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Abstract

The sustained propagation of combustion fronts in porous media is a necessary condition for the success
of an in-situ combustion project for oil recovery. Compared to other recovery methods, in-situ combus-
tion involves the added complexity of exothermic chemical reactions and temperature-dependent chemical
kinetics. This gives rise to reaction zones of a spatially narrow width, within which heat release rates, tem-
peratures and species concentrations vary significantly. This sharp variation makes difficult the simulation
of combustion processes using coarse grids and the implementation of upscaling methods.

In this paper, we propose a method for solving this problem by treating the reaction region as a place of
discontinuities in the appropriate variables, which include, for example, fluxes of heat and mass. Using
a rigorous perturbation approach, similar to that used in the propagation of flames [3], and smoldering
combustion [7], we derive appropriate jump conditions that relate the change in these variables across the
front. These conditions account for the kinetics of the reaction between the oxidant and the fuel, the
changes in the morphology of the pore space and the heat and mass transfer in the reaction zone. Then,
the modeling of the problem reduces to the modeling of the dynamics of a combustion front, on the regions
of either side of which transport of momentum (fluids), heat and mass, but not chemical reactions, must be
considered. Properties of the two regions are coupled using the derived jump conditions. This methodology
allows to explicitly incorporate permeability heterogeneity effects in the process description, without the

undue complexity of the coupled chemical reactions.



1 Introduction

The propagation of combustion fronts in porous media is a subject of interest to a variety of applications,
ranging from the in-situ combustion for the recovery of oil [1], to filtration combustion [5] and to smol-
dering combustion [7]. While these problems may differ in application and context, they share a common
characteristic, namely that the main combustion reaction involves the burning of a stationary solid fuel,
which in the first two applications is part of the initial state of the system, while in the second it is created
by a preceding Low-Temperature-Oxidation (LTO) process. In-situ combustion for oil recovery has been
studied quite extensively since the mid 1950s. The two texts by Prats [1] and Boberg [2] summarize the
relevant literature on the subject until the late 1980s. A large number of experimental, analytical and
numerical studies have been reported on a variety of in-situ combustion topics.

Of interest to this paper is a particular but important issue of in-situ combustion, specifically the dy-
- namics of combustion fronts. They are influenced by a number of factors, including fluid flow of injection
and produced gases, mass transfer of the injected oxidant, heat transfer in the porous medium and the
surroundings, the rate of reaction(s), the heterogeneity of the medium and possibly the evolution of the
pore morphology due to the combustion reaction. Understanding the dynamics is important to a number
of issues, including front stability, the sustained propagation of combustion, the effects of heterogeneity,
and the scale-up of the process. A specific feature that distinguishes combustion fronts from other front
propagation problems is that due to the strong temperature dependence of the reaction rate, the combus-
tion reaction occurs within a thin reaction zone, the extent of which is quite small, and certainly much
smaller than the typical grid in field simulation. As a result, it is almost imperative to treat the reaction
zone as a surface of discontinuity (a thin layer) within which the combustion reaction occurs, and across

which appropriate conditions must apply. The propagation of frontal discontinuities makes the scale-up



of the process a problem qualitatively different than ordinary displacement processes in porous media, for

instance waterflooding.

The treatment of combustion fronts as frontal discontinuities has been studied extensively in the literature
of combustion and flames. Among the great deal of articles published in this field we will refer to the
earlier work of Matalon and Matkowsky [3], the monograph of Pelcé [4] and the more recent work of
Schult and co-workers [7]. Ref. [3] discussed the propagation of flames in the combustion of premi);ed
gases, in the absence of a porous medium, and treated the flame front as a surface of discontinuity, which
separates two regions of different temperature and chemical composition. To capture phenomena occuring
within the thin flame region, the methods of singular perturbation and matched asymptotic expansions
were used. Pelcé [4] presents an interesting compilation of studies on combustion and flame propagation in
a variety of geometries. In his work, common aspects are shown to exist between the seemingly different
problems of viscous displacements in a Hele-Shaw cell (which gives rise to viscous fingering), dendritic
solidification and flame propagation. This connection, and particularly with the viscous fingering problem,
is of particular interest to our problem of combustion in porous media, as they are both subject to the
effects of the medium heterogeneity and other factors. More recently, Aldushin and Matkowsky [5] have
used this analogy to argue about the problem of the selection of the width of the Saffman-Taylor finger.
We note in passing that the growth of a new phase in a porous medium, driven by diffusion, for example
bubble growth in solution gas-drive processes, also shows common aspects with viscous displacements e.g.

see Li and Yortsos [6].

