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A MODEL FOR THE DISPERSION OF CONTAMINANTS IN THE SUBWAY ENVIRONMENT
L.R.Coke, J.G.Sanchez, and A.J.Policastro
Argonne National Laboratory @g’ C

Synopsis S“T /

Although subway ventilation has been studied extensively, very little has been published on
dispersion of contaminants in the subway environment. This paper presents a model that predicts
dispersion of contaminants in a complex subway system. It accounts for the combined transient
effects of train motion, station airflows, train car air exchange rates, and source release properties.
Results are presented for a range of typical subway scenarios. The effects of train piston action and
train car air exchange are discussed. The model could also be applied to analyse the environmental
impact of hazardous materials releases such as chemical and biological agents.

1 INTRODUCTION

The need for a subway dispersion model has been discussed by Policastro et al. [1,2,3] in connection with
analysis and mitigation of chemical/biological terrorist attacks on subways. Dispersion in a subway is a
result of diffusion, exchange, and advection. Diffusion mainly occurs from mixing due to turbulence
(eddy diffusion). Exchange occurs between the subway and exterior atmosphere at vents, entrances,
portals, and also between train cars and subway tunnels and stations. Advection transports the
contaminant predominately following the mean flow.

Dispersion predictions of a contaminant require knowledge of the velocity field. The problem is greatly
simplified if the concentration prediction can be de-coupled from the solution for velocity. Such is the case
for aerosols or gases that have little or no impact on the velocity field due to buoyancy or other effects. In
such a case, the contaminant is characterised as a passive scalar. Most chemical and biological agents
released in a subway airflow are expected to disperse as passive scalars. Consequently, the dispersion
model presented in this paper functions as a post-processor that uses an independently derived velocity
field .

The Subway Environment Simulation (SES) Model {4,5] is an established subway flow model that
addresses many complex aspects of subway dynamics. Although it does not treat dispersion, it does
predict the bulk mean velocities within tunnels, shafts, and stations. Subway flows are driven mainly
by piston action of moving trains and fans, and, to a lesser degree, by natural buoyancy. A full
solution by methods of computational fluid dynamics is infeasible for typical subways due to their
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large size and the high flow speeds generated by train motion. Altemnatively, SES only solves for the
bulk mean flow within a discrete set of finite subway elements under the assumption that the flow is
incompressible. The mechanical energy equation (also known as the Bernoulli equation with losses)
is applied to each control volume, or sub-segment, in SES terminology. The resulting system of linear
equations is then solved as a Kirchhoff flow network. SES is a 1-dimensional (1-D) integral flow
model. Despite its modest capability for flow prediction, the method is efficient, and even rigorous to
the degree that the head losses within each sub-segment can be determined from similarity principles

[4].

The new dispersion model, ANL/CB, was designed to be compatible with SES to the extent that it
uses the 1-D subway segment concept. The SES Version 4.0 code was only modified to write its
time-dependent velocity predictions in each subway sub-segment at selected internal time steps to a
disk file. In this way, the velocity predictions could be easily accessed by the post-processing
dispersion code. The SES internal time step for updating aerodynamics can be as small as one-
hundredth of a second. ANL modified the SES code only to write essential data to a file at every
internal SES step, or any multiple thereof. The data passed from the SES code to the ANL/CB code
via this file includes the sub-segment geometry, the aerodynamic data of each sub-segment at each
selected time step, and the train nose co-ordinates for each operating train on each route. The SES
model required no change beyond the addition of extended file output.

