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Abstract

Partially premixed turbulent flames can develop flow regimes where triple flames emerge con-
sisting of essentially premixed and non-premixed zones. The description of such phenomena
requires a criterion for the detection of such zones. Such a criterion can be based on a wide
range of variables including reaction rates, mass fractions of radicals, etc. These variables
are not necessarily suitable for the limit of infinitely fast reactions, for instance, reaction
rates are obviously not bounded in this limit. Hence a new single scalar variable based on
geometric properties of mixture fraction and non-conserved variables is constructed, that
allows the detection of finite rate and, in particular, triple flame domains and is bounded in
the limit of infinitely fast reactions. This is first done for systems with simplified chemistry
described by two variables and then generalized to combustion with complex chemistry. A
pdf-sdf formalism is then outlined for the local thermodynamic state conditioned upon the
degree of finite rate effects.
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~ Finite rate and triple flame zones

Finite rate chemistry and transport effects in partially premixed flames are responsible for the
appearance of triple flames ([10], [14], [15], [13]). The DNS results of Echekki and Chen[13]
provide the detailed account of the structure of triple flames suitable for the development of
a combined pdf/sdf formalism for turbulent flames.

Suppose the local thermodynamic properties can be determined by two scalar variables:
Mixture fraction Z(x,t) and a progress variable ¢(x,t). The simplified chemical framework
for the combustion of methane with air proposed by Linan and Williams [12] verifies that
this is possible. Let the progress variable be proportional to temperéture for the sake of
argument. Consider now the results of Echekki and Chen[13] for the partially premixed
Methanol-air flame. Their figure § shows the isolines for mixture fraction and temperature
in the neighbourhood of the triple flame. It is clear from the geometry of these isolines that in
the nonpremixed branches of the triple flame the isolines of mixture fraction and temperature
align themselves, hence approach a local dependence of temperature on mixture fraction as
can be expected for pure nonpremixed flames. On the other hand are the isolines for mixture
fraction nearly orthogonal to the isolines of temperature near the head of the triple flame.
These results indicate that a criterion for the detection of zones with finite rate effects and
triple flames can be based on geometric properties of level surfaces in three dimensional and

_on level lines in two dimensional flows.

Assumptions

The criterion to be developed rests on a set of restrictions which can be stated as follows:
(1) The Navier-Stokes equations for the zero Mach number limit (Majda and Sethian
[16]) hold.
(2) The conditions stated by Williams ([17], section 1.3) for the existence of coupling
functions hold. ‘
(3) The flow domain is open.
It follows from these conditions that the limit of infinitely fast chemistry reduces the system of

thermodynamic variables governed by pdes to a single one called mixture fraction Z: Density,
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temperature and composition become local (not involving differential or integral expressions)
functions of Z. Here the assumptions of zero Mach number and open domain are crucial since
compressibility effects would make density and temperature nonlocal (i.e. via differential
equations) functions of the velocity, energy and pressure fields and the zeroth order pressure
would be time dependent in closed domains. It is possible to derive a compressible flame
sheet model for infinitely fast reactions, but pressure, temperature and composition emerge

as local functions of three variables: Mixture fraction, density and internal energy.

Geometric criterion: Two variables

Simplified chemistry involving only two variables (mixture fraction and a progress variable,
all variables are assumed dimensionless) is considered first. The angle 4 between the gradients

of mixture fraction Z and progress variable ¢
7 = sin(In” x n) (1)

is according to the simulation results of Echekki and Chen [13] close to zero for regions
without significant finite rate effects and large in the flame zones. The unit normal vectors
for the level surfaces of mixture fraction and progress variables are defined by

nZE_v_Z_ HCEE (2)

