

P. R. Sharps
 EMCORE Photovoltaics
 10420 Research Road SE
 Albuquerque, NM 87112
 Phone: 505/332-5022
 Fax: 505/332-5038
 Paul_Sharps@emcore.com
 Category 4B
 Oral

Development of 1.25 eV InGaAsN for Triple Junction Solar Cells

N. Y. Li, P. R. Sharps, J. S. Hills, and H. Hou
 EMCORE Photovoltaics
 10420 Research Road SE
 Albuquerque, NM 87112

P. C. Chang and A. Baca
 Sandia National Laboratory
 Advanced Semiconductor Technology
 P.O. Box 5800
 Albuquerque, NM 87185-0603

Development of next generation high efficiency space monolithic multijunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP₂/GaAs/InGaAsN/Ge device. The AM0 theoretical efficiency of such a device is 38-42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime.

We are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP₂/InGaAsN/Ge device. The AM0 theoretical efficiency of this device is 30-34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

Figure 1 is a schematic of the test structures that we are growing to evaluate the 1.25 eV InGaAsN material. We have found that the best way to evaluate the InGaAsN material is to grow, process, and test actual photovoltaic devices. Because EMCORE's current GaInP₂/GaAs dual and GaInP₂/GaAs/Ge triple junction cells have the n-on-p configuration, we are looking at n-on-p InGaAsN junctions. The thicker GaInP₂ window is chosen to give an indication of how the InGaAsN would actually perform in a triple junction device. We have looked at 3 μ m and thinner InGaAsN base thicknesses. The

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

RECEIVED
 JUN 07 2000
 OSTI

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

thinner InGaAsN bases are used because growth of InGaAsN requires a large amount of dimethylhydrazine, and hence growth of thick layers is expensive. Trimethylgallium, triethylgallium, solution trimethylindium, diethylzinc, disilane, arsine, and phosphine are the other precursors used in the growth of the devices. Cells 1 cm² in area are processed using standard III-V device processing techniques.

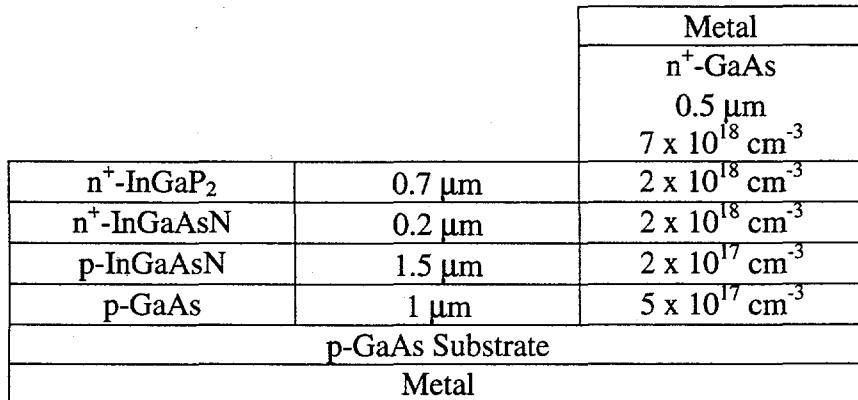


Figure 1. Schematic of the basic InGaAsN cell structure.

Table 1 contains a summary of different InGaAsN growth conditions that we have examined. We have primarily looked at growth rate and post-growth annealing temperature. We have also used several different dimethylhydrazine sources from different vendors, but have seen little effect on device results.

Run#	Window Mat'l	W(Å)	BSF Mat'l	BSF(Å)	Base(μm)	Emitter(μm)	Rg (A/s)	650°C, N ₂
9ky034-02	InGaP	6700	GaAs	500	3	0.2	~20	4 mins
9ly01A-06	InGaP	5450	GaAs	500	3	0.1	~20	4 mins
9ly01B-03	InGaP	5450	GaAs	500	3	0.1	~20	30 mins
9ly06A-06	InGaP	6700	(Al)GaAs	250	1.2	0.2	~12	30 mins
9ly06B-06	InGaP	6700	(Al)GaAs	250	1.2	0.2	~12	45 mins
9ly019-06	InGaP	6700	(Al)GaAs	250	1.2	0.2	~7.2	30 mins
0ay18A-06	InGaP	6700	(Al)GaAs	250	1.8	0.2	~7.2	45 mins
0ay18B-05	InGaP	6700	(Al)GaAs	250	1.8	0.2	~7.2	60 mins

Table 1. Summary of growth conditions and structure for InGaAsN solar cells. W(Å) refers to the window thickness in angstroms, Rg (Å/s) refers to the growth rate in angstroms/sec, and 650°C, N₂ refers to the post growth annealing time and temperature.

