

REPORT TO THE US DEPARTMENT OF ENERGY 1998 COMPLEX SYSTEMS SUMMER SCHOOL

I. INTRODUCTION

For the past eleven years a group of institutes, centers, and universities throughout the country have sponsored a summer school in Santa Fe, New Mexico as part of an interdisciplinary effort to promote the understanding of complex systems. The goal of these summer schools is to provide graduate students, postdoctoral fellows and active research scientists with an introduction to the study of complex behavior in mathematical, physical, and living systems. The Center for Nonlinear Studies supported the eleventh in this series of highly successful schools in Santa Fe in June, 1998.

II. PROGRAM

The format of the school consisted of four hours of course lectures and a one-hour seminar each day. The rest of each day was set aside for discussion sessions, laboratory projects, and informal interactions. Laboratory facilities included computer workstations, experimental equipment, and software provided by the sponsoring institutions and the individual lecturers.

Lecturers and topics for 1998 were:

Week One

Stability and Turbulence

Charles Doering, Mathematics, University of Michigan

Stability is usually considered a property of stationary, relatively "simple" states of a hydrodynamic system. Turbulence is the antithesis, characterized by instabilities and complex dynamics. There is, however, a heuristic connection between the two concepts which bears some similarities to the modern concept of self-organized criticality. In recent years this connection has been placed on a rigorous mathematical footing. In this series of lectures, the connection between stability concepts and turbulence dynamics was explored both in terms of physically motivated arguments and in terms of rigorous mathematical analysis.

Adaptive Social Systems

John Miller, Social and Decision Sciences, Carnegie Mellon University

This series of talks will explore issues surrounding adaptation and complexity in some fundamental economic and social systems. The systems explored included basic markets and auction institutions, games of cooperation, and political models of party competition. These systems will be analyzed through the integration of both adaptive computational

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

and more traditional theoretical techniques.

Week Two

The Satisfiability Problem

Toniann Pitassi, Computer Science, University of Arizona

The satisfiability problem is the original and quintessential NP-complete problem. Pitassi discussed this famous problem, and its importance to computer science, artificial intelligence, logic, economics and cryptography.

Models of Cortical Population Codes

Richard Zemel, Psychology, University of Arizona

Zemel investigated current models of population codes in terms of three main questions: 1) Interpretation: how can the underlying encoded quantity be inferred from a set of neural activities? 2) Generation: how can the observed tuning curves arise from the afferent synapses? 3) Information: what information about external correlates is contained in the population code, and how does this information influence behavior? He explored the mathematical techniques and assumptions used in models that address these three questions, and discussed the computation consequences of the different models.

Week Three

Molecular Evolution and the Past, Present and Future of Proteins

Frances Arnold, Chemistry and Chemical Engineering, California Institute of Technology

Steven Benner, Chemistry, University of Florida at Gainesville

Benner began these the lectures by describing a Markovian model for divergent evolution in protein sequences, a model similar to that implemented by nearly all computer tools used to analyze genomic sequences. He then introduced chemistry into the analysis, showing how a purely informatic model fails to describe adequately the divergent evolution of real proteins in real organisms struggling to survive, get married, and have children in real environments

Arnold then described how we can mimic key processes of Darwinian evolution—mutation, recombination and selection (or screening)—to evolve a wide variety of protein functions on the time scale of weeks. Many of the molecular solutions that arise from these experiments are unanticipated and provide unique insights into the molecular mechanisms of protein folding and function.

Week Four

Form and Motion in Physics and Biology

Ray Goldstein, Physics, University of Arizona

Adriana Pesci, Physics, University of Arizona

These lectures covered an interrelated set of topics in the areas of nonlinear dynamics and pattern formation. Both theoretical and experimental methods for the study of how patterns emerge from structureless continua were explained. Examples were drawn from soft condensed matter physics, biological physics, fluid dynamics, and astrophysics. Common theoretical notions developed include geometrical aspects of the motion of surfaces and interfaces, the dynamics of pattern competition, the structure and importance of variational principles, and the role of numerical computations.