2 FORMULATION OF DISPERSION MODEL IN SUBWAY NETWORK
21 Mathematical Basis

The transport of a scalar concentration I'(x;,¢), in a turbulent flow of an incompressible fluid, in
tensor notation, is given by [8]:
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where T denotes the molecular transport coefficient and F, a source or sink term. To express
equation (1) in terms of the mean quantities, introduce T' =T +¥ , U = U+ uj , to obtain
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The term wy represents the effect of turbulent diffusion, which is typically much greater than
molecular diffusion. The dominant mechanism for dispersion in a subway flow, by far, is advection.
In some subways, trains may reach speeds approaching 100 kilometres per hour, thus generating a
powerful piston action. Since the goal of this paper is to elucidate the predominant features of subway
dispersion, neither molecular nor turbulent diffusion was included in the model at this time. Under
these restrictions, the transport equation becomes
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For this study, the velocity field from SES was substituted for U as known data in equation (3);
each segment interval was then solved piecewise for I" subject to a given source term and prescribed
boundary conditions. In SES terminology [5], a segment is a 1-D length of subway tunnel or shaft
which has the same volumetric flow rate; sub-segments further divide a segment into lengths having
the same cross-sectional area and thus a unique flow velocity. Conceptually, SES sub-segments are
aerodynamic-equivalent control volumes, which join to form a Kirchhoff network of the subway (see
Figure 1). Consider a network of sub-segments k= 12,..., N; having lengths L, cross-sectional
areas Ak, and mean velocity Vk. Applying equation (3) to each 1-D sub-segment & gives
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where x is a local co-ordinate within the sub-segment and T" has been replaced by p for notational

convenience. Since ;(r) is independent of x , the above can be re-written as

apg:’t) + Vk(t)_ap—;;c’_g = Fk(x,t) k=12,...,Ns (5)

which has the hyperbolic character of a first-order wave equation [9]. Appendix A contains a
discussion of the finite difference scheme used in the ANL/CB code to solve equation (5).

22 Treatment of Sources

Sources for subway dispersion could be at locations such as on a station platform, inside a vent shaft,
or inside a train car. A highly localised source can be modelled a point source. Sources having
significant size and shape can be modelled as a collection of point sources. The ANL/CB model
supports multiple point sources in combinations that suffice for modelling general releases. We will
discuss the case of a single point source here; the generalisation to multiple sources is straightforward.

The term Fi(x,t) in equation (4) represents the source strength; i.e., the contaminant mass per unit
time that is added to the flow. It must be included in the finite difference equations for those sub-
segments that contain a source. Appendix B discusses in some detail how point sources are included
in the ANL/CB model.

Train cars, once infiltrated, become moving sources as they expel contaminant out from the car
into the surrounding subway. A further complication is that cars may also behave as a sink, removing
contaminant from the subway as it fills the car. The size of a car is significant, so it cannot be properly
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modelled as a single point source. For these reasons, an independent sub-model was developed to
address the complex nature of train car sources.

3 THE TRAIN CAR SUB-MODEL

Train cars have unique importance in subway dispersion because, once infiltrated, they become
moving sources that transport concentration as fast as the cars move. The first arrival of contaminants
at remote locations from the source is dictated by the speed of the trains rather than the usual
dispersion mechanisms. Contaminated cars discharge relatively large amounts at scheduled stops
since the source is momentarily stationary. Smaller amounts are discharged while the trains are
moving throughout every subway section they pass through. In turn, the discharge continues to
disperse by the usual mechanisms.

Train cars exchange air with the surrounding subway in three basic ways, as illustrated in Figure 2:
1. through intake to heating, ventilation, and air-conditioning (HVAC) systems inside the train cars,
2. through exchange when doors are opened at scheduled stops, and,

3. through leakage into the subway environment through cracks and other openings in the train car
structure.

These mechanisms and the modelling of them are discussed below in subsequent sub-sections.
3.1 Contaminant Spread due to the HVAC System

The typical HVAC system draws air into vents at the top of the car. The dispersion model allows a
constant HVAC fresh air intake rate to be specified. Since the flow is assumed incompressible, air
from the car must be expelled at the same rate. The concentration of the inflow air depends on the
subway concentration surrounding the car at any given instant. SES tracks the nose position of each
operating train. That information is passed to the dispersion model, which then computes the grid
location of each car for each operating train. At any instant, the HVAC exchange for a particular car
occurs between the car interior and those sub-segment grid cells adjacent to the car (see Figure 3). It
should be noted that the train car routine follows the concentration in each train car separately from
other train cars. In addition, releases from the cracks of one train car as it moves becomes the source
for contaminant for the next car and subsequent cars following that one. The specific treatment in
ANL/CB of the train car source and uptake terms is given in Appendix C.