Table 2 has the device results for the growth conditions described in Table 1. The currents, voltages, and fill factors all lower than expected for a material with bandgap of 1.25 eV. To be current matched with a GaInP₂ upper cell in a triple junction device, the InGaAsN would need to generate about 20 mA/cm². The devices do not have an anti-reflection coating (ARC). Reflection off of the front surface is about 30%, so addition of the ARC would add about 3-4 mA/cm² to the currents shown in Table 2. Increasing the base thickness does not add significantly to the current. Figure 2 has the IQE curves for several of the devices in Tables 1 and 2. While being able to achieve a peak IQE close to the band edge, there is significant roll off at longer wavelengths. An increased base

thickness (9ly0001B-03) did not increase the IQE at longer wavelengths, compared to a thinner base thickness ((0ay0018C-03). This is consistent with a short minority carrier diffusion length in the p-type base, rather than due to insufficient absorption in the base.

Run#	PIQE	Voc, mV	Jsc, mA/cm ²	FF	Eff, %
9ky034-02	0.57	680.4	8	61.2	2.4
9ly01A-06	0.72	741.2	10.25	73	4.1
9ly01B-03	0.77	756.6	11.6	72.9	4.6
9ly06A-06	0.61	640.6	9.5	71.2	3.2
9ly06B-06	0.64	647.2	10.1	69.6	3.3
9ly019-06	0.76	711.7	9.9		
0ay18A-06	0.82	714.58	9.84	61.7	3.2
0ay18B-05	0.83	733.4	10.56	62.7	3.6
0ay18C-03	0.74	747.65	10.74	65	3.8

Table 2. Summary of results for InGaAsN devices. PIQE refers to the peak internal quantum efficiency. All devices are 1 cm² in area, were measured under simulated AM0 illumination, and do not have anti-reflection coatings.

The lower than expected voltages in Table 2, for a material of 1.25 eV bandgap, are consistent with the lower currents and short minority carrier diffusion lengths. A short minority carrier lifetime and high bulk recombination are the most likely explanation for the low currents and voltages.

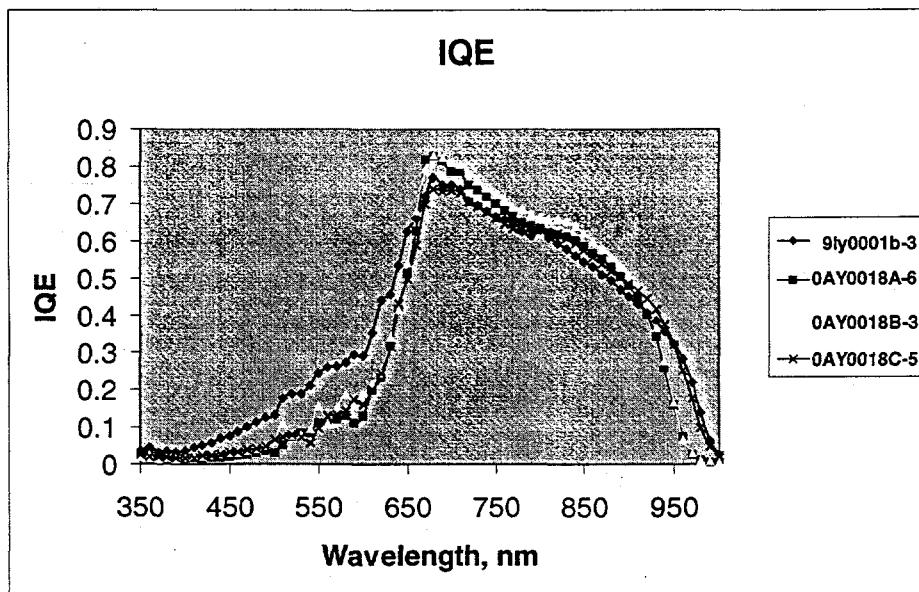


Figure 2. IQE curves for several samples. See text for discussion.

The longer post-growth annealing time also improves device performance. We are not certain as to the exact mechanism causing this. Work is ongoing to further improve the InGaAsN material quality. Different precursors, different growth conditions, and different post-growth treatments are all being examined, with the results to be presented at the conference.