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ABSTRACT: An integrated approach, including a continuum theory of sintering and
mesostructure evolution analysis, is used for the solution of the problem of bi-layered structure sintering.
Two types of bi-layered structures are considered: layers of the same material different by initial porosity,
and layers of two different materials. The effective sintering stress and the normalized bulk modulus for the
bi-layer powder sintering are derived based on mesoscale simulations. The combined effect of the layers’
porosity and differences in sintering rate on shrinkage and warpage is studied for both sintering on a rigid
substrate and free sintering.

1. NTRODUCTION

A continuum theory of sintering has been intensively developed over the last
decade. This modeling approach enabled realistic description of the macroscopic
behavior of porous and powder materials subjected to densification (treatment by
pressure and sintering), including analysis of macroscopic shape evolution and spatial
distribution of stresses, strains and density. The accuracy of the modeling results depends
on the correctness of the constitutive parameters employed by the continuum theory of
sintering. Among those are the sintering stress and the bulk and shear moduli of material
resistance.

The present work is an attempt to link two different levels of material description:
meso and macro, thereby enabling a new continuum-structural modeling approach. The
above-mentioned material constitutive parameters (in particular, the effective sintering
stress, and the bulk modulus) are determined by a mesoscale Monte-Carlo simulation of
the sintering of a 2-D grain structure (described in details in a companion paper [1]).
These parameters are considered to be functions of one structure characteristics -
porosity.

The obtained values are substituted into a finite-element code based on the
continuum model of sintering. Here we demonstrate the usage of this code for modeling
of sintering of bi-layered ceramic composites.

2. DETERMINATION OF CONSTITUTIVE PARAMETERS

In accordance with the continuum theory of sintering [2], the mechanical response
of a nonlinear-viscous porous body subjected to sintering and an external load can be
described by a rheological (constitutive) relationship connecting components of stress
tensor G;; and strain rate tensor &; :
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where W is the so-called "equivalent strain rate”, and o(W) is the "equivalent stress"; ¢
and \yare the shear and bulk viscosity module, which depend on porosity 6 (for
_20-9)
3 8

if i=} and Sij =0 if i#j); é is the first invariant of the strain rate tensor, i.e. sum of

example, following [3], ¢ = (1-6)°, ); 8; is a Kronecker symbol (3, =1

tensor diagonal components: é=¢,; +&,, +£&3;.

The porosity 6 is defined as 1—-—p-, where p and p; relative and theoretical

Pr

(corresponding to a fully-dense state) densitites, respectively. Physically, é represents the
volume change rate of a porous body.
Equivalent strain rate W is connected with the current porosity and with the invariants of
the strain rate tensor:

W= ﬁ (P?z +\lfé2 (2)
{ is the second invariant of the strain rate tensor deviator and represents, physically, the
shape change rate of a porous body:

1 1. Y7
Y-‘-[(éij _géaij Iéij _géaij )] (3)

Physically, ¥ represents the shape change rate of a porous body. It can be expressed in
terms of the main elongation rates: ¢,,¢,,£,:

7=‘J—§J(El ~85)% + (8, —83)2 +(§5-8))? 4)

o(W) determines the constitutive behavior of a porous material. If (W) is described by
the linear relationship: o(W)=2n,W , where 1, is the shear viscosity of a fully-dense

material, one obtains the equation corresponding to the behavior of a linear-viscous
porous body:

. 1\
Oy =2T]o[(peij '*'(W‘g (P}Sij]"'PLsij &)
P, is an effective sintering stress. .

In the constitutive relationship (1), three main parameters Py, @, and y should be
determined as functions of porosity.

Effective sintering stress
In the framework of the continuum theory of sintering, the effective Laplace
pressure (sintering stress) Py is defined:

oF
P =35 6)
where F is a free surface energy, and ¢ is a porous volume subjected to sintering.
Effective sintering stress corresponds to the result of the collective action of local
capillary stresses in a porous material. The relationship between the effective and local
Laplace pressure depends on the procedure of averaging of the above mentioned local
stresses over a macroscopic porous volume.
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A question of the determination of the effective Laplace pressure (“‘sintering
stress”, “sintering potential”, “sintering (driving) force”) has been studied by many
authors [].

Skorohod [3] suggested a stochastic approach for determination of the effective
Laplace pressure.

Beere [4] determined the “driving force for sintering” as the difference in vacancy
concentrations at the pore surface and the grain boundary. The sintering force in this
model can be expressed as a function of porosity through the dependence between pore
volume fraction and dihedral angle between grain surfaces. The expressions for the
sintering force were obtained for the volume and grain boundary diffusion mechanisms.
Here the sintering force is inversely proportional to the grain size.

Bordia and Scherer [5] demonstrated that, for linear-viscous models, the effective
Laplace pressure can be expressed as a product of the volume shrinkage rate and the
effective bulk viscosity. Thus, the effective Laplace pressure can be derived for the
models which provide explicit relationships for these two values.

