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Abstract ‘<

Partially premixed turbulent flames can develop flow regimes where triple flames emerge con-

sist ing of essentially premixed and non-premixed zones. The description of such phenomena

requires a criterion for the detection of such zones. Such a criterion can be based on a wide
range of variables including reaction rates, mass fractions of radicals, etc. These variables
are not necessarily suitable for the limit of infinitely fast reactions, for instance, reaction

rates are obviously not bounded in this limit. Hence a new single scalar variable based on

geometric properties of mixture fraction and non-conserved variables is constructed, that

allows the detection of finite rate and, in particular, triple flame domains and is bounded in

the limit of infinitely fast reactions. This is first done for systems with simplified chemistry
described by two variables and then generalized to combustion with complex chemistry. A
pdf-sdf formalism is then outlined for the local thermodynamic state conditioned upon the

degree of finite rate effects.



Finite rate an’d triple flame zones

Finite rate chemistry and transport effects in partially premixed flames are responsible for the

appearance of triple flames ([10], [14], [15], [13]). The DNS results of Echeliki and Chen[13]

provide the detailed account of the structure of triple flames suitable for the development of

a combined pdf/sdf formalism for turbulent flames.

Suppose the local thermodynamic properties can be determined by two scalar variables:

Mixture fraction 2(x, t) and a progress variable C(X,t). The simplified chemical framework

for the combustion of methane with air proposed by Linan and WilIiams [12] verifies that

this is possible. Let the progress variable be proportional to temperature for the sake of

argument. Consider now the results of Echekki and Chen[13] for the partially premixed

Methanol-air flame. Their figure 8 shows the isolines for mixture fraction and temperature

in the neighborhood of the triple flame. It is clear from the geometry of these isolines that in

the nonpremixed branches of the triple flame the isolines of mixture fraction and temperature

align themselves, hence approach a local dependence of temperature on mist ure fraction as

can be expected for pure nonpremixed flames. On the other hand are the isolines for mixture

fraction nearly orthogonal to the isolines of temperature near the head of the triple flame.
.

These results indicate that a criterion for the detection of zones with finite rate effects and

triple flames can be based on geometric properties of level surfaces in three dimensional and

on level lines in two dimensional flows.

Assumptions

The criterion to be de~-eloped rests on a set of restrictions which can be stated as follows:

(1) The

[16]) hold.

(2) The

Navier-Stokes equations for the zero Mach number limit (Majda and Sethian

conditions stated by Williams ([17], section 1.3) for the existence of coupling

functions hold.

(3) The flow domain is open.

It follows from these conditions that the limit of infinitely fast chemistry reduces the system of

thermodynamic variables governed by pales to a single one called mixture fraction Z: Density,
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temperature and composition become local (not involving differential or integral expressions)

functions ofZ. Here the assumptions ofzero Mach numb era ndopendoma inarecrucial since

compressibility effects would make density and temperature nonlocal (i.e. via clifferential

equations) functions of thevelocity, energy and pressure fields and thezeroth order pressure

would be time dependent in closed domains. It is possible to derive a compressible flame

sheet model for infinitely fast reactions, but pressure, temperature and composition emerge

as local functions of three variables: Mixture fraction, density and internal energy.

Geometric criterion: Two variables

Simplified chemistry involving only two variables (mixture fraction and a progress variable,

all variables are assumed dimensionless) is considered first. The angle -ybetween the gradients

of mixture fraction Z and progress variable c

‘Y = sin “(Inz x ncl) (1)

is according to the simulation results of Echekki and C,hen [13] close to zero for regions

without significant finite rate effects and large in the flame zones. The unit normal vectors

for the level surfaces of.mixture fraction and progress variables are defined by

._vc_

‘z=1;;[’n=Iv.]

The finite rate domain can be defined b~- 7 = {X: ITI > -jo} where TO>0 is a suitable limit

value. ‘The progress variable c varies significantly near the flame zone: but can be expected

to be close to zero or unity away from it. Hence, the computation of unit normal vectors may

suffer from numerical inaccuracy away from the flame zones. This problem can be overcome

by using
’72 ‘vC

=l+IVZI xmax Icl + IX7CI
(3)

for the construction of a scalar detection function ~ = g . g. The vector g is proportional

to the sinus of the angle between the two gradients, if IVZI >>1 and IVCI > max IcI hold

and it approaches the zero vector as one of the gradients vanishes. Hence, (3) is adopted in

the following and the criterion for the detection of finite rate zones is stated as

F>jo (4)
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whe;e max X >> fO > 0 is a suitable value. It fits the bill since % is close to zero if the

gradients are close to parallel (approach of nonpremixed reaction zones) or if one of the

gradients approaches zero (zones without reactions). Furthermore, this definition enjoys the

advantage (in contrast to reaction rates) to rebounded asthelimitof infinitely-fast reactions

is approached.

