
!

SHA)Q2Q6($-}(--J75 T-
For Surface Science Letters, 10 April 2000

Step- vs. kink-formation energies on Pt(lll)

Peter J. Feibelmanl

Wgz
Sandia National Laboratories

==+~<
-Sm

Albuquerque, NM 87185-1413 a

Ab-initio kink-formation energies are about 0.25 and 0.18 eV on the (100)- and

(111)-rnicrofacet steps of Pt(lll), while the sum of the step- fomnation energies is

0.75 eV/atom. These results imply a specific ratio of formation energies for the two

step types, namely 1.14, in excellent agreement with experiment. If kink-formation

costs the same energy on the two step types, an inference recently drawn from scan-

ning probe observations of step wandering, this ratio ought to be 1
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Measured step- and kink-formation energies are not direct experimental output,
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in general, but emerge from theoretical analysis of scanning-probe image statistics

[1-3]. Given that the analysis is model-based, consistency checks on the results are

greatly to be desired. I derive such a check in what follows, and apply it to the Gie-

sen, et al.’s inference from scanning probe observation of step wanderingonPt(111 )

that kink-formation energies on (100)- and (1 11)-microfacet (or “A-type” and “B-

type”) steps are equal [1].

The consistency check says this result cannot be reconciled with the ratio of A-

and B-type step formation energies, 1.13:1, needed to explain the thermodynamic

island shapes observed by Michely and Comsa (MC) [4]. To test this assertion

compute theoretical kink-formation energies for A-and B-type steps on Pt(l 1

I

),

using the Local Density Approximation [5]. The results, 0.25 and 0.18 eV, are dif-

ferent for the two step types, and consistent with MC’s island shapes.

The essence of the consistency check is the fact, first exploited by Swartzentru-

ber, et al. [6], that kink- and step-formation energies are related. Here is the argu-

ment for anjicc(111 ) surface: Because the A- and B-steps of such a surface intersect

at 120° angles, creating a kink in an A-type step, as in Fig. 1, a) adds a B-type

microfacet one inter-atomic spacing long, b) eliminates one-half that length of the

otiginal A-type step, and c) adds two 120° cocners, one convex, the other concave.

To form a kink in an A-type step thus requires energy,
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EfOm(A-kink; 1)= EfOm(B-step) - EfOm(A-step)/2 + Ec(A-kink) , (1)

where the last term is a “corner-formation” energy. If the B-step created is extended

from 1 interatomic spacing to nk of them, then the formation-energy cost becomes

EfOrm(A-kink; nk) = nk@fOm(B-step) - EfOm(A-step)/2] + Ec(A-kink) . (2)

Eq. 2 implies that Ec(A-kink) can be computed by comparing kinks of different

extent. The same, of course, applies for a B-step of length nk, whose forrnation-

energy is,

EfOr~(B-kink; nk) = n~[EfOr~(A-step) - Eform(13-skp)121 + Ec(B-ki~) , (3)

but a simpler, approximate approach to evaluating corner energies is to note that

whether one creates a kink in an A-type or in a B-type step, one makes a convex

intersection of an A- and a B-step and a concave one.

Assume that the energy needed to make a corner depends only on whether the

corner is convex or concave, but not on how far the steps on ‘either side of it extend
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before coming to the next corner. In that case, there is only one corner energy for

kinks, i.,e.,

EC(A-kink) = EC(B-kink) = EC (4)

With this simplification, and setting n~=l, Eqs. 3 and 4 combine to yield an expres-

sion for Ec in terms of the average formation energies of A- and B-type steps, and

of kinks in them,

2EC = EfOm(A-kink;l)+EfOm(B-&nk;l) - [EfOm(A-step) + Efom(Wtep)lL’. (5)

They also yield the step-formation energy difference directly in terms of kink-for-

mation energies, via,

EfOm(A-step) - Eform(B-step) = 2[EfOm(B-kink;l) - Eform(A-kink; )]/3 . (6)

Eq. 6 is the desired consistency check. At a minimum it says that if the formation

energies for kinks on A- and B-type steps are equal, then the same must be true of

the step-formation energies. Thus, Giesen, et al.’s ratio of 1 for kink-formation

energies on A- and B-type steps [1] is inconsistent with Michely and Comsa’s ratio
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of 1.13 for the step-formation energies [4]. The only escape from this logic is if Eq.

4 is invalid because interactions between corners on A- and B-type steps differ sub-

stantially. However, the theoretical results for Pt(111 ) discussed immediately below,

and similar calculations for Cu(l 11) [7] and Pb(111 ) [8], imply that this is not so.

They support the approximate validity of Eq. 4.

To compute step- and kink-formation energies for Pt(l 11), I use the VASP [9-

11] total-energy code, its ultrasoft pseudopotentials (USP’S) [12], and Local Density

Approximation (LDA), as embodied in the Ceperley-Alder local exchange-correla-

tion potential [13]. Performing only LDA calculations is warranted in light of Bois-

vert, et al.’s observation [14] that the Generalized Gradient Approximation [15]

(GGA) yields virtually the same ratio of A- to B-step formation energies as the

LDA, while, for reasons unknown, it produces less acceptable absolute Pt surface

energies.

