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Abstract

We investigated the late-time (asymptotic) behavior of tracer test breakthrough
curves (BTCs) with rate-limited mass transfer (e.g., in dual or multi-porosity systems)

and found that the late-time concentration, ¢, is given by the simple expression:
c=1, Cg = Moz, fort>>t and t,>> ¢,

o

where f, is the advection time, ¢, is the initial concentration in the medium, mj, is the 0%

-_moment of the injection pulse; and 7, is the mean residence time in the immobile domain

(i.e.,b the characteristic mass &ansfer time). The function g is proportional to the residénce
time ciiétribution in the immobile domain; we tabulate g for many geometries, including
several distributed (multirate) models of mass transfer. Using this expression we examine
the behavior of late-time concentration for a number of mass transfer models. One key

result is that if rate-limited mass transfer causes the BTC to behave as a power-law at

late-time (i.e., ¢ ~ %), then the underlying density function of rate coefficients must also

be a power-law with the form of-> as a->0. This is true for both density functions of
first-order and diffusion raté coefficients. BTCs with & <3 persisting to the end of the
experimént indicate a mean residence time longer than the experiment and possibly
infinite, and also suggest an effective rate coefficient that is either undefined or changes
as a function of observation time. We apply our analys:is to breakthrough curves from

Single-Well Injection-Withdrawal tests at the Waste Isolation Pilot Plant, New Mexico.
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1. Introduction

Mass transfer continues to be cited as a critical transport process in groundwater,
soils, and streams. Estimation of rate coefficients (for both diffusion and sorption) is
ﬁighly sensitive to the late-time behavior of breakthrough curves (BTCs). Indeed, recent
studies have shown that the late-time data (i.e., after the advective peak has passed) may
be the most important data for estimation of both the capacity coefficient and the rate
coefficient or density function of rate coefficients [e.g., Farrell and Reinhard, 1994,
Wagner and Harvey, 1997, Werth et al., 1997; Haggerty and Gorelick, ‘1 998; Haggerty et
al, in reviewi. With improvements in experimental and analytical techniques,

concentration observations are now frequently available from laboratory and field

~ experiments over several orders of magnitude of both time and concentration. Therefore,

the examination of late-time behavior of BTCs is both feasible and critically important to
the evaluation of rate-limited mass transfer, particularly if discrimination between
different models of mass transfer is desired.

A rapidly growing body of recent work on mass transfer and transport has
extended the basic model of single-rate mass transfer [e.g., Coats and Smith, 1964; van
Genuchten and Wierenga, 1976; Cameron and Klute, 1977, Rao ef al., 1980] or two-rate
mass transfer [e.g., Brusseau et al., 1989] to models with distributed, or multiple rates of
mass-transfer described by a density function of rate coefficients and primarily applied to
laboratory data [Connaughton et al., 1993; Lafolie and Hayot, 1993; Pedit and Miller,
1994, 1995; Backes et al.; 1995; Chen and Wagenet, 1995; Haggerty and Gorelick, 1995;

Ahn et al., 1996; Chen and Wagenet, 1997; Culver et al., 1997; Cunningham et al., 1997,
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Sahoo and Smith, 1997; Werth et al., 1997, Cunningham and Roberts, 1998; Deitsch et
al., 1998, Haggerty and Gorelick, 1998; Kauffman ef al., 1998; Lorden et al., 1998;
McLaren et al., 1998; Hollenbeck et al., 1999; Stager and Perram, 1999]. It should be
noted, ho@ever, that the concept of multiple time-scales of mass transfer has been
employed for at least three orders of magnitude, primarily in chemical engineering and
soil physics [Ruthven and Loughlin, 1971; Villermaux, 1981; Rao et al., 1982; Neretnieks
and Rasmuson, 1984; Rasrﬁuson, 1983; Fong and Mulkey, 1990; Valocéhi,.l990], as
have multiple time-scales of reaction in chemistry [e.g., Albery ef al., 1985 and many
others].

The work of Haggerty and Gorelick {1995, 1998] is particularly important to this
current work. These papers develop and apply the “multirate” model, which is a
transport model with a spaﬁally—uni.form density function of first-order mass transfer rate
coefﬁ;:ients. These papers show that any density funétion of diffusion rate coefficients
may be represented in a transport model by a different, but exactly equivalent, density
function of first-order rate coefficients.

The multirate model has been applied to field data collected in a set of single-well
and two-well convergent flow tracer tests conducted in a fractured dolomite (Haggerty et
al., in review). .After pulse injectioﬁs of solute, the BTC data in the Single-Well
Injection-Withdrawal (SWIW) tests showed a power-law behavior at late-time
(e, ¢ ~ z‘“k). Within the SWIW tésts, k ranged from 2.1 to 2.8.7 The diffusion rate
coefficients in this application were described by an assumed lognormal density function
of diffusion rate coefficients, and interpretation of the BTC data focused on defining the

mean and standard deviation of this lognormal density function to match data observed in
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the tail of the BTC. While the lognormal density function provided exceHent rﬁatches to
the data, the details of the power-law behavior of the tall of the BTC were left for a
future investigation. In particular, two issues were left: (1) an understanding of the
density functions of rate coefficients that could lead to late-time power-law behavior; and
(2) the range of late-time slopes that can be provided by a lognormal density function.

A power-law plots as a straight line on a double-logarithmic graph.
Consequently, in this paper we will frequently refer to ’the value of the éower k as the
"slope". Although thz;, slope 1s always negative, for the sake of brevlity, we will refer only
to its absolute value.

Power-law behavior at late time in BTCs has been noted in a number of other
laboratory and field experiments. Farrell and Reinhard [1994] and Werth et al. [1997]

observed power-law BTC and mass recovery curves with sorbing organic solutes in

unsaturated media. Cunningham et al. [1997] were able to represent the Werth et al.