It should be noted that most train cars also recirculate the air that is in each car in addition to the
separate intake and discharge of fresh air. This recirculation only helps to fully mix the car and does
not add any dilution, so recirculation is not treated in the model. If the train car model actually
predicted the concentration distribution in each car, then the recirculated amount would be important
in predicting that distribution.
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32 Exchange from Open Train Car Doors

The exchange through open car doors at scheduled stops is important to the model because it can
significantly affect the concentration in the car and at the adjacent platform. The estimation of air
exchange through doors has received attention because of its relevance to HVAC thermodynamics
[4,15]. Two alternative methods are commonly employed to estimate the flow rate through an open
car door. The first method is based upon the number of passengers that enter or exit through the door.
Each passenger displaces a volume equal to that of his own body. Additionally, the motion of
walking pushes a volume roughly equal to the displacement volume. The standard rule is therefore to
count twice the body volume per each passenger that passes through the door. A typical body volume,
B, would be about 0.07 cubic meters. If N, is the total number of passengers both entering and
exiting through the door, B the average body volume per passenger, and # the duration of the

exchange, then the volumetric flow rate Qtoor is simply

B
Qdoor = Nl’ (6)

ty

An alternate method [16] is to use a nominal flow velocity of 100 feet per minute (0.5 meters per
second) assuming half the door area for inflow, the other half for outflow.

The ANL/CB code reads a fixed value of Otoor for each door on each train car. The concentration

exchange between the car and the subway grid cell adjacent to the door is treated similarly to the
HVAC exchange except here only one cell, at index i, is needed for any given door. The cell
concentration is updated by

pi (tm-l) = pi (tn)e—NQM/(AkAX) + pcar (t"XI - e-NQM/(A‘AX)) (7)

The change in mean concentration inside the car due to door exchange during the discrete time step 7»
to tn+1 i
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33 Exchange due to Leakage from Cracks

Crack leakage is the most difficult aspect of train car modelling because it is dependent upon the
train velocity and the pressure differentials that build up inside the car. The combined leakage from
cracks around doors and windows can be as large as the HVAC inflow [4,15]. The ANL/CB model
presently allows only a constant leakage rate that is simply incorporated into and is equal in value to
the HVAC inflow rate. Validation and refinements to the ANL/CB train car model are a subject of
continuing research. It should be noted that, although the train car has special intake louvers from
which air is sucked into the train car, there is no discharge port in the train car for the expulsion of air.
All air expelled from the car through the HVAC system is through cracks, typically around the doors.
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The ANL/CB model assumes that the rate of fresh air intake to a train car is always equal to the rate of
air flow exhausted from the fully mixed car. The fresh air intake may have contaminant
concentrations due to previous plume spreading..

4 THE AEROSOL DEPOSITION SUB-MODEL

Most chemical/biological releases are expected to be in aerosol form. A deposition sub-model
contained within the ANL/CB subway network model accounts for the loss of concentration due to:

1. gravitational settling of aerosols (droplets or particulate),
2. deposition or aerosols on surfaces due to turbulent forced convection,
3. deposition or aerosols on surfaces due to natural convection, and,

4. deposition of aerosols on surfaces due to thermophoresis representing the mechanism
due to temperature differences between walls and passing air.

The loss of concentration due to deposition is accounted for at each time step at each subway sub-
segment location. A complete discussion of deposition is beyond the scope of this paper. The present
deposition model accounts for the processes listed assuming homogeneous turbulence in the sub-
segment methods. The formulation was adapted from References 12, 13, and 14. Difficulties in
applying the thermophoresis sub-model results from the lack of data on temperature of subway walls
as compared to air temperature in the layer of air adjacent to the walls. Deposition can be significant
for particle or droplet sizes close to 1 micron. Droplet evaporation and vapour deposition is not yet
accounted for in the model. Deposition of aerosols in train cars is a secondary effect and is currently
not included in the model.

