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Abstract

In order to devise an algorithm for autonomously terminating Monte Carlo sampling when sufficiently small
and reliable confidence intervals (CI) are achieved on calculated probabilities, the behavior of CI estimators
must be characterized. This knowledge is also required in comparing the accuracy of other probability esti-
mation techniques to Monte Carlo results. Based on 100 trials in a hypothesis test, estimated 95% CI from
classical approximate CI theory are empirically examined to determine if they behave as true 95% CI over
spectrums of probabilities (population proportions) ranging from 0.001 to 0.99 in a test problem. Tests are
conducted for population sizes of 500 and 10,000 samples where applicable. Significant differences between
true and estimated 95% CI are found to occur at probabilities between 0.1 and 0.9, such that estimated 95%
CI can be rejected as not being true 95% CI at less than a 40% chance of incorrect rejection. With regard to
Latin Hypercube sampling (LHS), though no general theory has been verified for accurately estimating LHS
CI, recent numerical experiments on the test problem have found LHS to be conservatively over an order of
magnitude more efficient than SRS for similar sized CI on probabilities ranging between 0.25 and 0.75. The
efficiency advantage of LHS vanishes, however, as the probability extremes of 0 and 1 are approached.

Introduction

Derived statistics such as means and probabilities from Monte Carlo (MC) sampling are
themselves random variables that depend on (among other things) the number of samples
taken, the sampling algorithm, and random number generator (RNG) initial seed. Begin-
ning practitioners of uncertainty analysis (and I was certainly guilty of this!) sometimes do
not realize that the magnitudes of these effects can be significant, and report and use calcu-
lated statistics at face value without considering the associated confidence intervals (CI).
However, ignoring this context information introduces unrealized, unacknowledged, or
unquantified uncertainty to downstream calculations, interpretations, and conclusions.

Here, an exploratory test problem is used to quantitatively examine the effects of initial
seed, number of samples, and sampling algorithm (i.e. Simple Random sampling, SRS,
and Latin Hypercube sampling, LHS (McKay et al., 1979)) on calculated probabilities.
Consideration of confidence intervals naturally arises. Conditions surrounding calculation
of CI on SRS probabilities are frequently different from the “text book” conditions under-
lying exact CI theory. The accuracy of classical approximate CI theory for these more
realistic conditions is empirically investigated here. Regarding LHS, no general theory has
been verified for accurately estimating LHS CI, though Iman (1981) outlines an approach.
The applicability of the approach can now be assessed against empirical data (Romero,
2000) which establishes (at a 0.1 level of significance over 100 trials) that LHS is over an
order of magnitude more efficient than SRS on this test problem for similar sized 95% CI
on probabilities ranging between 0.25 to 0.75. The efficiency advantage of LHS dimin-
ishes completely, however, as the probability extremes of 0 and 1 are approached.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract DE-AC04-94AL.85000.

V. J. Romero ) 1




DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
- rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible.
in electronic image products. Images are
produced from the best available original
document.




Exploratory Problem

Figure 1 shows the temperature histories of two critical components in a device that is
nominally said to fail if the temperature of the “stronglink™ (SL) component reaches its
nominal failure temperature of 593.3 C before the “weaklink” (WL) component reaches
its nominal failure temperature of 248.9 C. The reliability of the device is thus measured
in terms of a “safety margin” S [=time_of_stronglink_failure - time_of_weaklink_failure].

As determined from the figure, the device has a nominal safety margin of S = 2.5 minutes
at nominal failure temperatures. The figure also shows, however, that marginal uncertainty
in the stronglink and weaklink failure temperatures results in large uncertainty in the value
of the safety margin. When the uncertainty bands in the figure at 5% above and below the
nominal SL and WL failure temperatures are considered, the corresponding ranges in fail-
ure times can produce a safety margin that varies from about -25.5 to +34.5 minutes. Thus,
this problem exhibits high sensitivity to component failure temperature uncertainties.