III. OUTCOMES

Participant Evaluations

Written participant evaluations of each year's school are solicited on a weekly basis during the program and at its conclusion. Evaluations to date have been consistently positive in response to the content and quality of the lectures, and to the format and administrative coordination of the schools.

Participants' Research Careers

The successes of the summer schools must also be judged by long-term effects. Attendees of past schools are routinely polled to learn what influence their attendance had on their subsequent careers and research. For many past attendees the School appears to have played an instrumental role in helping them to choose their present research and goals. Some became aware of techniques from other fields that have helped them solve research problems; others became aware of new problems that changed the course of their research up to that point. Many report specific benefits. Some find the school instrumental in obtaining postdoctoral positions in the fields and institutions of their choice. Many author papers directly stemming from the summer research. Some begin long-term collaborations with other participants.

5/28/98

1998 Complex Systems Summer School Schedule

May 31-June 5Sunday afternoon

(King Hall, College of Santa Fe)

1:00-8:00 p.m. Registration

6:00-8:30 Welcoming reception

Monday

(All lectures and seminars take place in the Forum. Computer Laboratory is on the lower level of the Forum. Summer school office is on the lower level of the Forum.)

8:45 a.m. Introduction to the 1998 Complex Systems Summer School
Daniel Stein, Co-director9:00 Stability and Turbulence
Charles Doering, Mathematics, University of Michigan

10:30 Break

10:45 Adaptive Social Systems
John Miller, Social and Decision Sciences, Carnegie Mellon University

12:15 p.m. Lunch, Cafeteria

1:30 Introduction to the Santa Fe Institute (SFI)
Erica Jen, Vice President for Academic Affairs, SFI2:00 Introduction to CSSS computer facilities and support
Tim Carlson, System Manager, SFI and Sam Brannen, Summer School Program CoordinatorTuesday
a.m. Same morning lecture schedule throughout this week1:30 p.m. Introduction to Santa Fe
Andi Sutherland, Events Coordinator, SFI

2:30 UNM Registration (Lobby of the Forum)

Wednesday
Free afternoonThursday

4:00 p.m. Open house and reception at the Santa Fe Institute

Friday
Free afternoon**June 8-12**

5/28/98

Monday

9:00 a.m. The Satisfiability Problem
Toniann Pilassi, Computer Science, University of Arizona

10:30 Break

10:45 Models of Cortical Population Codes
Richard Zemel, Psychology, University of Arizona

12:15 p.m. Lunch, cafeteria

1:30 Quenched Disorder and Its Applications I
Daniel Stein

Tuesday

a.m. Same morning lecture schedule throughout this week

1:30 p.m. Quenched Disorder and Its Applications II
Daniel Stein

Wednesday

1:30 p.m. Toolkit on Computational Complexity
Cris Moore

Thursday

2:00 p.m. Talk by SFI Research Professor James Crutchfield at the Santa Fe Institute

Friday

p.m. Free afternoon

June 15-19Monday

9:00 a.m. Global Objective Functions and Local Learning Rules
Barak Pearlmutter, Computer Science, University of New Mexico

10:45 a.m. Molecular Evolution and the Past, Present and Future
of Proteins
Frances Arnold, Chemistry and Chemical Engineering,
California Institute of Technology
Steven Benner, Chemistry, University of Florida at
Gainesville

12:15 p.m. Lunch, cafeteria

1:30 p.m. Experimental Demonstrations of Pattern Formation
Robert Ecke, Los Alamos National Laboratory

Tuesday

a.m. Same morning lecture schedule throughout this week

p.m. Free afternoon

Optional trip to the Ghost Ranch; participants in the course will see
a working paleontology operation, where the most ancient fossils of
dinosaurs, emerging right after the Permian extinction, are being
excavated and studied. Led by Steven Benner.