5 THE ANL/CB COMPUTER CODE

The ANL/CB compute code was written in Fortran 77 for use in any computer environment
supporting the language. The program memory requirements vary according to the array size needed
to simulate the subway elements. The critical parameters can easily be adjusted, and the code
recompiled to increase the size limits. The compiled ANL/CB code required approximately one
megabyte of memory to simulate the multiple line sample subway with its 216 sub-segments. By
comparison, the SES code required approximately eight megabytes. Five input files are used by the
ANL/CB code:

1. The train car data file contains the train and car specifications such as route locations where
trains stop, HVAC and door flow rates, door locations and areas.

2. The junction data file contains the connecting sub-segment numbers at every SES node.
These data are used to compute the concentration flows at junctions.
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3. The aerosol data file contains the physical properties including size distribution of the
contaminant.

4. The sub-segment output control file allows a user to select those particular sub-segments
whose concentrations should be saved at periodic time steps.

5. The SES data containing sub-segment velocities, train location and speed are read at each time
step as the ANL/CB code marches forward in time.

Two output files are written by ANL/CB. The concentration data are written to a binary file at
selected time steps for each selected sub-segment. A summary of the fluxes through junctions and
concentration mass for each sub-segment is written to a text output file. The summary also shows the
state of train cars and overall mass distribution.

A variety of Fortran 77 utilities have been developed to further analyse the ANL/CB output files.
The utilities produce readable output compatible with many commercial graphics products. The type
of plots commonly employed here include:

e plots of the SES velocity field in any chosen sub-segment as a function of time,
e plots of the concentration and exposure at any chosen location as a function of time,

e plots of the spatial distribution of concentration and exposure in any chosen sub-
segment or contiguous length of sub-segments at any given instant,

e plots of the spatial distribution of deposition in any chosen sub-segment or contiguous
path of sub-segments at any given instant,

e plots of the temporal and cumulative mass expelled from any vent as a function of
time,

e plots of the cumulative mass distribution for each state (aerosol, deposition, etc.) as a
function of time.

For chemical/biological applications, it is often important to know the exposure level [1,2] of
subway patrons. The instantaneous concentration field is a poor measure of its physiological impact.
The exposure level provides a measure of the cumulative impact to the human body over a given time
period. Exposures for the plots described above are derived by either of two forms, (1) time-
integrated concentration (TIC) and (2) dosage. The former suffices for the study examples discussed

here. The TIC as a function of position and time, 7(x,t), and is formally defined by

t

7(x,t) = j p (xt')dt' &)
to

«««««




where to is a reference time and x a fixed spatial co-ordinate. The ANL/CB plot utilities evaluate
TIC's using a discrete integral approximation to (9).

6 STUDY CASES
6.1 A Sample Subway System

A generic prototype subway was developed to test the performance of the ANL/CB model as a tool
for evaluating the impact of chemical/biological attacks on subways [3]. That same prototype was
used here to demonstrate the behaviour of concentration under various conditions typical to subways.
A plan view of the prototype subway is shown in Figure 4. The system consists of a two-level centre
station (labelled “C”), and 12 side-platform stations. Two lines were modelled, one from North to
South (N-S), the other from East to West (E-W). Each line extended approximately 3.5 kilometres
outward from the centre to connect three stations in each direction. The stations were labelled as C,
1N, 2N, 3N, 18, 28, 3S, 1E, 2E, 3E, 1W, 2W, and 3W. Each tunnel section had a relief shaft before
and after each station, and one fan shaft between the two relief shafts. Most sections were two-track
tunnels, except for portions of single-track divided tunnels neighbouring Station C.

