Sond_ 000 -|3] 8¢

TOWARDS AUTOMATIC PLANNING FOR MANUFACTURING

GENERATIVE PROCESSES

TERRIL. CALTON
Intelligent Systems and Robotics Center
Sandia National Laboratories’

RECEIvEL
JUN 2 9 2999
STy

Albuquerque, NM 87185-1008

Abstract
Generative process planning describes methods pro-
cess engineers use to modify manufacturing/process plans
after designs are complete. A completed design may be
the resuit from the introduction of a new product based
on an old design, an assembly upgrade, or modified
product designs used for a family of similar products. An
engineer designs an assembly and then creates plans
capturing manufacturing processes, including assembly
sequences, component joining methods, part costs, labor
costs, etc. When new products originate as a resuit of
an upgrade, component geometry may change, and/or
additional components and subassemblies may be added
to or are omitted from the original design. As a result
process engineers are forced to create new plans. This is
further complicated by the fact that the process engineer
is forced to manually generate these plans for each prod-
uct upgrade. To generate new assembly plans for product
upgrades, engineers must manually re-specify the manu-
facturing plan selection criteria and re-run the planners.
_ To remedy this problem, special-purpose assembly plan-
. ning algorithms have been developed to automatically
recognize design modifications and automatically apply
previously defined manufacturing plan selection criteria
and constraints.

Keywords: Assembly Planning, Process Planning

1. Introduction

This paper introduces methodologies that are natural
algorithmic progressions of an automated assembly plan-
ner towards fully automating generative process plan-
ning. Generative process planning describes the methods
process engineers use to modify manufacturing (or proc-
ess) plans after a design is complete. Section 2 introduces
an automatic assembly planning framework used as the
foundation for automating generative process planning
and provides an overview of motivational factors pro-
moting the development of automatic generative process
planning techniques. Section 3 places the assembly
planner in the context of generative process planning. It

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

further introduces geometric problems associated with
top-level assembly planning and special-purpose routines
implemented within the assembly planner to solve those
problems. Methods are presented for saving, restoring,
and propagating subassembly analyses for top-level as-
sembly analysis. Section 4 describes the implementation
of constraint rules enabling users to automatically "rec-
oncile" existing constraints applied to an older version of
an assembly to a new version of an assembly. Finally,
Section 5 concludes the paper and presents future re-
search areas.

2. Background and Motivation

The approach taken to manufacturing planning is
obviously critical to the design, implementation and per-
formance of automatic generative process planning. At
Sandia National Laboratories, researchers have devel-
oped an automatic assembly planner, called Ar-
chimedes® [1]. This system was used as the basis for
realizing automatic generative process planning.

2.1 Manufacturing Planning Approach

Archimedes is a constraint-based interactive assem-
bly planning software tool used to plan, optimize, simu-
late, visualize, and document sequences of assembly.
Given a CAD model of the product, the program auto-
matically finds part-to-part contacts, generates collision-
free insertion motions, and chooses assembly order. Dis-
assembly operations are generated using the Non-
Directional Blocking Graph approach discussed in [2].
A graphics workstation’s hardware Z-buffer is used to
quickly find collisions between complex facetted models.
The search space implemented in the system is an
AND/OR graph of subassembly states [3] and the opera-
tions used to construct them from smaller subassemblies.

During system application, the engineer specifies a
quality metric in terms of application-specific costs for
standard assembly process steps, such as part insertion,
fastening, and subassembly inversion. Combined with an
engineer’s knowledge of application-specific assembly
process requirements, Archimedes allows systematic ex-
ploration of the space of possible assembly sequences.
The engineer uses a simple graphical interface to place
geometric overrides and manufacturing constraints on




DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document. -




the valid assembly sequences, such as defining subas-
semblies, requiring that certain parts be placed consecu-
tively with or before other parts, declaring preferred di-
rections, etc.