[1997] data with a gamma density function of diffusion rate coefficients, while Haggerty

and Gorelick [1998] were able to approximate the power-law behavior with a lognormal

density function of diffusion rate coefficients. Both Cunninghamret al. [1997] and
Haggerty and Gorelick [1998] noted the inability of conventional models of mass
transfer to yield the appropriate power-law behavior. Power-law behavior with a slope
of 3/2 has been observed in field data from the Grimsel test site and has been adequately

explained with conventional (single-rate) matrix diffusion [Eikenberg et al., 1994,

 Hadermann and Heer, 1996]. However, single-rate diffusion is only able to yield a

power-law of exactly 77, and can only maintain this behavior slightly longer than the
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mean immobile-domain residence time (¢t = @*/15D for spheres and a*/3D, for layers),
where Dy is the apparent diffusivity and a is the half-thickness of the immobile domain.
Power-law behavior such as that ébsewed in Farrell and Reinhard [1994]; Werth et al.
[1997]; or Meigs and Beauheim [in review] cannot be explained with conventional

single-rate diffusion. Jaekel et al. [1996] showed that power-law BTCs result from a

~ pulse injection of solute and equilibrium Freundlich sorption. Unfortunately, none of the

data sets mentioned above are explained by this (the Meigs and Beauheim tracers were
non-sorbing, and equifibrium Freundlich sorption is insufficient to explain the power-
laws in the other data sets [Werth et al., 1997)).

The late-time (asymptotic) behavior of BTCs undergoing first-order linear
nonequilibr‘ium sorptioq has been examined by Vereecken et al. {1999]. Vereecken et al.
[1999] 'c'ievelop late-time expressions for the BTC that afe valid for time-varying
velocity, but only after a pulse injection and in media with one- or two-site

nonequilibrium sorption.

The purpose of this paper is to explore the nature of tailing in mobile-immobile

. (dual porosity) tracer test BTCs for a wide variety of linear mass transfer models.

Specifically, we have the following objectives: (1) develép an analytic expression for the
late-time BTCs for transport experiencing a distribution of either first-order sorptién or
diffusion time-scales and for both pulse injections and media with non-zero initial
concentrations; (2) examine the information that can be provided by the late-time
behavior of the BTC; (3) examine BTCs that exhibit power-law behavior at late time and

the implications for mass transfer. Particular expressions describing the late-time BTCs
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for single-rate models with both infinite and finite immobile domains, as well as
multirate models with first-order and diffusion rate coefficients defined by lognormal,

gamma and power-law density functions are provided. Implications of the late-time

slopes defined by these equations are discussed with respect to mass transfer processes,

including implications for estimates of the mean residence time in the immobile zone (or,
equivalently, a characteristic mass transfer time). The power-law late-time behavior of

BTCs in two SWIW tests from the WIPP site are examined.

2.  Mathematical Development

2.1. General case

2.1.1. Late-Time Solution for Concentration:

The mass balance equation for a solute advecting and dispersing in 1-D (i.e,
along a single stream tube), and -interacting with rock via diffusion, linear equilibrium

sorption, and/or linear nonequilibrium sorption is:

O (%¥oec v |_0c
8x( R, ox Rac) ot +F(x, [) (1)

where o, [L] is longitudinal dispersivity; v [LT'] is pore-fluid velocity; Ry [-] is the
retardation factor in the mobile (advective, effective or kinematic) porosity; ¢ [ML?] is

solute concentration within the advective porosity; and I'(x, /) [ML®T"] is the source-

~sink term for mass exchange with the immobile (matrix or diffusive) porosity and

nonequilibrium sorption sites. From this point forward, we will adopt the terminology of




3]

|93

10

11

12

13

14

16

17

18

Haggerty et al., Late-time behavior of breakthrough curves

"mobile" and "immobile" domains and concentrations, which refer to either sorption or

diffusion. We will employ the uniform initial conditions
c(x, t= D) = c,.,,,(x, z,f= 0) =, ' : | (2a)

where cjpm, [ML?] is solute concentration within the immobile domain, which may, in the
case of diffusion, be a function of a second spatial coordinate z oriented normal to the

mobile-immobile domain interface. We will also employ the boundary conditions

C(FO, t) =mpP (t) ' | (2b)

c(x——)oo, t) =C, : (2¢)

where m, [MTL?] is the zeroth moment of the BTC; ¢, [ML?] is the initial concentration

in the system; and 8() [T™] is the Dirac delta. The Dirac injection is never met in

practice. However, as long as the duration of the pulse is much shorter than the mean

residence time in the immobile zone, (Zb) will be a sufficiently good approximation. For
a finite pulse injection with constant velocity, the zeroth moment m, is the injected

concentration multiplied by injection time.

~ For initial and boundary conditions (2a-c), then at late time:

U'L%% <<c, fort>>1, ()

where 154 [T] is the average advective residence time (equal to LRg/v if velocity is

constant in space). In other words, once the input pulse has advected far past the point of
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observation L, then dispersion has a negligible effect on concentration. Similarly, if the

immobile domain has a long mean residence time relative to advection, then at late time:

%?- << F(x, t) , forr>>t,, and 1,>>1, )

where f, [T] is the mean residence time in the immobile domain. In other words,
concentration change at late time is dominated by exchange between the mobile and
immobile domains if the average immobile domain residence time is longer than the
advective time. Note that from this point forward, it will be assumed that 7, >> #54and

1 >> tq4 unless otherwise stated. Therefore, the equation (1) may be re-written:
a (v .\—=
_ 5)?(7{6) = F(x, t) (5
By integration we can obtain a solution for concentration at late time:

RE) |
") (x, £)dx )

1]

| c(x-=L, t)=—f

where L [L] is the distance from point of injection to point of observation along the flow

path. If velocity, retardation, and the parameters and functions that comprise I'(x, ) are

spatially uniform, then this leaves us with a very simple expression for concentration at

late time;

c(x=L,1)=-11(1) (M
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The spatially-variable case is left for a future paper. From this point on the dependency

of ¢ on x=L and ¢ is implicitly assumed.