Rahaman et al. [6] obtained an expression for the sintering stress using the Zener
relation. The sintering stress is represented as the ratio between surface tension and the
product of the grain size and porosity. Thus, in the framework of this model, the sintering
stress increases with density for a fixed grain size. However, the experiments on sintering
of CdO powder indicated the decrease of the sintering stress with increasing density
when grain growth occurs (which is in agreement with the results of Beere [4]).

Hsueh et al. [7], using a visco-elastic analysis and based upon experimental data
for hot pressing experiments of Al,O3 powder, came to the conclusion of the constancy of
the sintering stress. It should be noted, that hot pressing involves additional factors in
comparison with free sintering (such as friction forces, for example) which can be a
reason for the deviation of these results from those obtained by Beere [4] and Rahaman et
al. [6].

De Jonghe and Rahaman [8] determined the thermodynamic meaning of the
sintering stress for two-dimensional porous bodies. They postulated that the sintering
stress for a densifying powder compact can be considered as an equivalent applied stress
that would produce the same densification rate for the system, at identical geometry but
with surface tension effects absent. Basically, this definition is limited by the case of
homogeneous porous material.

Ashby [9] introduced two expressions for the effective Laplace pressure
considering two stages of sintering (see Fig.1). At the first stage (when the relative
density is not higher than 92%), an open character of porosity prevails. Here, for the
derivation of the effective Laplace pressure, the expression for the average contact area as
a function of the relative density is used. At the second stage, pores are separated. Here
the effective Laplace pressure is defined as a ratio of the double surface tension and the
pore radius. The expression for the dependence of the pore radius on the relative density
(obtained by Swinkels and Ashby [10]) is substituted into the relationship for the
effective Laplace pressure which, thus, becomes a function of the relative density as well.
For both stages, the effective Laplace pressure increases with the increase of the relative
density. These results have been modified by Cocks [11] who introduced an additional
itemn responsible for the increase in grain boundary area.
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Later, the expression for the effective sintering stress (sintering potential) was
derived for the different controlling mechanisms of material flow under sintering.

McMeeking and Kuhn [12] and Bouvard and McMeeking [13] developed a
relationship for the effective Laplace pressure for diffusion controlled creep at the earlier
(first) stage of sintering. Here the effective Laplace pressure increases with the increase
of the relative density. This result is also modified by Cocks [11] by introduction of an
additional term responsible for the increase in grain boundary area.

Besson and Abouaf [14] noted that that the dependence of the effective Laplace
pressure on the relative density seems to be related to the material, processing (cold
compaction) and testing conditions.

Cocks and Aparicio [15] defined the effective “sintering force” as the applied
force which provides the stress field which is in equilibrium with this force and surface
tension and satisfies the boundary condition for the capillary stresses at the pore surface
while stress gradients are absent at the pore surface.

Riedel, Svoboda et al. in a series of works [16,17,18] elaborated models of
sintering with diffusional creep (grain boundary) as a controlling mechanism of material
flow. The expressions for effective sintering stress include the specific grain boundary
energy [16], the interparticle neck geometrical parameters [17], and the contribution of
the solid-liquid interface energy (in the case of liquid-phase sintering) [18]. Here the
effective sintering stress increases with increasing relative density for large values of the
dihedral angle between grain surfaces and decreases with increasing relative density for
small values of the dihedral angle.

For the determination of the effective sintering stress, we use an original approach
based upon mesoscale simulations of sintering of a 2-D unit-cell. At each step of the

Intering Stress:

=Sinterin
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Relative Density
Fig. 1 Random mesoscale structure Fig. 2 Dependence of the effective sintering
stress on porosity as a result of the mesoscale
meso-structure  evolution the shrinking simulations

volume and the free surface of a

rectangular unit cell with a random grain-pore arrangement represented in Fig. 1 are
calculated. Then the effective sintering stress is determined using relationship (6). The
details of the corresponding simulations are described in a companion paper [1]. As a
result, the dependence effective sintering stress — relative density is obtained (Fig. 2).
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Applying regression analysis (see Ref. [1]), the following analytical expression for the
effective sintering stress as a function of porosity is revealed:

P =1.7(1-6)%% (7)

Effective normalized bulk modulus.

For the determination of the porous materials’ bulk modulus W, a considerable
amount of work has been carried out by many authors (see, for example, for linear-
viscous materials [3,9,19-23] and, for materials with power-law creep properties, [24-
27)).

In particular, both Mackenzie [28] and Skorohod [3], used a hydrodynamic
analogy of the theory of elasticity to find the bulk modulus of a unit cell containing one
spherical pore. Mackenzie considered a three layer design of such a unit cell, when the
pore is surrounded by a spherical layer of a fully-dense material, which, in turn, is
embodied in the medium with effective properties. Skorohod considered a spherical pore
surrounded by an effective porous layer and employed a self-consistent approach to find
the effective bulk modulus.