Nz v
The finite rate domain can be defined by 7 = {x : |7] > 7o} where 75 > 0 is a suitable limit
value. The progress variable ¢ varies significantly near the flame zone, but can be expected
to be close to zero or unity away from it. Hence, the computation of unit normal vectors may
suffer from numerical inaccuracy away from the flame zones. This problem can be overcome

by using oz o
x - 3)
14+|VZ|  max|c| + |V

for the construction of a scalar detection function F = g -g. The vector g is proportional

g

to the sinus of the angle between the two gradients, if [VZ| > 1 and |V¢| > max|c| hold
and it approaches the zero vector as one of the gradients vanishes. Hence, (3) is adopted in

the following and the criterion for the detection of finite rate zones is stated as

F > fo (4)
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where maxF > fo>0is a suitablve value. It fits the bill since F is close to zero if the
gradients are close to parallel (approach of nonpremixed reaction zones) or if one of the
gradients approaches zero (zones without reactions). Furthermore, this definition enjoys the
advantage (in contrast to reaction rates) to be bounded as the limit of infinitely fast reactions

is approached.

Generalisation to complex chemistry

This criterion can be generalized to partially premixed flames with complex chemistry where
the local thermodynamic state is described by non-conserved variables ¢;, ¢ =1,---, M and
a mixture fraction variable Z. In the limit of infinitely fast reactions, all ¢; become local
functions of Z according to the assumptions stated above. The obvious generalisation would
be to construct the scalar F as function of all the gradients of the M progress variables,

which would align themselves with the gradient of mixture fraction, in the form

M
F=3 88 (5)

=1

This would lead to extreme complexity of the transport pde for 7 and defeat the purpose
to produce a tool for the analysis of finite rate regions in turbulent flames. However, the
results presented below indicate that there is another possibility. Scalar variables such as
temperature and density depend on all reaction steps in an implicit manner: The Navier-
Stokes system for combustion flows in zero Mach number limit (see Majda and Sethian [16])
can be set up for the variables velocity, pressure, composition variables and internal energy,
all satisfying pdes. Density and temperature follow then from local state relations, hence
(Ve D, Y1, -+, YN, u) and T(va, p, Y1, -+, YN, u) with nonlocal (functional) dependence on
velocity. The composition variables in turn are functions of the chemical rate parameters
(Damkoehler humbers for the individual reactions), hence are density and temperature func-
tions of these parameters. It follows that it is sufficient for complex systems of combustion

reactions to consider the definition

vZ_ Vp
T+1VZ] * maxlol+ Vo]

(the dimensionless density. is not necessarily positive) and

il

g (6)

F=g-g (7)
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. This definition satisfies the requirements for the detection of finite rate regions and remains

bounded as infinitely fast reactions are approached.

Level surfaces enclosing triple flames

The construction of a scalar variable F (7) as the vector product of two gradients (6) allows
the detection of regions in space with finite rate chemistry, which is the necessary condition
for the appearance of triple flames. The scalar F is now used to outline a sdf/pdf formalism
for the study of the processes responsible for the creation and destruction of such regions.
In particular, the area of surfaces bounding finite rate regions and triple flames and their

topological and geometric properties are of interest (Kollmann and Chen {1]).

Pde for the scalar defining the level surfaces

The pde for F (in Cartesian coordinates for simplicity) is determined by the pdes for mixture

fraction Z
DZ 1 17, oz .
"Dt ~ ReScor, (ppaza) )
and mass balance
) &)— =—pV.v (9
Dt~ ° .

where D/ Dt is the substantial derivative, Re and Sc denote Reynolds and Schmidt numbers,
D is the dimensionless mass diffusivity which depends on temperature and composition. The

gradients are governed by

D oz, 1 d *Z 0 19p., 9Z 10p 0*Z } Ovg 0Z
b—t_(axa) B RgSc{axg Dazgaxa +8:ra(p Ozg D0r5+paxﬁpaxﬂaxa Oz, 0z (10)
and
Jp Jvg . Op 1%,
(axa) (v V50ﬁ+ aza)axﬁ—paxa(v'v) (11)

The pde for F is then determined by

oF _ 26 {(5 vz n)a(az)
5t~ (Lt |VZ)(mex|p| + Ve " T 1+ vz] ™ 8 0z, o,

(12)

(6, — [Vl 0Z 0, O0p )}
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. The resulting evolution equation for F is written in abbreviated form

DF 1 0 o0F

Dt = ReScdz, PPz, 14 (13)
and
1 0 oOF
fr = ReSc iz, (Dama) +e (14)

which is the imbalance of diffusion and sorce terms. The explicit form of @ is not required

in the following.

