
The position of the stack relative to the nodal pattern of the standing wave is chosen so
that conventional standing-wave thermoacoustic processes pump heat from right to left.
Superimposed on that thermoacoustic process, the gas drifts slowly through the stack from
ambient to cold, so that it leaves the right end of the apparatus at the cold temperature.

This superposition can give the system of Fig. 5.15 a higher efficiency than that of the
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Figure 5.15: Two side-by-side half-wavelength thermoacoustic refrigerators in an air duct
allow direct thermoacoustic cooling of the air. The standing-wave refrigerator of Figs. 1.11
and 1.12 has this topology, with the midwall in this figure equivalent to the large empty
space in the center of the torus in Figs. 1.11 and 1.12.

system of Fig. 5.14, for two reasons. First, two heat exchangers, and their internal small
temperature differences, are eliminated. Second, a much more subtle improvement in effi-
ciency arises because the system of Fig. 5.15 essentially puts the air stream sequentially
in thermal contact with a large number of refrigerators in series—a sort of continuum limit
of staged refrigeration. To understand this point, first imagine that thermoacoustic refrig-
erators are ideal, having Carnot’s COP = T¢/(Tp — T¢). Then, in the case of Fig. 5.14,
removing heat e, (Tp — T¢) at temperature T¢ with the refrigerator requires work

W = 1nc,(To — Te)?/Te. (5.72)
This is more than twice the minimum work required by the first and second laws of ther-
modynamics for this process, which we saw in Chapter 4 is given by the difference between
the outgoing and- incoming flow availabilities:

W = m[(hc — ho) — To(sc — s0)] (5.73)
= mcp[Tc —To+Ts ln(To/Tc)] (574)

(The second expression results from using ideal-gas expressions for h and s.) The trouble

with the simple, one-stage refrigerator is that it removes all the heat load at T¢, where

every watt of cooling power requires the same amount of work. It is much more efficient to_
remove as much of the heat load as possible at higher temperatures T, where each watt S
of cooling power requires less work because the Carnot COP = T /(Tp — T¢) is higher.

The perfect embodiment of this idea would employ an infinite number of ideal refrigerators,

each providing an infinitesimal cooling power e, dT¢ at T and rejecting an infinitesimal

amount of waste heat at Ty. The flow-through thermoacoustic refrigerator of Fig. 5.15 has

some features of this perfect situation, if we imagine each length dz.of the stack to be a
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refrigerator unto itself, lifting heat from T} to T 4 dT;. The flow-through system removes
each watt of heat from the flowing stream at the highest possible temperature—but with an
“infinite” number of less-than-ideal refrigerators, each of which must handle the waste heat
of all its downstream neighbors in addition to the local heat load of the flowing stream.

With the addition of nonzero mean velocity along z, the gas moves through the system
in a repetitive, “102 steps forward, 98 steps back” manner, in position, in temperature, and
in density and entropy. This violates one assumption on which Chapters 2 and 3 are based,
because there we assumed u = Refu;e*?], with no “u,,”. The apparatus shown in Figs. 1.11
and 1.12 was built to study this type of deliberate steady flow [16].

To derive corresponding equations in the presence of nonzero parallel steady flow, we
again begin with the momentum, continuity, and energy equations. We write

P = Pm(z)+Re[pi(z)e], (5.75)

u = um(z,¥,2) + Re [ui(z,y, 2)e"] (5.76)

v = Relvi(z,y,2)e*], ' (6.77)

w = similar to v, (5.78)

T = Tn(z)+ Th(z,v,2) + Re [T1(z,y,2)e], (5.79)

= pu(@) + Pr(2,9,2) + Re [py (2,9, 2)e™] , . (5.80)

i, k, etc. = similar to p (but see below). . (5.81)

We will consider p; /p,, and v;/a to be small, and will keep terms to first order in smallness
in the momentum andcontinuity equations and to second order in smallness in the energy
equation as usual. Note that we consider dTp,/dz to be of zeroth order. We will see below
that the energy equation then requires us to consider u,/a to be of second order; for the
moment, we may imagine this to be an assumption.

Substituting Eqgs. (5.75)-(5.81) into the momentum equation, and requiring that the
time-independent terms and the terms proportional to €** must equate separately, yields
the same first-order momentum equation as in Chapter 2, and a time-averaged equation:

0 = —dpm/dz + UV ;. ‘ (5.82)

This time-averaged equation simply expresses the fact that viscosity and steady flow cause
a steady pressure gradient. It shows that dp,,/dz is of second order (the same order as u,,),
so we will neglect it, regarding p,, as a z-independent constant.

In the continuity and energy equations below, we will require expressions for the oscil-
latory temperature T; and its spatial average (T1) over y and 2. Starting from the general
equation of heat transfer as we did in Chapter 2, we find the same first-order equation for
T; as in Chapter 2, and a time-averaged equation

PmCptim AT /dz = KV T . (5.83)

Our only use of Eq. (5.83) is to note that it implies T, is of second order. Hence T}, and
similarly pl,, pl., k.., etc., can be neglected, because their contributions are of negligible
order.

Next we consider the continuity equation

8p/0t+V - (pv) =0, (5.84)
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which can be integrated with respect to y and 2 to obtain to lowest order

wh () + 2em) g (5.85)
| __d(p;;fm) - 0. (5.86)

Again, the first-order expression is the same as in Chapter 2. Using dp = — (p/T) dT 4+

(v/a?) dp, we can express the mean density as
dpp/dz = — (Pm/Tm) @T:n/dz. (5.87)
to lowest order. Substituting this into Eq. (5.86) yields

dUu,, 1dT,
—da: - ‘T,—m‘—dm Um =0 ) . (5‘88)
which can be used to predict the £ dependence of U,, during numerical integration along z.
Finally, we consider the energy equation, as we did in Chapter 3. There, we saw that
the important terms in the time-averaged energy equation are

0= 2 [AGT) - 4 (FBTTER) - o (FiBwalE) . (59)

In principle, we must consider each of.these terms to second order, but in practice, for
situations of interest to us, zeroth order suffices for the last two terms, as it did in Chapter
3. Hence, we begin with the first term. Its expansion to second order is

A{puyttmben + Piihon + PryTizhum + PrUaha) (5.90)

where we have already set five terms equal to zero because the time average of first order
quantities (e.g., py or %) is zero. We regard the steady mass flow as fixed at p,,Un =
A {p,,um), so that the second-order time-averaged mass flux A (p77 + p,,,@z) = 0. Hence
(5.90) reduces to :

A{Prtrab + i) (5.91)

Using dh = ¢, dT, and combining this with the other significant terms from Eq. (5.89), we
conclude that

Hy = ppnco(Trn — To)Un + Appcp (T1t ) — (Ak + Asqtiaksonia) €T /dz . (56.92)

The new term, p,,¢p(Tin — To)Unm, is of the same order (second) as the old Ap,c, (Thup) we
obtained in Chapter 3. With H, independent of z in a stack, regenerator, or other thermally
insulated channel, this equation allows us to predict the = dependence of T}, during numerical
integration along z when steady flow U, is superimposed on thermoacoustic oscillations.
Generally, the steady flow causes Tp,(z) to bend significantly, as steady flow from hot to
cold pushes the center of the stack or regenerator to warmer temperatures, or steady flow
from cold to hot pushes the center of the stack or regenerator to colder temperatures [16].
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Figure 5.16: Two side-by-side three-quarter-wavelength thermoacoustic refrigerators, each
with a baffle to direct the superimposed steady flow, in an air duct network. This arrange-
ment allows direct thermoacoustic cooling of some of the steady air flow, rejecting waste
heat to the remainder of the steady air flow, with no heat exchangers except the stack.

