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Abstract

The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between
stochastic (i.e., aleatory) and subjective (i.€., epistemic) uncertainty, with stochastic uncertainty arising from the
possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the U.S.
Environmental Protection Agency (40 CFR 191, 40 CFR 194) and subjective uncertainty arising from an inability to
uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective
uncertainty is discussed, including assignment of distributions, uncertain variables selected for inclusion 1?1 analysis,
correlation control, sample size, statistical confidence on mean complementary cumuliative distribution functions,
generation of Latin hypercube samples, sensitivity analysis techniques, and scenﬁrios involving stochastic and

subjective uncertainty.
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1. Introduction

At a conceptual level, the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) is
underlain by three entities (EN1, EN2, EN3): ENI, a probabilistic characterization of the likelihood of different
futures occurring at the WIPP site over the next 10,000 yr (Sect. 3, Ref. 1); EN2, a procedure for estimating the -
radionuclide releases to the accessible environment associated with each of the possible futures that could occzur at
the WIPP site over the next 10,000 yr {Sect. >4, Ref. 1); and EN3, a probabilistic characterization of the uncertainty in
the parameters used in the definition of EN1 and EN2 (Sect. 5, Ref. 1). The third entity, EN3, and its role in the
1996 WIPP PA is the primary focus of this article.

When viewed formally, EN3 is defined by a probability space (S,,, 4 s Psu) for subjective uncertainty
(Sect. 5, Ref. 1). Further, the elements X, of the sample space S,, are vectors of the form

Xsy = [xl’12= ---,an], - 8y
where each x; is an imprecisely known input to the analysis and nV is the number of such inputs.

The uncertainty in the x;, and hence in X, is characterized by developing a distribution

Dj’jz 132’ ~--3nV: (2)

[}

for each x;. Each distribution is based on all available knowledge about the'corresponding variable and describes a
degree of belief as to where the appropriate value to use for this variable is located. This degree of belief is
conditional on the numerical, spatial and temporal resolution of the models selected for use in the 1996 WIPP PA
(Sect. 4, Ref. 1; Refs. 2 - 6). When appropriate, correlations between imprecisely-known variables are also possible,
with such correlations indicating a dependency in the knowledge about the correlated variables. It is the distributions

in Eq. (2) and any associated correlations between the x; that define (Sg,, 4 su> Psu)-

The characterization of the (subjective) uncertainty in variables used as input to the 1996 WIPP PA derives from
experimental programs cérn’ed out in support of the development of the WIPP and also from other sources of
information. The experimental programs that helped characterize input to the 1996 WIPP PA are reviewed in Ref. 7,
and the procedures used to develop characterizations of subjective uncertainty are discussed in Sect. 2. Then, the
uncertain variables incorporated into the 1996 WIPP PA and the distributions and correlations assigned to these
variables are described in Sects. 3 - 5. Further, the archival Storage and retrieval of data is discussed in Refs. 8
and 9.

Latin hypercube sampling!? is used to propagate the effects of subjective uncertainty in the 1996 WIPP PA
(Sect. 5, Ref. 1; Sect. 9, Ref. 11). Technical aspects of the generation of Latin hypercube samples (LHSs) in the




1996 WIPP PA are discussed in Sects. 6 - 8, including sample size (Sect. 6), statistical confidence on mean
complementary cumulative distribution functions (CCDFs) (Sect. 7), and generation of replicated LHSs (Sect. 8).

An important aspect of the use of Latin hypercube sampling to propagate the effects of subjective uncertainty in
the 1996 WIPP PA is that this propagation generates a mapping from uncertain analysis inputs to corresponding
analysis results. This mapping can then be explored with sensitivity analysis techniques based on examination of
scatterplots, regression analysis and correlation analysis to determine the dominant variables influencing the
uncertainty in the model predictions underlying the analysis (Sect. 9). All major analysis results generated in the

1996 WIPP PA are examined with the indicated sensitivity analysis procedures.3-6. 12-14

. Scenarios are an important conceptual part of the representation of stochastic uncertainty and correspond to
s&bsets of the associated sample space S, (Sect. 14, Ref. 11). An impon;mt extension of the scenario concept is to
scenarios that are subsets of the sample space S;, associated with subjective uncertainty and, more geﬁerally, to
scenarios that derive from the sample spaces for both stochastic and subjective uncertainty (Sect. 10). A concluding

discussion on the treatment of subjective uncertainty in the 1996 WIPP is given in Sect. 11.

This article is based on material contained in Chapt. 5 of Ref. 15.

2. Assignment of Distributions

-

The word “parameter” here means a number that must be supplied to a computer model of a system in order that
the model’s associated computer program will un. Elsewhere in this presentation, parameters are often called “input
variables” or simply “variables.” We will nevertheless use “parameter” throughout this section to be consistent with

earlier documents relating to subjective uncertainty in the 1996 WIPP PA (e.g., App. PAR, Ref. 16.)

The computational models used in the 1996 WIPP PA required more than 1500 parameters, which can be
divided into two categories: (i) program configuration parameters, the numbers used to control rate-of-convergence
and accuracy of numerical solutions of the model equations (e.g., time-step limits, convergence criteria, array
dimensions, ...), and {ii) model configuration parameters, which are numbers that specify geometrical or physical
properties of features, events and processes being modeled (e.g., areas of mined openings, rock permeabilities, rates
of miming and drilling in vicinity of site, ...). Program configuration parameters, the “knobs” of a computer
program, ideally are assigned values by persons who perform a computation with the intent of reducing run times,
numerical errors, or memory requirements. Model configuration parameters, on the other hand, ideally are assigned
values based on empirical evidence associated with the system being modeled; such evidence may exist in the form
of design drawings, results of site specific field and laboratory experiments (or experiments with system analogues),
scientific literature. or the specialized knowledge of experts. Because of absent, insufficient or equivocal empirical

nformation, many model configuration parameters are imprecisely known; that is, there is uncertainty concerning the




values they should take in the context of the problem under consideration. This kind of uncertainty can be
quantitatively expressed by constructing probability distributions for the values to be taken on by the imprecisely

known parameters. Such distributions characterize subjective uncertainty.