In a recent series of papers, Schult et al. [7], [8] studied the combustion of a solid fuel embedded in a
homogeneous porous medium. This problem, known as smoldering or filtration combustion, appears in

a variety of applications. It differs in many respects from in-situ combustion, particularly on the lack of
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liquid flow ahead of the combustion front and the various physicochemical changes that accompany it, the
fact that the solid fuel is a priori available, rather than being generated as a result of LTO, as is the case
with in-éitu combustion, and the existence of heterpgeneities. At the same time, the two problems have
the common feature of the propagation of a high-temperature reaction zone in which a gas-solid reaction
process takes place. Schult et al. [7], [8] provided an asymptotic analysis of the problem following an
approach essentially similar to the flame analysis of Ref. [3]. An analogous approach was attempted earlier
by Britten and Krantz [14],[15] who examined the structure of the reaction zone in reverse combustion in

the context of gasification.

In this paper, we will proceed to analyze the problem of in-situ combustion, by working along very similar
lines. We must note that few related theoretical studies exist in the literature of in-situ combustion.
Gottfried [9] modeled in-situ combustion by focusing on heat transfer and representing the combustion front
as a discontinuity involving a point heat source, represented as a delta function. Beckers and Harmsen [10]
detailed the propagation of various regimes in in-situ combustion and its variants (such as wet combustion).
Burger and Sahuquet [11] analyzed the chemical aspects of the reaction processes. Agca and Yortsos [12]
proposed a simplified description, which takes into account the heat losses to the surroundings and discussed
issues of sustained propagation and extinction. The stability of combustion fronts was analyzed by Armento

and Miller [13] using a simplified front analysis.

The paper is organized as follows: First, we provide a simplified approach using the method of charac-
teristics, to define the large-scale features of the temperature profile and delineate the main heat transfer
regimes in in-situ combustion. Then, we present the framework of the analysis and proceed with a de-
tailed asymptotic treatment of the reaction front. The jump conditions derived are subsequently used to

analyze the properties of planar combustion fronts. Finally, we comment on effects of heterogeneity and
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scale-up. Our model is a continuum model, in which effective values are used for the kinetic and transport
parameters. A parallel effort is curently being conducted to model combustion at the pore-network scale
(Lu and Yortsos, [16]), in order to understand the process at the small scale and to explain the formation

of patterns in recent combustion experiments in Hele-Shaw cells [17].

1.1 Large-Scale Features of the Temperature Profile

Before we proceed, we consider a simplified analysis to derive some large-scale features of the typical

temperature profile expected in in-situ combustion. For this, we formulate the energy balance in 1-D,

when heat conduction is considered negligible compared to convection and consider the solution of a

simple case in which the heat of reaction is a Dirac delta function. A Justification of this assumption will

appear later in this ﬁaper. Assuming a constant flow velocity & and neglecting heat conduction we have
oT oT - N

(1~ @)eaps] Gz + caps® = G6 (3~ 3,(9) — (T - 7.) (1)

where the right-hand side involves the heat of reaction, due to combustion, and a convective-type expression
for heat losses to the surroundings. In this notation, Q expresses heat released per unit area and unit time.
Initial conditions involve constant temperature 7’,, initially and at injection (% = 0).

Consider, first, the case where heat losses are negligible. Equation (1) is a hyperbolic equation with a
singular source term at the combustion front # = & ;(¢). Outside of the front, the source term is negligible,
and the solution of (1) is given using the method of characteristics, which in the present case are straight

lines with a constant slope

d  cgpg®

T U= dern = O (2)



Figure 1: Characteristics Diagram for Combustion

Along the characteristics the temperature is constant. In general, there would be two characteristic veloc-
ities, one upstream (denoted by subscript III) and one downstream (denoted by subscript I) of the front,
as the consumption and/or production of gases at the reaction front will affect the mass flux. Let the

combustion front move with constant velocity V. If conditions are such that

V>Ur and V > Uy (3)

the characteristics from the initial condition (the Z-axis) will intersect the front trajectory (Figure 1), while
those from the boundary (the #-axis) will not, creating an expanding simple wave region (region II in Fig.
1). In this case, the (£ — ) plane consists of three regions, one corresponding to the initial (region I, of
temperature To), another corresponding to the simple wave (region II, of a temperature to be determined),
and a third corresponding to the injection (region III, of temperature To). The temperature across the

front jumps to the value Tf, obtained by integrating the energy equation (1) across the combustion front,