Generalisation to complex chemistry

This criterion can be generalized to partially premixed flames with complex chemistry where

the local thermodynamic state is described by non-conserved variables Ci, i = 1,... , III and

a mixture fraction variable Z. In the limit of infinitely fast reactions, all Ci become local

functions of Z according to the assumptions stated above. The obvious generalisation would

be to construct the scalar X as function of all the gradients of the M progress variables,

which would align themselves with the gradient of mixture fraction, in the form

M

f-+gi.gi” (5)
i=1

This would lead to extreme complexity of the transport pde for .T and defeat the purpose

to produce a tool for the analysis of finite rate regions in turbulent flames. However, the

results presented below; indicate that there is another possibility. Scalar variables such as

temperature and density depend on alI reaction steps in an implicit manner: The Iiavier-

Stokes system for combustion flows in zero hIach number limit (see Nfajda and Sethian [16])

can be set up for the variables velocity, pressure, composition variables and internal energy,

all satisfying pales. Density and temperature follow then from local state relations, hence

P(%, P) Y1, .”., ~v, u) and T(vQ, p, Y~, ”.., YN, u) with nonlocal (functional) dependence on

velocity. The composition variables in turn are functions of the chemical rate parameters

(Damkoehler numbers for the individual reactions), hence are density and temperature func-

tions of these parameters. It follows that it is sufficient for complex systems of combustion

reactions to consider the definition

Vz Vp

g = 1 + IVZ] x maxlpl + lVpl
(6)

(the dimensionless density. is not necessarily positive) and

F=g”g (7)
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This definition satisfies the requirements for the detection of finite rate regions and remains

bounded as infinitely fast reactions are approached.

Level surfaces enclosing triple flames

The construction of a scalar variable f (7) as the vector product of two gradients (6) aI1ows

the detection of regions in space with finite rate chemistry, which is the necessary condition

for the appearance of triple flames. The scalar F is now used to outline a sdf/pdf formaIism

for the study of the processes responsible for the creation and destruction of such regions.

In particular, the area of surfaces bounding finite rate regions and triple flames and their

topological and geometric properties are of interest (Kollmann and Chen [1]).

Pde for the scalar defining the level surfaces

The pde for .F (in Cartesian coordinates for simplicity) is determined by the pales for mixture

fraction Z
Dz 1 (9

p= . ——(pZ?:)
ReSc ~xa

(s)
a

and mass balance
-.

Dp
—=–pv. v
Df

(9)

where D/Dt is the substantial deri~-ative, Re and Sc denote Reynolds and Schmidt numbers;

2? is the dimensionless mass diffusivity which depends on temperature and composition. The

gradients are governed by

and

;(:) =-=P”vfb+ *)* -P: (v. v)
a a CY

The pde for > is then determined by

6
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The resulting evolution equation for 7 is written in abbreviated form

DF 1 aF_2(pD=)+PQ

p Dt = ReSc 8x.

and

OF =
la——(+) +Q

ReSc 8x. .

(13)

(14)

which is the imbalance of diffusion and sorce terms. The explicit form of Q is not required

in the following.

Combined pdf-sdf approach

Finite rate and triple flame regions can now be determined by the level surfaces of the scalar

variable %. They are defined implicitly as solutions ~ of

and the unit normal vector of the level surface is defined by

1 a3-——
‘a = – ]’72=] 13xa

(16)
\

pointing into the region where 3< w holds, which is regarded as the out~vard direction since

the finite rate regions are on the opposite side of the surfaces. The surface density function

is then defined as

z = I-V7]6(.?-(Z, ~) – 9) (17’)

provided ~ is at least once continuously differentiable. The sdf E is closely related to the

pdf of the scalar 3 and its gradient. The scalar pdf ~ is the expectation of 6(.F(~, t) – ~)

and it follows then that the expectation of Z is given by the conditional expectation of the

scalar gradient and the scalar pdf

(19)
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It is straightforward to set up the transport equation (see Pope [4], Canclel and Poinsot [2],

Trouv-e and Poinsot [3], Trouve et al. [7]) for the sdf Z

Averaging produces the equation for the mean sdf

The mean sdfis generated by the strain rate acting in the tangential plane, the fluxof the

diffusive-ractiveimbalancef17normal to the surface and the ffuxofflr in scalar space. The

velocity- scalar pdfj(v,~l, . . ..y~. F, x, t) is governed by (Pope [5],Kollmann [6])

af8f Ni9

p a— + ‘v@ax/’j ‘(PQi.O = $((P’v “‘Ic)f)+ ~ a~i

where the condition is de$ned by the event C s {ua = VUA @i = ~i, i = 1, .-. , A- A 3 = ‘+}

and the A- non-conserved scalars @ describing the local state are governed by pales in the

form of (13). The equations for the pdf and the (mean) sdf pose two major closure problems

involving scalar transport: The fluxes in scalar space and the surface mean of the total

generation rate of sdf. ‘The flux (f2rlVfl IF = ~) for the scalar pdf is generally split into

the mixing model and the chemical reaction term, which can be given a closed expression in

many cases. However, mixing and chemical reactions are intimately linked. It can be shown

(Vervisch et al. [9]) for the homogeneous case that the transport terms in scalar space are

the same physical process averaged in different ways for pdf and sdf equations. Hence a

combined pdf-sdf approach holds promise for a unified closure.