Two types of constraints on assembly plans are util-
ized by the system: strategic and tactical. Strategic con-
straints apply to the entire assembly and its plan, while
tactical constraints only apply to certain subsets of parts.
The constraint framework provides a library [4] of con-
straint types from which a user can instantiate on the
assembly plan. This framework provides the underlying
mechanics towards assembly optimization and lends it
self towards automatic planning for manufacturing gen-
erative processes.

2.2 Motivational Applications
The Archimedes System has been applied to hun-

dreds of assemblies, ranging from automotive and air-

craft to such things as designing assembly sequences for
several weapon safety devices and for the B61 bomb. The
B61, with improved non-nuclear components, has re-
placed the B53 in the U.S. stockpile. The scope of modi-
fications made to the B61 requires exhaustive testing to
certify the modified bomb's safety, functionality, and reli-
ability. In an early experiment, Archimedes was applied
to the B61 center-case. It was estimated that 2.5-3 per-
son months were required to manually create training
documentation for retrofit operations using a commercial
animation package. In an effort to reduce this time, Ar-
chimedes was applied to the center-case assembly. The
experiment showed that there were many assembly plan-
ning issues associated with CAD revisions that went be-
yond the existing capabilities. For instance, the first step
required to apply Archimedes was to translate the CAD
data to the ACIS format. Initially, the entire center-case
assembly, containing 547-parts, was selected for analysis;
however, due to CAD transiation problems a 303-part
subassembly was exercised during the experiment. Ef-
fectively, the original design was modified by removing
parts.

The planner was first applied to the original (Iarger)
solid model to identify inconsistencies in the CAD
model. This allowed for the detection of critical design
flaws to be caught early in the re-manufacturing phase
and a reduction in scheduling and costs. Next, the sys-
tem was used to test feasibility of disassembly, checking
‘geometric accessibility for part removal. Since the plan-
ner plans only for straight-line motions, and this assem-
bly contained numerous flexible parts, such as cables,
that could not use straight-line assembly motions, the
part-mating operations involving those parts were over-
rode. This was a long and tedious manual process. When
it was decided to exercise the smaller assembly, these
same tedious steps had to be repeated, since the existing
planning algorithms could not reconcile the differences

(part count, geometry, constraints and overrides) between
the two assemblies automatically.

This same problem was inherent in the apphcatlon
of the planner to the B61 nose assembly. Unlike the cen-
ter-case assembly, the nose assembly went through sev-
eral revisions before finalization. However, just like the
center-case assembly application, for each revision the
assembly planning steps had to be repeated (often dupli-
cated). To complicate matters further, the planner had to
be applied to each subassembly even if they were identi-
cal. Further, when the two fully analyzed subassemblies
were brought together to form a single assembly, instan-
tiation of all constraints had to be repeated manually in-
stead of automatic inheritance.

3. Generative Process Planning Issues

Section 2.2 identifies three fundamental problems
inherent in automatic generative process planning. These
prablems are not restricted to Archimedes. They repre-
sent a fundamental class of problems inherent in all as-
sembly planners and have plagued the manufacturing
community for years. It is only recently, with the ad-
vancements in computer technology, that these problems
have been brought to the forefront. Section 3 is devoted
towards solving these problems. The underlying princi-
ples, as they relate to automatic assembly planning, are
discussed, and solutions to each are provided.

3.1 Re-design

Two fundamental issues associated with assembly
design modification are geometry and function. For pur-
poses of assembly planning only the geometry is dis-
cussed. There are three geometry-related design modifi-
cation principles for any given assembly. An assembly
may be modified by (1) removing part(s), (2) changing
the shape of the part(s), (3) adding parts(s), or by any
combination of the three. From an assembly planning
perspective, part removal is the simplest form of modifi-
cation to deal with, whlle the addition of parts is the most
difficuit.