_— ¢
b = A= Gen V=10 @

A more rigorous expression will be obtained later. Under condition (3), the simple wave region is also

spanned by characteristics of slope Urjy, except that these now emanate from the combustion front (as
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Figure 2: Temperature Profile for the Adiabatic Case
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Figure 3: Temperature Profile for Adiabatic Sytem

shown in Figure 1), hence they carry temperature Tf. Thus, the temperature profile at any time consists
of two far-field regions with temperature T, and an intermediate expanding region of temperature 7;. This
profile is sketched in Figure 2. Accounting for conduction will smoothen the discontinuities at the fronts.
In realistic cases, heat losses cannot be neglected. If we take the simple linear heat loss term shown in (1),
the temperature in region II is not constant any longer, but decreases with time. We can readily show that

the solution in this region is

R(VE - &)
(1= @)esps](V = Urrr)

T=T,+ (T; - T,)exp |-



suggesting an exponential decay. The resulting profile is sketched schematically in Figure 3. Note that the

temperature at the trailing edge of the region, T}, declines exponentially in time as

Tt = To + (Tf - To)eXp I:— '(#t)csps':l (6)

The situation is reversed, if the two inequalities (3) are reversed. Now the front moves slower, and it is the
temperature downstream, which increases to f’f. Region II precedes, rather than trailing the combustion
front, the simple wave expanding ahead of it. Analogous conclusions can be reached if one only of the
inequalities in (3) is valid, etc.

Having obtained a qualitative understanding of the problem, we will now proceed with a more rigorous

analysis.

2 Formulation of the Problem

Typically, combustion reactions have large activation energies. A dimensionless measure is the Zeldovich

number, Z = %%, where E is the activation energy and T; denotes the front temperature (a simple
f

expression for which was given in (4)). Typically, Z is large. Because of this condition and the fact

Reaction
\ Zone O(/Z )

. \ _—~Combustion
%\ Zone O (1)

Figure 4: Definition of Reaction and Combustion Zones



that the reaction rate is strongly temperature dependent, all combustion reactions are confined to a thin
reaction-dominated zone at the combustion front. It is within this m zone, where reactions occur at a
high rate, temperature, pressure and concentrations being approximately constant. The reaction zone is
embedded within the heat transfer layer, as shown in Figure 4, where thermal and molecular diffusion are
equally important with convection. If 7 is the characteristic length of the heat transfer layer, the reaction
zone has a thickness equal to I7/Z. Expressions for 7 will be derived below.

The reaction zone and the heat transfer layer combine to form the combustion zone, Figure 4. Qutside
this zone, the problem is controlled by convective transport of energy and mass (and also by heat losses to
the surroundings, if applicable). It is outside the combustion zone, where fluid dynamics and permeability
heterogeneity are dominant. In the simplified example given previously, these would be regions I and III
of Figure 1. Now, inrall practical applications, the reaction zone has a sufficiently small width, so that it
can be viewed as a front. Appropriate jump conditions can then be derived across it. In addition, it is
likely that the heat transfer layer width is small compared to the fluid dynamical scale of the problem, Ig.
If that is the case, we can define the small parameter § = Ir/ls, and consider the combustion zone as a
discontinuous front as shown in Figure 5. For such a description, additional jump conditions, now across
the combustion front must be derived.

Before we proceed further, let us recall some basic notions related to front propagation. For simplicity, we
will restrict our discussion to two-dimensional problems, although an extension to 3-D is straightforward.

Consider a front propagating in the positive Z direction and described by
F(i‘,g,t)Ei’—f(Q,f)ZO (7)

as shown in Figure 5. In our context, this equation separates a burned region (F < 0) from an unburned

region (F' > 0), where fresh solid fuel resides in the pore structure. Define the velocity of the surface by
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x=f(y.1)

M. Burned Unburned
— Region @ Region 5
——
™  convective convective
——  transport transport
zone O (Ig) N zone O (lg)
[
— .
| —
Oxygen O(d) X

Figure 5: Combustion Front as a Discontinuity

v. Then, from definition, the normal velocity with respect to a fixed frame of reference, Vp, i

N L ft

where f; = 0f/dt and fg = 0f/89, and n is the unit vector normal to the front pointing in the direction
of the unburned region

VF

n=———.
[VF|

9)

In the flame propagation literature, a useful quantity is the net normal velocity with respect to the moving

front,

bz — 09 fy — ft

1+ )77 10

Sf=vg- - n—v, =

where 9y~ is the average gas mixture velocity evaluated at F' = 0~. In the case of porous media, however,

the above must be modified, due to the presence of the porous medium, to read as

bz — 05f5 — ft
(L+ )2

(11)

Stp=0g- "N — vy, =

where ¢ is porosity. This and related quantities will be encountered below.



In the following, we will consider in sequence, first a reaction front, and then a combustion front. Using
asymptotic expansions, the structure in both fronts will be analyzed and appropriate jump conditions
across the fronts will be derived. To proceed, we need first to formulate the governing equations of the

problem.