Perpendicular flow

Thus far, we have discussed steady flow superimposed parallel to the oscillating flow. To in-
troduce the idea of steady flow superimposed perpendicular to the oscillating flow, we return
to our air-conditioner motif, showing in Fig. 5.16 the elimination of all heat exchangers from
a thermoacoustic system. As in Fig. 5.15, a midwall separates the duct into two regions
that resonate 180° out of phase from each other. The drive frequency is chosen so that 3/4
of the acoustic wavelength equals the midwall length, thereby putting a pressure antinode
at the hard duct closure at the left end of the midwall and a pressure node at the right,
open end of the midwall. Deflector walls further divide each of these two resonators in order
to direct the steady flow of the air. This steady flow is introduced into the resonator at the
pressure node 1/4 of a wavelength from the hard closure, so that negligible acoustic power
is radiated into the air inlet duct. A significant fraction of the steady flow passes through
the stack, is thereby cooled and dehumidified, and leaves the right end of the duct. Most
of the steady flow passes vigorously past the hot end of the stack, moving perpendicular to
the oscillating flow, in order to remove the waste heat from the thermoacoustic system and
exhaust it. The quantitative understanding of oscillating thermodynamics in the presence
of such a perpendicular steady flow is a significant and exciting challenge.

The air conditioner described above will, incidentally, dehumidify the air, returning cold
dry air. But for many important drying applications, it is desired to dehumidify air and
return it werm and dry. Hence, we could also consider configurations comprising coolers
and heat pumps in the same resonator, to put the waste heat from the hot end of the cooling
stack back into the air stream. This is but one of many possibilities for open thermoacoustic
systems in which multiple stacks, serving multiple functions, share a resonator. As another
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example, industry has long dreamed of a combustion-powered heat pump hot water heater,
which would have a (first-law) efficiency greater than 100%: It would use part of the heat of
combustion to drive an engine, which would drive a heat pump to draw heat from ambient
air and deliver it to the hot water. Such devices can (and have) been built with existing
technology, but only at a cost that is prohibitive to today’s consumer. We can imagine
such a system using open flows through a thermoacoustic system, with a pulse combustor,
thermoacoustic engine, and thermoacoustic heat pump in an air stream, all delivering heat
to hot water passing through a heat exchanger.

5.5. Harmonics and shocks .

In preparation.

5.6. Dimensionless groups

In preparation. Something like a summary of [62].

5.7. Exercises

5.1 Calculate the molecular mean free path for your favorite gas in your favorite thermoa-
coustic apparatus, by looking up the appropriate equations in something like an introductory
statistical-mechanics textbook such as Reif’s Statistical and Thermal Physics. Compare to
dimensions in the apparatus and to §, and é,. Is the mean free path so negligible compared
to 8, that the representation in Ani. viscous should be accurate? Are the crevices between
screen wires in your regenerator large compared to the mean free path?

5.2 Calculate the peak Reynolds number and 7,/6, at a few, locations in your favorite
thermoacoustic apparatus. Where are they, on Fig. 5.37

5.3 In the section on minor losses, we assumed that U(t) was sinusoidal. In some situ-
ations, it may be better to assume that Ap(t) is sinusoidal. Repeat the derivation of Eq.
(5.23) assuming that Ap(t) is sinusoidal. Can you reconcile this answer with Eq. (5.23)?

5.4 To help assure yourself that the similitude-variable list is complete, express the
Prandtl number at the reference temperature in terms of the variables listed: .., Kres,
Qrefy Pmy Lres, and 7.

5.5 Express the Mach number %, /a and the Reynolds number in terms of ratios of lengths,
using |(z1)|, 74, A, and 6,.

5.6 Your sponsor wants you to build a thermoacoustic engine to generate electricity on
a satellite. The engine will operate from a plutonium heat source at 1800 K, and dump its
waste heat to a tiny black-body radiator at 900 Kelvin. Helium will be the gas, at a pressure
of 20 bar. You want to use similitude to do some preliminary tests in a model that operates
between 600 Kelvin and 300 Kelvin—exactly 1/3 the ultimate temperatures—so you can
experiment using stainless steel instead of iridium and platinum. You want the model to
have the same dimensions as the ultimate hardware. What mean pressure of helium must
you use in the model? How much higher or lower will all powers be in the model? If you
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wanted to use a different monatomic gas instead of helium in the model, could you keep the
mean pressure in the model lower /safer?

5.7 Figure 5.2 shows that the laminar friction factor is fjs = 64/Ng for steady flow in
a circular pipe. Derive this from Eq. (5.2). Begin this process by justifying the neglect of
most terms in Eq. (5.2), leaving only 0 = —dp/dz + pV3u.

For a serious mathematical challenge, show that combining Eqgs. (2.56) and (2.62) gives
the same result, in the limit w — 0.

5.8 Review Exercise 4.2. Repeat that exercise, assuming that all refrigerators operate at
the same fraction 7;; of Carnot’s COP. In which direction does the comparison between
Case 2 and Case 3 shift? Now extend Case 3 of the original exercise from two refrigerators
to an infinite number of refrigerators, showing by comparison to Eq. (5.74) that the work
required is the minimum allowed by the laws of thermodynamics. Can you repeat this
continuum calculation assuming that all the refrigerators operate at the same fraction 7,
of Carnot’s COP?

142



6. HARDWARE

In preparation.
remember thermal stress in pressure vessels
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7. MEASUREMENTS

In preparation.
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8. COMMON PITFALLS

in preparation
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9. APPENDIX

These are DeltaE files for parts of the example hardware shown in the Examples section in
Chapter 1 and referred to throughout the book.

9.1. Standing-wave engine

This model of.part of the standing-wave engine starts at the right end of Fig. 1.10 and
integrates to the left, past the branch up to the refrigerators, ending at the pressure node at
the center of the resonator. The point of view adopted in this particular file'is this: In order
to have the as-built hardware run with |p;| = 297 kPa at the branch to the refrigerators and
supply 1000 W of acoustic power to the refrigerators, what hot temperature and heater power
are required at the hot heat exchanger at the hot end of the stack, and at what frequency
will the system resonate? (In this simplified model, we assume that the left engine can
supply 500 W of acoustic power, but at Los Alamos we would typically fully include the left
engine in the model.)

TITLE One engine, branch to OPTRs; stop calc at midplane. As-built dims.
I->staneng.out

ICreated@13:50:34¢ 2-Jan-99 with DeltaE Vers. 4.5b7 for the IBM/PC-Compatible

! 0
BEGIN the setup
2.9660E+06 a Mean P Pa 390.27 A Freq. G( Ob) P
390.27 b Freq. Hz G 758.28 B T-beg G( Oc) P
758.28 c T-beg K G 3.1963E+05 C |pleo G( 0d) P
3.1963E+05 4 |p|@0 Pa G 2392.4 D HeatIn G( 3e) P
0.0000 e Ph(p)oO deg
0.0000 £ |U]@O m~3/s
0.0000 g Ph(U)O deg
helium Gas type
ideal Solid type
! 1
ENDCAP hot end
sameas 2a a Area m~2 3.1963E+05 A |pl Pa
' ' 0.0000 B Ph(p) deg
2.3740E-05 C |U| m~3/s
180.00 D Ph(U) deg
-3.7940 E Hdot - W
sameas 0 Gas type -3.7940 F Work W

150

e e - —— —



ideal Solid type -3.7940 G Heatln W
! 2
ISODUCT hot duct
2.8580E-03 a Area m~2 3.1885E+05 A |pl Pa
0.1900 b Perim m 1.3951E-03 B Ph(p) deg
4.5900E-02 c Length m 2.0855E-02 C |U| m~3/s
-90.264 D Ph(W) deg
-16.375 E Hdot W
sameas 0 Gas type- -16.375 F Work W
ideal Solid type -11.881 G Heatln W
! 3
HXFRST hot heat exchanger
sameas 6a a Area m"2 3.1843E+05 A |pl Pa
0.8800 b GasA/A 1.7874E-02 B Ph(p) deg
9.5000E-03 ¢ Length m 2.5615E-02 C |U| m~3/s
3.8000E-04 d y0 m -91.519 D Ph(U) deg
2392.4 e HeatIn W G 2377.0 E Hdot W
950.00 f Est-T K (t) -109.41 F Work W
sameas 0 Gas type 2392.4 G Heat 1)
copper Solid type 781.38 H MetalT K
! 4
STKSLAB stack
sameas 6a a Area m~2 3.0688E+05 A |pl Pa
0.8100 b GasA/A 0.9075 B Ph(p) deg
7.6200E-02 ¢ Length m 5.3140E-02 C |U] m~3/s
1.3000E-04 4 yO m - -84.938 D Ph(W) deg
2.5400E-05 e Lplate m 2377.0 E Hdot W
590.70 F Work W
, 758.28 G T-beg K
sameas O Gas type 318.27 H T-end K
stainless Solid type 700.11 I StkWrk W
! 5
HXLAST cold heat exchanger
sameas 6a a Area m~2 3.0349E+05 A |pl Pa
0.7500 b GasA/A 0.8885 B Ph(p) deg
1.2700E-02 c Length m 5.7824E-02 C |U| m~3/s
8.2600E-04 d yO0 m -85.412 D Ph(U) deg
0.0000 e HeatIn W (t) 566.12 E Hdot W
295.00 f Est-T K = BH? 566.12 F Work W
sameas 0 Gas type -1810.9 G Heat W
copper Solid type 295.00 H MetalT K
! 6
ISOCONE adapter
3.1670E-03 a Areal m~2 2.9660E+05 A |pl Pa
0.1990 b PerimI m 0.8144 B Ph(p) deg
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2.9000E-02 c Length m 7.0745E~02 C |U| m~3/s