2.1.2. Source-Sink Term I'(#):

The source-sink term I'(?) is the rate of loss or gain of concentration to or from

the immobile domain (loss at early time and gain at late time). For any linear mass

transfer problem with uniform initial conditions it is possible to express the source-sink

term as the following, which is valid at all times:

" oc(t - o '

where g(f) is a "memory function" to be defined; * represents the convoiution product; g,
is the memory fuhction at £ = 0; and ¢, [ML?] is the initial concentration. Note that the
Laplace tl-'ansform of (8) is commonly used in analytical solutions [e.g., Villermaux, 1974
and many others since], and that the last transformation in (8) is most easily derived in
the Laplace domain. Equation (8) has been expressed explicitly in the time domain by
e.g., Peszynska [1996] and Carrera et al. [1998], and results in an integro-partial
differential equation when substituted back into (1). The memory function g(¥) may be
physically interpreted as tile capacity coefficient (Bsos, see Section 2.3) multiplied by the
residence time distribution in the immobile domain; given a Dirac pulse at the surface.
The derivative of g(?) is proportional to what is commonly called in statistical physics the

probability of first retumn or distribution of first passage times [e.g., Bouchaud and

Georges, 1990, p. 271-272].

10
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We desire to find a closed-form expression for the source-sink term in (8),
accurate at late time, that fnay be substituted into (7). We recognize the following
characteristics of I'(¥): (1)_at early time the function represents rapi‘d loss from a high-
concentration pulse in the mobile domain to the immobile domain; and (2) at late time
the ﬁm@tion represents slow gain to the mobile domain (which has very low
concentration) from the immobile domain. To obtain a solution that is accurate at late
time, we therefore ;equire an approximate functioﬁ for mobile-domain concentration that
has the correct pulse size at early time, and that is approximately zero at late time. Such
an approximation is available in ¢ = m8(f), where m, is the zero™ moment of the
injection. Note that thi; approximation is used only for calculating the source-sink term,
and not as an approximation for late-timg concentration itseif. That this approximation is
sufficient will become appa;ent when the results are compared to a full numerical

solution. Employing the properties of convolution, (8) can now be expressed:
og
F(t) =My —Cog fort>>1t, and t,>>1, &)

The general form of the memory function is [modified from Carrera et al., 1998]
g(f)= f ab(o)e=da (10)
1] -

where o is a rate coefficient and b(c) is a density function of first-order rate coefficients.
Note two differences between our definition of the memory function and that of Carrera
ef al. [1998, Eqn. (15), p. 182]. First, our memory function g(¢) includes the constants

that are placed before the source-sink term in Carrera et al.’s mass balance equation.
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Secondly, although Carrera et al. [1998] express (10) as a discrete function, the more
general expression is as a continuous function, allowing for density functions of diffusion
rate coefficients, etc. Various density functions b(ct) are given in Table 1, along with the
corresponding memory function g(?).

We note that (10)’ is the Laplace transform of o b(ct), where ¢ substitutes for the

Laplace variable. We also use the property of the Laplace transform [e.g., Roberts and

Kauﬁnah, 1966, p. 4]

Lap{azb(a)} = % , (1)

where Lap{*} indicates the Laplace transform.

Employing (7), (9), (10), and (11), we can now write an approximation for

concentration at late time:

0

= tajfo (co + amo) ab(a} e~ “do (12)
=t, f,ap{(co + ocmo) ocb(a)}

All forms of (12) are equivalent and are useful in different ways for understanding the
late-time behavior of BTCs. We expect that in most applications only one of ¢, or m,
will be non-zero; however, (12) holds true regardless of the values of ¢, and m,. Note

that the late-time concentration can be calculated for various density functions b(c) using

g(?) supplied in Table 1
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At this point, we re-emphasize the restrictions on Equation (12). These are (1)
time is much greater than the advection time; (2) the mean residence time in the
immobile domain is much greater than the advection time; and (3) time is much greater
than the duration of th¢ injection pulse, meaning that an impulse (Dirac) function is a
valid approximation to the injection. In a heterogeneous vélocity field, réstrictions (D)
and (2) mean that both time and mean residence time ig the ihmobile domain must be
much greater than the sum of advection time across a control plane ana the standard
deviation of that advection time. In particular, a power-law distribution of advection

times (such as invoked by e.g., Berkowitz and Scher [1997]) would invalidate the use of

(12).

2.2. Notes on Application of Equation (12)

Equation (12) presents an interesting theoretical development for two reasons.
First, the iate-time behavior of the BTC is easily ébtained for a wide variety of density
functions b(ct) using any comprehensive table of Laplace transforms. Equation (12) is
sumpler for first-order mass transfer than the eqﬁations devéloped by Vereecken et al.
[1999]. The eqﬁation also provides an asymptotic expression for any mass transfer
process with a known memory function g(7), which is easily calculated for a wide range
of sorption and diffusion processes. Conversely, it must be poigted out, the equations
develop"ed by Véreecken ef d]. [1999] allow for time-varying velocity.

Second, (12) suggests that the density function of mass transfer rate coefficients

(whether from diffusion, nonequilibrium sorption, or a general density function of mass

transfer processes) is available directly and analytically from breakthrough data. In fact,
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if (12) is treated as an integral equation where b(ct) is an unknown, the density function
b(c) may be directly calculated using the inverse Laplace transform. If the medium is

initially free of tracer, then ¢, = 0 and the density function b(ct) is given analytically by

the Bromwich integral: ~
I SRR G SN W RN S N
b(OL) P (zm_)Lc(r L, t)e dt tomoazLap {c(x— L, t)} (13)

where 7 is the unit imaginary number; and Br represents the Bromwich contour [see, e.g.,
LePage, 1961, p. 319-320]. A similar equation may be easily constructed for the case of
non-zero initial conditions and continuous flushing of tracer-free fluid, such as in a purge
experiment. Unfortunately, the practical use of (13) is limited by th¢ conditions that we
can only use the late-time breakthrough data, and that any eﬁors in the data introduce
numerical instabilities in the inverse Laplace transform. Nonetheless, (13) will allow us
to determine certain important properties of the density function b( ct).