2.1 Governing Equations

Consider the combustion in a porous medium of a solid fuel, of known initial composition and concentration.
In in-situ combustion, this fuel is in reality produced as a result of the LTO step, preceding the combustion
front. Given that the two processes are coupled, the concentration and composition of the fuel is, in
principle, not known a priori and must be determined as part of the solution of the overall problem. In
the following, we will assume that the initial density of the fuel per unit total volume is known and given
by p%.

At any time, the system consists of two phases, a solid phase including the solid matrix and the fuel, and
a gas mixture of injected oxygen and reaction products. The matrix is non-reactive, stationary and its
thermodynamic properties do not change during the process. The solid fuel reacts with injected oxygen,

according to the following one-step heterogeneous reaction model

[Fuel] + 4 [Oxygen] — 7, [Gaseous Product]

where we used pseudo-components for the fuel and the produced gases, and where ¥ are stoichiometric
coefficients. This simplification allows for a simple treatment of a complex problem. In formulating the
conservation equations we will assume the following: locally, pore space and solid matrix are in thermal
equilibrium, hence a one-temperature model is used for the energy balance; heat transfer by radiation, and

energy source terms due to pressure increase, and work from surface and body forces are negligible; the
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ideal gas law is the equation of state for the gas phase; thermodynamic and transport properties, such as
conductivity, diffusivity, heat capacity of the solid, heat of reaction, etc. remain constant. We also define
a conversion depth 7(%,§,f) =1 - 1374 p%, such that n = 0 corresponds to the initial state and n =1 to the
case of complete fuel conversion.

Conservation equations are written for the following quantities: the total energy, the oxygen mass, the total
gas mass and the fuel mass, in terms of the temperature T(é‘:,g},f), the oxygen mass fraction Y (z, ,%),
the average gas density p, (T, ) and the fuel conversion depth. We also use Darcy’s law for the flow of the
gas phase, in terms of the pressure #(%,7,¢ ). The dimensional form of these equations (superscript tilde)
is shown below

energy

OF | o en e o
(1- qﬁ)cspsﬁ +¢gpg® - VI =V - (AVT) + QpiW — Q» (12)

oxygen mass

¢8(§tf’ ) +V - (Ypyd) =V - (Dap,VY) = fipsW (13)

total gas mass

0 = - .
¢>—8p7g + V- (pg0) = figpW (14)
and depth of conversion

%7 - (15)

where, Q) is a heat loss term and we introduced the rate of reaction W. Using the law of mass action we

will take

W = k(T)(YB)™(n) (16)
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where
k(T) = ke B/RT (17)

E is the activation energy, k, the pre-exponential factor, and m the exponent in the dependence on
oxygen concentration and gas pressure. The dependence on 7 is through the dimensionless function 1, the
evaluation of which requires a more elaborate pore-level study [16]. Clearly, ¥(1) = 0.

In the above, ¢; is the average specific heat capacity of species i (gas or solid) at constant pressure, p; is
the volumetric density of species 7, and we assumed that the solid heat capacity is much larger than that
of the gas. The average thermal conductivity, }, is an effective value including the effects of gas and solid
phases on conduction. ) represents the heat release of the fuel combustion reaction and is also assumed to
be independent of temperature variations. Variable Y is the mass fraction of oxygen in the gas phase, Dy
is an effective diffusion coefficient, while i, and ji are mass-weighted stoichiometric coefficients, ¥;M;/Mj.
The net gas production due to reaction is determined by the sign of fi; = fig, — fi so that gy > 0 or fig <0

corresponds to gas production or consumption, respectively. Finally, we have Darcy’s law
~ . ng -
k(n)

where k(7) is the permeability and 7, is the gas viscosity, and the equation of state, assuming ideal gases
M, = PgRT (19)

The expression for heat losses can take the simple form shown in (1) or the more elaborate expression

. 2/ tor 8
On = hChPh/ T (20)

reflecting heat conduction to a semi-infinite overburden and underburden (Yortsos and Gavalas [18]). Here

subscript A refers to the surroundings and H is the reservoir thickness.

12



In the next section, we will proceed with a scaling and non-dimensionalization of the above equations.