5/28/98

Wednesday

p.m. Free afternoon

8:00 Public lecture: Unnatural Selection: Proteins of the Future
Frances Arnold at the James A. Little Theater

Thursday

2:00 p.m. Talk by Christian Reidys at the Santa Fe Institute

Friday

p.m. Free afternoon

June 22-26Monday

9:00 a.m. Form and Motion in Physics and Biology
Ray Goldstein, Physics, University of Arizona
Adriana Pesci, Physics, University of Arizona

10:30 Break

10:45 Nonlinear Resonances, Optimal Dendritic Structures, Singular Motion, and Other Paradigms in Complexity
Alfred Hubler, Physics, University of Illinois at Urbana-Champaign, associate director of the Center for Complex Systems Research of the UIUC, Santa Fe Institute

12:15 p.m. Lunch, cafeteria

p.m. Free afternoon

Tuesday

a.m. Same morning lecture schedule throughout this week

p.m. Free afternoon

Wednesday

p.m. Free afternoon

Thursday

2:00 p.m. Toolkit on Computational Complexity
Chris Moore at the Santa Fe Institute

Friday

12:15 p.m. Concluding remarks
Daniel Stein

12:30 Farewell barbecue

1998 Complex Systems Summer School

May 31-June 26, 1998
 College of Santa Fe Campus
 Santa Fe, New Mexico 87501

Invited Participants

Lauren Ancel
 Stanford University
 Department of Biological Sciences
 Stanford CA 94305
 USA
 Work 650-723-4952 Fax 650-725-0180
 ancels@charles.stanford.edu

James A. Apffel Jr.
 Hewlett-Packard Laboratories
 Biomeasurements Group
 3500 Deer Creek Road
 Palo Alto CA 94304
 USA
 Work 650-857-6090 Fax 650-852-8502
 alex_apffel@hpl.hp.com

Bryan Arendall
 University of Arizona
 1150 E. 8th St. #411
 Tucson AZ 85719-5430
 USA
 Work 520-621-8171 Fax 520-621-1697
 arendall@u.arizona.edu

Ramesh Balasubramaniam
 Center for Ecological Study of
 Department of Psychology
 406 Babbidge Road, U-20
 Storrs CT 06269
 USA
 Work 860-486-4969 Fax 860-486-2760
 ramesh@ee.uconn.edu

Gill Bejerano
 Hebrew University
 9-A Nili St.
 Jerusalem 92548
 ISRAEL
 Work 9722-5632-770 Fax
 jill@cs.huji.ac.il

Ronald Bialozyt
 Federal Research Centre for Forestry
 Von Ossietzky Strasse 11
 D-37085 Goettingen
 GERMANY
 Work Fax 494102696200
 bialozyt@rrz.uni-hamburg.de

Marcella F. Brugnach
 Oregon State University
 64 NW 33rd.
 Corvallis OR 97330
 USA
 Work 541-758-7754 Fax 541-758-7760
 marcela@fsl.orst.edu

Nicolas E. G. Buchler
 University of Michigan
 Biophysics Research Division
 Ann Arbor MI 48109-1055
 USA
 Work 313-936-0356 Fax 313-764-3323
 nbuchler@umich.edu

David Buza
 The MITRE Corporation
 1820 Dolley Madison Blvd.
 McLean VA 22102
 US
 703-883-5583
 buza@mitre.org

Ralf Engbert
 University of Potsdam
 Institute of Physics
 POB 601553
 14415 Potsdam
 GERMANY
 Work Fax 493319771142
 ralf@ik.uni-potsdam.de

Raymond L. Erikson
 Harvard University
 16 Divinity Ave.
 Cambridge MA 02138
 USA
 Work 617-495-5386 Fax 617-495-0681
 erikson@biosun.harvard.edu

Guido Fioretti
 University of Florence
 via Angeloni 11
 I-05100 Terni
 ITALY
 Work Fax 744-425713
 fioretti@facec.cce.unifit.it