For relatively simple cases (i.e., single rate mass transfer), the properties of (12)
allow estimation of the rate coefficient and capacity coefficient directly from the BTC
[also see Vereecken et al., 1999]. For some more complex cases (e.g., gamma and
power-law density functions), the properties of (12) will allow certain properties of the

density function of rate coefficients to be determined. This will be discussed in the

following sections.

14
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2.3. Notes on the Density Function (o)

We add two notes regarding the density function b(a) before continuing. First, a

useful definition is that of the 0" moment of the density function of rate coefficients:
[ ble)da=p. | (14)
0

where Bso¢ is commonly known as the capacity coefficient. The capacity coefficient is
the ratio of mass in the immobile domain to mass in the mobile domain at equilibrium; in
the absence of sorption it is the ratio of the two volumes.

Second, we note without derivation that the Laplace transform of the density
function of rate coefficients is a particularly useful function by itself. This function is
proportional to the mass fraction remaining in an immobile domain, where the initial
conditions are uniform concentration in the immobile domain and thé boundary condition

on the immobile domain is zero concentration. The mass fraction remaining in the entire

system (M/M,) is therefore:
T dt
M) Laplp o)} f | sy
MQ l+ﬁlot 1+onr

In other words, the mass fraction remaining is calculated simply by finding the Laplace

transform of the density function b(c). '
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2.4, Mean Residence Time in Immobile Domain

One of the criteria for use of equation (12) is that the mean residence time in the
immobile domain be much greater than the advection time. This sub-section outlines the
calculatioﬁ of this mean residence time, as well as providing an effective rate coefficient
that may be used in an “equivalent” first-order model of mass transfer.

The residence time distribution in the immobile domain given a Dirac impulse at

the surface is g{f)/Bros. The mean residence time (or characteristic mass transfer time) is

therefore

=g, e
= Blmj; t]o ab(d)e‘“‘da dt » (16)

It can be shown [e.g., Cunningham and Roberts, 1998] that the zeroth, first, and second

w
g
14

temporal moments of the BTC are the same for any density function of rate coefficients
provided that the mean residence time in the immobile domain is the same. Therefore,
the best effective rate coefficient (i.e., the one that yields the same zeroth, first, and

second moments of the BTC) is the harmonic mean of the density function, since:

'd:H =-tl— =Bro f Eb(%l)"da ) (17)

16
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Notably, the harmonic mean may be zero for some density functions, meaning that the

mean residence time in the immobile domain is infinite. Note that an infinite mean

residence time does not require infinite size or infinite capacity in the immobile domain.

The harmonic means for a number of density functions (o) are shown in Table 1.

3. Late-Time Behavior of BTCs

In this section we will consider a number of examples of BTCs after a pulse
injection into a medium with zero initial concentration. Many of the functions developed

in this section are summarized in Table 1, as are several others not discussed here.

3.1." Simple Example 1: First-Order Mass Transfer

Consider the simplest case of mass transfer described by a single first-order rate

coefficient. The density function of rate coefficients is

b(a)=B.5(c -0y (18)
The memory function g{¢), given by applying (10) to (18), is

glf)=a,Be=r (19)

The resulting late-time approximation for concentration in the mobile domain (with

initial concentration of zero) is given by substituting (19) into (12):

C = Mol 1 ot fze_uf' (20)

17
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1 This solution displays the well-known behavior that late-time concentration is

2 exponential with a semi-log slope d(In c)/df of -aif.

3 3.2. Simple Example 2: Finite Spherical Blocks

4 Consider the case of diffusion into finite spherical matrix blocks. Haggerty and
5. Gorelick {1995] showed that a particular discrete density function of ﬁrst—order rate
6 coefficients results in a model that is mathematically idenﬁcal, from the perspective of
7 the mobile domain concentrations, to that of diffusion into and out of various matrix
8  geometries. Using mathematics that is more similar to that presented in this paper,

9  Carrera et al. [1998] make the same assertion. ~In the case of spherical blocks, the

10 density function is

I oa) =3, P 5,(a ~j27t2%) (1)

i=l j'm

12 where Byo¢ [-] is the capacity coefficient of the spherical blocks; Dg [T] is the apparent
13 diffusivity; and a [L] is the radius of the spherical blocks. This density function is a

14  seres of Dirac deltas with monotonically decreasing weight. The harmonic mean of (21)

15 is the well-known linear driving force approximation 15 Dgld? (e.g., Glueckauf, 1955),

16  and the mean residence time in the spheres is therefore 1, = a/15D,;. The memory

17  function is

N Da 2 ”Da '
18 g(z‘) = 121 6B iz exp(-— j n*az 1‘) (22)

18
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Readers familiar with diffusion in spherical geometry will recognize (22) as
proportional to the mass flux out of spheres initially saturated with a uniform \solute
.concentration and with a boundary concentration of zero. [e.g., Crank, 1975, p. 91;
Grathwohl et al., 1954].

The resulting late-time approximation for concentration in the mobile domain

with initial concentration of zero) is given by substituting (22) into (12):
o y o

a* a

c=mebul22) 5 67 exp|- 7D

From this kexpression, we can see that the late-time concentration is exponential;
therefore, on a double-log plot, the late-time slope will approach < shortly after the mean
residence time in the immobile domain (f, = a*/15Dy) is reached.

Figure 1 shows the full solution to the advection-dispersion-mass transfer
(ADMT) equations and the late-time approximation. The ADMT equations were solved
using STAMMT-L [Haggerty and Reeves, 1999] for my = 1 x 10° s kg m™
fad =1 x 10*s; DJa* =1 x 108 s Bw = 1; and a Peclet number of 1000. All
concentrations have been nondimensionalized by the terms in front of the infinite series
in (23).

From Figure 1 we make four points. First, the approximation very accurately
represerntsﬁ the late-time behavior of the ADMT solution, but obviously does not contain
the advective-dispersive peak. We can see in the figure that the late-time approximation -

1s valid when 7 >> 1,44 provided that 7, >> {,4.