sameas 8a d AreaF m~2 -86.112 D Ph(U) deg
sameas 8b e PerimF m . 562.55 E Hdot W
sameas 0 Gas type ‘ 562.55 F Work W
ideal Solid type -3.5678 G HeatIn W
! 7
BRANCH branch to OPTRs, appearing partly resistive, partly complian
3.9590E+07 a Re(Zb) Pa-s/m"3 ) 2.9660E+05 A |pl Pa
-1.3200E+07 b Im(Zb) Pa-s/m"3 0.8144 B Ph(p)  deg
7.2951E-02 C |U| m~3/s
-91.502 D Ph(U) deg
: -437.33 E Hdot W
sameas 0 Gas type . -437.33 F Work W
ideal Solid type 999.88 G Work_B W
! - 8
ISOCONE a little more of the adapter
2.8200E-03 a Areal m~2 2.6735E+05 A |pl Pa
0.1880 b Periml m 1.0419 B Ph(p) deg
7.3000E-02 ¢ Length m 9.7815E-02 C |U]| m"3/s
sameas 9a d AreaF m"2 -90.915 D Ph(W) deg
sameas 9b e PerimF m -446.54 E Hdot W
sameas 0 Gas type -446.54 F Work W
ideal Solid type -9.2134 G Heatln W
! . 9
ISODUCT long thin duct at ambient temperature
2.0270E-03 a Area m"~2 6622.8 A Ipl Pa
0.1600 b Perim m 90.229 B Ph(p) deg
0.3700 c Length m 0.1510 C |U] m~3/s
-89.771 D Ph(U) ‘deg
-500.00 E Hdot W
sameas O Gas type -500.00 F Work W
ideal Solid type -53.456 G Heatln W
! 10
SOFTEND pressure "node", with 500 W coming from other engine
0.0000 a Re(Z) (t) 6622.8 A Ipl Pa
0.0000 b Im(Z) =10H? 90.229 B Ph(p) deg
0.1510 C |U] m~3/s
-89.771 D Ph(U) deg
-500.00  E Hdot W
-500.00 F Work 1}
-1.8879E-02 G Re(Z)
sameas O Gas type 3.1658E-11 H Im(2Z)
ideal Solid type 318.27 I T K
! 11

FREETARG Ampl at branch to OPTRs
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2.9660E+05 a Target =11A7 2.9660E+05 A FreeT
7A b ResAdr

! 12

FREETARG acoustic power from other engine
-500.00 a Target =12A7 =500.00 A FreeT
10F b ResAdr

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
!

mode. Edit this table only if you really know your model!
INVARS 4 0 2 0 3 0 4 3 5
TARGS 4 5 610 211 112 1

SPECIALS 0

9.2. Standing-wave refrigerator

This model of part of the standing-wave refrigerator starts near the drivers at one side
of the refrigerator shown in Fig. 1.12 and integrates downward, through a stack and its
neighboring heat exchangers, ending at the pressure node at the center of the bottom leg of
the resonator. The point of view adopted in this particular file is this: In order to have the
as-built hardware run with |p;| = 6467 Pa near the drivers and to reach an experimentally
observed cold temperature of 285.6 K, what Uj, f, and heat load on the cold heat exchanger

should occur?

TITLE
{->stanfrid.out

segments 1-7 < Bob 9/97; segs 8-14 < Hiller ntbk, pg one, 10/97

ICreated@13:58:15 2-Jan-99 with DeltaE Vers. 4.5b7 for the IBM/PC-Compatible

! 0
BEGIN Initialize in main duct where drivers are attached
3.2388E+05 a Mean P Pa -5.2625E-02 A |U]@0 G( 0f)
91.650 b Freq. Hz 187.09 B Ph(U)0 G( Og)
307.80 ¢ T-beg K -32.862 C HeatIn G( 3e)
6467.0 d |pleo Pa
90.000 e Ph(p)oO deg
-5.2625E-02 £ |U|@0 m~3/s G
187.09 g Ph(U)0 deg G
0.920hear Gas type
ideal Solid type
! 1
MEANFlow mean flow
0.0000 a Um m™3/s 6467.0 A Ipl Pa
90.000 B Ph(p) deg
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5.2625E-02 C |U| n"3/s
7.0926 D Ph(U) deg

21.011 E Hdot W
21.011 F Work W
sameas O Gas type 0.0000 G Um m™3/s
ideal Solid type 0.0000 H Hm W
! 2
INSDUCT Pre-stack Duct
1.8430E-02 a Area m~2 6215.5 A Ipl Pa
0.4813 b Perim m 89.766 B Ph(p) deg
0.1494 ¢ Length m 7.1223E-02 C |U] m~3/s
' 5.1494 D Ph(U) deg
21.011 E Hdot Ww.
sameas O Gas type 20.765 F Work W
ideal Solid type 0.0000 G Heatln W
! ' 3
HXFRST Hot Heat exchanger
1.7211E-02 a Area m~2 6154.2 A Ipl Pa
0.5227 b GasA/A 89.884 B Ph(p) deg
1.2700E-02 c Length m 7.2140E-02 C |U| m~3/s
6.3500E-04 d yO0 m 4.9381 D Ph(U) deg
-32.862 e Heatln W G -11.851 E Hdot W
299.70 f Est-T K (t) 19.554 F Work W
-32.862 G Heat W
307.22 H MetalT K
sameas O Gas type 0.0000 I Um m™3/s
copper Solid type 0.0000 J Hm W
! 4
STKREct rectangular-pore stack
1.8824E-02 a Area m"2 5558.2 A |pi Pa
0.7050 b GasA/A 93.242 B Ph(p) deg
0.1524 c Length m 8.6737E-02 C |U| m~3/s
4.0640E-04 d a m 3.8486 D Ph(U) deg
1.1811E-04 e Lplate m -11.851 E Hdot W
6.3500E-03 £ b m 2.5538 'F Work W
307.80 G T-beg K
285.60 H T-end K
~ -17.000 I StkWrk 1)
sameas O Gas type 0.0000 J Um m"3/s
kapton Solid type 0.0000 K Hm W
! 5
FREETarget first stack thermocouple location
307.80 a Target (t) 307.80 A FreeT
4G b ResAdr
! 6
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FREETarget last stack thermocouple location