2.2  Scaling and Non-dimensionalization

As described earlier, also shown in Figures 4 and 5, the problem includes three spatial scales, each asso-
ciated with different dominant processes: the scale of a reactive-diffusive reaction zone, lg, the scale of a
convective-diffusive combustion zone, 7, and the convective scale lg. In the combustion zone, convection
and conduction are of the same magnitude, namely the Peclet number, Pe = v,lrcsps/) is of order 1,
where the reference velocity v, is to be determined. This defines /7. If the front temperature of a planar

combustion layer is Tf, also to be determined from the solution of the problem, then we have

Iy _[ET,
lp = 7 wherev Z = [RT}] ,
lT = A s
VxCsPs
lg = i

The characteristic parameters to be chosen depend on what is the focus of the analysis. If it is the reaction

zone, the characteristic time is based on the reaction kinetics
=\ -1
tr=7 (koiﬁne_E/RTf> ) (21)

and the characteristic length is the combustion zone length I7. If the focus is on the combustion zone,
then we rescale both the characteristic time and length by 6!, where § = I7/ls < 1. Then, ¢, = §~1tp
z

and z, = 6~Yl7. In either case, we have v, = ™= % where the reference velocity v, = %—f = %. This

further implies the relation

A
o= \/ 0= ewpial )

13



Scaling temperature with 7, and density with the initial density py; and using the combustion zone for-

mulation, we obtain the conservation equations in dimensionless form

06 R . .
57 Hopv - V8=6A6+6¢% - Qup (23)
oYp) = P IS
¢ 5% +V-(Ypv) = (E)(V -pVY) = 5ud (24)
Op o
95 + V- (pv) = bu, @ (25)
and
on
5 =@ (26)
where
-2 m 2 1 1
®=46""Z(Yp)"p(n)exp| 207 E -3 (27)

In addition, we have

Vp = —kv (28)
and
pf=1+TIP. (29)

In the above, we introduced the following variables and parameters

- i7-n° . - t .
p = ~p Pz~ ’ ;= 'u’pf, Q p= Qutr , 4= cgpgz7 ®= 5_1Wt*,
Ping — P Pgi Toécsps CsPs
L B A = _MeT oy Pinj = Bi
espsTy’ Dy (1 — ¢)eops’ k(Bin; — §i)’ P
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where p; and p;,; are the initial and the injection gas pressure in the system. Note that the spatial
coordinates are nondimensionalized based on the system length, /s, which in the limit § < 1 allows to
approximate the combustion zone as a thin layer. To focus on the combustion zone, we simply change the
scaling, which is equivalent to taking § = 1 in the above equations.

The boundary conditions depend on the extent of the combustion process. If we assume that the fuel is

fully consumed, we will take for > 0:
Y =1, 0 =0; n=1 ; Z — —00 (30)

Y =Y, =1, =20 : 2 — o0 (31)

Y =1, 6 =0 n =1y ; £ —= —o0 (32)
Y =0, =1, n=0 ; &= 00 (33)

where 8¢ and 7; are to be determined. This is the oxidant-deficient case. In the following, we will consider

only the fuel-deficient case.

2.3 Moving Coordinates

The final step in the formulation of the problem is to convert to moving coordinates, moving with the
combustion front, which in the fuel-deficient case can be defined as the position at which 5 = 1/2. If we

denote z = & — f(§,%), y = § and t = £, then the non-dimensional equations take the form:

oL’} oo 06 .
il - il — = - 34
ot + {aps ft} oz + apv’yay SAf + 6q@ QhD ( )
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¢é}(;;p) + <9[Yp(f9 ; oft)] n a% (Y puy) = (%) AY — §ud (35)
¢% + M@;Lft” + %(va) = 6@ (36)
%tﬂ - ft‘g—z =09

e o
Kty = — [g—ﬁ + fy Z_ﬂ (38)
p=1+TIp | (39)
Here,

e (40)

is the longitudinal velocity of the gas mixture in the moving frame and we defined the Laplace operator in

moving coordinates

%2 9% 9 f 9 of 82

—_— 2 — — e r—— — — — e
A=+ 1Ye5 % 57 ~ 570 ~ 2oy Beay’ (1)

For simplicity in the presentation, the density term in the diffusion of oxygen was approximated as con-
stant. However, this approximation is not made in the subsequent analysis. Having obtained the desired
formulation, we proceed next with the analysis of the structure of the reaction zone and then with that of

the combustion zone.
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3 The Reaction Zone

Under the condition Z >> 1, the reaction zone thickness, I7/Z, is much smaller than I7. To analyze the
structure of the zone, we stretch the longitudinal moving coordinate, X = Zz, and expand the dependent
variables in asymptotic series in Z~1. Following [8] it can be shown that, to leading order, temperature,

concentration, pressure and density are independent of X. Thus, we take

0 ~ 6y, t)+ Z‘101(X,y,t)+ cen,

Y ~ Yoy, t)+ Z7'YY (X, y,t) +...,

P~ Put)+ 27Xyt + .