19
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Second, the late-time behavior demonstrates the well-known 3/2 slope fér matrix
diffusion [e.g., Hadermann and Heer, 1996}, which ends when tDg/a” > 1. As long as
the block size a is large enough (or Dy small enough) that tDa/a® << 1 over the entire
time of a tracer test, then the slope remains 3/2. In such a case it would not be possible
to estimate the value of Dy/a® from the BTC. The limiting case of "infinite" matrix
blocks is given in Table 1, for ¢ ~ dg/di ~ **>. Note that the harmonic mean rate

coefficient for this case is zero, meaning that the mean residence time for very large

- blocks approaches infinity.

Third, the location of the BTC peak in the ADMT solution may lie anywhere on
the late-time approximation curve, dependent on the relative values of f54 and Dgla?.

Last, we note that it is possible to estimate both Bsor and Dy/a® by using the late- |
time approximation as a type-curve, if the break in slope is present. The capacity

coefficient Bzpor would be estimated from the vertical shift, while Dy/a® would be

estimated from the horizontal shift.

3.3. Gamma Density Function of First-Order Rate Coefficients

Gamma density functions of rate coefficients have been used fo represent
multirate mass transfer in several papers. Cunningham et al. [1997] developed the
mathematics of a gamma density function of diffusion rate coefficients, while Werth ef
al. [1997] applied this model successfully to several mass—fractidh—remaining data sets.
Connaughton et al. [1993] used a gamma density function of first-order rate coefficients
t0 model release of naphthalene from soil, while Pedit and Miller [1994] employed a

gamma density function of first-order rate coefficients to examine diuron sorption. Other

20
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examples include Ahn et al [1996]; Chen and Wagenet [1997]; Culver et al. [1997];
Sahoo and Smith [1997]; Deitsch et al. [1998]; Kauffman et al. [1998]; Lorden et al.
[1998], and Stager and Perram [1999]. The method we are using is applicable to both
types of density functions, and the key relationships for both are given in Table 1.
Although the early time behavior will differ between gamma density functions of first-
order and diffusion rate coefficients, the late-time slope will be identical for the same

value of 7.

The gamma density function of first-order rate coefficients is

where y [T"] is the scale parameter and m [-] is the shape parameter. The harmonic mean
of (24) 1s 0 if 1 is less than 1, a fact &at is of particular importance for applications. As
a consequence, the mean residence time in the immobile domain would Be infinite.
(These facts are also true for gamma density functions of diffusion rate coefficients.) If
m is greater than 1, the harmonic mear; of (24) is (n-1)y.

The memory function is

g(1) =B %(Yf +1)7" | | (25)

Therefore, the late-time concentration in the fracture is given by

+1 ’
c= mcta.d B roryz'(';'lz(—ji')’ﬁ),—z (26)

Note that when y7 >> 1 the BTC follows a power-law:
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-

-n-2

c~1 (27)

The same late-time power-law behavior is also exhibited with a density function of
diffusion rate coefficients. Note that a power-law behavior (¢ ~ r%) with k < 3 would

indicate an infinite second (and higher) temporal moment and an infinite mean residence

time in the immobile domain.

Figure 2 shows the late-time approximation in (26) nondimensionalized by the
transport terms. We have normalized time by the mass transfer rate y. Figure 2 also
shows a solution to the ADMT equations with »STAI\/IMT-L (Haggerty and Reeves, 1999)

formy=1x10"skgm?> t59=1x10*s; y=1x10*s"; n=0.5; Bror=1; and a Peclet

number of 1000.

We see from (27) and Figure 2 that the late-time double-log slope of
concentrétion will be -(m+2). For comparison to published values, Connaughfon et al.
[1993] estimated values of 1 in the range of 0.17 to 0.37 for a gamma density function of
first-order rate coefficients, while Pedit and Miller [1994] estimated 1y = 0.11 from their
experiments; Culver et al. [1997] estimated n = 0.023 to 0.054 for their column

experiments; Deitsch ef al. [1998] estimated m from 0.092 to 350 in 15 experiments with

“different materials, with the majority having m below 1. Kauffman et al. [1998]

estimated n = 0.60 and 0.84 in two column experiments. Werth et al. [1997] found
vzlues of n equal to approximately 0.5 for a gamma density function of diffusion rate

coefficients. Note that almost all of these estimated n (i.e., those below 1) will lead to an

infinite mean residence time within the immobile domain. Consequently, the variance of
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the breakthrough times will be infinite with these models. Late-time behavior associated

with gamma density functions is discussed further in Section 4.2.

3.4. Lognormal Density Function of Diffusion Rate Coefficients

Lognormal density functions of rate coefficients have also been used to represent
mass transfer in natural systems. Pedit and Miller [1994];, Backes et al. -[1995];
Haggerty [1995);, Culver et al. [1997), McLaren et al. [1998] all used a lognormal
density function of first-order rate coefﬁcienté to model uptake and release of sorbing
solutes in soils. Pedit and Miller [1995] and Haggerty and Gorelick [1998] used a
lognormal density function of diffusion rate céefﬁcients to model diffusion of sorbing
solutes in soils. As is true for the gamma density functions of rate coefficients, the
behavior of both lognormal models is very similar, especially at late time and large

variances. In our analysis here we will employ only a density function of diffusion rate

coefficients:

S {2 )“‘TL

== exps —
a \fZYEO'D

a
2
a

28)

The equivalent density function of first-order rate coefficients is given by Haggerty and

Gorelick [1998]:

o
(O3]
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In ..___4(1___',_.. - U

o EE
- 29
i T 55 >

The harmonic mean of (29) is 3exp(u-0°/2). Consequently, the effective rate coefficient
is approximately 0.22¢” orders of magnitude smaller than the geometric mean. For large
o, the effective rate coefficient is approximately zero and the mean residence time in the
immobile domain approaches infinity. In the limit of very large o, the density function is

log-uniform and is equivalent to a power-law density function with ~ o', As we shall
see in the following sections, this corresponds to a late-time BTC of ~ 2.
The Laplace transform of (29) must be done numerically. The result may then be

inserted into (12). After taking the second derivative in time (numerically), the late-time

approximation for a concentration BTC is shown in Figure 3 for various values of ©.