285.60 a Target = 6A7? 285.60 A FreeT
4H b ResAdr
! 7
HXLAST Cold heat exchanger
1.7211E-02 a Area m~2 55637.1 A |pl Pa
0.9300 b GasA/A 93.272 B Ph(p) deg
6.3500E-03 c Length m 8.7412E-02 C |U| m~3/s
1.0414E-03 4 yO m 3.7945 D Ph(U) deg
0.0000 e Heatln W () 0.0000 E Hdot W
0.0000 £ Est-T K ®) 2.2065 F Work W
sameas 0 Gas type 11.851 G Heat W
copper Solid type 285.98 H MetalT K
! 8
INSDUCT From cold hx to bolt flange, + a half inch
2.0180E-02 a Area m"~2 5229.9 A |pl Pa
0.5036 b Perim m 93.256 B Ph(p) deg
0.1210 c¢ Length m 0.1015 C |U] m~3/s
3.6951 D Ph(U) deg
0.0000 E Hdot W
sameas 0O Gas type 2.0337 F Work W
ideal Solid type 0.0000 G HeatIn W
! 9
INSDUCT Duct, beginning 1/2 in below big bolt flange
1.8485E-02 a Area m~2 4698.8 A lpl Pa
0.4820 b Perim m 93.235 B Ph(p) deg
0.1650 c Length m 0.1177 ¢ |U] m~3/s
3.6063 D Ph(U) deg
0.0000 E Hdot W
sameas O Gas type 1.79256 F Work W
ideal Solid type 0.0000 G Heatln W
! 10
INSDUCT Elbow, 6 inch diam, 5 inch radius of curvature on centerline
1.8240E-02 a Area m~2 3947.2 A Ipl Pa
0.4788 b Perim m 93.211 B Ph(p) deg
0.2000 c Length m 0.1346 C |U] m~3/s
3.5336 D Ph(U) deg
0.0000 E Hdot W
sameas 0 Gas type 1.4961 F Work W
ideal Solid type 0.0000 G HeatIn W
! 11
INSDUCT straight part of big black cone
1.8240E-02 a Area m~2 35682.2 A Ipl Pa
0.4788 b Perim m 93.200 B Ph(p) deg
8.9000E-02 ¢ Length m 0.1412 C |U] m~3/s
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3.5093 D Ph() deg
0.0000 E Hdot W
sameas 0 Gas type 1.3635 F Work W
ideal Solid type - . 0.0000 G HeatIn W
! 12
INSCONE The long black plastic cone
sameas 1la a Areal m~2 1139.0 A lpl Pa
sameas 11b b Periml m 93.164 B Ph(p) deg
0.3635 c Length m 0.1547 C |U] m~3/s
sameas 13a d AreaF m~2 3.4614 D Ph(W) deg
sameas 13b e PerimF m 0.0000 E Hdot W
sameas O Gas type 0.4570 F Work W
ideal Solid type 0.0000 G Heatln W
! 13
INSDUCT little straight section of black cone
8.1070E-03 a Area m~2 545.42 A lpl Pa
0.3192 b Perim m 93.178 B Ph(p) deg
5.7200E-02 c Length m 0.1551 C (U} m~3/s
: 3.4598 D Ph(U) deg
0.0000 E Hdot W
sameas 0 Gas type 0.2078 F Work W
ideal Solid type . 0.0000 G Heatln W
! 14
INSDUCT half the white "tee", up to the symmetry midpoint
9.8100E-03 a Area m~2 6.4730E-12 A |pl Pa
0.3511 b Perim ™ 90.016 B Ph(p) deg
6.3500E-02 c Length m 0.1553 C (U] m~3/s
1.0000E-03 d Srough 3.4592 D Ph(U) deg
'0.0000 E Hdot W
sameas 0 Gas type 3.0183E-14 F Work W
ideal Solid type 0.0000 G HeatIn W
! - 15
SOFTEND pressure. node
0.0000 a Re(Z) =15G? 6.4730E-12 A |pl Pa
0.0000 b Im(Z) =15H7? 90.016 B Ph(p) deg
0.1553 C |U| m~3/s
3.4592 D Ph(U) deg
0.0000 E Hdot W
3.0183E-14 F Work W
3.4519E~-17 G Re(2)
sameas 0. Gas type 5.7367E-16 H Im(Z)
ideal ~ Solid type 285.60 I T K
! 16

THERMO properties

1.6667 A gamma
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sameas 0 Gas type

ideal

Solid type

758.53 B a m/s
0.9382 C rho kg/m"3
3021.9 D c_p J/kg/K
0.12562 E KO W/m/X
2.0110E-05 F mu kg/s/m
3.5014E-03 G beta 1/K
3.9157TE-04 H deltaK m
2.7285E-04 I deltaN m
1.0000E+08 J rho_s kg/m"3
1.0000E+08 K c_s J/kg/K
1.0000E+08 L Ks W/m/K

The restart information below was generated by a previous run
You may wish to delete this information before starting a run

mode.
INVARS
TARGS
SPECIALS

3 0 6 0 7 3 b
3 6 1156 115 2
0

9.3. Traveling-wave engine

!

!

! where you will (interactively) specify a different iteration
! Edit this table only if you really know your model!

This model of the entire traveling-wave engine seems dauntingly complicated, but it is in fact
typical of how our models at Los Alamos evolve after many months of interaction between
experiments and computations. The model starts near the top of of Fig. 1.14, just above
the ambient heat exchanger. It integrates up, left, and down, through the compliance and
inertance to the junction. It then starts again just above the ambient heat exchanger, going
down through the regenerator and thermal buffer column to reach the junction a second time,
where complex p; must match up. The integration then proceeds through the resonator.

TITLE

original, unpublished engine
I->scotstrp.out
ICreated@14: 3:56 2-Jan-99 with DeltaE Vers. 4.5b7 for the IBM/PC-Compatible

BEGIN

the setup
3.1030E+06 a Mean P Pa
80.762 b Freq. Hz
302.00 c T-beg K
.3.1000E+05 d |pl@0 Pa

0.0000 e Ph(p)0O deg
0.0000 £ |U]@O m~3/s
0.0000 g Ph(U)0  deg

helium

Gas type

0
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80.762 A Freq. G( Ob)
-3.2035E+07 B Re(Zb) G( 1a)
1.3860E+07 C Im(Zb) G( 1b)
-1620.9 D HeatIn G(24e)
3599.7 E HeatIn G(30e)
2.4773E-08 F Target G(45a)
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ideal Solid type

! i
TBRANCH Split
-3.2035E+07 a Re(Zb) Pa-s/m"3 G 3.1000E+05 A Ipl - Pa
1.3860E+07 b Im(Zb) Pa-s/m"3 G 0.0000 B Ph(p) deg
8.8813E-03 C |U| m~3/s
-156.60 D Ph(U) deg
-1263.4 E Hdot W
helium Gas type ' -1263.4 F Work W
ideal Solid type 1263.4 G Work T W
! 2
ISODUCT Jetting space (pg 25 book 4)
6.8250E-03 a Area m"2 . 3.0996E+05 A |pl Pa
0.2930 b Perim m . 1.0637E-02 B Ph(p) deg
1.9100E-02 c Length m 1.1083E-02 C |U| m~3/s
3.0000E-04 4 Srough -137.41 D Ph(U) deg
A -1264.8 E Hdot W
helium Gas type -1264.8 F Work W
stainless Solid type -1.3376 G HeatIn W
! 3
RPNTARGET Calculate jet pump minor loss resistor (pg 26 book 4)
1.7000 a Target (t) 1.6222E+06 A RPNval
1.06 2C* 5a/ ba/ 3a *
! 4
IMPEDANCE Jet pump minor loss Res. (pg 26 book 4 + minor loss notes)
sameas 3A a Re(Zs) Pa-s/m"3 3.2259E+05 A |pl Pa
0.0000 b Im(Zs) Pa-s/m"3 2.0384 B Ph(p) deg
1.1083E-02 C |U| m~3/s
-137.41 D Ph(U) deg
-1368.2 E Hdot W
helium Gas type -1358.2 F Work W
ideal Solid type -93.483 G HeatIn W
! 5
ISOCONE Jet pump / estimated dimensions (pg 25 and 97 bk 4)
1.1400E-04 a Areal m"2 3.2154E+05 A |pl Pa
0.1850 b Periml m 2.4967 B Ph(p) deg
2.5400E-02 ¢ Length m 1.1294E-02 C |U| m"3/s
- 5.8880E-04 d AreaF m~2 -136.37 D Ph(U) deg
0.4210 e PerimF m , -1367.7 E Hdot W
3.0000E-04 £ Srough -1367.7 F Work W
helium Gas type ~9.4273 G Heatln W
stainless Solid type
! 6
IS0DUCT Paddle space above jet pump (pg 27 book 4)
8.1500E-03 a Area m~2 3.2152E+05 A |pl Pa

1
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0.3200 b Perim m 2.4997 B Ph(p) deg

