SAND2066-1095 T
For Surface Science Letters, 10 April 2000

Step- vs. kink-formation energies on Pt(111)
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Ab-initio kink-formation energies are about 0.25 and 0.18 eV on the (100)- and
(111)-microfacet Steps of Pt(111), while the sum of the step-formation energies is
0.75 eV/atom. These results imply a specific ratio of formation energies for the two
step types, namely 1.14, in excellent agreement with experiment. If kink-formation

costs the same energy on the two step types, an inference recently drawn from scan-

ning probe observations of step wandering, this ratio ought to be 1.
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Measured step- and kink-formation energies are not direct experimental output,
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in general, but emerge from theoretical analysis of scanning-probe image statistics
[1-3]. Given that fhe analysis is model-based, consistency checks on the resuits are
greatly to be desired. I derive such a check in what follows, and apply it to the Gie-
sen, et al.’s inference from scanning probe observation of step wandering on Pt(111)
that kink-formation energies on (100)- and (111)-microfacet (or “A-type” and “B-
type”) steps are equal [1].

The consistency check says this result cannot be reconciled with the ratio of A-
and B-type step formation energies, 1.13:1, needed to explain the thermodynamic
island shapes observed by Michely and Comsa (MC) [4]. To test this assertion, I
compute theoretical kink-formation energies for A-and B-type steps on Pt(111),
using the Local Density Approximation [5]. The results, 0.25 and 0.18 eV, are dif-
ferent for the two step types, and consistent with MC’s island shapes.

The essence of the consistency check is the fact, first exploited by Swartzentru-
ber, et al. [6], that kink- and step-formation energies are related. Here is the argu-
ment for an fcc(111) surface: Because the A- and B-steps of such a surface intersect
at 120° angles, creating a kink in an A-type step, as in Fig. 1, a) adds a B-type
microfacet one inter-atomic spacing long, b) eliminates one-half that length of the
original A-type step, and ¢) adds two 120° corners, one convex, the other concave.

To form a kink in an A-type step thus requires energy,
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E¢orm(A-kink; 1) = E¢y . (B-step) - E¢y(A-step)/2 + Ec(A-kink) (1)

where the last term is a “corner-formation” energy. If the B-step created is extended

from 1 interatomic spacing to ny of them, then the formation-energy cost becomes
E¢orm(A-kink; ny) = m [Egon(B-step) - Egom(A-step)/2] + Ec(A-kink) . (2)

Eq. 2 implies that E-(A-kink) can be computed by comparing kinks of different
extent. The same, of course, applies for a B-step of length n, whose formation-

energy is,
E¢ormB-kink; ny) = ny[Egy i (A-step) - Egory(B-step)/2] + Ec«(B-kink) ,  (3)

but a simpler, approximate approach to evaluating corner energies is to note that
whether one creates a kink in an A-type or in a B-type step, one makes a convex

intersection of an A- and a B-step and a concave one.

Assume that the energy needed to make a corner depends only on whether the

corner is convex or concave, but not on how far the steps on either side of it extend
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before coming to the next corner. In that case, there is only one corner energy for

kinks, 1.,e.,

Ec(A-kink) = E~(B-kink) = E¢ 4)

With this simplification, and setting ni.=1, Eqs. 3 and 4 combine to yield an expres-

sion for E¢ in terms of the average formation energies of A- and B-type steps, and

of kinks in them,
. ‘\ .
2E¢ = Egorm(A-kink; 1)+E¢oy (B-kink; 1) - [Egypm(A-step) + Egoy(B-step)l/2. (5)

They also yield the step-formation energy difference directly in terms of kink-for-

mation energies, via,
Eform(A-step) - Egorm(B-step) = 2[Egy . (y(B-kink;1) - Eo(A-kink;1)1/3 . (6)
Eq. 6 is the desired consistency check. At a minimum it says that if the formation

energies for kinks on A- and B-type steps are equal, then the same must be true of

the step-formation energies. Thus, Giesen, et al.’s ratio of 1 for kink-formation

energies on A- and B-type steps [1] is inconsistent with Michely and Comsa’s ratio
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of 1.13 for the step-formation energies [4]. The only escape from this logic is if Eq.
4 is invalid because interactions between corners on A- and B-type steps differ sub-
stantially. However, the theoretical results for Pt(111) discussed immediately below,
and similar calculations for Cu(111) (7] and Pb(111) {8], imply that this is not so.

They support the approximate validity of Eq. 4.

To compute step- and kink-formation energies for Pt(111), I use the VASP [9-
11] total-energy code, its ultrasoft pseudopotentials (USP’s) [12], and Local Density
Approximation (LDA), as embodied in the Ceperley-Alder local exchange-correla-

tion potential [13]. Performing only LDA calculations is warranted in light of Bois-

vert, et al.’s observation [14] that the Generalized Gradient Approximation [15]
(GGA) yields virtually the same ratio of A- to B-step formation energies as the
LDA, while, for reasons unknown, it produces less acceptable absolute Pt surface
energies.