The 1470 model configuration parameters in the 1996 WIPP PA calculations were divided into four categories
on the basis of the kinds of information that were used to assign parameter values. Category 1 parameters (409 of
them) were assigned values (or distribution of values) using data from site-specific field or laboratory experiments.
Category 2 parameters (89 of them) represented the inventory and properties of WIPP wastes as defined in the
Baseline Inventory Report (BIR revisions 2 and 3; Ref. 17). Category 3 parameters (256 of them) were precisely
known quantities, usnally constants, taken from technical handbooks and the open scientific literature (e.g., the
acceleration of gravity, the half-life of U-235, ...). Category 4 parameters (716 of them) were those quantities whose
values (or distributions of values) could only be assigned using the professional judgments of WIPP Project
investigators. Ultimately, these parameters led to nV = 57 uncertain variables in the 1996 WIPP PA (Sect. 3).

The procedure used to assign values or distributions to the parameters in the 1996 WIPP PA is conceptualized in
Fig. 1. The imprecisely known parameters are assigned values along one of the Paths 1 — 3 indicated on the diagram.
Path 1 was the route taken in assigning values to those Category 1 parameters for which there were three or more
relevant measurements; the rationale for using Student-t distributions for the méan value of these empirically based
parameters is given in Ref. 18. Parameters for which there were fewer than three measmemenﬁ were treated as
Category 4 parameters and processed according to the logic of Paths 2 and 3. Path 3 was the route taken ia assigning
values to the majority of Category 4 parameters (few investigators seemed confident of their own ability to assign an
analytical form and measures of locatibn to a parameter’s distribution). The rationale for constructing a piecewise-

linear empirical cumulative distribution function, as indicated at the end of Path 3, is also given in Ref. 18.

3. Uncertain Variables

The 1996 WIPP PA selected nV = 57 imprecisely-known variables (i.e., parameters as used in Sect. 2) for
inclusion in the analysis (Table 1). The individual variables in Table 1 (i.e., ANHBCEXP, ANHBCVGP, -
WTAUFAIL) correspond to the elements x; of the vector X, in Eq. (1). Several criteria were used in the selection
process, including observed importance in past analyses, perceived importance with respect to the 1996 WIPP PA,
and general level of interest in the variable. All uncertain variables incorporated into the 1996 WIPP PA are inputs
to the models used to estimate radionuclide releases to the accessible environment (Sect. 4, Ref. 1; Refs. 2 - 6).
Specifically, none of the uncertain variables affect the definition of the probability space (Sg, 4 st psy) for
stochastic uncertainty (Sect. 3, Ref. 1; Ref. 11), although there is no conceptual reason that excludes (S, 4 sus

Psy) from containing such variables.

W)




4. Variable Distributions

A distribution that characterizes subjective uncertainty is indicated for each of the variables in Table 1. These
distributions characterize a degree of belief as to where the appropriate value to use for each variable is located and
correspond to the distributions D; in Eq. (2). Examples of four of these distributions are proizided in Fig. 2; further,
all 57 distributions are available elsewhere (App. A, Ref. 15; App. PAR, Ref. 16). The truncations associated with
ANHCOMP resﬁlt from the restriction that the defined distribution cannot contain values that fall outside the

observed range for the variable.

5. Correlations

ﬁ:f:;Most of the variables in Table 1 are assumed to be /uncoxrelated. However, the pairs (ANHCOMP, ANHPRM),
(H/ZZCOMP, HALPRM) and (BPCOMP, BPPRM) are assumed to have rank correlations of —0.99, —0.99 and —-O.7>5,
res:;;ectively (Fig. 3). These correlations result from a belief that the underlying physics irnplies that a large value for
one variable in a pair should be associated with a small value for the other variable in the pair. The scatterplots in
Fig. 3 result from the Latin hypercube samples described in Sect. 8, with the rank correlations within the pairs
(ANHCOMP, ANHPRM), (HALCOMP, HALPRM) and (BPCOMP, BPPRM) induced with the Iman and Conover
restricted pairing technique (Ref. 74; Sect. 3.2, Ref. 75).

The distributions and associated correlations indicated in Table 1 and Figs. 2 and 3 define the probability space
-y

(Seus 4 su» Psyu) for subjective uncertainty. The vector X, in Eq. (1) has the form

Xgy, = [ANHBCEXP, ANHBCVGP, ..., WTAUFAIL), 3)

where the individual elements of X, are the variables described in Table 1.

6. Sample Size for Incorporation of Subjective Uncertainty

The guidance in 40 CFR 194.34(d) (Ref. 76) states that “The number of CCDFs generated shall be large enough
such that, at cumulative releases of 1 and 10, the maximum CCDF generated exceeds the 99th percentile of the
population of CCDFs with at least a 0.95 probability.” For a Latin hypercube or random sample of size n, the

preceding guidance is equivalent to the inequality
1-0.99">0.95, (%)

which results in a minimum value of 298 for n. In consistency with the preceding result, the 1996 WIPP PA uses an

LHS of size 300 to integrate over the probability space (S, ) su» Psu) fOr subjective uncertainty. Actually, as




discussed in the next section, three replicated LHSs of size 100 each are used, which results in a total sample size of

300.

7. Statistical Confidence on Mean CCDF

The guidance in 40 CFR 194.34(f) states that “Any compliance assessment shall provide information which
demonstrates that there is at least a 95 percent level of statistical confidence that the mean of the population of
CCDFs meets the containment requirements of § 191.13 of this chapter.” Given that Latin hypercube sampling is to
be used, the confidence imtervals required in 194.34(f) can be obtained with a replicated sampling technique
proposed in Ref. 77. In this technique, the LHS is repeatedly generated with different random seeds. These samples
lead to a sequence P.(R),r=1,2,...,nR, of estimated mean exceedance probabilities, where I_J,(R)_ defines the
mean CCDF obtained for sample r (i.e., FD‘,.(R) is the mean probability that a normalized release of size R will be
exceeded; see Fig. 5, Ref 1) and nR is the number of independent LHSs generated with different random seeds.
Then, ‘

nR
P(R)= Y B(R)/nR (5)
r=1
and
"R 1/2
SE(R)=1> [ - F(R)]2 / nR(nR 1) (6)
r=1

provide an additional estimate of the mean CCDF and an estimate of the standard error associated with the mean
exceedance probabilities. The z-distribution with nR-1 degrees of freedom can be used to place confidence intervals
around the mean exceedance probabilities for individual R values (ie., around P(R)). Specifically, the 1-a
confidence interval is given by P(R)% #;_o» SE(R), where #;_g> is the 1-a/2 quantile of the r-distribution with
nR-1 degrees of freedom (e.g., #{_g/; = 4.303 for o = 0.05 and rnR = 3). The same procedure can also be used to

place pointwise confidence intervals around percentile curves.