This study assumes a released aerosol having the following physical properties:
m  aerosol specific gravity =1.2
= thermal conductivity = 0.6 watts/meter-Kelvin
» tunnel air temperature = 298.1° Kelvin; wall temperature 294.3° Kelvin
m 3 particle size bins -
Bin#1: mass fraction 25%, particle diameter 3 microns
Bin#2: mass fraction 60%, particle diameter 4 microns
Bin#3: mass fraction 15%, particle diameter 5 microns

These properties are selected for illustrative purposes only; they are reasonable choices but are not
meant to characterise any particular subway or aerosol.

6.2 Velocity and Concentration Field in a Single Track Tunnel

This example illustrates the relatively simple case of a release from a source located in a single-
track divided tunnel when the airflow is unidirectional. Trains were operated on only the northbound
route with a uniform headway of 3 minutes. Each train was programmed to make only one stop, at
station 3S, so as to generate a smooth velocity pattern allowing the focus to be on a simple case for
illustration purposes. The piston action, as predicted by an SES simulation, generated the periodic
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airflow shown in Figure 5. The figure shows the flow velocity within sub-segment 104-104 of a
single-track divided tunnel just South of Station C on the N-S line. Since a sub-segment, by
definition, has uniform cross-sectional area, the bulk mean velocity of an incompressible flow is
constant throughout. The velocity plot therefore represents the time-dependent field at any fixed point
within that sub-segment. As expected, the maximum peaks occur simultaneously with each passing
train.

Subsequently, the SES predictions were used in an ANL/CB simulation of a steady, continuous
localised source in sub-segment 104-104 at a track co-ordinate of 3200 meters on the N-S line. We
assume that the initial concentration field is zero everywhere prior to the start of the release.
According to equations (12) and (13), the local concentration should vary inversely with the local
velocity. That expected behaviour is confirmed by the predictions illustrated in Figure 5.

The concentrations in this example continue to propagate beyond sub-segment 104-104 from the
source towards the northbound direction. Each passing train generates a velocity “wave” that
advances the extent of the concentration. Figure 6 shows the spatial distribution of the concentration
field and exposures at a time of 1800 seconds after the start of release. The plot shows the
instantaneous values of the two variables at each location along the track.

6.3 Velocity and Concentration Field for Bi-directional Train Motion

Bi-directional train motion in multiple track tunnels generates velocities of more complex form than
that for unidirectional flow. The example considers the simultaneous operation of bi-directional trains
on both lines in the system, two routes per line. Because the aerodynamics couple the air flows
between the two lines through the interaction at the crossover Station C, the velocity profile shown in
Figure 7 exhibits perturbations unseen in the previous example. .

The local concentration peaks appearing on either side of the source peak are caused by the
discharge of concentration from train car doors at programmed stops in nearby stations. The source
was located at mid-platform of Station C on the North-South line. Once the release starts, trains that
stop at station C are heavily infiltrated. As those trains move to subsequent stations, the infiltrated
cars discharge high concentrations while doors are open. This transport of concentration by cars adds
a unique element to subway dispersion.

64 Velocity and Concentration Field in a Ventilation Shaft

Relief shafts, fan shafts, and station entrances all contribute to subway ventilation to at least some
degree. The piston action of moving trains is often sufficient in itself to maintain adequate ventilation.
This example assumes trains are running with fans off and dampers open. Then, all shafts that open to
the atmosphere effectively act as ventilation shafts. The piston action of trains passing below a
ventilation shaft generates a periodic, alternating velocity within the shaft (see Figure 10).

The concentration near the opening varies periodically with the flow reversal. The cycle is as follows:

1. As the nose of a train approaches the vent shaft, the increasing pressure pushes air up the
shaft, expelling it into the atmosphere,




2. The train passes the vent shaft, and the pressure equalises,

3. After the rear of the train passes the vent shaft, the decreasing pressure pulls air down the
shaft, drawing air from the atmosphere into the shaft.