1998 Complex Systems Summer School

May 31-June 26, 1998
 College of Santa Fe Campus
 Santa Fe, New Mexico 87501

Invited Participants

Christoph Flamm
 Institut für Theoretische Chemie
 Währingerstraße 17
 A-1090 Wien
 AUSTRIA
 Work 431-40480-661 Fax 43140480-660
 xtof@tbi.univie.ac.at

Leann L. Fu
 University of Michigan
 825 Tappan #9
 Ann Arbor MI 48104
 USA
 Work 734-669-6568 Fax 734-763-8041
 lfu@eecs.umich.edu

Xavier Gabaix
 Harvard University
 24 Prescott Street #14
 Cambridge MA 02138
 USA
 Work 617-354-9735 Fax
 xgabaix@kuznets.fas.harvard.edu

Jeremy Goodridge
 Carnegie Mellon University
 Center for the Neural Basics of
 115 Mellon Institute/4400 Fifth Ave.
 Pittsburgh PA 15213
 USA
 Work 412-268-7229 Fax
 goodridg@cnbc.cmu.edu

Gerard Gorman
 Information Technology Center
 University College Galway
 IRELAND
 Work 353-91-524411 Fax 35391-525700
 gormo@epona.physics.ucg.ie

Michael Grabe
 University of California, Berkeley
 816 Hillside Ave.
 Albany CA 94706
 USA
 Work 510-558-8017 Fax
 mgrabe@nature.berkeley.edu

Brad Gulko
 University of California, Santa Cruz
 Dept. of Computer Engineering
 Santa Cruz CA 95064
 USA
 Work 408-459-2301 Fax
 bgulko@leptoncorp.com

Chris Hancock
 MIT Media Laboratory
 Epistemology and Learning Group
 20 Ames St., Room 02139
 Cambridge MA 02139
 USA
 Work Fax 617-253-6215
 ch@media.mit.edu

Matthew J. Hoffmann
 The George Washington University
 Political Science Department
 2201 G Street, NW
 Washington DC 20052
 USA
 Work 202-994-6290 Fax 202-994-7743
 mhhoff@gwis2.circ.gwu.edu

Jody Lee House
 MIT
 MIT Room E53-307
 50 Memorial Drive
 Cambridge MA 02142
 USA
 Work 617-253-8208 Fax
 jhouse@mit.edu

Jun Iio
 Mitsubishi Research Institute
 2-3-6 Otemachi
 Chiyoda-ku
 Tokyo 100
 JAPAN
 Work 813-3277-0750 Fax 8133277-3471
 iiojun@mri.co.jp

Anja Jauernig
 The Graduate College
 Princeton NJ 08544
 USA
 Work 609-258-7808 Fax 609-258-1502
 jauernig@princeton.edu

1998 Complex Systems Summer School

May 31-June 26, 1998
 College of Santa Fe Campus
 Santa Fe, New Mexico 87501

Invited Participants

Eduard Kelemen
 Charles University, Prague
 2 Zitomirska
 Prague 101 00
 CZECH REPUBLIC
 00420-2-72-03-24 00420-2-24-24-05-
 kelemen@sun1.biomed.cas.cz

Kenneth Kim
 632 Kearney St. #1
 El Cerrito CA 94530
 USA
 510-527-8140
 kkim@nature.Berkeley.EDU

Makoto Kinoshita
 Hokkaido University
 Graduate School of Engineering
 Research Group of Complex Systems
 Kita 13 Nishi 8 Kita Sapporo 060
 JAPAN
 Work 011117067106 Fax 101117067225
 m_kino@complex.eng.hokudai.ac.jp

Michael J. B. Krieger
 Institut de Zoologie et d'Ecologie
 Lausanne University
 Batiment de Biologie
 1015 Lausanne
 SWITZERLAND
 Work 41-21-6924170 Fax 41216924105
 michael.krieger@izea.unil.ch

Capt. Mary Leonardi
 Office of Science and Innovation,
 USA
 Work 703-784-6076 Fax 703-278-6083
 leonardim@quantico.usmc.mil