8. Generation of Replicated LHSs

The LHS program’8- 79 was used to produce three independently generated LHSs of size nLHS = 100 each, for a
total of 300 sample elements. Each individual replicate is an LHS of the form

Xy k= [Xp15 Xg2s oo Xe il k=1, 2, ..., nLHS = 100. (7)




In the context of the replicated sampling procedure described in Sect. 7, 2R = 3 replicates are being used, with each
replicate of size 100. For notational convenience, the replicates are designated by R1, R2 and R3 for replicates 1, 2

and 3, respectively.

At the beginning of the analysis, only the 31 variables in Table 1 that are used as input to BRAGFLO had been
fully specified (i.., their distributions D; had been unambiguously defined); the remaining variables now listed in
Table 1 were still under development. To allow the calculations with BRAGFLO to proceed, the previously
indicated LHSs were generated from n) = 75 variables, with the first 31 variables being the then specified inputs to
BRAGFLO and the remaining 44 variables being assigned uniform distributions on [0, 1]. Later, when the
additional variables in Table 1 were fully specified, the uniformly distributed variables were used to generate
sampled values from them consistent with their assigned distributions. This procedure allowed the analysis to go
forward while maintaining the integrity of the Latin hypercube sampling procedufe for the overall analysis.

 With n¥ = 75 in the LHSs and 31 variables already assigned, 44 additional variables were available for
incorporation into the analysis. To assure that the number of available positions in the LHSs was not exceeded, each
group of investigators developing characterizations of variable uncertainty was assigned a maximum number of
variables that they could elect to have incorporated into the analysis, with the sum of these maximums being less than
44. Ultimately, 26 additional variables were selected for incorporation into the analysis, which produced the 57

variables in Table 1.

-~y

The Iman and Conover restricted pairing technique’# was used to induce requested correlations and also to
assure that uncorrelated variables had correlations close to zero. Due to the sequential manner in ‘which the variables
were developed, it was actually only the first 31 variables used as input to BRAGFLO that could have specified non-
zero correlations. The correlations for the remaining variables were controlled in the sense that they were forced to

be close to zero.

The variable pairs (ANHCOMP, ANHPRM), (HALCOMP, HALPRM) and (BPCOMP, BPPRM) were assigned
rank correlations of —0.99, —0.99 and —0.75, respectively (Sect. 5). Further, all other variable pairs were assigned
rank correlations of zero. The restricted pairing technique was quite successful in producing these correlations
(Table 2). Specifically, the correlated variables have correlations that are close to their specified values and

uncorrelatqd variables have correlations that are close to zero.
9. Sensitivity Analysis

Evaluation of one or more of the models used to estimate radionuclide releases to the accessible environment

(Sect. 4, Ref. 1; Ref. 2 - 6) with the LHS in Eq. (7) (see Table 6, Ref. 11) creates a mapping

Dsu o YX su 0] K =1,2. ..., nLHS, (8)




from analysis inputs (i.e., X, ;) to analysis results (i.e., Y(X, 1)), Where ¥(Xg, ;) denotes the results obtained with the
model or models under consideration. A vector notation is used for y because, in general, a large number of
predicted results is produced by each of the models used in the 1996 WIPP PA. In addition, Y(Xy, ;) could also
correspond to a CCDF for normalized release constructed from model results associated with X, ;. Sensitivity
analysis involves an exploration of the mapping in Eq. (8) to determine how the uncertainty in individual elements of
X, affects the uncertainty in individual elements of y(Xy,). A variety of techniques are available for use in ﬂ:ﬁs
exploration, including examination of scatterplots, regression analysis, stepwise regression analysis, correlation and

partial correlation analysis, and rank transformations of data (Sect. 3.5, Ref. 75; Sect. 6.10, Ref. 15).

Sensitivity analysis has played an important role in prior PAs for the WIPP. In particular, sensitivity analyses
were carried out in support of the 1990 (Ref. 80), 1991 (Ref. 81, Vol. 4; Refs. 82, 83) and 1992 (Ref. 20, Vols. 4, 5;
Ref. 84) WIPP PAs. In addition, analyses on the effects of gas generation were carried out in conjunction with the
1991 WIPP PA (Refs. 85 - 88), and an analysis on the health effects associated with drilling intrusions was carried
out in conjunction with the 1996 WIPP PA (Ref. 89). The preceding sensitivity analyses contributed to the
development of the WIPP by identifying the dominant contributions to the uncertainty in the predicted behavior of

the WIPP and also by providing an extensive check that the models in use were implemented correctly.

10. Scenarios Involving Stochastic and Subjective Uncertainty

Scenarios are usually defined to be subsets E,, of the sample space S, for stochastic uncertainty, &nd scenario
probabilities p,, (E,;) are defined by the function p,, associated with the probability space (S, £ g py) for
stochastic uncertainty (Sect. 14, Ref. 11). This definition is consistent with the concept that a scenario is something
that could happen in the future. However, this definition is also consistent with the broader concept that a scenario is
simply a subset of the sample space S associated with an arbitrary probability Space (S, 4 ,p)ortobe
technically correct, a scenanio is an element of the set 4 associated with the probability space (S, 5 . p) (Sect.
14, Ref. 11).

" A probability space (S,,, 4 sus Psy) fOr subjective uncertainty has now been introduced. Consistent with the
concept that scenarios are subsets of the sample space associated with an arbitrary probability space, scenarios could
also b; defined to be subsets Eg, of S;, (i.e., elements of 4 <), With corresponding probabilities given by

psu(Esu)'

Although a subset E; of S, and also a subset E, of Sy, can be formally thought of as being scenarios in the
sense of being subsets of the sample space associated with a particular probability space, E, and E;, are very
different entities. In particular, E,, contains vectors X, of the form defined in Eq. (1) of Ref. 11, and E, contains
vectors X, of the form defined in Egs. (1) and (3). Further, the probability po(E;,) for E, characterizes the

likelihood that a vector X, in E, will match the occurrences that will take place at the WIPP over the next 10,000 yr,




and the probability p,(E,,) for E, characterizes a degree of belief that a vector X, in E, contains the appropriate
values for the 57 variables in Table 1 for use in the 1996 WIPP PA. Given the difference between scenarios derived
from S, and scenarios derived from Sq,, a careful specification of what is meant by a scenario is always necessary in

" an analysis that involves multiple probability spaces.