6.3500E-03 c Length m 1.2434E-02 C |U| m~3/s
3.0000E-04 d Srough -130.70 D Ph(W) deg
' -1368.2 E Hdot W
helium Gas type -1368.2 F Work W
stainless Solid type -0.5225 G Heatln W
! 7
ISODUCT 180 bend plus brass connecting flange (pg 27 book 4)
8.1500E-03 a Area m"2 3.1B675E+05 A |pl Pa
0.3200 b Perim m 2.6691 B Ph(p) deg
0.3480 c Length m 9.8509E-02 C |U| m~3/s
6.0000E-04 d Srough -92.484 D Ph(U) deg
-1396.9 'E Hdot W
helium Gas type -1396.9 F Work W.
stainless Solid type -28.728 G Heatln W
! 8
RPNTARGET Calc minor loss resistor for 180 bend (pg 28,52 book 4)
0.5000 a Target (t) 778.61 A RPNval
1.06 7Cx 8a* Ta/ T7a/ :
! - 9
IMPEDANCE Minor loss resistor for 180 bend (pg 28 book 4)
sameas 8A a Re(Zs) Pa-s/m"3 3.1576E+05 A |p! Pa
0.0000 b Im(Zs) Pa-s/m"3 2.6829 B Ph(p) . deg
9.8509E-02 C |{U| m~3/s
-92.484 D Ph(U) deg
-1400.7 E Hdot W
helium Gas type -1400.7 F Work W
ideal Solid type -3.7778 G Heatln W
! 10
ISOCONE 4" to 3" Concentric reducer (pg 36 book 4)
8.1070E-03 a Areal m"2 3.1113E+05 A |pl Pa
0.3190 b PerimI m 2.7551 B Ph(p) deg
0.1020 c Length m 0.1181 T |U| m~3/s
sameas 13a d AreaF m~2 S§=-3 -91.644 D Ph(U) deg
0.2390 e PerimF m Fnc(10d) -1409.6 E Hdot W
6.0000E-04 £ Srough -1409.6 F Work 1
helium Gas type -8.8766 G HeatlIn W
stainless Solid type
! 11
RPNTARGET Calculate minor loss resistor for 4" to 3" exp (pg 37 book 4
0.2600 a Target (t) 1650.9 A RPNval
1.05 10C * 10d / 10d / 11a =*
! 12
IMPEDANCE Minor loss resistor for 4" to 3" expansion (pg 37 book 4)
sameas 11A a Re(Zs) Pa-s/m"3 3.1114E+05 A |pl| Pa
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0.0000 b Im(Zs) Pa-s/m"3 ' 2.7887 B Ph(p) deg

0.1181 C |U] m~3/s
-91.644 D Ph(U) deg
: -1420.4 E Hdot W
helium Gas type -1420.4  F Work . W
ideal Solid type -10.822 G Heatln ')
! 13
ISODUCT 3" FB Duct - Length given in concept.skf
4.5600E-03 a Area m~2 - S=-2 2.9173E+05 A |pl Pa
0.2390 b Perim m  Fnc(13a) 3.0672 B Ph(p) ‘deg
0.2600 c. Length m 0.1533 C |U] m~3/s
3.0000E-04 d Srough -90.650 D Ph(U) deg
-1449.9 E Hdot W
helium Gas type -1449.9 F Work v
stainless Solid type -29.529 G Heatln W
b : 14 :
RPNTARGET Calc minor loss resistor for 1/2 of elbow (pg 37,52 book 4)
'0.1700 a Target ® 1316.1 A RPNval
1.05 13C * 16a / 16a / 14a *
! : 15
IMPEDANCE Minor loss resistor for 1/2 of elbow (pg 37 book 4)
sameas 14A a Re(Zs) Pa-s/m"3 2.9174E+05 A |p| Pa
0.0000 b Im(Zs) Pa-s/m"3 3.1067 B Ph(p) deg
' 0.1533 C |U| m~3/s
-90.650 D Ph(U) deg
-1465.4 E Hdot W
helium Gas type -1465.4 F Work. . W
ideal Solid type -165.469 G Heatln W
! 16
ISOCONE 3.5" to 3" Long radius reducing elbow (pg 36 book 4)
sameas 13a a Areal m~2 S=-2 2.7526E+05 A |pl Pa
0.2390 b Periml m Fnc(16a) 3.3339 B Ph(p) deg
0.2090 c Length m 0.1845 C |U| n~3/s
6.2070E-03 d AreaF m~2 -90.038 D Ph(U) deg
0.2790 e PerimF m -1493.7 E Hdot W
6.0000E-04 £ Srough . -1493.7 FWork W
helium Gas type -28.310 G Heatln W
stainless Solid type
! 17
RPNTARGET Calc minor loss resistor for 2nd 1/2 of elbow (pg 37 book 4)
0.1700 a Target () 854.91 A RPNval
1.05 16C * 16d / 16d / 17a * .
] 18 -
IMPEDANCE Minor loss resistor for 2nd 1/2 of elbow (pg 37 book 4)
sameas 17A a Re(Zs) Pa-s/m"3 2.7527E+05 A |pl Pa

160




0.0000 b Im(Zs) Pa-s/m"3 3.3667 B Ph(p) deg
0.1845 C |U| m"3/s
-90.038 D Ph(W) deg
-1508.3 E Hdot W
helium Gas type -1508.3 F Work W
ideal Solid type -14.554 G Heatln W
! 19
ISODUCT FB connector/part of tee (Pg 55 book 4 concept.skf)
6.2070E-03 a Area m~2 2.6989E+05 A |pl| Pa
0.2790 b Perim m 3.4386 B Ph(p) deg
7.0000E-02 c Length m 0.1962 C |U| m~3/s
6.0000E-04 d Srough -89.848 D Ph(U) deg
-1517.5 E Hdot W
helium Gas type -1517.5 F Work W
stainless Solid type -9.2787 G Heatln W
! 20
RPNTARGET Calc minor loss resistor for FB-Res (pg 53-55 book 4)
0.3400 a Target (t) 2053.6 A RPNval
1.05 39C SQRD * 19C / 48a / 48a / 20a * '
! 21
IMPEDANCE Minor loss resistor for FB to resonator junction
sameas 20A a Re(Zs) Pa-s/m"3 2.6992E+05 A |pl Pa
0.0000 b Im(Zs) Pa-s/m"3 3.5240 B Ph(p) deg
0.1962 C |U] m~3/s
-89.848 D Ph(W) deg
-1557.1 E Hdot W
helium Gas type -15657.1 F Work W
ideal Solid type -39.515 G Heatln W
! 22
SOFTEND End of feedback branch
0.0000 a Re(2) () 2.6992E+05 A |pl Pa
0.0000 b Im(Z) () 3.5240 B Ph(p) deg
0.1962 C |U] m~3/s
-89.848 D Ph(U) deg
-1657.1 E Hdot W
-1557.1 F Work W
-9.9306E-02 G Re(Z)
helium Gas type 1.6856 H Im(Z)
ideal Solid type 302.00 I T K
! : 23 :
ISODUCT Dummy duct used to get input properties
1.0000 a Area m~2 3.1000E+05 A |pl Pa
1.0000 b Perim m 0.0000 B Ph(p) deg
0.0000 c Length m 8.8813E-03 C |U| - m"~3/s
0.0000 4 Srough 23.395 D Ph(U) deg