To address the first, the removal of parts, a geomet-
ric override was added to the original Archimedes over-
ride architecture that removes all associations of that part
with others (e.g., part contacts, overrides, and con-
straints) and effectively hides the part from the user's
view. In the planner, routines to save and restore assem-
bly plans, assembly constraints, and geometric overrides
are implemented at the top-level assembly. This allows a
user to analyze an assembly at the top-level and save all
of the analysis information. When the system is applied
to the same assembly at a later time or to different gen-
erations of that assembly, the information may be in-
voked by restoring the files.

When the user loads in the assembly, the constraint
and override files are automatically loaded. The assem-
bly is represented by data bit-vector. The length of vector




corresponds to the number of parts in the assembly. In
all constraints and overrides, a "0" in a particular bit
means oneg thing about a part and a "1" means something
else, depending the type of constraint or override that is
implemented. In this case, a "0" in the bit-vector notifies
the system that that particular part is no longer in the
assembly. While the part is still present in the assembly
tree (i.e., the length of the bit-vectors for all constraints
and overrides is constant), for all intense purposes it has
been removed.

To address the second, changing component geome-
try, the Archimedes’ contact analysis routines, which
automatically check contacts between parts, is used. If
the re-design alters the contacts between parts, the user is
automatically informed and given the opportunity to ad-
dress the issue. The same is true for previously defined
constraints and overrides.

The third issue, the addition of parts, is the most
difficult issue. Because the assembly planner plans for
assemblies at the top-level and the length of data bit-
vector representing the number of parts at the top-level is
fixed, the planner can not plan for assembly upgrades at
the top-level when the part count increases. This is a
major research area on its own, and attention to solving
this problem should be given to future work in this area.

3.2 Planning with Subassemblies

. This section deals with generative process planning
principles, 1 and 2 above. It is pointed out in the previ-
ous section that the planner plans for assembly at the top-
level of the assembly and does not allow the propagation
of information resulting from independent applications at
the subassembly-level to the top-level. The first step to-
wards solving this problem was to incorporate save and
restore routines for the constraints and overrides result-
ing from the application of Archimedes to the subassem-
blies, which would automatically load when Archimedes
was applied at the top level of the assembly. The un-
derlying problem with this approach is how to resolve
conflicts between the constraints and overrides when they
are propagated to the top. Section 4 addresses the con-
flict resolution issues. Here, methodologies incorporated
into the planner for automatically propagating informa-
tion generated at the subassembly-level to the top-level
are presented.

3.2.1 Automatic Propagation

When the planner is applied at the subassembly-
level, constraints and overrides are stored under the de-
fault name of the subassembly (e.g., subassembly-
name.constraints and subassembly-name. overrides).
When loading an assembly (the base assembly or top-
level assembly), the subassembly constraints are auto-
matically loaded using the subassembly-name.constraints
default file. For the constraint restoration subroutine that
‘Testores two subassembly sets, bits in the data vector are

y E . v H S;C‘A E o
= -3

set as follows for: (visible - 0 and group - 1). For the
constraint restoration subroutine that restores three sub-
assembly sets, bits in the data vector are set as follows
for: (visible - 1, secondgroup - 0, and group - 0). For
each subassembly file restoration, the number-of-parts bit
for the full assembly set is equal to the number of parts in
the subassembly. The restoration algorithm changes the
subassembly's portion of the assembly data vector to be
that read from the subassembly file. Any parts in the
vector not belonging to the subassembly are set to 0. The
algorithm changes the number-of-parts bit to equal the
number of bits set in the data vector.

When loading an assembly, the subassembly over-
rides are also automatically loaded using the subassem-
bly-name.overrides default file. The subassembly over-
rides are loaded with a new override class feature, called
IsTopLevel, set 0 (or false), to indicate that they were
loaded from the subassembly's overrides file, not from the
base assembly's overrides file. Assembly overrides are
created with IsTopLevel set to 1 (#rue). Only top-level
overrides are saved for an assembly. Conflicting over-
rides made at the base assembly level take precedence
over overrides made locally to the subassembly.