The actual volume of fresh air exchanged depends upon the extent of the thrust within the shaft. If
the shaft is very long, the net effect of the oscillation is merely to shift air between the tunnel and
shaft. This might be the case for a long entrance passage to a station. On the other hand, if the shaft is
relatively short the displacement likely exceeds the length of the vent shaft, so the oscillation
completely flushes the shaft on both the upward and downward cycles. In that case, any concentration
initially inside the shaft before the train arrives will be expelled, and then fresh air will be drawn down
through the shaft into the tunnel.

Figure 11 shows the mass expelled from all of the ventilation shafts in the 2-line subway system,
including fans shafts, relief shafts, and station entrances. The effect of each train can be seen in the
peaks of the expelled flux plot.

6.5 The Overall Concentration Mass Distribution

At each time step, the ANL/CB computer code evaluates the total concentration mass distribution
throughout the subway system, including

o the aerosol mass in each sub-segment,
o the mass deposited on the surfaces of each sub-segment,
e the aerosol mass in each train car, and,

e the aerosol mass that has escaped from each ventilation shatt or,

a portal to the atmosphere.

Since the mass introduced into the subway by sources is also known, mass conservation can be
verified (within numerical tolerance) throughout the simulation.

The distribution depends upon the subway design, the train and fan operations, and the source
characteristics. Venting of aerosol to the atmosphere is enhanced by a high frequency of train motion.
Obviously, exhaust fans expel concentration rapidly. The simulation described above for multiple line
bi-directional train motion was run to produce the example shown in Figure 12. In this simulation, a
single source was placed at mid-platform in station C. The source strength had a constant value of one
gram per second for a duration of 5 minutes. The plot shows the rapid rise in aerosol during the initial
release followed by a gradual decline due the venting and dilution caused by piston action.

Trains cars that stop to discharge passengers at Station C become infiltrated while the doors are
open and, to a lesser degree, through the HVAC exchange. Once the doors close and the train moves
away from the station, the HVAC exchange gradually flushes the cars. In this example the trains have
a fixed headway of 3 minutes, so the process of loading and flushing at Station C leads to a quasi-




periodic variation in the total train car mass. The same process occurs for trains at other stops besides
Station C, but the dominant effect of loading is at the source.

7 CONCLUSIONS

The ANL/CB is practical tool for predicting subway concentrations. It works in synchronisation with
the SES subway flow model thereby accounting for the movement of multiple trains in tunnels and
stations and accounting for the impact of blast and vent shafts. The dispersion model accounts for the
intake and discharge of concentration from train cars as well as the movement of concentration due to
the piston action of the trains. A first-order treatment of aerosol deposition is also included.

Exercise of the model in a generic subway case reveals the following features:

(a) the intake and discharge from train cars creates a rapid spread of contaminant to other stations
and does so far faster than the piston effect,

(b) concentration history at a typical plume location where trains are routinely passing has a
sinusoidal pattern which is about 180 degrees out of synchronisation from the sinusoidal
pattern of the velocity field,

(c) Aerosol vented to the street increases with time when trains remain in operation during a
release scenarios dominating the ultimate disposition of the mass as compared to the mass
located in train cars, aerosols deposited in tunnels and stations, and aerosol remaining airborne
in the tunnels and stations.

These conclusions are expected to be valid for other scenarios and represent the general nature of the
contaminant dispersion in a subway system.