161




1263.4 E Hdot W

helium Gas type ) 1263.4 F Work W
ideal Solid type 0.0000 G HeatIn W
! -'24
TXFRST Main room temp water HX (pg 90 book 3)
6.6580E-03 a Area m"2 3.1008E+05 A |pl Pa
0.2275 b GasA/A . =5.7858E-02 B Ph(p) deg
2.0400E-02 c Length m 8.4615E-03 C |U| m~3/s
1.2700E-03 d radius m 17.266 D Ph(U) deg
-1620.9 e HeatIn W G -357.45 E Hdot w
300.00 f Est-T K (t) 1262.4 - F Work W
helium Gas type -1620.9 G Heat W
stainless Solid type 268.66 H MetalT K
! 25
STKDUCT Regen cold end dead space due to ribs (pg 91 book 3) ’
4.9700E-03 a Area m~2 3.1008E+05 A |pl Pa
0.7400 b Perim m : -6.0230E-02 B Ph(p) deg
3.1760E-03 ¢ Length m 8.3289E-03 C |U| m"~3/s
2.7000E-02 d WallA m~2 14.079 D Ph(U) deg
-357.45 E Hdot W
1262.2 F Work W
302.00 G T-beg K
helium Gas type ‘ 314.90 H T-end K
stainless Solid type -0.1465 I StkWrk W
! 26
‘STKSCREEN Regenerator (pg 92 book 3) (Ks frac est:pg 20 book 4)
6.2070E-03 a Area m"2 2.7522E+05 A |pl Pa
0.7190 b VolPor 3.7737 B Ph(p) deg
7.3000E-02 c Length m 3.2050E-02 C |U| m~3/s
4.2200E-05d «r_H m -39.852 D Ph() deg
0.3000 e KsFrac -357.45 E Hdot W
3192.5 F Work W
314.90 G T-beg K
helium Gas type 1000.0 H T-end K
stainless Solid type 1940.3 I StkWrk W
! 27
RPNTARGET Fix hot end gas temperature
1000.0 a Target =27A7 1000.0 A RPNval
26H
! 28
RPNTARGET Estimated heat leak through FiberFrax (pg 22 book 4)
0.0000 a Target (t) 282.63 A RPNval
26H 273 - 1.89 * 26H 273 ~ 1.11E-4 * 0.125 + =*
! 29

INSDUCT All regen hot end dead space (pg 92 book 3)(area is avg)
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helium

4 ,6200E-03 a Area m~2
2.0000 b Perim m
8.7000E-03 c Length m

6.0000E-04 d Srough

Gas type
stainless Solid type

2.7518E+05 A |pl Pa
3.7669 B Ph(p) deg
3.2811E-02 C (U] m~3/s
-41.385 D Ph(U) deg
-357.45 E Hdot 1)
3183.7 F Work %)
0.0000 G Heatln %)

30

HXMIDL HHX (pg 93 book 4) heat xfer area used/not acoustic area
5.6970E-03 a Area m~2 2.7515E+05 A |Ipl Pa
0.9867 b GasA/A 3.7634 B Ph(p) deg
6.3500E-03 c Length m 3.3501E-02 C |U| m~3/s
7.9400E-04 d y0 m -42.982 D Ph(U) " deg
3599.7 e HeatIn W G 3242.3 E Hdot W
900.00 f Est-T K (t) 3158.2 F Work W
helium Gas type 3599.7 G Heat W
stainless Solid type 1095.0 H MetalT K
31
STKDUCT hhx dead space (pg 94 book 3) stainless used for Qdot
5.4400E-03 a Area m~2 2.7514E+05 A |pl Pa
0.2620 b Perim m 3.7610 B Ph(p) deg
3.6830E-03 c Length m 3.3896E-02 C {U| m~3/s
4.0540E-03 d WallA m~2 -43.616 D Ph(U) deg
3242.3 E Hdot W
3187.7 F Work W
1000.0 G T-beg K
helium Gas type 995.76 H T-end K
stainless Solid type -0.5036 I StkWrk W
32
STKDUCT Straight section of pulse tube (pg 101 bk 4)
6.2070E-03 a Area m~2 ==2 2.747T7E+05 A |pl Pa
0.2790 b Perim m  Fnc(32a) 3.7072 B Ph(p) deg
8.0000E-02 c Length m 4.4652E-02 C |U| m~3/s
1.1600E-03 4 WallA m~2 -55.409 D Ph(U) deg
3242.3 E Hdot W
3148.9 F Work W
995.76 G T-beg K
helium Gas type 748.68 H T-end K
stainless Solid type -8.8289 I StkWrk W
33
STKCONE Taperred section of pulse tube (pg 101 bk 4)
sameas 32a a Areal m~2 2.7272E+05 A |pl Pa
sameas 32b b PerimI m"2 3.5274 B Ph(p) deg
0.1600 c Length m 7.1159E-02 C |U| m~3/s
7.3700E-03 d AreaF m~2 S=-3 -67.560 D Ph(U) deg
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0.3048 e PerimF m Fnc(33d) 3242.3 E Hdot W
1.1400E-02 £ f_wall oo 3145.1 F Work W
748.68 G T-beg K
helium Gas type 296.41 H T-end K
stainless Solid type : -3.7294 1 StkWrk W
! 34
TXLASt Small water Xger ,
6.6580E-03 a Area m~2 2.7167E+05 A |Ipl Pa
0.2690 b GasA/A 3.4652 B Ph(p) deg
1.0160E-02 ¢ Length m. 7.1632E-02 C |U| m~3/s
2.2860E-03 4 radius m -67.707 D Ph(l) deg
-250.00 e Heatln W () 3140.1 E Hdot W
290.00 f Est-T K =34H7? 3140.1 F Work W
sameas 0 Gas type -102.14 G Heat W
ideal Solid type 290.00  H MetalT K
35
ISODUCT  PT connector (see pg 55 book 4 and concept.skf)
6.2070E-03 a Area m~2 2.7015E+05 A |pl| Pa
0.2790 b Perim m - 3.3628 B Ph(p) deg
5.1000E-02 ¢ Length m 7.9654E-02 C |U]| m~3/s
6.0000E-04 d Srough -69.683 D Ph(l) deg
3137.4 E Hdot W
helium Gas type 3137.4 F Work W
stainless Solid type -2.7235 G HeatIn W

36

RPNTARGET Calc velocity in after union for minor loss

RPNTARGET Calc minor loss resistor for PT to resonantor (pg 45 book 4)

0.0000 a Target

(

0.2723 A RPNval

35D 22D - COS 35C * 22C + SQRD 35D 22D - SIN 35C * SQRD + SQRT

0.6700 a Target

1.05 36A SQRD * 35C / 48a / 48a / 37a *

37

()

9966.4 A RPNval

38

IMPEDANCE Minor loss resistor for PT-Res (pg 53-55 book 4)

sameas 37A a Re(Zs) Pa-s/m"3 2.6992E+05 A |pl Pa
0.0000 b Im(Zs) Pa-s/m"3 3.5240 B Ph(p) deg
7.9654E-02 C {U| m~3/s
-69.683 D Ph(U) deg
3105.8 E Hdot W
helium Gas type 3105.8 F Work w
ideal Solid type -31.617 G Heatln W
= 39
UNION Rejoin :
22.000 a TendSg 2.6992E+05 A |pl Pa
2.6992E+05 b |p|End Pa =39A7 3.5240 B Ph(p) deg
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3.5240 c Ph(p)E deg  =39B7 0.2723 C |U| n~3/s
-84.061 D Ph(U) deg
1548.7 E Hdot W
helium Gas type 1548.7 F Work W
ideal Solid type 0.0000 G Heatln W
! 40
ISODUCT Section of 3.5" tee
6.2070E-03 a Area m~2 2.5893E+05 A |pl Pa
0.2790 b Perim m 3.4433 B Ph(p) deg
9.5300E-02 ¢ Length m 0.2878 C |U] m~3/s
6.0000E-04 d Srough -84.211 D Ph(W) deg
1524.8 E Hdot W
helium Gas type 1624.8 F Work W
stainless Solid type -23.965 G HeatlIn LS
! 41
RPNTARGET Calc minor loss resistor for 3.5" to 4" adapt (pg 93 bk 4)
2.0000E-02 a Target (t) - 148.44 A RPNval .
1.05 39C * 43a / 43a / 4ia *
! 42