The probability spaces (S, 4, ps) 2nd (S 4 4 Psy) can be combined to produce an additional
probability space (S, 4 , p), where the elements X of the sample space S are vectors of the form

X = [Xg, X )y X5y € Sgp Xgy € Sy )]

Thus, under the convention that scenarios are subsets of the sample space associated with an arbitrary probability
space, scenarios could also be defined to be sets of vectors of the form defined in Eq. (9). In this case, the definition
of a scenario would involve the specification of what could occur in the future (i.e., the part of X defined by x,;) and

the specification of fixed but unknown values for parameters required in the analysis (i.e., the part of X defined by

Xsu)-

The probability space (S, 4 , p) can be developed from (S, 4, py;) and (S, S g Psy) by defining each
element Eof 4 by

E=E,xE,,

= {X: X = [XSI’ xSu]’ xSl € ESI’ qu € ESH}’ B (10)

where E, € 4 ,andE, € 4 ,. If the probability spaces (S, 4, ps) and (Sg, 8 o Ps) are independent
(i.e., the occurrence of a particular element X, of S, does not affect the definition of (S, 4 g, Ps), and the

occurrence of a particular element X, of S, does not affect the definition of (S, 4 ¢, psr)), then

P(E) =P(Es! x Esu) = Pst (ESI) psu(Esu)' : (11)

If Sy, & o Ps) and (Sgy, £ g Pgy) are not independent, then a more complicated definition for p is required,
with the exact nature of this definition being a function of the dependencies that exist between (S, 4 o Psp) and
(SSU’ ‘J Su> psu)'

In the 1996 WIPP PA, (S, 4 ;. p,,) and (Sss 4 o Py, are independent, with the result that the relationship
in Eq. (11) holds. This would not be the case if a parameter required in the definition of (S, 4, ;) Was treated
as being uncertain and thus included in x,,. For example, a more complex definition for p in Eq. (11) would be
required if the drilling rate in Egs. (3) - (5) of Ref. 11 was treated as being uncertain. Although none of the
quantities used in the definition of (S, 4 , py,) in the 1996 WIPP PA were considered to be uncertain, such

uncertainties were considered in a verification analysis performed at SNL for the U.S. EPA (Ref. 90); in particular,




the probability that a drilling intrusion would penetrate pressurized brine (Sect. 5, Ref. 11) was treated as being

uncertain and included in the definition of X,

As described in conjunction with the probability spaces (Sy, 8 5 Psp)» (S B 50 Ps) a0d (S =S, x S, 4
, D), the concept of a scenario is consistent in the sense of being a subset of a sample space and yet can involve quite
different entities due to the different probability spaces potentially under consideration. Thus, when the use of
scenarios is discussed, it is important to specify clearly which of many possible probability spaces is under

consideration.

Unless specified otherwise, use of the term scenario in the 1996 WIPP PA refers to subsets of the sample space
S,; for stochastic uncertainty (Sect. 14, Ref. 11). However, due to the use of Monte Carlo procedures to incorporate
the effects of stochastic and subjective uncertainty into the 1996 WIPP PA, the use of terminology related to

scenarios does not play a large role in the description of this analysis.

11. Discussion

The characterization of subjective uncertainty in the 1996 WIPP PA has been described. In particular,
subjective uncertainty is characterized by a probability space (S, 4 su» Psy) and leads to a distribution of the
CCDFs specified by the EPA in 40 CFR 191 (Refs. 91, 92). In turn, the individual CCDFs in this distribution arise
from a probability space (Sy;, 4 4 py,) for stochastic uncertainty.!! The location of the distribution_of CCDFs
relative to the boundary line specified in 40 CFR 191 provides a measure of the confidence with which it is believed
that this regulation will be met.

The intent of the 1996 WIPP PA was to use the probability space (S, 4 g Ps) in the development of an
unbiased representation of the subjective, or state of knowledge, uncertainty in its outcomes. Thus, the goal in
assigning the distributions that defined (S, 4 sw» Psy) Was to neither deliberately overestimate nor deliberately
underestimate the possible values for individual variables. Such assignments then lead to unbiased estimates of the
uncertainty in the outcomes of the analysis. The need for such uncertainty estimates in analyses supporting impbrtant
decisions has been widely emphasized (Sect. 6, Ref. 1).

There is one important area in which the 1996 WIPP PA did not attempt to assess the uncertainty in its inputs.
The EPA gave very specific guidance in 40 CFR 194 (Ref. 76) on how the drilling and mining rates should be
determined in assessing compliance with 40 CFR 191 (Sects. 2, 8, Ref. 11). As a result, these two rates, which play
an important role in the definition of the probability space (S, 4 s» Dsy) for stochastic uncertainty, were assigned

fixed values rather than distributions. Thus, the 1996 WIPP PA does not incorporate the possible effects of

uncertainty in these two analysis inputs; rather, the outcomes of the PA are conditional on the values specified by the
EPA.




A concemn is sometimes expressed that analysts will be unduly optimistic when asked to characterize the
uncertainty in analysis inputs (i.e., will tend to supply variable values that will cause analysis outcomes to appear to
be more favorable than they should be). The experience of the authors is that the opposite is the case. In particular,
there is a tendency on the part of the analysts to supply conservative values (i.e., values that cause analysis outcomes
to appear to be less favorable than they should be). Thus, when a characterization of subjective uncertainty is
developed, it is important for everyone involved to understand that the intent is to develop an accurate (i.c., honest)
representation of the current state of knowledge that is neither unduly 6ptimisn'c nor uﬂduly pessimistic. Without
such a representation, it is difficult to interpret and use the uncertainty and sensitivity analysis results that arise from

a propagation of subjective uncertainty.

" The results of propagating and analyzing the effects of subjective uncertainty in the 1996 WIPP PA are

presented in a sequence of additional articles.3-6 12-14
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Figure Captions
Fig. 1. Conceptualization of procedure for assigning values to parameters in the 1996 WIPP PA,

Fig. 2. Examples of uncertain variables, their associated distributions, and sampled values obtained with a Latin
hypercube sample (Ref. 10; see Sect. 11) of size 100.