USP’s yield converged total energy differences with modest basis size. For Pt, a
14.1 Ry plane-wave cutoff is sufficient. I compute step- and kink-formation ener-
gies using 5-layer slabs to represent Pt(111), removing atoms in the uppermost layer
to create monolayer-high islands bounded by straight and kinked edges. In all cases
I fix the atoms of lowermost two slab layers at bulk relative positions and relax the

rest till forces are <0.03 eV/A. I set the slab lattice i)arameter to 3.91A, the bulk
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LDA value for a 60 point sample of the irreducible 48™ of the Brillouin Zone (exp’t.
=3.92 A). To accelerate electronic relaxation, I use Methfessel and Paxton’s Fermi-
level smearing method (width = 0.2 eV) [16].

On a close-packed surface, a stripe island is bounded by an A-type step on one
side and a B-type on the other. Thus, Eform, the average step-formation energy, is

given by [7,17],

_[SE(V + 1) + vE(N)]

- _E
2Eform (s, v) Py

™

Here E(s,v) is the energy of a striped slab N+1 layers thick in cross-sections through
the stripe islands and N-layers thick through the inter-island valleys, with stripes
and valleys s and v atomic rows across. E(N) is the energy of a perfect N-layer slab.
To minimize quantum size effects, one must choose sufficiently large s and v.

To obtain kink-formation energies, imagine two stripe-islanded slabs. On the
first, the stripes a.nd‘valleys are s and v rows wide, on the other, they are s+2 and v-
1 rows across. To proceed, in a supercell 2r atoms long, parallel to the stripes and

valleys, remove a block of r atoms from either the A- or the B-type island edge of

the first slab and attach it to the step of the same character on the second. This forms
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four kinks, two per supercell on each of two slabs with identical kinked-stripe
islands. Thus, if r is big enough that kink-kink interaction can be neglected, the

kink-formation energy, E¢ ., (kink), is given by
4Ef0rm(kink) = 2E,; 1.4(rs8,v) = 2r[E(s,v) + E(s-1,v+ 1)}, (8)

where Ey; 1.4(%5,V) is the energy of one kinked, striped slab and E(s,v) is the energy

of a striped slab with unkinked stripe islands and valleys s and v rows wide. The 2r,

on the right-hand side of Eq. 2, accounts for the supercell length.

The value of 2E;, ., according to Eq. 7 and calculations in a 1 X 4,/3 supercell,
with (s,v)=(4,4), is 0.75eV. Here the Surface Brillouin Zone (SBZ) sample is 12
equally spaced k-vectors in the x-direction by 2 in the y-direction. The value QEform
= 0.75eV is in reasonable agreement (~8%) with Boisvert, et al.’s result, 0.81 eV,
which emerges from total-energy calculations of periodic vicinal slabs [14].

I compute kink formation energies via Eq. 8, using both (s,v,r)=(4,4,4) and

(5,3.4) to assess sensitivity to the finite width of the stripe islands used. These cal-

culations are performed in an 8 X 4.3 supercell (cf. Fig. 1) using a 2x2 SBZ sam-

ple. Satisfyingly, the computations for the two stripe widths yield virtually the same
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kink-formation energies, 0.18 eV in both cases for the A-step, 0.25 and 0.26 eV for
the B-step.

Although the computed energy for kink-formation on an A-type step is only
~7% higher than the value obtained by Giesen, et al. for both step types,
(0.167+0.005)eV [1], i.e., in reasonable agreement, the theoretical result for fhe B-
step is ~50% higher. But if Eq. 6 is valid, Giesen, et al.’s equality of the kink-forma-
tion energies is inconsistent with MC’s island shapes [4], and cannot be correct.
With this in mind, it is of considerable interest to ask if the two theoretical kink for-
mation energies taken together correctly account for the aspect ratio of MC’s hexag-
onal islands.

Thus, note that according to Eq. 6, if E¢,,(B-kink;1) - E¢y(A-kink;1) = 0.07
eV, then Eg(A-step) - E¢yy(B-step) = 0.05 eV/atom. But we also know that
2Eform = Eform(A-step) + Egorm(B-step) = 0.75 eV/atom. Thus, via simple arith-
metic, E¢;(A-step) = 0.40 eV/atom, E¢,,(B-step) = 0.35 eV/atom, and Eg¢y,(A-
step)/E¢orm(B-step) = 1.14. The first two of these results agree reasonably well with
Boisvert, et al.’s vicinal surface calculations [14]. The last agrees perfectly with
Michely and Comsa’s ratio, derived from a Wulff construction.

This excellent agreement, with what amounts to a direct experimental measure-

ment, invites the conclusion that ighoring corner-corner interactions to obtain Eqs.
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4-6, is a sound approximation. Thus Eq. 6 is a meaningful consistency check on
measurements of step- and kink-formation energies on surfaces with a close-
packed, hexagonal arrangement of atoms, one that the equal kink formation ener-
gies of Ref. 1 appear to fail.

Beyond the value of Eq. 6 in evaluating quantitative deductions from scanning
probe measurements, once methods of measuring kink-formation energies have
been perfected, absolute A- and B-step formation energies will be obtainable by
observing hexagonal islands in thermodynamic equilibrium to measure the A- to B-
step formation energy ratio and substituting the kink results into Eq. 6 to learn the

step-formation energy difference.
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Figure Caption -
1. A stripe island with kinks on its A-type edge. Note that the kinks form B-type

microfacets. The 8 x 4./3 supercell used in the kink-formation energy computation

is indicated by the dotted rectangle.
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