po~ P+ Z7 N Xy, t) + ..,

N o~ X

s ~ °(X,y,)+...,
vy~ vy, t)+...,

fo~ Pyt +....
The respective leading-order terms are obtained after substitution in the governing equations. Combining

the energy equation with the fuel balance, shows that the leading-order terms are O(Z71), in which case

only conduction in the X direction and reaction participate, namely

2] 8%¢* ,On°
5[1+f§ ] W:qftaiX (42)

(note that the heat loss term vanishes to leading order). For the oxygen mass balance, a similar analysis

shows that the leading-order terms are convection, diffusion and reaction, hence

9s° 3

0X

21 9%y1 L on°
3p° [1 + £ J Sx7 = hleff g (43)

Lepoyo(y,t) 3X’
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where we have taken into account that p° is constant, while the total gas mass balance reads

,0s° 0 On°
P3x = Mgy (44)

The equation for the fuel mass is expressed to leading-order as

0 [Yo(y,)p°(y,)]™ gt
L (45)

where we used a power series expansion for the exponential term. Finally, to leading-order, pressure is
constant within the reaction zone.
Integrating equations (42- 44) across the reaction zone determines the jumps in heat, oxygen mass and gas

mass fluxes across the front in terms of the jump in depth of fuel conversion,

21 96| -
si+s’| x| =aser I (46)
2 8Yl = o 0 0|00
s+ 55| Gg| =Y womLes I (47
p°s° |2 = =g ff 1°1% - (48)

The depth of conversion equation (45) can also be integrated across the reaction zone. For this, we first

integrate equation (42) using the boundary conditions 86 /80X =0, 7° = 1 as X — —o0, to give

1

s[1+557] Gz = —ar =) (49)

Then, multiplying equation (49) by (45) yields

0 1-79° 3770_ 02 0 o m 01_8_?1
0 (305 ) g% =~ 1+ | w55 (50

18



This equation can be now integrated across the reaction zone, to give the following result for the square of

the normal front velocity

2
(%) _ rownew o™
A T (51)
L+f§ ¢ / S’
o ¥(n°)
We note that the expression for the normal front velocity is primarily related to the unknown mass fraction
of the oxidant at the completion of the reaction and the pressure at the front.
Conditions (46-48) also express the jump of the corresponding quanities across the reaction zone. Namely,

if we define the jump in a quantity of the combustion zone 7 across the reaction front as [7]¥ = 7 (z = 0%) -

7 (z = 07), we obtain for the deficient-fuel case (where 7°|>_ =0-1= -1)

Yir=@=pFr=0 [bI=-1, (52)
and

) [1 +f§,2} [%K = —qft

s+ [Z] = bt vewoml e (53)

[p(s— df)lT = ngft,

In the above we have assumed full consumption .of the fuel at any point of the front.

4 The Combustion Zone

Consider, next, the combustion zone structure. Outside the reaction zone, the chemical reaction rates are
insignificant. To analyze this problem, we must consider the conservation equations to either side of the

reaction front, across which the jump conditions derived previously apply. For this, we need to consider an
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expansion valid inside the combustion zone, in which conduction and diffusion, but not chemical reaction,

are taken into account.

In the context of the overall problem (Figure 5), the combustion zone has a dimensionless extent of order
8, hence we must introduce the stretched coordinate £ = z/é and seek inner expansions of the following
form

0 ~ 6,+60+...,

Y ~ Y, +6i+...,

p ~ Potdpt...,

p o~ pot+dprt...,

n o~ Ne+omt..,

s ~ S,+0681+...,

Vy ~ Uyo+ vy + ...,

fo~ fot8fit+...,

These expansions are then introduced in the equations in moving coordinates. Under the condition

1 h; P & 1, the heat loss term does not contribute to leading order, thus the energy balance reads
- 9Fg

Ao%(z& - [1+72,] %2;" =0 (54)
where
Aol y1) = apos — foy (55)
and

0% (56)

So = Uzo — Uyo ay
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Oxygen, total gas and fuel mass balances become, respectively,

poBo%—};’ - % 1+ 72 a% [po%—?] = (57)
5¢ PoBil = 0 (58)
%’2" =0 (59)
where

Bo(§,y,t) = 50— ¢f, - (60)

Darcy’s law gives

Opo
o€

=0 (61)
and the ideal gas law reads
Pob, = const. (62)

Parameter a, representing the ratio of gas to solid heat capacities is small, thus, we expect 4, < 0. Also,
for a propagating front along the positive z direction, we must have s, > of, » hence B, > 0. Experimental
data obtained in combustion tube experiments (e.g. see Martin et al. [19], or Mamora and Brigham [20]),
confirm these assumptions. We can then proceed to integrate the above equations.