This effort is part of a continuing program at Argonne National Laboratory in support of the U.S.
Department of Energy PROTECT Program. Efforts are in progress to further improve the ANL/CB
model, and to validate it against test data.
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Appendix A  Finite Difference Formulation of ANL/CB Dispersion Model

To obtain a discrete equivalent of equation (5), each sub-segment k is divided into Nk equal
intervals Ax = L«/ Nk to form a spatial grid [ xy, x5 ..., xv,]. The temporal grid is defined by a fixed
stepsize, At, and corresponding time steps f» = nAt . We seek to find the cell-averaged mean value
for p attime f,

1
'.’=— ! ,tndx -1
= [ pestn (a-1)

The natural finite difference interpretation suggests that p:' be placed at mid-cell in cell i. A
second-order accurate finite difference formula in a sub-segment having no internal sources when
V()20 is

o=t rlpr = o) (o, = p!) 1212, N (A-2)

where r =ViAt/ Ax. Similar finite difference forms are well established in connection with the
wave equation and the uypwind treatment of the 1-D convection term [10,11].  The cell-centred

concentrations at indices [/—1,i] are appropriate for flow in the upwind direction (in the sense of
increasing i). For Vi(¢) <0, the corresponding formula for flow in the downwind direction is:

o =yl - pin e Pl = p)  i=12,.0 N (a-3)

The boundary conditions for equations (A-2) and (A-3) are determined by the inflows/outflows at sub-

segment junctions to assi mtor 5™ | At simple SES junctions, the boundary conditions are the
g en p, Pries1 P J

concentrations at the adjacent endpoint of the upwind sub-segment that feeds the junction. At portals
and vents to the atmosphere, the inflow boundary condition is just the ambient concentration, usually
zero. The corresponding outflow boundary condition acts as a sink.

At multiple junctions, the boundary conditions require special treatment. SES allows up to five
sub-segments per junction. The flow directions in each sub-segment are time-dependent, so many
combinations are possible. For a junction at the downwind end of a sub-segment, the outflow simply
acts as sink. At an inflow junction, the boundary condition for the upwind end of the sub-segment is
determined by flux-weighted mixing using

= Zull inﬂowsp i Qi ( A _4)
Zall outflows Qk

4

For multiple junctions of three or fewer sub-segments, equation (A-4) is rigorous. However, when
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applied to more than three junctions, it entails the additional assumption that all inflows are fully
mixed in the stream at the point of the junction.

Although implicit in appearance, equations (A-2) and (A-3) can be solved explicitly by a simple
marching scheme. To illustrate, re-write equation (A-2) in the form

pr'ﬁ-l__ (pi —rp; +rpi-l+rpi-l) i=1,2,--~,Nk (A'S)

The right hand side of equation (A-5) is explicit provided that the p:l are updated sequentially,
starting with the known boundary point , where

n n n+t n+l

Po=Ps Py =Py (A-6)

For flow in the downwind direction of a sub-segment, an explicit solution of (A-3) is obtained
similarly, except that the marching proceeds from the known boundary condition from (A-4) to set

P:/m and P::,l at i= Nk+1, with i decreasing. In either case, the solution is numerically stable

provided the Courant-Friedrichs-Levy condition [11], r<1, is satisfied. [Although the discrete
equations here resemble the unconditionally stable Crank-Nicolson form, the important difference is
that, here, r is time-dependent.

Appendix B Accounting for Source Terms in ANL/CB Model

Since the grid spacing Ax limits the resolution, combinations of localised point sources are the most
general that can be adapted in this model. Consider a source located in cell i of sub-segment & (see

Figure 1). The cell volume is Axdx. During a time-step Af, the source Fi(xi,) adds a mass
AtFi(xi,t) . The incremental change in the cell mean concentration is given by

n AtF (Xi, In)
Ap, =—————= (B-1
Pi Ax Ax )

A term corresponding to the right side of equation (B-1) is incorporated in the ANL/CB model for
each point source. Its accuracy can be tested by comparing the discrete term to its theoretical value in

the continuum case. The source Fi(xi,t) releases a mass AtFi(xi,t) during the interval As to the
control volume AkVkAt. In the limitat At — 0, the local mean concentration is

Fi(xisti) (B-2)

p(Xiatn) =
AV

Note that equation (B-2) is instantaneously exact, whereas equation (B-1) must be integrated over a
series of time steps in order to obtain the approximate local concentration.