USP’S yield converged total energy differences with modest basis size. For Pt, a

14.1 Ry plane-wave cutoff is sufficient. I compute step- and kink-formation ener-

gies using 5-layer slabs to represent Pt(l 11), removing atoms in the uppermost layer

to create monolayer-high islands bounded by straight and kinked edges. In all cases

I fix the atoms of lowermost ‘two slab layers at bulk relative positions and relax the

rest till forces are <0.03 eV/~. I set the slab lattice parameter to 3.91A, the bulk
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LDA value for a 60 point sample of the irreducible 48* of the Brillouin Zone (exp’t.

= 3.92 ~). To accelerate electronic relaxation, I use Methfessel and Paxton’s Fermi-

level smearing method (width = 0.2 eV) [16].

On a close-packed surface, a stripe island is bounded

side and a B-type on the other. Thus, ~form, the average

given by [7,17],

by an A-type step on one

step-formation energy, is

2Eform
= ~(~, ~, _ [SE(N+ 1) + VE(N)]

.
S+v

(7)

Here E(s,v) is the energy of a striped slab N+l layers thick in cross-sections through

the stripe islands and N-layers thick through the inter-island valleys, with stripes

and valleys s and v atomic rows across. E(N) is the energy of a perfect N-layer slab.

To minimize quantum size effects, one must choose sufficiently larges and v.

To obtain kink-formation energies, imagine two stripe-islanded slabs. On the

first, the stripes and valleys ares and v rows wide, on the other, they are s+l and v-

1 rows across. To proceed, in a supercell 2r atoms long, parallel to the stripes and

valleys, remove a block of r atoms from either the A- or the B-type island edge of

the first slab and attach it to the step of the same character on the second. This forms
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four kinks, two per supercell on each of two slabs with identical kinked-stripe

islands. Thus, if r is big enough that kink-kink interaction can be neglected, the

kink-formation energy, Eform(kink), is given@

4Eform(kink) = 2E~in~e~(r, s, v) - 21-[E(s, v) + E(S -1, v + 1)1 , (8)

where E~nked(c,S,V) is the energy of one kinked, striped slab and E(,s,v) is the energy

of a striped slab with unkinked stripe islands and valleyss and v rows wide. The 2z

on the right-hand side of Eq. 2, accounts for the supercell length.

The value of 2~f Om, according to Eq. 7 and calculations in a 1 x 4$ supercell,

with (s,v)=(4,4), is 0.75eV. Here the Surface Brillouin Zone (SBZ) sample is 12

equally spaced k-vectors in the x-direction by 2 in the y-direction. The value 2~fOr~

= 0.75eV is in reasonable agreement (-8%) with Boisvert, et al.’s result, 0.81 eV,

which emerges from total-energy calculations of periodic vicinal slabs [14].

I compute kink formation energies via Eq. 8, using both (s,v, r)=(4,4,4) and

(5,3,4) to assess sensitivity to the finite width of the stripe islands used. These cal-

culations are performed in an 8 x 4 V supercell (cf. Fig. 1) using a 2x2 SBZ sam-

ple. Satisfyingly, the computations for the two stripe widths yield virtually the same
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kink-formation energies, 0.18 eV in both cases for the A-step, 0.25 and 0.26 eV for

the B-step.

Although the computed energy for kink-formation on an A-type step is only

-7% higher than the value obtained by Giesen, et al. for both step types,

(O.167*0 .005)eV [1], i.e., in reasonable agreement, the theoretical result for the B-

step is -50% higher. But if Eq. 6 is valid, Giesen, et al.’s equality of the kink-forma-

tion energies is inconsistent with MC’s island shapes [4], and cannot be correct.

With this in mind, it is of considerable interest to ask if the two theoretical kink for-

mation energies taken together correctly account for the aspect ratio of MC’s hexag-

onal islands.

Thus, note that according to Eq. 6, if EfOrm(B-kink; 1) - EfO,m(A-kink; 1) = 0.07

ev, then Efo,m(A-step) - EfOm(B-step) = 0.05 eV/atom. But we also know that

2Eform = ‘form (A-step) + EfOrm(B-step) = 0.75 eV/atom. Thus, via simple arith-

metic, Eform(A-step) = 0.40 eV/atom, Eform(B-step) = 0.35 eV/atom, and Efo~(A-

step)/Efom(B-step) = 1.14. The first two of these results agree reasonably well with

Boisvert, et al.’s vicinal surface calculations [14]. The last agrees perfectly with

Michely and Comsa’s ratio, derived from a Wulff construction.

This excellent agreement, with what amounts to a direct experimental measure-

ment, invites the conclusion that ignoring corner-corner interactions to obtain Eqs.
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4-6, is a sound approximation. Thus Eq. 6is a meaningful consistency check on

measurements of step- and kink-formation energies on surfaces with a close-

packed, hexagonal arrangement of atoms, one that the equal kink formation ener-

gies of Ref.

Beyond

1 appear to fail.

the value of Eq. 6 in evaluating quantitative deductions from scanning

probe measurements, once methods of

been perfected, absolute A- and B-step

measuring kink-formation

formation energies will be

energies have

obtainable by

observing hexagonal islands in thermodynamic equilibrium to measure the A- to B-

step formation energy ratio and substituting the kink results into Eq. 6 to learn the

step-formation energy difference.
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Figure Caption -

1. A stripe island with kinks on its

microfacets. The 8 x 4 X supercell

is indicated by the dotted rectangle.

A-type edge. Note that the kinks

used in the kink-formation energy

form B-type

computation
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