Fig. 3. Scatterplots illustrating correlations within the pairs (ANHCOMP, ANHPRM), (HALCOMP, HALPRM) and
(BPCOMP, BPPRM).
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Fig. 1. Conceptualization of procedure for assigning values to parameters in the 1996 WIPP PA.
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Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Seé App. PAR, Ref. 16 for
additional information)

ANHBCEXP—Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Used in BRAGFLO.
Defines A in Egs. (10) - (12) of Ref. 2 for regions 20, 21, 28 of Fig. 1 of Ref. 2 for use with Brooks-Corey
model; defines A in m = A/(1+4) in Egs. (19) - (21) of Ref. 2 for use with van Genuchten-Parker model in same
regions. See ANHBCVGP. Distribution: Student’s with 5 degrees of freedom. Range: 0.491 to 0.842.
Mean, Median: 0.644. Variable 25 in LHS. Additional information: Ref. 19; Ref. 20, Vol. 3, p. 2-54.

ANHBCVGP—Pointer variable for selection of relative permeability model for use in anhydrite. Used in
BRAGFLO. See ANHBCEXP. Distribution: Discrete with 60% 0, 40% 1. Value of 0 implies Brooks-Corey
model defined by Eqgs. (10)-(12) of Ref. 2; value of 1 implies van Genuchten-Parker model defined by Eqgs.
(19)-(21) of Ref. 2. Variable 22 in LHS. Additional information: Ref. 19; Ref. 20, Vol. 3, p. A-149.

ANHCOMP—Bulk compressibility of anhydrite (Pa-1). Used in BRAGFLO. Pore compressibility By in Eq.
(7) of Ref. 2 defined by ANHCOMP divided by initial porosity (i.e., ¢g in Table 1 of Ref. 2) for use in regions
20, 21, 28 of Fig. 1 of Ref. 2. Distribution: Student’s with 3 degrees of freedom. Range: 1.09 x 10-11 t0 2.75
Cx 10‘10~Pa~1. Mean, Median: 8.26 x 10-1! Pa-l. Correlation: —0.99 rank correlation with ANHPRM.
Variable 21 in LHS. Additional information: Refs. 21, 22.

ANHPRM—Logarithm of intrinsic anhydrite permeability (m?). Used in BRAGFLO. Defines permeability
tensors Kg, K in Egs. (2), (3) of Ref. 2 for regions 20, 21, 28 in Fig. 1 of Ref. 2. Specifically, the anhydrite is
assumed to be isotropic, with result that ANHPRM is the logarithm of the diagonal elements of K, for the
indicated regions and similarly defines the diagomal elements of K, after a correction is made for the
Klinkenberg effect as shown in Eq. (30) 6f Ref. 2. Distribution: Student’s with 5 degrees of freedom. Range:
-21.0 to —17.1 (i.e., permeability range is 1 x 10-2! to 1 x 10-17-1 m2). Mean, Median: —18.9. Correlation:
—0.99 rank correlation with ANHCOMP. Variable 20 in LHS. Additional information: Refs. 19, 21, 22.

ANRBRSAT—Residual brine saturation in anhydrite (dimensionless). Used in BRAGFLO. Defines Sp, in Egs.
(14) - (15) of Ref. 2 for use in regions 20, 21, 28 of Fig. 1 of Ref. 2. Distribution: Student’s with 5 degrees of
~ freedom. Range:. 7.85 x 10-3 t0.1.74 x 10-1. Mean, Median: 8.36 x 10-2. Variable 23 in LHS. Additional
information: Ref. 19; Ref. 20, Vol. 3, p. 2-52.
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Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

ANRGSSAT—Residual gas saturation in anhydrite (dimensionless). Used in BRAGFLO. Defines Sgr in Eq.
(15) of Ref. 2 for use in regions 20, 21, 28 of Fig. 1 of Ref. 2. Distribution: Student’s with 5 degrees of
freedom. Range: 1.39 x 10-2 to 1.79 x 10~!. Mean, median: 7.71 x 10~2. Variable 24 in LHS. Additional
information: Ref. 19; Ref. 20, Vol. 3, p. 2-53.

BHPRM—1I ogarithm of intrinsic borehole permeability (m2). Used in BRAGFLO. Defines permeability
tensors Kg, Kj in Egs. (2), (3) of Ref. 2 for region 1 in Fig. 1 of Ref. 2 when borehole with properties similar to
silty sand is present. Specifically, the borehole is assumed to be isotropic, with result that BHPRM is the
logarithm of the diagonal elements of K, for the indicated region and similarly defines the diagonal elements of
K, after a correc.ticm is made for the Klinkenberg effect as shown in Eq. (30) of Ref. 2. Distribution: Uniform.
Range: ~14 to 11 (i.e,, permeabilityfange is 1 x 10-14t0 1 x 10-11 m2). Mean, median: —12.5. Variable 30
in LHS. Additional information: Ref. 23.

BPCOMP—Logarithm of bulk compressibility of brine pocket (Pa-!). Used in BRAGFLO. Pore
compressibility By in Eq. (7) of Ref. 2 defined by 10BPCOMP divided by initial porosity (i.e., ¢o in Table 1 of
Ref. 2) for use in region 30 of Fig. 1 of Ref. 2. Distribution: Triangular. Range: -11.3 to -8.00 (i.e., bulk
compressibility range is 1 x 10~11.3 to 1 x 10-8 Pa-1). Mean, mode: -9.80, -10.0. Correlation: ~0.75 rank
correlation with BPPRM. Variable 29 in LHS. Additional information: Ref. 24.

BPINTPRS—Initial pressure in brine pocket (Pa). Used in BRAGFLO. Defines p; (x, y, —5) in Table 4 of
Ref. 2 for region 30 in Fig. 1 of Ref. 2. Distribution: Triangular. Range: .11 x 107 to 1.70 x 107 Pa. Mean,
mode: 1.36 x 107 Pa, 1.27 x 107 Pa. Variable 27 in LHS. Additional information: Ref. 25; Ref. 20, Vol. 3,
Sect. 4.3.

BPPRM—Logarithm of intrinsic brine pocket permeability (m?). Used in BRAGFLO. Defines permeability
tensors Kg, K in Egs. (2), (3) of Ref. 2 for region 30 in Fig. 1 of Ref. 2. Specifically, the brine pocket is
assumed to be isotropic, with result that BPPRM is the logarithm of the diagonal elements of Kj for the
indicated region and similarly defines the diagonal elements of Kg after a correction is made for the
Klinkenberg effect as shown in Eq. (30) of Ref. 2. Distribution: Triangular. Range: -14.7 to -9.80 (i.e.,
permeability range is 1 x 10-147 to 1 x 10-980 m2). ' Mean, mode: —12.1, -11.8. Correlation: —0.75 with
BPCOMP. Variable 28 in LHS. Additional information: Refs. 26, 27.




Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

BPVOL—Pointer variable for selection of brine pocket volume. Used in BRAGFLO. Distribution: Discrete,
with integer values 1, 2, .., 32 equally likely. Originally intended to select from 32 equally-likely brine pocket
maps obtained by assuming five regions beneath repository, with each region either containing or not
containing pressurized brine. This produces 32 (i.e., 25) possible brine pocket maps. This approach was
abandoned when more information on brine pockets became available (Ref. 28) and the only role that BPVOL
now plays is to determine volume of brine (m3) contained in the brine pocket. Specifically, the volumes are
32,000, 64,000, 96,000, 128,000 and 160,000 m3 if the original maps contained 0 or 1, 2, 3, 4 or 5 brine
pockets, and the corresponding probabilities are 0.1875, 0.3125, 0.3125, 0.15625 and 0.03125. The indicated
volumes define ¥, in Eq. (17) of Ref. 2 and thus define do for region 30 in Fig. 1 of Ref. 2; in addition, the
number of drilling intrusions nD required to deplete the pressurized brine beneath the repository is defined by
nD = 2Vpm/32,000 (ie., 2, 4, 6, 8 or 10 intrusions depending on whether the associated brine volume is .-
32,000, 64,000, 96,000, 128,000 or 160,000 m3; see #D in Table 5 of Ref. 11). For the presentation of
sensitivity analysis results, BPVOL is assigned the brine volumes that correspond to the sampled integer values.
Variable 31 in LHS. Additional information: Refs. 28-30.

CFRCPO??——Culebra fracture (i.e., advective) porosity (dimensionless). Used in SECOTPZD; Defines ¢ in
Eq. (13) of Ref. 6. Distribution: Loguniform. Range: 1.00 x 10~4 to 1.00 x 10-2. Mean, median: 2.10 x
10-3, 1.00 x 10-3. Variable 50 in LHS. Additional information: Refs. 31, 32.

CFRCSP——Culebra fracture spacing (m). Used in SECOTP2D. Equal to half the distance between fractures
(i.e., the Culebra half matrix block length). Defines B in Eq. (22) and Fig. 7 of Ref. 6. Distribution: Uniform.
Range: 0.05to 0.5 m. Mean, median: 0.275 m, 0.275 m. Variable 49 in LHS. Additional information: Refs.
33, 34.

CMKDAM3—Matrix distribution coefficient (m3/kg) for americium in +3 oxidation state. Used in
SECOTP2D. Defines Ky in Eq. (19) of Ref. 6 for Am3+. Distribution: Uniform. Range: 0.02 to 0.5 m3/kg.
Mean, median: 0.26 m3/kg, 0.26 m3/kg. Variable 57 in LHS. Additional information: Ref. 35.:

CMKDPU3—Same as CMKDAMS3 but for plutonium in +3 oxidation state. Distribution: Uniform. Range:
0.02 to 0.5 m3/kg. Mean, median: 0.26 mi/kg, 0.26 m3/kg. Variable 54 in LHS.

CMKDPU4—Same as CMKDAM3 but for plutonium in +4 oxidation state. Distribution: Uniform. Range:
0.9 to 20 m3/kg. Mean, median: 10.0 m3/kg, 10.0 m3/kg. Variable 55 in LHS.
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Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

CMKDTH4—Same as CMKDAM3 but for thorium in +4 oxidation state. Distribution: Uniform. Range: 0.9
to 20 m3/kg. Mean, median: 10.0 m3/kg, 10.0 m3/kg. Variable 56 in LHS.

CMKDU4—Same as CMKDAMS3 but for uramium in +4 oxidation state. Distribution: Uniform. Range: 0.9 to
20 m¥/kg. Mean, median: 10.0 m3/kg, 10.0 m3/kg. Variable 53 in LHS.

CMKDU6—Same as CMKDAMS3 but for uranium in +6 oxidation state. Distribution: Uniform. Range: 3.0 x
10-5t0 3.0 x 10-2 m3/kg. Mean, median: 1.50 x 10-2 m3/kg, 1.50 x 10-2 m3/kg. Variable 52 in LHS.

CMTRXPOR—Culebra matrix (i.e., diffusive) porosity (dimensionless). Used in SECOFL2D and
SECOTP2D. Defines ¢’ in Eq. (18) of Ref. 6. Distribution: Piecewise uniform. Range: 0.01 to 0.25. Mean,
median: 0.16, 0.16. Variable 51 in LHS. Additional information: Refs. 36, 37

CTRAN—TPointer variable for selecting transmissivity field. Used in SECOFL2D. Distribution: Discrete, with
integer values 1, 2, ..., 100 equally likely. Each integer value identifies one of IOQ transmissivity fields
constructed with GRASP_INV for use in analysis. Transmissivity fields define 7{x, y) in Eq. (7) of Ref. 6.
Variable 35 in LHS. Additional information: Ref. 38; Ref. 20, Vol. 3, p. 2-91.

CTRANSFM—Multiplier on transmissivity field in presence of mining of potash reserves within the land
withdrawal boundary (dimensionless). Used in SECOFL2D. Transmissivity field selected by CTRAN is
multiplied by CTRANSFM to obtain values for k(x, ¥) and kx(x, y) in Egs. (8) and (9) of Ref. 6; defines SFM
in Eqgs (8) and (9) of Ref. 6 for mining. Distribution: Uniform. Range: 1 to 1000. Mean; median: 500.5,
500.5. Variable 34 in LHS. Additional information: Refs. 39 -41.

CULCLIM—Climate scale factor for Culebra flow (i.e., velocity) field (dimensionless). Used in SECOTP2D.
Culebra flow field is multiplied by CULCLIM to obtain v/(x, y) in Eq. (11) of Ref. 6; defines SFC in Eq. (11)
of Ref. 6. Distribution: Piecewise uniform. Range: 1 to 2.25. Mean, median: 1.31, 1.17. Variable 48 in
LHS. Additional information: Refs. 42, 43.