3.2.2 Demonstration of Propagation Effects

To illustrate the propagation of design modifica-
tions imposed at the subassembly-level for later use in
planning at the top-level, conceptual designs of two
similar assemblies, A and B, are shown in Figure 1.

g @ S;and T 4 @

< S] andT;
S] C':i
Ti<B
> Sr=T
Assembly A

Assembly B

Figure 1. Propagation effects for planning with subassemblies.




The only difference between the two is the shape
of the shaft. Assemblies 4 and B are composed of three
subassemblies and 6 fasteners. Viewing the diagram
from the bottom up, the first three parts make up the
first set of subassemblies, S; and T), S; <A, T/ B, S,
= T;. The next three parts make up the second set of
subassemblies, S; and T, S; A4, T, B, S, =T, All
the remaining parts (with the exception of the fasten-
ers) make up the third set of subassemblies, S; and T,
S;cA, T;cB, S; #T;.

Suppose B is modified at the top-level by changing
the shape of a part in T, as shown in Figure 2. Then the
change only affects B. However, if the B is modified at
the subassembly-level (at 7)) then A is no longer feasible.

s

0

Figure 2. Design modification for Subassembly T.

On the other hand, suppose 4 is modified by length-
ening the shaft and by cutting a rectangular hole in the
plate to slide it into (see Figure 3). In this case, the
change does not affect B at any level of planning.

O — S

Figare 3. Design medification for Subassembly S;.

0

4. Conflict Resolution

Rules were incorporated in Archimedes to resolve
conflicts between top-level and subassembly-level con-
straints and overrides (when restoring, adding, editing,
or activating) at the top-level of the assembly. This sec-
tion describes the implementation of the constraint and
override rules enabling the planner to automatically "rec-
oncile" existing constraints and current constraints.

4.1 Constraints

Based on the various constraints and intended pur-
poses, four different methodologies were developed for
implementing the rules. In defining the methodologies
for automatic generative process planning, the term cur-
rent constraint refers to the constraint that is being
added, edited, or activated. The term existing constraint
refers to the constraint that is in conflict with the current
constraint. Tables 1-4 present the methodologies.

Table 1, Methods that suspend existing constraints on conflict give top-level
constraints precedence over subassembly constraints during restoration, and
new additions or edit changes precedence over existing.

Constraint Definitions and Rules

current group intersects with existing second group, and
the current second group intersections with existing
group, then suspend the existing constraint.

req_order Require ordering between particular part insertions.
part Rule: For two REQ_ORDER_PART constramts, if the
current group intersects with the existing second group,
and the current second group intersects with existing
group, then suspend the existing constraint.

req_paths Require that each assembly action be along one of the 6
axial coordinate directions of a given coordinate system, ora
selected subset of these 6 directions.

Rale: Iftwo REQ_PATHS AXIAL constraints intersect
and thetr required paths are not equal, then suspend the
existing constraint.

req_stack Specifies a set of parts to be assembled one at a time in a
given direction.

Rule: If 2 REQ_STACK constraints intersect and their
required trajectories are not equal, suspend the existing
constraint.

req subseq | Require that a particular assembly subsequence be used
somewhere in the plan. This might be invoked because
the sequence is particularly efficient or reliable. The
front-fill then back-fill subsequences of {7] are relatively
complex examples.

Raule: If two REQ_SUBSEQ constraints are the same
type (assembly or disassembly) and their groups intersect,
then suspend the existing constraint.

req_tool Requires that a collision-free placement of a given tool
use-volume must exist in the assembly during a certain
operation. See {8] for more details.

Raule: If two REQ _TOOL constraints primary parts are
the same, suspend the existing constraint.

req_sub- Allows a user to specify the order in which a subse-
sequence quence of parts is assembled.
parts Rule: If two REQ_SUBSEQUENCE_PARTS groups

intersect, then suspend the existing constraint.