Because A, < 0, the only possible solution for 8, in the region £ < 0 is a constant independent of &
(otherwise, 6, will become unbounded as £ — —o0). To find the solution for & > 0, we integrate (54) and
make use of the jump condition at the reaction front

a6,
¢

[1+f°2y} [ }f = —afo; (63)
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to obtain the result

0¢(y,t) : £€<0
8, =

war
l—qj{o—te [1+f°2?:/] : 0<é

1]

showing that the temperature decays exponentially fast downstream of the combustion front.
Working similarly, equation (57) shows that because B, > 0, the solution for Y in £ > 0 must be a constant
independent of {. Equation (58) also shows that p, B, is a constant. Then, by integrating (57) in the region

& < 0, where p, is constant, and making use of the jump condition across the reaction front,

1+ 2] [2e]” = ot vt o Lesy (64

we obtain the final result

[ LeB, g]
2
Y, = ¢ l—[%]e [1+f°y] : £<0

Yy (y,t) : 0<é

This equation gives the profile of the mass fraction upstream of the reaction front. Fianlly, equation (59)

gives the expected result

1 : €<0
Mo =

0 1 0<¢
assuming, again, complete fuel combustion. Figure 6 show schematic profiles of temperature, mass fraction
and conversion across the combustion zone.

Note that A, in the temperature equation involves the mass flux p,s, downstream of the reaction front

(although its contribution to A, may be very small due to a < 1), while B, in the mass fraction expression
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Figure 6: Schematic Profiles of Temperature, Oxygen Mass Fraction and Conversion in the Combustion Zone.

involves the mass flux upstream of the reaction front. The two fluxes are related to each other through the

jump condition

[PS]-_F = pgft ’ (65)

derived in equation (54). The above equations represent the leading order “inner” expansion to the large
scale problem, for which the combustion front appears as a discontinuity. In the section to follow we will
consider the “outer” problem, on either side of the front (see Figure 5) by keeping only the convective
transport term in the equations. To match the outer expansions we use the jump conditions derived
from the inner problem, namely the problem in the combustion zone. These were derived previously to

leading-order, and are summarized below.
[6] = 1-064(y:?)
[Yo] = Yi(y,t) -1
[po(s0 = 8fop)| = afey
)] = -1 (66)
[po] = 0
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5]-(5]-12] - «

These equations must be considered along with equation (

Y.

5 The Convective Transport Region

51) for the normal front velocity, where Y°(y, t) =

The scale of the outer problem is the scale of the originally derived equations. Here, conduction, diffusion

and reaction (but not heat losses) are negligible, and we seek expansions of the form

0 ~ ©,+350,+....
Y ~ Yot oTi+...,
p ~ PytdPi+...
P~ B,+0Ri+...,
s ~ S, +65+...,

Uy ~ Vyo+5Vy1+~---

Direct substitution in the original equations shows that the leading term of the expansions satisfy the

following
T+ (RS, — ) P2 4 OBV = ~Ghp
¢8(TaotR°) N 3[TORO(§;— ol a(TO;ZOVyO) o,
¢a£o N 6(Ro(saoz— $fop) . a(zzz;;/yo) o,

Voo = — %{:",
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(68)

(69)

(70)



dP, dP,
kVyo = — ['@ + ny %‘] y (71)
R,©,=1+T1P, (72)
| 8,
S0 = Voo — Vi (-5;) . (73)

The fuel mass balance shows that the convective derivative of 7, in the moving coordinate system vanishes,

implying that the depth of fuel conversion is constant in both regions, as expected,

1 1 z<0

0 : O<a.
The solution of the outer problem must be considered in the two regions on either side of the combustion
front, across which the jump conditions previously derived apply. The solution can be attempted using
the method of characteristics, or the method of streamlines depending on the complexity of the geometry
and heterogeneity in permeability. In the general case, the problem must be solved numerically.
In the following section, we illustrate the application of the previous results by considering the particular

example of a planar front.