Results for 2-d flames

Im and Chen [11] investigated the structure and propagation of triple flames in partially

premixed hydrogen-air mixtures using detailed chemistry. These results are used to verify
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the properties of the scalar variables clefinecl in the previous sections for the detection of finite-

rate regions. The case of a strong interaction with a vortex offers a suitable test case. The

computational domain was two-dimensional with dimensions of 7.2mm x 3.6mm, in which

1001 x501 grid resolution is used. A hydrogen-air mixing layer at the ambient condition

(3001<, latm) was initially imposed with a mixing thickness which varied continuously from

2.5% to 50% of the shorter domain length. The” initial concentration for the fuel stream was

hydrogen diluted with 50% nitrogen by volume. A concentrated Gaussian temperature field

T’(Z, 9) = TO+ (’Zmax - To) exp[–{(z – 3.)/6}2] exp[–{(y – yC)/ti}2] (23)

(T, = 300K, T“.. = 3000K, 6 = 0.05Lr) was imposed at the center of the mixing layer to

initialize the combustion. The high temperature of the ignition source insures rapid ignition

and a pair of triple flames develops propagating along the stoichiometric mixture fraction

line in both directions.

The effect of unsteady straining on the structure and propagation of an edge flame was

simulated by restarting the solution field at t/rr = 15 with a pair of counter-rotating vortices

just upstream of each triple flame. The azimuthal velocity profile had the form of a modified

Oseen vortex \

Ug(r)
— = ~[1 – ,-(W’] (24)
UQ,ma=

where r’ = (.r —Xc)z + (y —-yC)z,a is the nominal vortex radius, P = 0.9S33. The direction

of the vortex pair is such that the triple flame tip is pulled into the channel between the

vortices, further details are given by Im and Chen[l 1] The vortex/edge flame interaction is

then used to test the criterion developed for detecting finite-rate regions.

Figure 1 to 3 (time t = 19) and fig.4 to 6 (t = 29) show the isolines of the scalar 3 for

three choices of the non-conserved scalar in the vector g: (1) density p, (2) mass fraction

of H20, (3) mass fraction of OH. It is evident that the detailed variation of the scalar ~

within the finite rate regions is different for (1) to (3), but the outline (level value j. small

compared to the maximum) is essentially the same for density and mass fraction of H20 at

both times, but the radical is clearly less suited for the purpose of detection as it is present

mostly in lean mixtures. This could be improved according to (5) at the cost of increased

complexity of the transport pde for >, but the figures indicate that case (1) using density is
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a better choice even for complex chemistry.

Conclusions

A new scalar variabIe based on geometric properties of level surfaces was constructed that

allows the detection of finite rate and triple flame regions. It is bounded in the limit of

infinitely fast chemistry and can be applied to complex systems of combustion reactions. It

is valid for the conditions stated in the assumptions. Evaluation of DNS results showed that

various definitions of the scalar using stable mass fractions and density produce the same

finite rate region but different distributions of the scalar in them. Radical mass fractions such

as YOH are less suited for the detection since they are not necessarily present in comparable

amounts in rich and lean parts of the flow field. A combined pdf-sdf approach was developed

that is able to deal with finite rate regions by conditioning with the scalar detecting them.
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. Figure Captions

1. Isolines of F = g” g for g constructed with mixture fraction Z and density p at time

t = 19.

2. Isolines of .F = g . g for g constructed with mixture fraction Z and mass fraction of

.H~O at time t = 19.

3. IsoIines of 7 = g . g for g constructed with mixture fraction Z and mass fraction of

OH at time t = 19.

4. Isolines of 3 = g” g for g constructed with mixture fraction Z and density p at time

t = 29.

5. Isolines of F = g - g for g constructed with mixture fraction Z and mass fraction of

H20 at time t = 29.

12

6. Isolines of 3 = g - g for g constructed with mixture fraction Z and mass fraction of

OH at time i = 29.
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Figure 1: Isolines of .F = g . g for g constructed with mixture fraction Z and density p at

time t = 19.
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Figure 2: Isolines of F = g og for g constructed with mixture fraction Z and mass fraction

of H20 at time t = 19.
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Figure 4: Isolines of.?= g “g for g constructed with mixture fraction Z and density p at

time t = 29.
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