Using the results describing the kinetics of shrinkage and the dependence of the
effective sintering stress on porosity obtained on the basis of mesoscale simulations one
can determine the effective bulk modulus (see companion paper [1]). The corresponding
regression analysis of the numerical data enables the following analytical expression for
v
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3. SOLUTION OF THE PROBLEM OF SINTERING OF BI-LAYERED

CERAMIC COMPOSITES

The growth in radio frequency (RF) wireless communication appliances (cell
phones, pagers, PDAs, GPS, etc.) is creating a significant opportunity for multilayer
ceramic technology to integrate RF circuitry/components required for these applications.
However, the densification/sintering behavior of composite "layered” material systems is
not well understood and cofire (co-sintering) capability is largely determined by
experimental methods. Progress in the integration of these layered material systems will
be greatly enhanced by the development of materials and process models that can
encompass the densification/sintering behavior - much as modeling has enhanced the
development of advanced semiconductor integrated devices. When incorporated in a
finite-element code, the continuum theory of sintering allows the solution of one of the
most important problems of co-firing multilayer ceramic composites - it can predict
warpage caused by differential sintering.

In the case of linear-viscous properties of the porous body skeleton, the finite-
element approximation of equation (5) is immediately reduced to the solution of a set of
linear equations relative to unknown nodal velocities. Using the conventional finite-
element analysis designations, one can represent this set in the form:

[j[BlT[DHB]dﬁ}{vn}=—j[B]TPL{1}df> ©)
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where [B] is the matrix correlating the strain rates with the nodal velocities Vy; [D] is the
matrix correlating the stresses with the strain rates (“matrix of viscosities”); ¥ 1is a
macroscopic porous volume under investigation; g is the gravity acceleration. The right-
hand part of the latter equation represents the nodal forces. In the case of uniform
distribution of material properties in the volume ¥, the nodal forces associated with the
sintering stress P (the first term in the right-hand part of Eq. (9)) will be equal to zero
everywhere except of the nodes which belong to the external boundary of ¢. The

[ 1
multiplier i.J‘[B]T[D][B]dﬁl in the left-hand part corresponds to the coefficients in the '
9

set of linear equations (9) relative to the unknown nodal velocities V.
The effective sintering stress and the effective normalized bulk modulusare used in

accordance with expressions (7) and (8). The effective normalized shear modulus is
employed in conformity to the Skorohod model [3]:

P =(1-6)* (10)
After the solution of set (9), the field of strain rates is calculated. The new values of
relative densities are calculated using the continuity equation for each finite element:

e .
m—e (11)

The above-mentioned finite-element algorithm is implemented for the solution of
three problems of sintering of bi-layer structures.

Fig. 3 Sintering of a bi-porous structure on a rigid substrate.
Porosity distribution. Initial porosities are 40% -top layer, 20% - bottom layer
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Fig. 4 Sintering of a bi-layered structure on a rigid substrate.
Porosity distribution. Initial porosities are 40%, sintering stress ratio is 1:50
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The first two problems are related to sintering on a rigid substrate: the first is
sintering of a bi-porous structure (initial porosities are 40 % for the top layer and 20% for
the bottom layer) with the same chemical composition of the two layers, the second
problem is sintering of a bi-layer structure with layers of the same initial porosity (40%)
and different shrinkage rates (sintering stress ratio is accepted to be 1:50). The results of
the modeling are shown in Figs. 3 and 4, respectively. In both cases the densification
front propagates starting from the top periphery areas which assume the highest density.
The bottom periphery zones have the highest porosity due to the imposed constrain from
the rigid substrate. In both cases a porous core is formed in the top layer. With respect to
the character of the densification front propagation, some difference between the solution
of these two problems is observed. In the case of the bi-porous structure, the interface
boundary serves as an initial source for the densification wave, while the bi-layer with
differences in chemical composition maintains a self-similar density (porosity) spatial
distribution in the bottom layer.

The undertaken “computer experiments” indicate that, by and large, difference in
chemical composition of adjacent layers has stronger impact on the development of stress
and density gradients in comparison with difference in porosity.

The last of the above-mentioned three problems is related to free sintering of a bi-
layer structure with the uniform initial distribution of porosity (40%) and with different
shrinkage rates for the two layers. The ratio of the effective sintering stresses is assumed
to be 1: 50. Fig. 5 shows a 3-D image of the sintered cylindrical bi-layer specimen with
its porosity spatial distribution. Due to the difference in shrinkage rates, the top layer
contracts faster, causing the pronounced bending of the specimen.
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Fig. 5 Free sintering of a bi-layered structure. Poosity distribution.
Initial porosities are 40%, sintering stress ratio is 1:50

3. CONCLUSIONS
e The success of modeling at the macroscopic level depends on the accurate
determination of constitutive parameters of porous structure. Mesoscale
simulation can be used for the determination of the above-mentioned
constitutive parameters.
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e The continuum theory of sintering is applicable for the description of both
free and constrained sintering of bilayer systems.

o Difference in chemical composition of adjacent layers has stronger impact
on the development of stress and density gradients in comparison with
difference in porosity and boundary conditions.
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