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Recent 3D gyrokinetic [1, 2] and gyrofluid[3] simulations in toroidal plasmas have demon-
strated that zonal flows[4] play a crucial role in regulating the nonlinear evolution of
electrostatic drift-wave instabilities such as the ion temperature gradient (ITG) modes
and, as a consequence, the level of the anomalous ion thermal transport, and that zonal
flows could be spontaneously excited by ITG turbulence[5], suggesting parametric in-
stability processes as the generation mechanism. Diamond et. al.[6] have proposed the
modulational instability of drift-wave turbulence (“plasmons”) in a slab-geometry treat-
ment.

Consider a large aspect ratio (¢ = a/R <« 1) tokamak plasma with the usual radial (r),
poloidal (#) and toroidal (¢) coordinates. Here R and a are respectively the major and
minor radii. Electrostatic fluctuations are taken to be coherent and composed of a single
n (n # 0) drift wave, §¢4 and a zonal flow mode 8¢,; that is, §¢pg = ¢ + ¢4 +d¢_+c.c.,

¢0(7?, t) — e—i(n¢>+w0t) Z (DOGimG’ 5¢:i: —_ ei(:{:né—(wz:two)t+lx’zr) Z (I)ieimﬂ, (1)

m

and ®gy are functions of m — ng, §¢, = ®,e'K=r—wt) 4 c.c.. Thus ¢y is the pump drift
wave and wy its eigenmode frequency; d¢, and §¢_ are respectively the upper and lower
sidebands produced by the modulation in the radial envelope due to d¢, at frequency w,
and radial wavenumber K,. We have assumed the n > 1 ballooning mode representa-
tion[7] in which K, = nq'#y, ¢ = rBy/RBj, and 0 < 6y < 7 is the Bloch phase shift. The
pump mode ¢q has 65 = 0, (ie. a flat radial envelope) which is, for a given n, usually the
linearly most unstable mode. On the other hand 8¢, and 8¢_ have 8y # 0 giving radial-
envelope modulations. Typically they are linearly stable for moderate values of 6, [3]. We
are thus dealing with a four-wave coupling process among ¢q, d¢4, d¢_, and d¢,. ’

Since electrons are adiabatic for the n # 0 drift waves, only ions contribute to the nonlinear
physics. §®, is then coupled to ®¢ and ¢, and the nonlinear coupling coefficient is
formally of the Hasegawa-Mima type[8-10], i.e. ‘

(—iw, + v, )x::P. =g <Z[a+®§<ﬁ+ — a_<I>g<I>_]> (2)
where g = JSaiplks K, ay = k3, — K2, ac = k2, — K2, xi. =~ 1662 K2p? B2/ B3[11],
v, = (L.5e7;) t12], koy = 0k + ing't0;, ks = nq/re, To refers to one reference mode
surface, ( = m — nqg corresponds to the fast radial variable, ky; = 7K, £ ko,, and
(A) = f_lgz Ad( is an averaging with respect to ro, a; ~ 6 Fy1 /(Ne®g)+1 and § Py, is the
perturbed perpendicular pressure due to ®@,. The detailed expression for «; depends on

the specific drift wave mode and plasma parameters; e.g. o; ~ 1+7+m7, n; = dinT;/din N
for the electron drift wave, and o; o~ 7(1 4+ ;)/[(37 — 1)L./R 4+ 1/2] 4+ 1 for ITG in the
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Figure 1: Gyrokinetic simulation results of zonal flow growth rate (A) vs. ITG mode amplitude for
fixed dg, and (B) vs. &y for fixed ITG amplitude, normalized to ITG growth,vo. The line in (A) is
the solution of Eq. 3.

fluid ion local approximation[3]. Here L ! = dinN/dr and 7 = T;/T.. In deriving Eq. 2
we have assumed |ky p;| < 1 with p; the ion gyro radius, |w,| < wganm, and averaged over
the Geodesic Acoustic Mode[13].

The coupling of d¢p1 to Py and §P, can be calculated using the nonlinear gyrokinetic
equation[9, 10] and the quasi neutrality condition. The details are presented in a previous
publication[17]. We finally obtain the desired linear dispersion relation for the modula-
tional instability

L.+ ve = (T +70) /A7 + (T + 7)) (3)
where we have let —iw, = T, and v}, = (0;/1.6¢3/?)(Bokoc,K.ps/By)* <<|6<§0/Tef2>>~
With appropriate «; Eq. 3 is valid for various branches of drift waves such as the electron
drift wave or ITG.