6 Case of a Planar Front

For the case of a planar front, we have A, = amj’D — Vp, where m;"D is the dimensionless mass flux

downstream of the front and Vp is the dimensionless front velocity. Using the expression for the temperature

profile inside the combustion zone, in conjunction with the continuity of temperature at £ = 0, [4,]f = 0,
gives an expression for the dimensionless temperature at the front, which reads as follows

14
9;=1- __dVvV (74)

T .
am,p — Vp
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Note that m], = mJ, + pgVp where m7p, is the incoming mass flux. Equation (74) is a more rigorous
dimensionless expression for the temperature jump across the front, compared to equation (4). Note that

if am;"D & 1, then 0; is the adiabatic temperature rise
br=1+¢ (75)

However, this is not generally the case. In the planar case, the dimensionless velocity is given from

Vl% - (Ypp%)™ (76)

1 (1 — 770) o.
q/o ¥(n°) &

the calculation of which requires an expression for Y;. This is obtained from the expression for the oxygen

mass fraction within the combustion zone, along with the requirement of continuity at £ = 0, hence

m,p — (¢4 1)Vpp,

Y, = —2
m,p + (l/fg - ¢)VDpo

(77)

Note that for ¥3 > 0, the condition m_p > (¢+ 1) Vpp, must apply, namely the total gas mass flux should
be sufficiently large.

Expressed in dimensional form, equations (74), (76), (77) and equation (22) form a system of four algebraic
equations in the four unknowns, Ty, Vp, Y} and v,. The problem was solved numerically for the parameter
values shown in Table 1. Before we proceed, let us note that for a burning temperature of 600°F, we
have It =1.25 inch (3.18 cm) for the combustion zone thickness, and /g =0.19 inch (0.48 cm) for the
thickness of the reaction zone. The very small thickness of these zones should be carefully considered in
the implementation of direct numerical simulation of ir-situ combustion, particularly at the field scale.
Results for the dimensionless velocity of the front Vp and Y; are shown in Figures 7 and 8 as a function of

the normalized injection velocity %%iu As expected, both variables increase with the injection velocity.
f
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Table 1: Typical Values of Porous Medium and Fluid Parameters for Combustion

Parameter | Value
@ | 20,000 Btu/lbmole fuel
E | 25,000 Btu/lbmole
R | 1.987 Btu/lbmole-R
ko | 100 s™ atm™!
T, | 140F
m |1
% | 50 ft/D
P; | 5 atm.
A | 12 Btu/ft-D-F
¢ | 0.3
pgi | 0.0765 Ibm/ft®
Cgpgi | 0.0184 Btu/ft>-F
p$ | 58.3 Ibm/ft’
csps | 35 Btu/ft*-F
M; | 235 lbm/lbmole
¥(n) | 1-n
p | 2,300
Hg | 764

Source: References [2] and [12]

7 Concluding Remarks

In this paper, we proposed a method for modeling the propagation of combustion fronts in porous media,
by treating the reaction region as a place of discontinuities in the appropriate variables, which include,
for example, fluxes of heat and mass. It was shown that reaction and combustion fronts have a spatially
narrow width, estimated to be of the order of cm, within which heat release rates, temperatures and species
concentrations vary significantly. The narrow width calls for an approach in which these fronts are treated

as surfaces of discontinuity.
Using a rigorous perturbation approach, similar to that used in the propagation of flames [3] and smoldering
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Figure 7: Injection Velocity versus the Front Velocity
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Figure 8: Injection Velocity versus the Unburned Oxygen Concentration

combustion [7], we derived appropriate jump conditions that relate the change in these variables across
the front to leading order. The conditions account for the kinetics of the reaction between the oxidant and
the fuel, the changes in the morphology of the pore space and the heat and mass transfer in the reaction
zone. Then, the modeling of the problem reduces to the modeling of the dynamics of a combustion front,
on the regions of either side of which convective transport of momentum (fluids), heat and mass, but not
chemical reactions, must be considered. Properties of the two regions are coupled using the derived jump
conditions. This methodology allows to explicitly incorporate permeability heterogeneity effects in the

process description, without the undue complexity of the coupled chemical reactions.
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For the case of 1-D planar fronts, we derived explicit expressions, which allow to obtain the burning
temperature, the front velocity and the amount of oxygen left unreacted, in terms of the process variables,
such as injection rates and pressure. For the case of fronts in two and three dimensions, particularly in
heterogeneous porous media, a numerical method must in general be implemented. The analysis described
must be extended to include higher-order terms in the small parameter §. In progress is a stability analysis
of the front, which also includes higher-order terms. Also neglected in the examples were heat losses In
any case, however, the proposed treatment of the front as a discontinuity calls for a different approach in
the simulation and upscaling, when coarse grids, such as those at the field scale, must be used. Because
of the hyperbolic nature of the equations in the outer regions, methods based on characteristics and, more
generally, on front tracking would appear to be appropriate. However, a direct implementation of existing
methods, for insta,nce> of streamline simulation, is not feasible, because fluid and temperature streamlines
are generally not the same, due to the difference in the volumetric heat capacities of gas and solid. In
addition, the front temperature and reacted mass fraction are to be obtained from the solution of the

overall problem. Further research is needed in this direction.
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