IMPEDANCE Minor loss resistor for 3.5" to 4" adapter (pg 93 bk 4)

sameas 414 a Re(Zs) Pa-s/m"3 2.5893E+05 A |pl Pa
0.0000 b Im(Zs) Pa-s/m"3 3.4527 B Ph(p) deg
0.2878 C |U| m~3/s
-84.211 D Ph(U) deg
1518.6 E Hdot W
helium Gas type 1618.6 F Work W
ideal Solid type -6.1459 G Heatln W
! : 43
ISOCONE 3.5" to 4" cone to adapt to resonator (pg 93 book 4)
6.2070E-03 a Areal m~2 2.4783E+05 A |pl Pa
0.2790 b Periml m 3.3664 B Ph(p) deg
0.1040 c¢ Length m 0.3062 C |U] m~3/s
8.1070E-03 d AreaF m~2 -84.371 D Ph(U) deg
0.3200 e PerimF m 1498.3 E Hdot W
3.0000E-04 f Srough 1498.3 F Work W
helium Gas type -20.290 G HeatIn W
stainless Solid type
! 44
ISODUCT Initial section of resonator
8.1070E-03 a Area m"2 2.4233E+05 A |pl Pa
0.3200 b Perim m 3.3234 B Ph(p) deg
5.6000E-02 c Length m 0.3172 C |U| n~3/s
6.0000E-04 d Srough -84.459 D Ph(U) deg
1487.4 E Hdot W
helium Gas type 1487.4 F Work W
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stainless Solid type -10.941 G Heatln W
! 45
RPNTARGET Guess at 1/Re[Zbranch]
2.4773E-08 a Target G 2.4773E-08 A RPNval
4ba
! 46
RPNTARGET Calculate Zbranch
0.0000 a Target () 4.0367E+07 A RPNval
1454 /
! 47
BRANCH RC dissipator - Imaginary part is not set yet
sameas 46A a Re(Zb) Pa-s/m"3 2.4233E+05 A |pl Pa
0.0000 b Im(Zb) Pa-s/m"3 3.3234 B Ph(p) deg
0.3170 C |U| m~3/s
-85.543 D Ph(U) deg
760.02 E Hdot W
helium Gas type 760.02 F Work W
ideal Solid type 727.38 G Work_B W
! - 48
ISODUCT Continuation of resonator
sameas 44a a Area m*2 1.4307E+04 A |pl Pa
0.3189 b Perim m -172.80 B Ph(p) deg
1.8500 c Length m 0.4990 C |U| m~3/s
sameas 44d d Srough -86.201 D Ph(U) deg
205.31 E Hdot W
helium Gas type 205.31 F Work W
stainless Solid type -554.71 G Heatln W
! . 49
RPNTARGET Calc length of 7deg cone (pg 87 book 4)
0.0000 a Target ®) 1.2502 A RPNval
.2545 4 48a * 3.14159 / sqrt - .1223 /
! 50
RPNTARGET Calc minor loss coeff for 7 deg diffuser
0.1200 a Target () 956.71 A RPNval
1.05 48C * 48a / 48a / 50a *
! - 51
IMPEDANCE Minor loss resistor for 7 deg diffuser
sameas 50A a Re(Zs) Pa-s/m"3 1.4287E+04 A |pl Pa
0.0000 b Im(Zs) Pa-s/m"3 -174.82 B Ph(p) deg
0.4990 C |U| m~3/s
~86.201 D Ph(U) deg
86.188 E Hdot W
helium Gas type 86.188 F Work W
ideal Solid type -119.13 G HeatIn W

b2
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ISOCONE 7 degree cone - 10.02" final diameter
sameas 48a a Areal m~2 'S=-2 8.6185E+04 A |pl Pa
0.3194 b Periml m  Fnc(b2a) -176.16 B Ph(p) deg
sameas 494 c Length m 0.2661 C |Uj m~3/s
5.0870E~02 d AreaF m"2 -86.2056 D Ph(U) deg
0.8000 e PerimF m 9.6170 E Hdot W
sameas 48d f Srough 9.6170 F Work W
helium Gas type -76.571 G Heatln W
stainless Solid type
! 53
ISODUCT 10" duct P8
5.0870E-02 a Area m~2 8.9816E+04 A |Ipl Pa
0.8000 b Perim m -176.16 B Ph(p) deg
0.4088 c Length m 8.5729E-02 C |U| m~3/s
sameas 484 d Srough -86.206 D Ph(U) deg
3.0371 E Hdot W
helium Gas type 3.0371 F Work W
stainless Solid type —-6.5799 G HeatIn W
! 54
ISODUCT 10" duct
5.0870E-02 a Area m"2 9.0079E+04 A Ipl Pa
0.8000 b Perim m -176.16 B Ph(p) deg
7.6200E-02 ¢ Length m 5.1487E-02 C |U| m~3/s
sameas 48d d Srough -86.206 D Ph(U) deg
1.8215 E Hdot W
helium Gas type 1.8215 F Work W
stainless Solid type -1.2156 G Heatln W
! 55
ISODUCT ellipsoidal head
5.0870E-02 a Area m-2 9.0227E+04 A |pl Pa
0.8000 b Perim m -176.16 B Ph(p) deg
0.1143 c Length m 5.1221E-07 C |U| m~3/s
sameas 48d d Srough 94.624 D Ph(U) deg
3.1683E-04 E Hdot W
helium Gas type 3.1683E-04 F Work W
stainless Solid type -1.8212 G Heatln W
! 56
HARDEND end of duct
0.0000 a R(1/2Z) =56G7 9.0227E+04 A |pl Pa
0.0000 b I(1/Z) =b6H? -176.16 B Ph(p) deg
5.1221E-07 C |U| m~3/s
94.624 D Ph(U) deg
3.1683E-04 E Hdot W
3.1683E-04 F Work w
7.8115E-09 G R(1/2Z)
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helium Gas type -5.6968E-07 H I(1/Z)

stainless Solid type 206.41 I T K

! 57

RPNTARGET Stirling figure of merit based on metal temperatures
0.0000 a Target - ) 0.5447 A RPNval

39F 30G 28A + / 30H * 30H 293 - / S

! 58

RPNTARGET System figure of merit based on metal temperatures
0.0000 a Target . (t) 0.2558 A RPNval

47G 30G 28A + / 30H * 30H 293 - /

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS - 6 0 2 1 1 1 224 530 545 1

TARGS 627 13 633 239 356 1566 2

SPECIALS 6 10 -3 13 -2 16 -2 32 -2 33 -3 52 -2

9.4. Traveling-wave refrigerator

Cryenco is presently unwilling to share construction details of the refrigerator of Fig. 1.15
publicly, so this model only covers the LRC network at the top of Fig. 1.16. The model
starts in the compliance and ends just above the hot heat exchanger at the top of the pulse
tube. The point of view adopted in this particular file is this: In order to achieve the
values of p; (both magnitude and phase) in the compliance and at the top of the pulse
tube that were observed in a certain experiment, what must the flow resistances of the two
valves be? One of those resistances has turned out to be negative, indicating an error in the
model—perhaps DeltaE’s estimate of turbulent effects in t}_ls‘ inertance is inaccurate.

TITLE LRC network only
|->ptrstrp.out
ICreated@14:10:27 2-Jan-99 with DeltaE Vers. 4.5b7 for the IBM/PC-Compatible

! 0
BEGIN at compliance!
3.1114E+06 a Mean P Pa 6.4274E+06 A Re(Zb) G( 2a) P
42.000 Db Freq. Hz 2.8415E+06 B Im(Zb) G( 2b) P
305.20 ¢ T-beg K 2.2699E+07 C Re(Zs) G( 4a) P
9.3205E+04 4 |pl@o0 Pa -1.4258E+05 D Re(Zs) G( 9a) P

~-153.30 e Ph(p)0  deg
0.0000 £ |UIQ0 - m"3/s
0.0000 g Ph(U)O deg

helium = Gas type

ideal Solid type

168




COMPLIANCE reserv. vol.