 The time axis of Figure 3 is normalized by the geometric mean of (24), and concentration

is normalized the same as previously. Figure 3 also shows the solution to the ADMT
equations in the presence of a lognormal density functioﬁ of diffusion rate coefficients.
The ADMT equations were sblved using STAMMT-L [Haggerty and Reeves, 1999] for
m,=1x 10* s kgm? f5g=1x10%s; e * =1x107%s"; 6=35; Bsyr = 1; and a Peclet
number of 1000. The discrepancy at late time is due to numerical error in the series of
numerical steps for the late-time approximation; however, the late-time slopes are
correct. Note that the late-time slopes for the lognormal distribution lie between 2 and 3

for a large range of time, provided that  is greater than approximately 3.

24
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Published values of ¢ for lognormal distributions of rate coefficients are typically
larger than 3 [e.g., Pedit and Miller, 1994, 1995; Culver et al, 1997, Haggerty and
Gorelick, 1998; Haggerty et al., in review], suggesting that mass transfer rate coefficients
have large varability in natural media. With such large values of &, we would expect to

see late-time slopes on double-log BTCs after a pulse-injection between 2 and 3.

3.5. Power Law Density function of First-Order Rate Coefficients

An alternative density function that has been less commonly used to describe
mass transfer in groundwater and soils is a power-law density function. Hatano and
Hatano [1998] used a power-law density function of waiting times in the context of a
continuous-time random walk to model the sorption of radionuclides in a column
experiment. Power-law density functions of waiting times have been ﬁsed in statistical
physics to describe anomalous transport behavior [e.g., Bouchard and Geofggs, 1990;
Scher et al., 1991]. Frequently such density functions arise from diffusion or rate-limited
sorption on a fractal geometry. A particular advantage of a power-law distribution,
within the context of this work, is that it allows us to investigate power-law BTC
behavior for a larger range of late-time slopes.

As with a gamma density function it is.possible to define both a density function
of first-order rate coefficients and an equivalenf density function of diffusion rate
coefficients. Again, although the early time behavior will differ for power-law density
functions of first-order and diffusion rate coefﬁcieﬂts, thé late-time slope will be

identical for the same value of k. For the sake of brevity, we show only the power-law

density function of first-order rate coefficients.
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A truncated power-law density function may be written as follows:

Bulk-2) .,
o) = gzt k> 0and k# 2, 0y S & < g (30a)
O — Cmin :

where o [T'] is the maximum rate coefficient; o [T'] is the minimum rate
coefficient; and & is the exponent. The value of o, méy be zero if k> 2. The reason for

choosing to write the power-law as k-3 will become apparent shortly. "If k£ = 2, the

density function may be written

max

a

_ B, .
bct) —-1—H—(F—)a (30b)

min
The late-time concentration in the mobile domain is

A e, i

max mun

For arbitrary (non-integer) values of £, (31) must in géneral be evaluated

numerically. However, the most important point about (31) is that

C~t-k, -1 << f << -1
amax & min

(32)

Expressed in words, the slope of the BTC is k for times much greater than o ! and

much less than o ;! for all values of £&. At times greater than o ;! the slope goes to .

min

26
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It is possible to present closed form solutions for many specific cases of (31); we
will provide the solutions for the cases £ =1, k=2, and k =3. First, let us define three

other variables in terms of o__, and o,

T U . / (33a3)
08 .
A, = S |
t amin (33b)
a?.
e =2
2 1—kt ~Ny )
o= 2 (33¢
D k=2
n (2.)

Note that o, is a function of o, U, and &, and is used for the purpose of simplifying

the following equations only.

Using these variables, the late-time concentration for k=1 is therefore
c =mg.p ,o,a;(e“’ o e")t" . (34)

If k= 2, then the density function is log-uniform, and the late-time concentration is

t

c=mordsma;[e—m-x(%+1)-e—r(1+1)}t-: - 69

If k= 3, then the density function is uniform, and the late-time concentration is

18

sl

A2 A,

r

c =mg. B o7 e "f('“ +2T +2) —e“(w:2 +21 +2) -3 (36)

27
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From the above equations we see that a family of curves is required for each value of &

since both aypin and ayax appear in all equations. However, inspection of the equations

indicates that the curves for each value of k will be identical until 7 approaches o ;!

min *

The harmonic mean of the density function (30a) and (30b) is

In (x,)%%%f , k=2
~ _ e ' — . (37)
oLy ln(}\.,) , k=3

o (k—3) K‘k_z L otherwise

Approximati0n§ may be made to (37) that are useful in understanding what controls the
harmonic mean of the distribution. These approximations are given in Table 2. Note
again that the mean residence time in the immobile domain is simply the inverse of a7, .
We make two points in regard to (37) and Table 2, and leave further discussion of
late-time behavior associated with power-law density functions to Section 4.2. First, if
the late-time slope of the BTC is less than 3 (i.e., k < 3), then the ha:monic. mean is

controlled by oypjn. However, if the late-time behavior of the BTC remains power-law
until- the end of the experiment, the parameter a,y,;; cannot be estimated from a BTC,.
Consequently, the harmonic mean (and therefore the ‘r;xean residence time in the
immobile domain) cannot be estimated if the BTC remains power-law until the end of
the experiment with a slope less than 3.

Second, if k < 3 and i = 0, then the harmonic mean is 0. Therefore, if a

BTC has a late-time slope of k£ < 3, and the behavior is due to mass transfer, this may

28
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indicate an infinite mean residence time in the immobile domain. It also causes the
second and higher temporal moments of the BTC to be infinite.

ﬁote that there is nothing that physically precludes a late-time slope between 2
and 3 being maintained to infinite time (i.e, 2 < k<3 as f < ©). A slope of k<2to
infinite time, however, would require an infinitely large immobile domain (i.e., infinite
capacity). Therefore, a slope of k£ < 2 cannot be maintained for infinite f:ime (for this
reason, k = 3/2 is possible with diffusion, but only until a time of ~ &*/Dp).