Thomas Mark Lietman
 University of California, San Francisco
 1407a Fifth Ave.
 San Francisco CA 94122
 USA
 Work 415-502-2662 Fax 415-476-0527
 tml@itsa.ucsf.edu

Stephen P. Lu
 Axis Inc. Contract Software Engineer
 Caterpillar Technical Center, Bldg. F
 1311 E. Cedar Hills Dr.
 Mossville IL 61552
 USA
 Work 309-578-6817 Fax 309-578-4451
 lusp@cat.com

Alcherio Martinoli
 LAMI-DI-EPFL
 IN-F Ecublens
 1015 Lausanne
 SWITZERLAND
 Work 412-693-52-80 Fax
 Alcherio.Martinoli@epfl.ch

David C. Mays
 Merrick & Company
 31 Valencia Loop
 Santa Fe NM 87505-8229
 USA
 Work 505-466-8222 Fax 466-1908

Kentaro Miyazaki
 California Institute of Technology
 Division of Chemistry and Chem Eng.
 Pasadena CA 91125
 USA
 Work 626-395-4151 Fax 626-568-8743
 miyaken@cheme.caltech.edu

Makoto Mizuno
 Hakuhodo Inc.
 R&D Division
 Shibaura 3-4-1
 Minato-ku Tokyo
 JAPAN
 Work 813-5446-6484 Fax 81-5446-6490
 mmizuno@hakuhodo.co.jp

Jaime Mora Vargas
 University of Mexico
 Col. Venustiano Carranza C.P. 42020
 Pachuca Hida
 MEXICO
 Work 52-771-4-6565 Fax
 mugal@infosel.net.mx

1998 Complex Systems Summer School

May 31-June 26, 1998
 College of Santa Fe Campus
 Santa Fe, New Mexico 87501

Invited Participants

Scott Jon Muller
 18 Araluen Dr.
 Killcare 2257
 AUSTRALIA
 Work 612-4360-2999 Fax
 plsjm@alinga.newcastle.edu.au

Bill Niedringhaus
 The MITRE Corporation
 1820 Dolley Madison Blvd.
 McLean VA 22102
 US
 703-883-5583

Jose J. Pacheco
 Arthur Andersen, LLP
 225 Franklin St., 13th Floor
 Boston MA 02110
 USA
 617-330-4838
 jose.j.pacheco@us.arthurandersen.com

Hue M. Rhodes
 University of Chicago
 373 Hazel Avenue #D3
 Glencoe IL 60022
 US
 Work 847-835-0846 Fax
 migo@alumni.stanford.org

David Richardson
 University of Virginia
 212 Shamrock Rd.
 Charlottesville VA 22903
 USA
 Work 804-984-1979 Fax
 dlr2n@wreck.evsc.virginia.edu

Daniel S. Rizzuto
 Brandeis University
 32 Blake St.
 Cambridge MA 02140
 USA
 Work 617-497-6997 Fax 781-736-3107
 neuro@volen.brandeis.edu

Pedro Ruiz Mirazo
 University of the Basque Country
 Department of Logic and Ph. of Science
 P.B. 1249
 20.080 Donastia Gipu
 SPAIN
 Work 34-43-448800 Fax 3443311055
 sfbrumik@sf.ehu.es

Yuzuru Sato
 University of Tokyo
 3-8-1 Komaba
 Meguro-ku
 Tokyo 153
 JAPAN
 Work 813-5454-4379 Fax 8135454-6535
 ysato@sacral.c.u-tokyo.ac.jp

Arjen Schoneveld
 University of Amsterdam
 Kruislaan 403
 1098 SJ
 Amsterdam
 THE NETHERLANDS
 Work 31-20-5257582 Fax 3120-5257490
 arjen@wins.uva.nl

Carol A. Scottese
 Virginia Commonwealth University
 Department of Economics
 Box 844000
 Richmond VA 23284-4000
 USA
 Work 804-828-7148 Fax 804-828-1719
 cscotese@busnet.bus.vcu.edu