Combined pdf-sdf approach

Finite rate and triple flame regions can now be determined by the level surfaces of the scalar

variable F. They are defined implicitly as solutions z of
Sr(p,t) = Flz,t) —p =0 (13)

and the unit normal vector of the level surface is defined by

1 @F
Ny = —]—v?l—axa (16)

pointing into the region where 7 < ¢ holds, which is regarded as the outward direction since
the finite rate regions are on the opposite side of the surfaces. The surface density function
is then defined as

L = [VFIS(F(z.t) - ¢) (17)

provided F is at least once continuously differentiable. The sdf ¥ is closely related to the

pdf of the scalar F and its gradient. The scalar pdf f is the expectation of §(F(z,t) — ¢)

flz,t,0) = (6(Flz,t) — ¢)) (18)

and it follows then that the expectation of X is given by the conditional expectation of the

scalar gradient and the scalar pdf

(E)zt,0) = ([VFIF(2t) = oMf(z,t,0) (19)
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. It is straightforward to set up the transport equation (see Pope [4], Candel and Poinsot [2],

Trouve and Poinsot [3], Trouve et al. [7]) for the sdf ©

[y L 9« Ovq v,

9 1 0 )= (L pn, L oQr 0
ot Ozg Yot} = 0z, “ ﬁaxg

Y- — 2} - a4
) 6(]:- (r‘)na 6'1:0‘ a(‘g F

Averaging produces the equation for the mean sdf

%f_) * aia (o) = “gZZ T Memea gv“ﬂ\‘f | —”agﬂflf' ) f()
~ OV FIF = )] | o)

The mean sdf is generated by the strain rate acting in the tangential plane, the flux of the
diffusive-ractive imbalance 0 normal to the surface and the flux of Q.+ in scalar space. The

velocity - scalar pdf f(v,¢1,---,0n,F,X,t) is governed by (Pope [5],Kollmann [6])

5 2
Pa{-l-Pﬁ d +§_:a (pr)"—(< V-v[C)f)
_ N
0 (Dp _10nspy 1 000 050 22

+3va(<0xa " Re 8z €)1) = ReSc agog<0xﬁ( 3x5)lc> )-
where the condition is defined by the event C = {v, = v, AP, =i =1,--- ,NAF = ¢}
and the N non-conserved scalars ® describing the local state are governed by pdes in the
form of (13). The equations for the pdf and the (mean) sdf pose two major closure problems
involving scalar transport: The fluxes in scalar space and the surface mean of the total
generation rate of sdf. The flux (Qx|VF||F = ¢) for the scalar pdf is generally split into
the mixing model and the chemical reaction term, which can be given a closed expression in
many cases. However, mixing and chemical reactions are intimately linked. It can be shown
(Vervisch et al. [9]) for the homogeneous case that the transport terms in scalar space are
the same physical process averaged in different ways for pdf and sdf equations. Hence a

combined pdf-sdf approach holds promise for_ a unified closure.

Results for 2-d flames

Im and Chen [11] investigated the structure and propagation of triple flames in partially

premixed hydrogen-air mixtures using detailed chemistry. These results are used to verify
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. the properties of the scalar variables defined in the previous sections for the detection of finite-
1{ate regions. The case of a strong interaction with a vortex offers a suitable test case. The
computational domain was two-dimensional with dimensions of 7.2mmx3.6mm, in which
1001 x501 grid resolution is used. A hydrogen-air mixing layer at the ambient condition
(300K, latm) was initially imposed with a mixing thickness which varied continuously from
2.5% to 50% of the shorter domain length. The'initial concentration for the fuel stream was

hydrogen diluted with 50% nitrogen by volume. A concentrated Gaussian temperature field

T(z,y) = To + (Tmax — To) exp[—~{(z — z.)/8} " exp[—{(y — y.)/6}"] (23)

(To = 300K, Trax = 3000K, é = 0.05L,) was imposed at the center of the mixing layer to
initialize the combustion. The high temperature of the ignition source insures rapid ignition
and a pair of triple flames develops propagating along the stoichiometric mixture fraction
line in both directions.