The late-time behavior of concentration, as given by (34) - (36) is shown in
Figure 4 for omin = 10° oypgy. Figure 4 also shows the solution to the ADMT equations
in the presence of a power-law density function of rate coefficients. The ADMT
equations were solved using STAMMT-L [Haggerfy and Reeves, 1999] for my; = 1 s kg

3.
3

fad=1s, 0. =15" o, =1x10°s"; k=1; B, = 1; and a Peclet number of 1000.

3.6. Summary of Late-Time Slopes

Figure 5 provides a summary of late-time slopes for s‘everal of the models
presented. Lafe-time slopes are given versus nondimensional time. Note that a BTC
with advection and dispersion will mask some portion of the slopes shown in this figure
at earlier times. The slopes given in Figure 5 will only be present wheﬁ 1>> a4 A
power-law slope is a coﬁstant at late-time, such as prdvided bryrthe gamma and power-

law density functions. Note that the conventional diffusion model is equivalent to the

lognormal density function with 6 = 0. The slope in the conventional model is 3/2 until

29
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approximately the mean residence time in the immobile domain (a/3Dg for 1-D

diffusion). Note that the lognormal density function with larger ¢ cannot provide a true

power-law BTC, but can hold the slope relatively constant over a iong time. All

lognormal density functions will approach an infinite slope as time goes to infinity.

4. Applications to Tracer Tests and Discussion

4.1. WIPP Tracer Tests

Figure 62 shows data and conﬁdence intervals from two single-well injection-
withdrawal ‘(SWIW) tracer tests conducted in the Culebra Dolomite Member of the
Rustler Fo-rmation at the Waste Isolation Pilot Plant (WIPP) Site in southeastern New
Mexico. The Culebra is a 7-m-thick, variably fractured dolomite, and is a potential
pathway to the accessible environment in the event of a radionuclide release from the
WIPP. These two ';ests were performed in the central well at two multi-well sites,
designated H-11 and H-19. The SWIW tests consisted of the consecutive injection of
one or more slugs of conservative tracers into the Culebra Dolomite, followed by the
injeﬁtion of a Culebra brine chaser (containing no tracver), and then by a resting period of
approximately 6.5 x 10* s (18 h). The tracers were then removed from the formation by
pumping on the same well until concentration was close to or below detection levels.
The total residence time (i.e., #54) of the slug in the formation was approximately 9.0 x
10% s (25 h). Details of the tracer tests are given in Meigs and Beauheim [in review] and
in Meigs et al. [in press]. Interpretation of the .SWIW tests by Haggerty et al. [in review]

suggest that the late-time behavior of the BTC is due to multiple rates of mass transfer.
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It is clear that neither heterogeneity nor tracer drift alone can be responsible for the
observed behavior, though a combination of the two may explain some fraction of it

[Meigs et al., in press; Lesoff and Konikow, 1997].

The SWIW data in Figure 6a display late-time slopes that are approximately
constant over several hundred hours. The slopes at all times for both BTCs are given in
Figure 6b, which was calculated using a 5-point, moving-window averaée. As can be
seen from both figures, the late-time behavior of both BTCs is essentiall_y power-law.
The H11-1 BTC has a slope of about 2.1 after 3 x 10° s (83 h). The slope of the H11-1
BTC appears to become more negative a_.fter about 3 x 10°s5 (830 h), but this may be due
to a 70% increase in the pumping rate at that time. In addition, the accﬁracy of the data
is relatively low after 3 x 10° s, making slope calculations uncertain. The H19S1-1 BTC
has a constant slope of about 2.3 from 6 x 10° s (170 h) to the end of the test. Note that
conventional (single-rate) diffusion can only provide a constant late-time slope of 3/2,
which is shown for comparison in Figure 6a.

The late-time behavior of the SWIW tests was interpreted by Haggerty ef al. [in
review] using a lognormal density function of diffusion rate coefficients (Dg/a®). As
shown in that paper, a lognormal density function does an excellent job of representing
the entire BTC (with ¢ =3.55 for H11-1 and o = 6.87 for H19S1-1). However, based on

the BTC data alone it is not possible to rule out other density functions of rate

- coefficients, including a gamma density function or a power-law density function.
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4.2. TImplications of Power-Law BTC Behavior

We note again that both the gamma and power-law density functions result in
power-law BTCs at late time. The conventional diffusion model also causes power-law
BTCs with a slope of 3/2 prior to  ~ @*/Dg. There are four important scenanios for such
power-law behavio;.

CASE 1 ~ Power-law behavior to infinite time and k < 3: The first scenario is that
the BTC behaves as a power law over all time (i.e., the slope of the BTC would be
power-law to infinite tifne) and the slope is less than 3. It is important to note that (1)
this is physically possible provided that the slope k is also greater than 2; and (2) several
papers effectively invoke Case 1 by assuming a gamma density function and finding
estimates of ) less than 1 [e.g., Connaughion et al., 1993; Pedit and Miller, 1994; Culver
et al., 1997; Werth et al., 1997; Deitsch et al., 1998; Kauffman et al., 1998; Lorden et al.,
1998]. In Case 1, the mean residence time in the immobile domain must be infinite.
Consequently, there can be no effective single-rate model that is equivalent to the
multirate model in the way that a single-rate first-order model is approximately
equivalent to a conventional single-rate diffusion model. No single-rate (either first-
order or diffusion) model can yield the same second or higher temporal moments as the

multirate model. In fact, any single-rate model (either first-order or diffusion) fit to data

_ will have parameters that are a function of the experimental observation time (i.e., the

experiment length).

CASE 2 — Power-law behavior longer than experimental time-scale and k < 3:

The second scenario is that the power-law behavior ends at a particular time that is

(V3]
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beyond the experimental observation time, and the slope 1s less than 3. In this case, the
mean residence time in the immobile domain cannot be ascertained from the
experimental data alone. In other words, it is impossible, based solely on the BTC data,
to estimate an effective rate coefficient: the effective rate coefficient could be either
undefined (as in Case 1) or simply longer than the inverse of the experimental time.