Table 2. Methods that suspend current constraints on conflict give subas~
sembly-level constraints précedence over top-level constraints during resto-
ration, and existing constraints take precedence over new additions or edit

Constraint Definitions and Rules

req_subassy | Require a particular subassembly be used [9].

Rule: If two REQ_SUBASSY constraints intersect, but
neither is a subset of the other, then suspend the current
constraint. Ifthe current REQ_SUBASSY intersects
with an existing REQ_SUBASSY WHOLE, but neither
is a subset of the other, then suspend the current con-

straint.
req _subassy | The same as REQ_SUBASSY, but tells the pianner in
_ whole addition not generate a plan to construct subassembly.

Rule: Iftwo REQ_SUBASSY_WHOLE constraints
intersect, but neither is a subset of the other, then suspend
the current constraint. If current

REQ_SUBASSY_ WHOLE intersects with an existing
REQ_SUBASSY, but neither is a subset of the other, then
suspend the current constraint.

Table 3. Constraints/rules unioning top-level and subassembly constraints.

Constraint Definitions and Rules

req_order_ | Require some ordering between 2 or more liaison crea-

tiaison tions; typically stated in a Boolean form such as 1 (2 and
3), or as a set of such Boolean statements involving many
liaisons [5,6].
Rule: For 2 REQ_ORDER_LIAISON counstraints, if

Constraint Definitions and Rules

req order_ | Require that an assembly plan start with a given part.

first Rule: If the current REQ_ORDER_FIRST intersects
with an existing REQ_ORDER_FIRST, suspend the
existing constraint. Union current constraint with any
existing REQ_ORDER_FIRST constraints and delete
the existing constraints.

req_order_ | Requires that a certain part or set of parts be placed last.

last Rule: If the current REQ_ORDER_LAST constraint

intersects with an existing REQ _ORDER_FIRST con-
straint, suspend the existing constraint. Union the current
constraint with any existing REQ_ORDER_LAST con-

straints and delete the existing constraints.




req_ Allows the user to specify a part or collection of parts that
SUCCess_ must be removed from an assembled product. This is
part especially usefual for servicing/ repair,/upgrade

Rule: Union current constraint with any existing
REQ_SUCCESS_PART constraints and delete the ex~
isting constraints.

Table 4. Methods that do no conflict resolution implement the current
constraint addition or change regardless of any existing constraints.
Constraint Definitions
req lin_part | Requires that parts be inserted one at a time [10].
prh_state Do not aflow the assembly to enter a given state’[11].
_subassy | Prohibit use of certain subassemblies, or possibly any
subassembly containing certain part combinations.
req cluster | Require set of parts be added to the assembly consecu-
tively, (without interruption by other parts {12]).
req_fastener | Require certain parts be treated as fasteners{13,14].
req linear | A combination of REQ CLUSTER and

cluster REQ LINEAR SUBSET.

req_part sp | Any special-purpose part constraint, such as those deal~
ecial ing with liquids, springs, snap-fit parts, etc

req_stat Regquires a set of parts to be in the stationary subassem-

bly when mated with any of another set.

min_simul- | Minimize use of simultaneous lizison creation. In some
liaisons contexts, actions are awkward when higher numbers of
liaisons are established by an action.

minreorient | Minimize the number of assembly re-orientations.

4.2 Overrides

Rules for resolving conflicts between subassembly
overrides and top-level overrides are much simpler than
the constraints. When applying the system to the assem-
bly at the top-level, overrides for the subassemblies
(parsing the subassembly tree bottom-first, deleting
similar overrides at it goes) are automatically loaded.
The system then loads the overrides for top-level assem-
bly (deleting similar overrides, in this case any non-top-
level overrides of same type for the same part), if any
exist. On restoring all top-level overrides from a file, the
system removes all top-level overrides and then loads in
new top-level overrides (deleting similar overrides).