The effect of unsteady straining on the structure and propagation of an edge flame was
simulated by restarting the solution field at ¢/7. = 15 with a pair of counter-rotating vortices
just upstream of each triple flame. The azimuthal velocity profile had the form of a modified

Oseen vortex N

2

5:,7(:(1);: - 2[37:;'2 [1 B e"("/")a]’ (24)
where r? = (z — z.)? + (y — y.)?, o is the nominal vortex radius, 8 = 0.9333. The direction
of the vortex pair is such that the triple flame tip is pulled into the channel between the
vortices, further details are given by Im and Chen[11] The vortex/edge flame interaction is
then used to test the criterion developed for detecting finite-rate regions.

Figure 1 to 3 (time ¢ = 19) and fig.4 to 6 (¢ = 29) show the isolines of the scalar F for
three choices of the non-conserved scalar in the vector g: (1) density p, (2) mass fraction
of H,0, (3) mass fraction of OH. It is evident that the detailed variation of the scalar F
within the finite rate regions is different for (1) to (3), but the outline (level value f; small
compared to the maximum) is essentially the same for density and mass fraction of H,0 at
both times, but the radical is clearly less suited for the purpose of detection as it is present

mostly in lean mixtures. This could be improved according to (5) at the cost of increased

complexity of the transport pde for F, but-the figures indicate that case (1) using density is

9




. a better choice even for complex chemistry.

Conclusions

A new scalar variable based on geometric properties of level surfaces was constructed that
allows the detection of finite rate and triple flame regions. It is bounded in the limit of
infinitely fast chemistry and can be applied to complex systems of combustion reactions. It
is valid for the conditions stated in the assumptions. Evaluation of DNS results showed that
various definitions of the scalar using stable mass fractions and density produce the same
finite rate region but different distributions of the scalar in them. Radical mass fractions such
as Yop are less suited for the detection since they are not necessarily present in comparable
amounts in rich and lean parts of the flow field. A combined pdf-sdf approach was developed

that is able to deal with finite rate regions by conditioning with the scalar detecting them.
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. Figure Captiohs

1.

o

Isolines of F = g - g for g constructed with mixture fraction Z and density p at time

t=19.

Isolines of 7 = g - g for g constructed with mixture fraction Z and mass fraction of

H,0 at time t = 19.

Isolines of 7 = g - g for g constructed with mixture fraction Z and mass fraction of

OH at time ¢ = 19.

Isolines of F = g - g for g constructed with mixture fraction Z and density p at time

t=29.

Isolines of 7 = g - g for g constructed with mixture fraction Z and mass fraction of

H>0 at time t = 29.

Isolines of 7 = g - g for g constructed with mixture fraction Z and mass fraction of

OH at time t = 29.
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Figure 1: Isolines of F
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time t = 19.

g - g for g constructed with mixture fraction Z and mass fraction
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Figure 2: Isolines of F
of H,O at time t = 19.
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Figure 3: Isolines of F = g - g for g constructed with mixture fraction Z and mass fraction
of OH at time ¢ = 19.
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Figure 4: Isolines of F = g - g for g constructed with mixture fraction Z and density p at
time ¢ = 29. :
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Figure 5: Isolines of F = g - g for g constructed with mixture fraction Z and mass fraction
of H,O at time ¢t = 29.
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Figure 6: Isolines of 7 = g - g for g constructed with mixture fraction Z and mass fraction
of OH at timet = 29.
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