HALCOMP—Bulk compressibility of halite (Pa—!). Used in BRAGFLO. Pore compressibility B7in Eq. (7) of
Ref. 2 defined by. HALCOMP divided by initial porosity (i.e., o in Table 1 of Ref. 2) for use in region 19 of
Fig. 1 of Ref. 2. Distribution: Uniform. Range: 2.94 x 10-12 to 1.92 x 10-10 Pa-1. Mean, median: 9.75 x
10-11 Pa-1, 975 x 10-11 ‘Pa-l. Correlation: —~0.99 rank correlation with HALPRM. Variable 19 in LHS.
Additional information: Ref. 44.




Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

HALPOR—Halite porosity (dimensioniess). Used in BRAGFLO. Defines ¢¢ in Eq. (7) of Ref. 2 for region 19
in Fig. 1 of Ref. 2. Distribution: Piecewise uniform. Range: 1.0 x 10-3 to 3 x 10-2. Mean, median: 1.28 x
10-2, 1.00 x 10-2. Variable 17 in LHS. Additional information: Ref. 45; Ref. 20, Vol. 3, p. 2-41.

HALPRM—1 ogarithm of halite permeability (m?2). Used in BRAGFLO. Defines permeability tensors K. Kp
in Egs. (2), (3) of Ref. 2 for region 19 in Fig. 1 of Ref. 2. Specifically, the halite is assumed to be isotropic,
with result that H4LPRM is the logarithm of the diagonal elements of K, for the indicated region and similarly
defines the diagonal elements of K, after a correction is made for the Klinkenberg effect as shown in Eq. (30)
" of Ref. 2. Distribution: Uniform. Range: 24 to —21 (i.c., permeability range is 1 x 10-24 to 1 x 10-21 m?2).
Mean, median: -22.5, -22.5. Correlation: —0.99 rank correlation w1th HALCOMP. Variable 18 in LHS.
Additional information: Refs. 46 - 48.

SALPRES—Initial brine pressure, without the repository being present, at a reference point located in the
center of the combined shafts at the elevation of the midpoint of MB 139 (Pa). Used in BRAGFLO. Defines |
Pbo, Which is used to define pp(x, y, 0) (Table 4 of Ref. 2). With respect to computational cells in Fig. 1 of
Ref. 2, defines initial brine pressure at location of cell (23,6). Distribution: Uniform. Range: 1.104 x 107 to

1.389 x 107 Pa. Mean, median: 1.247 x 107 Pa, 1.247 x 107 Pa. Variable 26 in LHS. Additional

information: Ref. 49; Ref. 20, Vol. 3, p. 2-38.

SHBCEXP—DBrooks-Corey pore distribution parameter for shaft (dimensionless). Used in BRAGFLO.
Defines A in Egs. (10) - (12) of Ref. 2 for regions 3-11 in Fig. 1 of Ref. 2. Distribution: Piecewise uniform.
Range: 0.11 to 8.10. Mean, median: 2.52, 0.94. Variable 16 in LHS. Additional information: Refs. 50 - 52.

SHPRMASP—Logarithm of intrinsic permeability (m?) of asphalt component of shaft seal (m2). Used in
BRAGFLO. Permeability tensors Ky, Kp in Egs. (2), (3) of Ref. 2 for region 5 in Fig. 1 of Ref. 2 are functions .
of asphalt permeability (i.e., ks = 10%, x = SHPRMASP, in Eq. (35) of Ref. 2), halite permeability (i.e., kour =
105, x = HALPRM, in Eq. (36) of Ref. 2, and shaft DRZ permeability (i.e., k;» = 10%, x = SHPRMDRZ, in Eq.
(36) of Ref. 2), with diagonal elements of Kj defined by k. in Eq. (35) of Ref. 2 and the diagonal elements of
K, defined similarly after a correction is made for the Klinkenberg effect as shown in Eq. (30) of Ref. 2.
Distribution: Triangular. Range: —21 to —18 (i.e., permeability range is 1 x 102! to 1 x 10-18 m2). Mean,
mode: -19.7, ~20.0. Variable 11 in LHS. Additional information: Refs. 50, 51, 53.
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Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

SHPRMCLY—I ogarithm of intrinsic permeability (m?) for clay components of shaft. Used in BRAGFLO.
Defines permeability tensors Kg, Kp in Egs. (2), (3) of Ref. 2 for regions 4, 10 in Fig. 1 of Ref. 2; specifically,
the clay component is assumed to be isotropic, with result that SHPRMCLY is the logarithm of the diagonal
elements of K; for the indicated regions and the diagonal elements of K¢ are defined similarly éﬁer a
correction is made for Klinkenberg effect as shown in Eq. (30) of Ref. 2. Plays same role in definition of K,,
K for regions 8, 9 in Fig. 1 of Ref. 2 as SHPRMASP does in the definition of Ks, K, for region 5 in Fig. 1 of
Ref. 2, with result that Kg, Ky are functions of SHPRMCLY, HALPRM and SHPRMDRZ. Distribution:
Triangular. Range: -21 to ~17.3 (i.e., permeability range is 1 x 102! to 1 x 10173 m?). Mean, mode:
-~18.9, -18.3. Variable 9 in LHS. Additional information: Refs. 50, 51, 53.

SHPRMCON—Same as SHPRMCLY (as used for regions 4, 10 in Fig. 1 of Ref. 2) but for concrete component
of shaft seal (i.e., region 6 in Fig. 1 bf Ref. 2) for 0 to 400 yr. Distribution: Triangular. Range: -17.0 to
-14.0 (i.e., permeability range is 1 x 10-17to 1 x 10-14 m2). Mean, mode: -15.3,—-15.0. Variable 10 in LHS.
Additional information: Refs. 50, 51, 53.

