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Abstract This work points out that the costates are
actually discontinuous functions of time for optimal control
problems with Coloumb friction. In particular these
discontinuities occur at the time points where the veloeity
of the system changes sign. To our knowledge, this has
not been noted before. This phenomenon is demonstrated
on a minimum-time problem with Coloumb fi-iction and
the consistency of discontinuous costates and switching
functions with respect to the input switches is shown.

1. Introduction

Most optimal control research work has dealt with
systems in which the state equation is continuous in the
states. Exceptions include the work of [Willigenburg and
Loop, 199 1] who included Coloumb friction when
generating minimum-time trajectories of a rigid two-link
robotic arm. Since the costates for such a problem are
discontinuous, as we shall see, the switching functions
should also be discontinuous. However, no such
discontinuities could be seen in the plots given in
[Willigenburg and Loop, 1991]. It is conceivable that the
discrepancies between the input switches and the switching
functions observed by these researchers could be explained
by the fact that they did not include the “jumps” or
discontinuities in the costates.

Herein we will explain why one might expect
discontinuities in the costates, and we will demonstrate
that the calculated discontinuities yield consistency

between the switching functions and the input switches for
a minimum-time problem.

2. Motivation for Discontinuous Costates

The reason to expect discontinuities in the
costates is best explained with a simple example. Consider
the following optimal control problem.

Min tf (1)

subject to
j = u –sign(~) (2)

q(o) = go (3)

fj(o) = V. <0 (4)

!l(~f) = ~f > ~o (5)

~(tf ) = o (6)

-Um=susum>l (7)
LettingXl= q and xl = ~, the state equation is

()(xl _ X2
X2 – u – sign(x2 ))

(8)

The Hamiltonian is
H = 1+%,x2 +22u–A2sign(x2) (9)

where A, and A2 are the costates. Then,
c3H

— = Al –2A23(x2 )
ilx,

(10)

where 6(.) is the dirac delta function, which appears
because of the infinite derivative of the signum function.
The factor of 2 in (10) appears because the magnitude of
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the instantaneous change in the signum function is 2.
Since

a.-: (11)

we have

a,=o (12)

a, = -A, +2 A25(x, ) (13)

3. Numerical Demonstration of Consistency of
Discontinuous Costates

In this section we will solve the optimal control
problem of section 2. Consider the case of u~,, =2,

Vo=–1, andqt =1. Figure 1 below shows the rninimum-

time input, states, and costates.
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Figure 1. Input, States, and Costates Versus Time

We see in Figure 1 that the input is bang-bang,
switching from its maximum value to its minimum value.
Let tl he the time the velocity g changes sign and t, the

time the input switches. From time zero to the time
tl = O.3333s at which the velocity changes sign, the

acceleration is at its maximum possible magnitude of

1-%=-11=1-31, where the friction force actually he~ps the
input bring the velocity to zero.

From t, to the input switch time t.=1.656s, the

acceleration is only umX– 1 =1, where the friction force is

now opposing the input. Finally, after t,,the friction force

aids the input again in bringing the velocity to zero at the
final time tf.

Using the fact that the value of A(0) is given by
the derivative of the cost-to-go with the initial state, one
can calculate A(0) to be:

(14)

A,(o) = -0.5853 (16)

The value of a, (t,- J just before the velocity changes sign

is from (15) and (16):
a2(t,-)=–l/3 (17)

which is half the value of the jump in Aq. In Figure 1, we

observe this discontinuity in Az. Clearly, without this

jump in A2, A2would not be zero at the switching time t,.

4. Conclusion

We demonstrated that the costates and switching
functions are not continuous fimctions of time for problems
with Coloumb friction, because the derivative of the
signum function is 26(t – t]) where tl is the time at which

the argument of the signum funrction changes sign. This
may explain discrepancies observed in previous work in
which switching function appeared to have been calculated
to be continuous despite the presence of Coloumb friction
and changes in the velocity’s sign.
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Hence, we have from (13):

a, = o.7559+2A2a(t-t, ) (15)

and
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