5. Conclusions and Future Work

A synopsis of problems and partial solutions associ-
ated with automating generative process planning has
been provided. While many assembly planners exist, Ar-
chimedes is the only known system, which truly gener-
ates assembly plans automatically; and, to the author's
knowledge no automatic assembly planner has ever com-
pensated for automatic planning for generative processes.
The methodologies presented in this paper are natural
algorithmic progressions of the Archimedes system to-
wards fully automating generative process planning.
The system has been tested on numerous assemblies and
has shown significant increases in efficiencies in plan-
ning for assembly upgrades and the results are propor-
tional with task difficulty. For example, it took approxi-
mately 1/2 day to analyze and instantiate constraints on
the nose section of the B61 mentioned in Section 2.2.
With the generative process planning capabilities, this
time was reduced to planning time only, approximately 1

minute. It is difficult to obtain precise measures of effi-
ciency since there many variables affecting the process
(e.g., user experience, user familiarity with the assembly,
assembly size, number of initial constraints and over-
rides, etc.).

Three geometry-related design modification princi-
ples were presented: modification by (1) removing
part(s), (2) changing the shape of the part(s), (3) adding
parts(s), or by any combination of the three. Automatic
planning algorithms for (1) and (2) were presented and
tested. Future work needs to be directed towards the de-
velopment of algorithms to fully automate the propaga-
tion of the assembly constraints and overrides when parts
are added to an assembiy.

References
[1,4] R. E. Jones, R. H. Wilson, and T. L. Calton. Con-
straint-based interactive assembly planning. In Proc.

* [EEFE Transactions On Robotics and Automation, 1998.

[2] R. H. Wilson and J.-C. Latombe. Geometric reason-
ing about mechanical assembly. Artificial Intelligence,
71(2):371-396, 1994.

[3] P. Langley. Systematic and nonsystematic search
strategies. In Artificial Intelligence Planning Systems:
Proc. Of the First Intl. Conf., 1992.

[5,12] N. Boneschanscher and C. J. M. Heemskerk.
Grouping parts to reduce the complexity of assembly se-
quence planning. In Information Control Problems in
Manufacturing Technology 1989: Selected Papers from
the 6" IFAC/IFIP/IFORS/IMACS Symposium. E. A.
Puente and L. Nemes, Eds. New Yourk: Paergamon
Press, 1989, pp. 233-238.

[6] J. D. Wolter, S. Chakrabarty, J. Tsao. Mating con-
straint languages for assembly sequence planning. In
IEEE Trans. Robot. Automat., to be published.

[7,11] D. F. Baldwin, T. E. Abell, M.-C. M. Lui, T. L.
De Fazio, and D. E. Whitney. An integrated computer
aid for generating and evaluating assembly sequences for
mechanical products. IEEE Trans. On Robotics and
Automation, 7(1).78-94, 1991.

8] R. H. Wilson. Geometric reasoning about assembly
tools, Tech. Report SAND95-2423, Sandia Labs, 1996.
[9] T. L. De Fazio and D. E. Whitney. Simplified gen-
eration of all mechanical assembly sequences. /EEE
Journal of Robotics and Automation, RA-#(6):640-658,
1987. Errata in RA-4(6):705-708.

[10] J. D. Wolter. On the Automatic Generation of Plans
for Mechanical Assembly. PhD thesis, Univ. of Michi-
gan, 1988.

[13] L. S. Homem de Mello and A. C. Sanderson. A
correct and complete algorithm for the generation of me-
chanical assembly sequences. In IEEE Trans. Robot,
Automat., vol. 7, pp. 228-240, Apr. 1991.

[14] J. M. Miller and R. L. Hoffman. Automatic assem-
bly planning with fasteners. In Proc. IEEE Int'l. Conf
On Robotics and Automation. 1989, pp 69-74.