Melih K. Sener
 SUNY at Stony Brook
 Department of Physics and Astronomy
 Stony Brook NY 11790
 USA
 Work 516-632-9843 Fax 516-632-9718
 sener@nuclear.physics.sunysb.edu

Anita Shieh
 Coopers & Lybrand
 1301 Avenue of the Americas
 3rd Floor
 New York NY 10019
 USA
 212-259-1505 212-259-1337
 anita.shieh@us.coopers.com

1998 Complex Systems Summer School

May 31-June 26, 1998
 College of Santa Fe Campus
 Santa Fe, New Mexico 87501

Invited Participants

James G. Snyder
 2204 Barcelona Rd. SW
 Albuquerque NM 87105
 USA
 505-452-1433 Fax
 jgsnyder@unm.edu

Pietro Speroni di Fenizio
 University of Rome
 Via Manara 10
 00153
 Rome
 ITALY
 Work Fax 392670-60-61
 p.speroni@priminet.com

Christian Storm
 University of California, Berkeley
 Dept. of MCB
 129 Life Sciences Addition
 Berkeley CA 94720
 USA
 Work 510-643-8896 Fax 510-643-6791
 raystorm@uclink4.berkeley.edu

Kimihiko Sugino
 Toyota Motor Corporation
 Software Design Department
 Electronics Engineering Division II
 sugino@kamui.ex.toyota.co.jp

Pontus Svenson
 Institute of Theoretical Physics
 Chalmers University of Technology
 S-412 96
 Gothenburg
 SWEDEN
 Work 4631-772-3179 Fax 4631772-3164
 tfskps@fy.chalmers.se

Ian Teasdale
 The Princess Royal Building
 Westlakes Science and Technology
 Whitehaven Cumb CS28 7BX
 ENGLAND
 Work 946-514-009 Fax 946-514-040
 ianteas@westlakes.ac.uk

Todd Thorsen
 California Institute of Technology
 810 N. Michigan Ave.
 Pasadena CA 91104
 USA
 Work Fax
 thorsen@cco.caltech.edu

Marija Tolic
 Ruder Boskovic Institute
 Bijenicka 54
 10 000 Zagreb
 CROATIA
 Work 003851681 929 Fax
 iva.tolic@public.srce.hr

Erik Jan van den Berg
 Acaciastraat 32
 2565 KB Den Haag
 The Netherlands
 Work 31-10-2018826 Fax 3110-2331613
 vandenberg.erik@adlittle.com

Alexander Volkov
 California Institute of Technology
 Chemical Engineering
 Mail code 210-41
 Pasadena CA 81125
 USA
 Work 626-395-3943 Fax 626-568-8743
 volkov@cheme.caltech.edu

Joshua S. Weitz
 MIT
 Department of Physics
 Bldg. 12-111
 Cambridge MA 02139
 USA
 Work 617-253-5482 Fax 617-253-2562
 jsweitz@mit.edu

Claus Wilke
 Institute für Neuroinformatik
 Ruhr-Universität Bochum
 Germany
 D-44780 Bochum
 GERMANY
 Work 492347007722 Fax 492347094017
 claus.wilke@neuroinformatik.ruhr-uni

1998 Complex Systems Summer School

May 31-June 26, 1998
College of Santa Fe Campus
Santa Fe, New Mexico 87501

Invited Participants

Yau Hok Wing
HK University of Sci. & Tech.
Room 705, Tower B
University Apartment
Clear Water Bay
Hong Kong
Work Fax
hokwing@uxmail.ust.hk

Patrick L. Wintrode
California Institute of Technology
Division of Chemistry and Chemical
Pasadena CA 91125
USA
Work 626-395-4205 Fax 626-568-8743
patrick@cheme.caltech.edu

Lee Worden
Program in Applied and
Fine Hall
Washington Road
Princeton NJ 08544-1000
USA
Work 609-258-6884 Fax 609-258-1735
worden@princeton.edu