If the component failure temperatures are treated as random variables then the safety mar-
gin S is a [dependent] random variable in this context. It is desired to calculate the corre-
sponding “probability of failure” Pthat the actual safety margin S is zero or negative (i.e.
the probability that the random variable S will lie below a certain threshold value S, gener-
ally, where here S, is equal to zero). Hence,

Pe=Prob(S<S,);S=0. (1)
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Figure 1. Sensitivity of stronglink (SL) and weaklink (WL) failure times, and hence safety
margin S, to uncertain SL and WL failure temperatures. (Upper curve depicts
SL temperature history, lower curve depicts WL temperature excursion.)
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For this problem the SL and WL failure temperatures (random variables) are namely
defined by normal distributions with means p equal to the respective nominal failure tem-
peratures of 593.33°C and 248.89° C, and standard deviations ¢ equal to 3% of the nom-
inal values (i.e. 17.8°C and 7.47°C, respectively). (Here the distributions are actually
truncated at 36 above and below their means and then re-nomalized to unit area. Trunca-
tion of the SL distribution at > 36 requires a longer time scale than the one represented in
the figure.) Sets of randomly paired weaklink and stronglink failure temperatures are gen-
erated from these distributions with the Monte Carlo sampling code of Iman and Shorten-
carrier (1984), and then a safety margin S; is computed for each set by processing the data
files containing the time-temperature data plotted in Figure 1. The probability of failure P
is determined as the number of safety margin realizations S; with value less than or equa
to S,, divided by the total number of samples.

Effect of Initial Seed and Number of Samples on LHS and SRS Prob. and CI

Figure 2 shows 21 calculated failure probabilities in each of four plots representing combi-
nations of 500 or 10,000 samples with LHS or SRS. The 21 probabilities in each plot
result from supplying 21 different initialization seeds’ to the random number generator
(RNG). For now, just looking at the point estimates and ignoring the associated error bars
in the plots, the spread in probability estimates demonstrates and reinforces the fact that
statistics (point estimates) derived from Monte Carlo sampling are in the class of random
variables. (In fact, the basis of classical CI theory is that SRS means and probabilities are,
assymptotically, normally distributed random variables.) The nontrivial variance in esti-
_ mates here illustrates that we must not quote a Monte Carlo result in isolation, as though a
deterministic quantity. Rather, we must be cognizant of the uncertainty associated with
such results and always communicate and use them in context. Such context is expressly
provided by confidence intervals as explained in the next section.

As expected, the predicted values from 500 samples vary much more widely over the 21
trials than the 10,000-sample results do; the signature of the specific RNG path taken from
a given starting seed diminishes as more samples enter the population and decrease the
effect of finite sampling and the specific path taken (assuming the RNG is a good random
number generator with large period relative to the number of samples generated). The
approximate 95% CI “error bars” about the point estimates of Prin Figure 2 are consider-
ably smaller for the 10,000-sample results than for the 500-sample results, nominally by a
factor of ,/10,000/500 or ~ 4.5. It is also immediately evident from the figure that for the
same number of samples the SRS results vary much more widely than the LHS results do.
~McKay et al. (1979) show that under fairly broad conditions the variance of statistical esti-
mators derived from LHS is indeed less than that from SRS for the same number of sam-
ples. Under very restrictive special conditions, Iman and Conover (1980) analytically
determine how much less the variance of LHS means is relative to SRS means, as a func-
tion of number of samples. Though no general theory has been verified for accurately esti-
mating LHS CI under general conditions, recent numerical experiments (Romero, 2000)
have empirically shown LHS to be (at a 0.1 significance level based on 100 trials) over an
order of magnitude more efficient than SRS on the exploratory test problem for 95% CI on
probabilities from 0.25 to 0.75. This finding is refiected in the approximate 95% CI LHS
error bars in the figure, which are 1/.,/10 or about 32% the size of the SRS error bars.

"These seeds are the first 21 5-di git pseudo-random numbers in the first column of Table 26.11 of The Hand-
book of Mathematical Functions (Abramowitz and Stegun, 1972).
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Figure 2. Differently seeded probability estims. with approx. 95% conf. intrvl. error bars for SRS and LHS at 500 and 10,000 samples.



Approximate Confidence Intervals for SRS Probabilities

The SRS data in Figure 2 is fitted with error bars representing approximate 95% CI from
classical statistics theory: Any safety margin sample S; that has a value greater than the
specified threshold value S, can be recoded to have the value 0, or the value 1 otherwise.
With this coding, the number of 1’s in N samples provides an indicator of the true propor-
tion of the random variable S (i.e. the proportion of its probability density function) that
lies below the threshold value S,. Thus, P, the ratio of the number of 1’s to the total num-
ber N of samples, here represents an estimate of the true probability P, of device failure in
attaining a zero or negative safety margin (since S, = 0 here). The total number of 1’s that
can be expected from N samples, or equivalently the probability estimate P ;, follow bino-
mial distributions. If enough samples are taken, * the binomial distributions asymptote to
normal distributions. In this case, the estimate P can be viewed as a random sample from
a normal distribution centered on the true proéablhty Pg Thus, with x% likelihood or
“confidence”, the estimate P, can be said to lie within a correspondmg ‘confidence inter-
val” range of the true result I§ In the common case where the true probability value Pris
not known, but is to be mferred from the sampling, then approximate CI (ACI) are formed
where the unknown value Py is said to approximately lie within the following ACI of the