The predicted modulational instability features have been observed in 3D global gyroki-
netic simulations of ITG modes using the gyrokinetic toroidal code {2]. These nonlinear
simulations keep only a single toroidal mode n # 0 initially. The starting fluctuation level
is very low to allow linear ITG eigenmode structure to be formed before nonlinear satura-
tion. When the ITG mode grows to a desired amplitude, an external damping is applied
so that the mode amplitude stays constant. Zonal flow with a single radial mode number
is now self-consistently included. We observe exponential growth of zonal flow until it
reaches a high level where the ITG mode is suppressed. The radial envelope modulation
of the ITG mode correlates with the zonal flow radial structure. As shown in Fig. 1 (A),
the growth rate of zonal flow with a fixed radial mode number linearly depends on the
ITG mode amplitude. Analytical prediction of zonal flow growth rate from the solution of
Eq. 3, is shown by the solid line in Fig. 1 (A). For a fixed ITG mode amplitude, measured
zonal flow growth rate increases linearly with radial mode number (or 6;) for small 6y and
decreases for large 6o, as shown in Fig. 1 (B), consistent with theory.

We now consider the nonlinear evolution of this modulation instability. As d¢, and d¢+
exponentiate in amplitude, they will nonlinearly couple and induce damping in the pump
wave amplitude. Replacing wg by wg + 0;, letting <<|e(I>o/Te|2>> = A? and including the
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Figure 2: Values of Z;, (left), and Numerical frequencies, linear values wy, v, and damping v near
the fixed point (right), d =2,y =2 :

linear growth rate o the equation for Ag(¢) becomes

d T, ThyK,

= =2 7 (A @, * 4
(dt 70) A0 = =B e, fg - e A+ 4)

Using dimensionless time 7 = 4ot and performing straightforward normalizations such
that Ay o< P, Ay o Se'?® and @, o Z, we find[17]

dp ds

- = P —2ZScos(V), o= —T'4S + ZPcos(¥) (5)
dz dv Pz

-C-l; = "—’)/ZZ + ZPSCOS(\I"), Er— =§ — ?Szn(\ll) (6)

with Ty = v4/v0, ¥- = V2/7, and § = A/~,. These equations are similar to those for
three-wave coupling[16], hence we anticipate similar behaviour, such as the existence of a
stable attractor and a period doubling route to chaos.

Introduce an associated one dimensional map by defining times 75, at successive zeros of
dZ/dr. Numerical plot of the values of Z; in steady state (after transients have died
away) is shown in Fig. 2 for § = 2, I'; = 2. Egs. 5-6 have a fixed point attractor for
v. < 0.3. For 0.3 < v, < 0.58 the attractor is a stable limit cycle with the bounding
values of Z given by the two branches in Fig. 2. The. initial bifurcation of the stable fixed
point into the limit cycle corresponds also to period doubling, as can be seen in the plot
of associated frequencies, Fig. 2. Frequency, damping and growth about the fixed point
wy, i, are also shown. Apparent chaos sets in for v, > 0.75.

Present turbulence simulations have 'y ~ 1, with values of v, and ¢ placing them in the
stable fixed point domain. The oscillations observed are thus probably nonlinear transient
decay to the fixed point, with the decay time much longer than the simulation time. The
drift wave intensity is I; = P? +2S52. Assuming weak turbulence scaling of x; oc I, where




;i is the anomalous ion thermal transport coefficient, we find that in the stable domain
Xi & V; o vy consistent with the trend observed in simulations [5].

These results can be readily generalized to the case of a single zonal flow radial envelope
mode coupled to a multi-n drift wave ITG spectrum. Let A, be the drift mode pump

wave on toroidal mode number n and the sidebands be Anz with A, = A%,. We then
have
d « *
(dt 7n0> AnO = —71n(An+(Dz + An-}—q)z)? (7)
d
dt ZA + Ynd A+ = VInAan)za ‘ (8)
d .
(dt + Vz) cI)z = Z72n(An+An0 + An+An0)~ (9)

We have carried out numerical integrations of this set of coupled equations for k >> 1 drift
modes with different n values using random values of the correct order of magnitude for
the frequency mismatch A, and ITG growth 7,9, but with v,4 = 29,0. Remarkably, in
all of the simulations, in a very short time one drift wave mode with large v,0 and A, is
singled out and all the others are driven to very small amplitude. The results thus revert
to the single-n case discussed above, the 3k + 1 dimensional phase space always contains
an attractor defined by one value of n, with dimension ranging from zero to two. Other
multi-n models will be considered in future publications.
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