If the slope % 1s less than 2, then the power-law behavior either must end at some
time or the slope must steepen to greater than 2. Such is the case with convent?onal
diffusion and a slope of 3/2. Because the immobile domain cannot be infinitely thick, the
power-law behavior with k less than 2 must end at some time. However, without
information external to the tracer test data, fhe time at which the power-law behavior
ends (and therefore the mean re.sidence time in the immobile domain) cannot be known.

CASE 3 — Power-law behavior ends within experimental fime-scale: The third

scenario is that the power-law behavior ends within the experimental observation time.

An example of this is the conventional diffusion model with a slope of 3/2 at

intermediate time. In this case, an effective rate coefficient or mean residence time in the

.immobile domain can be estimated. The mean residence time will be larger for smaller

slopes, and for very small slopes will approach the inverse of the time at which the
power-law behavior ends. Note that Case 3 cannot be modeled by a gamma density
function because a gamma density function does not allow for an eﬁd to the power-law
behavior.

CASE 4 — Power-law behavior with k > 3: The fourth scenario is that the BTC

has a slope greater than 3. In this case the mean residence time can be estimated even if

the power-law behavior extends to infinite time. This is because the harmonic mean of a
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power-law density function is non-zero and dominated by the value of o, provided that
k>3,

Which scenario do the WIPP SWIW tracér tests fall into? Based on the BTC data
alone, H19S1-1 must be either Case 1 or Case 2. Since the power-law behavior exténds
to the end of the data set, it is not possible to estimate the mean residence time of the
immobile domain. We know only that the mean residence time must be at least the
inverse of the expérimenta} time (i.e, ~ 1.9 x 10°s). H11-1, on the other hand, may be
Case 3. If the marked change in slope at approximately 3 x 10°s is not primarily due to
the increase in pumping rate, then Hl I-11s Case 3. However, if this is an artifact of the
increase in pumping rate, then H11-1 may be Cése 1 or 2. Given the data uncertainty
after approximately 2 x 10°s (560 h) and the fact that we have not invg:stigated the case

of time-varying pumping rate, we remain uncertain as to which case H11-1 falls under.

5. Conclusions

With improvements in experimental and analytical techniques, breakthrough
curves (BTCs) are now available from many laboratory and field experiments with
several orders of magnitude of data in both time and concentration. The late-time
behavior of BTCs is cn’tically important for the evaluation of rate-limited mass transfer,
especially if discrimination between different models of mass transfer is desired.

Double-log plots of BTCs are particularly helpful and commonly yield valuable

information about mass transfer.

We have six primary conclusions.
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First, we derived a simple analytical expression for late-time BTC behavior in the
presence of mass transfer. Equation (12) gives the late-time concentration for any linear
rate-limited mass transfer model for either zero-concentration or equilibrium initial
cénditions. The expression requires .the advection time-scale, the zeroth moment of the
injection pulse, the initial concentration in the system, and the memory function g{¥) be
known. Note that caution is advised in using (12) if the variance of 154 may be large
(such as in a strongly heterogeneous izelocity field).

Second, the memory function g(f) is proportional to the residence time
distribution in the immobile domain given a unit impulse at the surface of the immobile
domain. This memory function is simply the derivative of the Laplace transform of the
density function of rate coefficients describing the immobilé domain. Consequently, tixe
late-time concentration is proportional to the first or second derivative of the Laplace
transform of the density function of rate coefficients.

Third, the effective rate coefficient that yields the same zeroth, first, and second

BTC temporal moments as does the full density function is the harmonic mean of the

density function of rate coefficients. However, for any density function of rate

-

coefficients with power-law of as o > 0 and Where k < 3, the harmonic mean is zero.
Consequently the meén residence time in the immobile domain is infinite and there is no
single ¢ffective rate coefficient. This applies both to density ﬁmctions.’of diffusion rate
coefficients and density rﬁmctions of first-order rate coeﬁiciénts. Many such

distributions have been invoked in the literature.
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Fourth, if the BTC (after a pulse injection) goes as ~ rkas 1o o, then the
underlying density function of rate coefficients must be ~ o> as o > 0. This holds for
density functions of both first-order and diffusion rate coefficients. For a BTC from a
medium with 1nitially non-zero but equilibrium concentrétions, the equivalent BTC goes
as 1k |

Fifth, if the slope of a BTC (after a pulse injection) goes 1o k as
t 2 o, and k < 3, then the mean residence time in the immobile domain 1s infinite. (This
is a corollary to the third and fourth conclusions.) Consequently there is no single
effective rate coefficient in this fnedium. A second consequence is that any single-rate
(either diffusion or first-order) rate coefficient estimated from the BTC will be a function
of experimental observation time. Again, for a BTC from a medium with initially non-
zero but equilibrium concentrations, then the equivalent BTC goes as rka,

Sixth, if a BTC exhibits power-law behavior (¢ ~ t’k) to the end of the
experiment, then one of two cases must exist. If k£ < 3 then the mean residence time (and
effective rate coefficient) cannot be estimated from the BTC. The mean residence time
must be at least the experimental observation time and could be infinite. If ¥> 3 then the

mean residence time (and its inverse, the effective rate coefficient) can be estimated.
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Figure 1: Late-time solution and full ADMT solution for spherical diffusion.
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Figure 2: Late-time solution and full ADMT solution for gamma distribution of first-
order rate coefficients.
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Figure 3: Late-time solution and full ADMT solution for lognormal distribution of
diffusion rate coefficients. The value e" is the geometric mean of the
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Figure 4: Late-time solution and full ADMT solution for power-law distribution of first-
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Nondimensional Time

Figure 5: Slopes of late-time double-log breakthrough curves. Note that during the time
that the BTC is dominated by advection and dispersion (i.e., at early time), the
slopes will be different from those shown here. Nondimensional time is given
as in Figures 2, 3, and 4 for each of the models.
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Figure 6: Plots of SWIW data from the WIPP site (a) and the slopes of the data (b). For
comparison of slopes to conventional diffusion, the extra lines in 6(a) have
slopes of 3/2 and 5/2. Confidence intervals (95%) are shown as thin solid

lines above and below the data.