probability estimate P iz
. P.(1-P,)
=P < Fugy L L @

where the factor F,,, scales the interval size according to the relevant (x%) degree of like-
lihood or confidence. Everything else being fixed, the wider the intervals the more likely
they are to contain or envelop the actual value Py, and vice-versa, the higher the % confi-
dence with which the ACI are to contain the true result, the larger the intervals (thus F 4 )
must be. From classical statistics theory F o =1.96 for 95% ACI, which are intervals that
are approximately 95% likely to envelop the true result. For 99% ACI, F 4 =2.576.

The error bars in the SRS plots in Figure 2 depict 95% ACI. If the approximation (2) is
truly applicable, then on average no more than one in twenty such approximate 95% error
bars will fail to contain the true probablhty * However, five such failures and nearly a
sixth are evident in the 42 SRS trials plotted, suggesting that equation (2) may not be
strictly applicable. Accordingly, hypothesis tests are conducted to determine the signifi-
cance level at which the validity of equation (2) can be rejected for the current application.
Devore (1982) gives a concise five-page presentation of the methodology employed here.
The null or default hypothesis H,, claims that 95% ACI calculated from equation (2) fail
5% or less of the time to encompass the true probability. The alternative hypothesis H, is
that ACI bars so constructed fail more than 5% of the time to encompass the true result.

¥ the criteria commonly stated in statistics books is that N- P25 and N(1-Pf)25

*Here the “true probability” is actually a probability range given by 99% ACI calculated with equation (2),
where P ¢ is taken to be the average of 105 10,000-sample LHS probability estimates (determmed with
105 different initialization seeds in the spirit of footnote 1), and N is taken to be 105x10° because, as cited
previously, for this problem 10°LHS samples are at least equivalent to 10° SRS samples in the context of
equation (2). Thus, to “contain the true probability” as asserted in the lead-in to this footnote, the 95% ACI
error bars must completely encompass the 99% ACI error bars. The expanse of the 99% error bars is ac-
tually less than the thickness of the line marking the 105-trial average in the plots in Figure 2.
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In one hypothesis test, 100 differently seeded 500-sample SRS trials yielded 12 failures or
“outliers”. Thus, the null hypothesis is rejected in favor of the alternative hypothesis when
the “rejection region” is defined to contain 12 or more failures, and it is concluded in this
case that 95% ACI from equation (2) allow more than 5% of estimates to be outliers, and
thus are not truly CI at the 95% confidence level. The data contends that there is less than
a one percent chance that H, is actually valid, i.e. that its rejection is incorrect. (H, is
rejected at a continuity-corrected 0.0058 level of significance.)

Though a population of 500 samples easily meets the criteria quoted in footnote ¥, a simi-
lar experiment with 100 10,000-sample SRS populations was run to get another indica-
tion. Eight outliers occurred, whence H, can be rejected at a continuity-corrected 0.245
level of significance. Thus, equation (2) applies better under more sampling (larger popu-
lations), but even for N=10,000 samples its validity for deriving true 95% CI for this appli-
cation can still be rejected with less than a 25% chance of incorrect rejection. Hence
serious doubts are cast on the universal applicability of equation (2).

Related results documented in (Romero, 2000) consider nominal P; levels (population
proportions) ranging from 0.00053 to 0.99 corresponding to various t{lreshold levels S, in
the exploratory problem. It is found that for 95% ACI on calculated probabilities between
about 0.1 and 0.9, the validity of equation (2) can generally be rejected with less than a
40% chance of incorrect rejection. As the probability extremes of 0 and 1 are approached
the evidence against the applicability of equation (2) diminishes considerably.

In conclusion, assuming validity of the well-pedigreed RNG used here, the classical “text
book™ expression for approximate SRS 95% CI appears not to be conservative. In particu-
lar, away from the probability extremes of 0 and 1 it should not be assumed that 95% ACI
will on average contain the true probability 95% of the time. Still, the expression for 95%
ACI is useful in gauging the chance that an estimate obtained will be an outlier.
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