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Abstract: This work presents a method of finding near global optima to minimum-time trajectory
generation problem for systems that would be linear if it were not for the presence of Coloumb friction.
The required final state of the system is assumed to be maintainable by the system, and the input bounds
are assumed to be large enough so that they can overcome the maximum static Coloumb friction force.
Other than the previous work for generating minimum-time trajectories for non redundant robotic
manipulators for which the path in joint space is already specified, this work represents, to the best of our
knowledge, the first approach for generating near global optima for minimum-time problems involving a
nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of
exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway
to simulate such a system numerically). The method closely resembles previous methods for generating
minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear
programming problem. For the nonlinear systems considered herein, the core operation is instead the
solution of a mixed integer linear programming problem.

1. Introduction

The problem of generating minimum-time control for linear dynamic systems has been studied
fairly extensively. The work in [1], [8], [10], [13], [14], [22], [6], [25], and [4] used a fixed-size time
step. Starting with one time-step and increasing to 2, 3, 4, etc. time steps until a phase I linear
programming algorithm detected that the resulting linear program was feasible, they thereby obtained the
minimum-time to within roughly the size of the time step Az. In [9], however, a binary search on the

final time was used to allow the algorithm to bisect or zero in on the minimum time more efficiently.
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The minimum-time control problem with Coloumb friction actually involves a nonlinear
dynamic system. The nonlinearity occurs due to the presence of a sign(g) term in the state equation
which arises from the kinetic (sliding) friction. Herein we avoid the need to model the static Coloumb
friction because we restrict ourselves to the class of problems where the input bounds are large enough so
that the input is always capable of overcoming the static Coloumb. friction force. Other than the well-
known work of Bobrow ([2]-[3]) and Shin and McKay ([15]—[18]) on minimum-time trajectory generation
for path-specified non redundant robotic manipulators, this paper represents, to the best of our knowledge,
the first approach for generating near global optima for minimum-time trajectory generation problems for
a class of nonlinear dynamic systems. Specifically, the approach we present works for dynamic systems
that would be linear if the kinetic (sliding) Coloumb friction were not present, have a specified final state
that is maintainable by the system, and have input bounds that are large enough so that the input can
always overcome the static Coloumb friction forces to prevention sticking.

2. Problem Statement

We are given a mechanical system whose governing equations are of the form:

Mg=-Cg—Kq+F+Du v M
where g€ R", ue R’, and where M, C, K, and D are constant matrices and F is a Coloumb friction
force with components of the form:

F, =—psign(g,) ‘ 2
where F, =—psign(q,) means F, =—-u if ¢, >0, F =y if g, <0 and F, is an unspecified static friction

force if g, =0. There isa given initial state:

g0 _ /g,
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and a specified maintainable final state that must be reached at the unknown final time ¢, :
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Each input is constrained to be between its lower and upper bounds:
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The objective is to find u(¢) that satisfies (1)-(5) and minimizes the total trajectory execution time ¢, .




3. Method of Solution

We will first bring the problem to discrete-time state-space form. Let x, =g and x, =g and
x=(x,",x,7)". Then (1) and (2) combined become

%=Ax+Bu+Gsign(x,) ' (6)

— — — 0
where A = [_ MO_1 K - MI_1 C:l and B = [ M(_)n D] and G = l:—,uM" } State equation (6) can be brought to

discrete-time form by using an Euler (or other) integration scheme:

X = Ax, +Bu, +Gsign(x, ), (k=1,...,N) )
where N is the number of time-steps and where u(¢) has been discretized into a stair-step time history
and where x,, denotes g, and where A, B, and G are matrices that depend upon the sampling period

h=t,/N. We still have the given initial state:
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and the required maintainable final state:
q f.des
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and the input constraint (5) becomes

. Su, <u,,k=1,.,N) (10)

We note that the state equation (7) is not linear due to the presence of the Gsign(x, ,) nonlinear
Coloumb friction term. We now proceed nonetheless to formulate a mixed integer linear programming
problem (MILP) whose solution will tell us whether the set of equations (7)-(10) has a solution. Let w,,
(i=1,...,n) denote the ith component of the n-vector —-sign(x,,), i.e., w,, =-sign(x,,;), (k=1,..,N),
(i=1,...,n). Thus (7) becomes:

Xy = Ax, +Bu, - Gw, 1D
We note that (8)-(11) represent a system of linear equations and inequalities and that it is necessary (but

not sufficient) that this system have a solution for the chosen final time 7, = hN which determined A, B,

and G, in order for (7)-(10) to have a solution. It is not sufficient because (8)-(11) do not specify the

requirement that w, = —sign(x,, ). Let the s,; and v, be integer variables with the values O or 1, i.e,,

s, €10,1} (12)




v, €10,1} (13)
and impose

sy +v, =1 (14)
so that either 5,, =0 and v;; =1 or s, =1 and v,; = 0. Now let

W, (15)

t=sk

d

_.vk_
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Equations (12)-(15) imply that w,, will be either -1 or 1, as required. To get w,, to take on the correct

value, we additionally impose

Xop S ( x“zi'max J(l - wki) (16)

Xy 2 [ xz’;min )(wki +1) an

where x, ,; i, and x,,, . are a priori assumed or known bounds on the velocities. Notice that if w=-1,
(16) and (17) imply 0< x, ,; < x, ,; ... and if w=1 (16) and (17) imply x, ,; ... < x,,, <0. Thus (12)-(17):
are satisfied if and only if w,, = —sign(x,,;) as required. In summary, (8)-('11) have a solution with

w,; = —sign(x, ;) if and only if (8)-(17) have a solution. Determining whether (8)-(17) has a solution is a

mixed integer linear programming problem (MILP) for which there are well established algorithms and
software. These algorithms are guaranteed to find a solution to (8)-(17) if one exists; and if a solution

does not exist, these algorithms return a flag saying so.

So, for a fixed final time ¢/, determination of the feasibility of (8)-(11) with w, =—sign(x,,) is

accomplished by applying MILP to (8)-(17). Finally, a simple binary search on 7, (i.e., a bisection

algorithm with repeated calls to the MILP solver) can be used to test-feasibility/infeasibility of a given

final time #,. It must be emphasized that, so long as the terminal state {qf s 1 is maintainable by the

f.des
dynamié system, the above approach is guaranteed to produce a globally optimal solution to the
minimum-time problem, within the accuracy of the discrete-time approximation (7) and the tolerance set
on ¢, in the bisection outer loop of the method.
4. Numerical Examples
The first example is a single mass with the equation of motion:

g =u-—sign(q)



with u,, =2, u,,. =2, ¢,=0, ¢, =1, q; 4, =1, 4,4, =0. The problem was brought to discrete-time

form (7) using Euler integration with 50 time steps, and the bisection tolerance on 7, was 1x10™. The

resulting input history and position history are shown below in Figures 1 and 2.

o 0z o4 08 08 1 12 14 16 18 2

Figure 1. Input versus time, single mass example
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Figure 2. Position versus time for single mass example

The second example is a double spring-mass problem, illustrated below in Figure 3.
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Figure 3. Schematic of double spring-mass problem

The problem parameters are k, = 0.95, k, =0.85, m; =1.1, m, =1.2, u=1.0. The equations of motion
are:
mg, =(—k, —k,)q, +k,q, - usign(g, ) +u, 19
myq, = kyq, —koq, —psign(g, ) +u, (20)
The initial condition was ¢,(0)=0, ¢,(0)=0, ¢,(0)=-1.0, ¢,(0)=-2.0, and the required final state

was g,(2,)=10, g,(,)=2.0, 4,(t,)=0, ¢,(¢,)=0. The input bounds were u,;, =-4.0, u,,,, =4.0,




Uy iy =—4.0, u, .. =4.0. The problem was brought to discrete-time form (7) using Euler integration

with 50 time steps, and the bisection tolerance on ¢, was 1x10™*. The resulting input histories and

position histories are shown in Figures 4 through 6 below.

o a2 04 o8 o8 1 12 t4 15 18 2

Figure 4. Input 1 versus time for double spring-mass example
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Figure 5. Input 2 versus time for double spring-mass example
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Figure 6. Positions versus time for double spring-mass example
5. Conclusion
This work presented an approach for obtaining near global optima to a class of nonlinear
minimum-time trajectory generation problems. The class is those for which the dynamic system would be
linear if it were not for the presence of the kinetic (sliding) Coloumb friction term, the required final state
is maintainable by the system, and the input bounds are large enough that the inputs can overcome a static

Coloumb friction force. Other than the previous work of Bobrow ([2]-[3]) and Shin and McKay ([15}-




[18]), who studied non redundant robotic arms whose path in joint space was completely specified, this

work represents, to the best of our knowledge, the first method of obtaining near global optima to a class

of minimum-time problems in which the dynamic system is nonlinear. The reason near global optima,

instead of exactly global optima, are obtained is simply due to the fact that a discrete-time approximation

is used to approximate the continuous-time system (which is usually used anyway to simulate a -

continuous-time system numerically).
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