0.3000 a SurfAr m~2 9.3205E+04 A |pl Pa
9.8100E-03 b Volum  m"3 -1563.30 B Ph(p) deg
4.6530E-02 C |U| m~3/s
116.57 D Ph(U) deg
-4.7356 E Hdot W
sameas O Gas type -4.7356 F Work W
ideal Solid type -4,7356 G Heatln W
! 2
TBRANCH to bypass path
6.4274E+06 a Re(Zb) Pa-s/m"3 9.3205E+04 A |pl Pa
2.8415E+06 b Im(Zb) Pa-s/m"3 -153.30 B Ph(p) deg
1.3263E-02 C |U| m~3/s
-177.16 D Ph(U) deg
565.31 E Hdot W
sameas 0 Gas type 565.31 F Work W
ideal Solid type -570.05 G Work_T W
! 3
ISODUCT nuisance inertance
3.4000E-04 a Area m~2 8.0592E+04 A |pl Pa
6.5400E-02 b Perim m 173.61 B Ph(p) deg
1.0000 c Length m 1.3511E-02 C |U| m~3/s
3.0000E-04 4 Srough 176.46 D Ph(U) deg
543.77 E Hdot W
sameas 0 Gas type 543.77 F Work W
ideal Solid type -21.545 G HeatlIn W
! 4
IMPED bypass valve
2.2699E+07 a Re(Zs) Pa-s/m"3 2.2623E+05 A |pl Pa
0.0000 b Im(Zs) Pa-s/m"3 -2.5287 B Ph(p) deg
1.3511E-02 C |U| m~3/s
176.46 D Ph(U) deg
-1528.1 E Hdot W
sameas O Gas type -1628.1 F Work L)
ideal Solid type -2071.9 G HeatlIn W
! 5
COMPL little header
1.0000E-03 a SurfAr m~2 2.2623E+05 A |pl Pa
3.0000E-05 b Volum m~3 -2.5287 B Ph(p) deg
1.3510E-02 C |U| m~3/s
177.92 D Ph(U) deg
-1528.2 E Hdot W
sameas 0 Gas type -1528.2 F Work W
ideal Solid type -9.3003E-02 G HeatIn W
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! - 6
ISODUCT short tube

sameas 3a a Area m~2 2.2650E+05 A |pl Pa
sameas 3b b Perim m -0.9736 B Ph(p) deg
0.1200 c Length m 1.3636E-02 C |U| . m"3/s
sameas 3d° d Srough 180.00 D Ph(U) deg
‘ -1632.7 E Hdot W
sameas 0 Gas type -1832.7 F Work W
ideal Solid type -4.5318 G Heatln W
! 7
_SOFTEND connect bypass to tr :
0.0000 a Re(Z) () 2.2650E+05 A |pl Pa
0.0000 b Im(Z) (t) -0.9736 B Ph(p) deg
1.3536E-02 C |U| m~3/s
180.00 D Ph(U) deg
-15632.7 E Hdot W
-1532.7 F Work W
: -1.1276 G Re(2)
sameas O Gas type 1.9123E-02 H Im(Z)
ideal Solid type 305.20 I T K
! 8
ISoODUCT the inertance
4,.6400E-04 a Area m~2 2.1066E+05 A |pl Pa
7.6360E-02 b Perim m ~3.0564. B Ph(p) deg
2.4900 c Length m 3.9429E-02 C |U| m~3/s
sameas 3d d Srough 104.14 D Ph(U) deg
-1227.9 E Hdot W
sameas O Gas type -1227.9 F Work v
ideal Solid type -657.84 G Heatln v
! 9
IMPEDANCE valve-inertance set
-1.4258E+05 a Re(Zs) Pa-s/m"3 G 2.0907E+05 A |pl Pa
0.0000 b Im(Zs) Pa-s/m"3 -1.5845 B Ph(p) deg
3.9429E-02 C {U| m~3/s
104.14 D Ph() deg
-1117.1 E Hdot W
sameas -0 Gas type -1117.1 F Work v
ideal Solid type 110.83 G HeatlIn W
! 10
COMPL little header
2.0000E-03 a SurfAr m-2 2.0907E+05 A |pl Pa
6.0000E-05 b Volum m"3 -1.5845 B Ph(p) deg
3.8815E-02 C |U| m~3/s
104.40 D Ph(U) deg
-1117.2 E Hdot W
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sameas O Gas type -1117.2 F Work W
ideal Solid type -0.1588 G Heatln W
! 11
ISODUCT short tube
sameas 6a a Area m~2 2.2650E+05 A |pl Pa
sameas 6b b Perim m -0.9736 B Ph(p) deg
sameas 6c ¢ Length m 3.8344E-02 C |U| m~3/s
sameas 6d d Srough 104.67 D Ph(U) deg
-1170.8 E Hdot W
sameas 0 Gas type -1170.8 F- Work W
ideal Solid type -53.541 G Heatln W
! 12
UNION connect bypass here
7.0000 a TendSg 2.2650E+05 A |pl Pa
2.2650E+05 b |plEnd - Pa =12A7 -0.9736 B Ph(p) deg
-0.9736 c Ph(p)E deg =12B7 4.3776E-02 C |U| n~3/s
122.07 D Ph(U) deg
-2703.5 E Hdot W
sameas 0 Gas type -2703.5 F Work W
ideal Solid type 0.0000 G Heatln W
! 13
ISODUCT  short tube A
sameas 8a a Area m~2 2.3837E+05 A |pl Pa
sameas 8b b Perim m 0.5000 B Ph(p) deg
0.1100 c¢ Length m 4,3251E-02 C |U| m~3/s
3.0000E-04 d Srough 122.58 D Ph(U) deg
-2738.1 E Hdot W
sameas O Gas type -2738.1 F Work W
ideal Solid type -34.620 G Heatln W
! 14
FREETARG pulsetube magnitud
2.3837E+05 a Target =14A7 2.3837E+05 A FreeT
13A b ResAdr
! 15
FREETARG pulsetube phase
0.5000 a Target =1BA7 0.5000 A FreeT
13B b ResAdr
! 16
COMPLIANCE volume under head
1.0000E-02 a SurfAr m~2 2.3837E+05 A |pl Pa
7.5000E-05 b Volum m~3 0.5000 B Ph(p) deg
4.2488E-02 C |U| m~3/s
123.25 D Ph(U) deg
-2739.1 E Hdot W
sameas 0 Gas type -2739.1 F Work W
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ideal Solid type -1.0325 G Heatln W

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run

! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!

INVARS 4 2 1 2 2 4 1 9 1
TARGS 412 212 314 115 1
SPECIALS 0
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10. LisT OF SYMBOLS

Roman
area, or amplitude, or a constant

sound speed

magnetic field, or flow availability

exponent for T' dependence of p or k, or flow availability per unit mass
compliance, or a constant

compliance per unit length

coefficient of performance

isobaric heat capacity per unit mass

diameter :

complex gain factor arising in continuity equation
energy

acoustic power

a function -

frequency, or spatially averaged thermoviscous function
conductance (inverse of resistance)

total energy -

rate at which total energy flows (total power)
thermoviscous function, or enthalpy per unit mass
electric current

v-1 _

electrical current density

minor-loss coefficient

‘thermal conductivity

inertance, or length

inertance per unit length

mass, or multiplier for turbulent viscous dissipation
Reynolds number-

pressure

heat, or quality factor of resonance

rate at which heat is transferred (thermal power)
resistance, or gas constant, or radius

resistance per unit length, or radius, or radial coordinate
entropy, or surface area

entropy per unit mass

temperature

time
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volumetric velocity

z component on velocity

volume

y component of velocity

work

rate at which work is done (mechanical power)

z component of velocity

coordinate along sound-propagation direction

exergy ,

rate at which exergy flows (power)

coordinate perpendicular to sound-propagation direction

coordinate perpendicular to sound-propagation direction,
or specific acoustic impedance

acoustic impedance

attenuation constant

normalized temperature gradient
ratio of isobaric to isochoric specific heats
big difference

penetration depth, or small difference
surface roughness

internal energy per unit mass
efficiency

thermal diffusivity

wavelength

dynamic viscosity

kinematic viscosity

3.14159...

Rott’s joining function

density

Prantl number, or electrical conductivity
phase angle

viséous dissipation function

phase angle

angular frequency

bulk viscosity

arbitrary variable
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Subscripts

M—ovT a3 >TWQ

gen
ref
reg
pt
crit

cold, or Carnot

hot

hydraulic (i.e., Ry is hydraulic radius)
mean (or mechanical)

Reynolds (in Ng)

thermal

viscous

“environment” 4
first-order (usually a complex amplitude)
second-order

generated

reference location or temperature
regenerator

pulse tube

critical (i.e., VTerit)

Special symbols
Im[] Imaginary part of
Re[] Real part of

() average in y, z plane

|| magnitude of complex number

overdot time derivative
overbar time average, time rate
tilde complex conjugate

k-~
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