The propagation of concentration as governed by equation (5) is linear; its solutions are therefore
subject to the well-known superposition principle [6,7]. [To be precise, the solution within each sub-
segment is linear; the global solution is piece-wise linear] One immediate consequence of this
property is that all points of the concentration field scale in direct proportion to the source strength.
Without loss of generality, the source term in equation (B-2) can be written

Fk(Xi,tn) =F2f(Xi’tn) (B'3)

where Fz is a scaling constant and f(xi,#) an arbitrary function of position and time scaled so that

its maximum value is unity. For a given fixed function, f, the effect of the factor Fz is merely to

multiply the source and concentration solution field everywhere by the same factor. Note, however,
the fundamental time-dependence of the source must remain fixed.

Appendix C Finite Difference Treatment of Train car Source Terms

Presently, the train car model predicts only the mean concentration as a function of time, p_,, , in each
car. Let O denote the HVAC fresh air intake flow rate, ;__the carlength, and }/  its volume. The
proportion of O entering the car from a bounding cell i oflength Ax is computed by

AQ,= iA" (B-4)

The corresponding elemental volume flow rate is

80,60 = 25 ®-5)

car

Since the flow is incompressible, an equal volume must be discharged from the train car back into
each subway cell. The net concentration mass transfer from cell i into the car is therefore

A
A m;= QL L (pi - pcar) (B-6)

The term Am; is positive when the subway contamination, p , exceeds that in the car; it is negative if

the reverse is true.

Dividing equation (B-6) by the car volume gives the net change in the car concentration due to
exchange with cell 7 :
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= QAtAx (pi—pcar) (B'7)

P
car‘ L car V car

The corresponding change in concentration of cell i of sub-segment £ is

Ami _ QAr
- = car — Pi -8
Ak Ax Ak Lcar (p P ) (B )

Ap,=

In practice, indiscriminate use of equation (B-8) can lead to negative concentrations due to round-
off error. Subsequently, the discrete equations may become unstable. Alternatively, consider the
limiting continuum equation

opi__Q _ )
L PIRGEYXG) B-9)

Equation (B-9) is generally intractable due to the complexity of p_«). However, p_is nearly
constant over a single time step Af. In that case, the analytical solution for the time step is

pi (tn+1) = pi (tn)e-NQ/(AkLm) + pcar (t”X]‘ - e_NQ/(A‘LW)) (B-l O)
Equation (B-10) serves as a relaxation method that replaces (B-9) to eliminate the potential instability.

Each cell bounding the car is updated using (B-10), then the total mass increase for all cells over the
time step is computed by

Am=ZAmi=Z(P,-(tn+1)_Pi(tn))AkAx (B-11)

By mass conservation, the corresponding change in the car must be —Am . Therefore, the change in
mean concentration inside the car due to HVAC exchange during the discrete time step, Az, is

Am
Vcar

(B-12)

Ap,, ==

AAAAAAA
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Figure 1: Typical SES Node Diagram
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Figure 2. Schematic of Train Car Exchange Process
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Local Velocity and Concentration for a
Continuous source release, 1 generic unit/second strength
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Figure 5: Local Velocity and Concentration over source
Concentration & Exposure over Route Track
Northbound Line after 1800 seconds
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Figure 6: Example of Concentration and Exposure for 1-directional Train Motion
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Figure 7: Velocity profile for Bi-directional Train Motion

5—minute Continuous Unit—source Release
Northbound Line after 1.00 hour
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Figure 8: Concentration Field for Bi-directional Train Motion Example
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5-minute Continuous Unit—source Release
Local Peaks at Northmost Stations after 1.00 hour
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Figure 9: Local Concentration Peaks at Station Stops

300 Second Continuous Unit Source Release
Blast shaft VC—2 .5 meters below ground
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Figure 10: Velocity and Concentration at Ventilation Shaft Exit
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Continuous Unit Source Release over 300 seconds
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Figure 11: Flux & Cumulative Contaminant Mass Expelled from Relief Shaft
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Figure 12: Cumulative Contaminant Mass Distribution
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