SHPRMDRZ—Logarithm of intrinsic permeability (m?) of DRZ surrounding shaft. Used in BRAGFLO.
" Defines &, in Eq. (36) of Ref. 2. Used in definition of effective permeability for shaft in regions 5, 8, 7 and 9
of Fig. 1 of Ref. 2. See SHPRMASP, SHPRMCLY, SHPRMHAL. Distribution: Triangular. Range: -17.0 to
—14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 m2). Mean, mode: —15.3, —15.0. Variable 12 in LHS.
Additional information: Refs. 50, 51, 54. '

SHPRMHAL—Pointer variable (dimensionless) used to select intrinsic permeability in crushed salt component
of shaft seal at different times. Used in BRAGFLO. Distribution: Uﬁiform. Range: 0 to 1. Mean, mode:
0.5, 0.5. A distribution of permeability (m?) in the crushed salt component of the shaft seal (i.e., region 7 in
Fig. 1 of Ref. 2) is defined for each of the following time intervals: [0, 10 yr], [10, 25 yr], [25, 50 yr], [50, 100
yr], [100, 200 yr], {200, 10,000 yr] (see Table 2, Ref. 50). SHPRMHAL is used to sélect a permeability value
from the :cumulative distribution function for permeai';ﬂity for each of the preceding time intervals with result
that a rank correlation of Al exists between the permeabilities used for the individual time intervals. Once

selected, crushed salt permeabilities are used to define Kg, Kp in Egs. (2), (3) of Ref. 2. For region 7 (Fig. 1 of

Ref. 2) in the same manner as SHPRMASP is used to define Ky, Kj for region 5 (Fig. 1 of Ref. 2). Variable 13
in LHS. Additional information: Refs. 50, 51, 55.




Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

SHRBRSAT—Residual brine saturation in shaft (dimensionless). Used in BRAGFLO. Defines Sprin Egs. (24)
- (25) of Ref. 2 for regions 3-11 in Fig. 1 of Ref. 2. Distribution: Uniform. Range: 0 to 0.4. Mean, median:
0.2,0.2. Variable 15 in LHS. Additional information: Refs. 50, 51.

SHRGSSAT—Residual gas saturation in shaft (dimensionless). Used in BRAGFLO. Defines S, in Eq. (25) of
Ref. 2 for regions 3-11 in Fig. 1 of Ref. 2. Distribution: Uniform. Range: 0 to 0.4. Mean, median: 0.2, 0.2.
Variable 14 in LHS. Additional information: Refs. 50, 51, 56.

WASTWICK—Increase in brine saturation of waste due to capillary forces (dimensionless). Used in
BRAGFLO. Defines Syict in Eq. (72) of Ref. 2 for regions 23, 24 in Fig. 1 of Ref. 2. Distribution: Uniform.
Range: 0to 1. Mean, median: 0.5, 0.5. Variable 8 in LHS.

WFBETCEL—Scale factor used in definition of stoichiometric coefficient for microbial gas generation .
(dimensionless). Used in BRAGFLO. Defines B in Eq. (71) of Ref. 2 for regions 23, 24 in Fig. 1 of Ref. 2.
Distribution: Uniform. Range: 0 to 1. Mean, median: 0.5, 0.5. Variable 5 in LHS. Additional information:
Refs. 57, 38.

WGRCOR—Corrosion rate for steel under inundated coqditions in the absence of CO, (m/s). Used in
BRAGFLO. Defines R.; in Eq. (50) of Ref. 2 for regions 23, 24 in Fig. 1 of Ref. 2. Distribution: Uniform.
Range: 0 to 1.58 x 1014 m/s. Mean, median: 7.94 x 1015 mys, 7.94 x 10-15 m/s. Variable 1 in LHS.
Additional information: Ref. 57.

WGRMICH—Microbial degradation rate for cellulose under humid conditions - (molkges). Used in -
BRAGFLO. Defines Ry in Eq. (52) of Ref. 2 for regions 23, 24 in Fig. 1 of Ref. 2. Distribution: Uniform. ,
Range: 0 to 1.27 x 10-% mol/’kges. Mean, median: 6.34 x 10-10 mol/kges, 6.34 x 10-10 mol/kges. Variable 4 .
in LHS. Additional information: Ref. 57.

WGRMICI—Microbial degradation rate for cellulose under inundated conditions (mol/kges). Used in
BRAGFLO. Defines Rp; in Eq. (52) of Ref. 2 for regions 23, 24 in Fig. 1 of Ref. 2. Distribution: Uniform.
Range: 3.17 x 10-10 t0 9.51 x 10-9 mol/kges. Mean, median: 4.92 x 10-9 mol/kges, 4.92 x 109 mol/kges.
Variable 3 in LHS. Additional information: Ref. 57.
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Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

WMICDFLG—Pointer variable for microbial degradation of cellulose. Used in BRAGFLO. Distribution:
Discrete, with 50% 0, 25% 1, 25% 2. WMICDFLG =0, 1, 2 implies no microbial degradation of cellulose,
microbial degradation of only cellulose, microbial degradation of cellulose, plastic and rubber. Variable 2 in

LHS. Additional information: Ref. 59.

-WPRTDIAM—Waste particle diameter (m). Used in CUTTINGS_S. Defines d in Eqgs. (40) and (41) of
Ref. 3. Distribution: Loguniform. Range: 4.0 x 10-5 to 2.0 x 10-! m. Mean, median: 2.35 x 10-2 m, 2.80 x
10-2 m. Variable 32 in LHS. Additional information: Refs. 60, 61. '

WOXSTAT—Pointer variable for elemental oxidation states (dimensionless). Solubilities obtained with
WOXSTAT used in NUTS, PANEL (see Egs. (6)-(9) and Table 1) of Ref. 5; retardations obtained with
WOXSTAT used in SECOTP2D (see .Eq. (19) of Ref. 6). Distribution: Uniform. Mge: 0 to 1. Mean,
median: 0.5, 0.5. Reset to WOXSTAT = 0, 1 for WOXSTAT < 0.5, 0.5 < WOXSTAT<1. WOXSTAT =0
implies use of CMKDPU3, CMKDU4, WSOLPU3C, WSOLPUS, WSOLU4S; WOXSTAT = 1 implies use of
CMKDPU4, CMKDUSG6, WSOLPU4C, WSOLPU4S, WSOLUGC, WSOLU6S. Variable 47 in LHS. Additional
informatiom Refs. 62, 63.

WPHUMOX3—Ratio of concentration of actinides attached to humic colloids to dissolved concentration of
actinides for oxidation state III in Castile brine (dimensionless). See SFy,m (Br, Ox, El) in Table 1 of Ref. 5.
Distribution: Piecewise uniform. Range: 0.065 to 1.60. Mean, median: 1.10, 1.37. Variable 46 in LHS.
Additional information: Refs. 64 - 66.

WRBRNSAT—Residual brine saturation in waste (dimensionless). Used in BRAGFLO. Defines Sp, in Egs.
(14) - (15) of Ref. 2 for use in regions 23, 24 in Fig. 1 of Ref. 2. Also used in BRAGFLO DBR; see Sect. 4 of
Ref. 4. Distribution: Uniform. Range: 0 to 0.552. Mean, median: 0.276, 0.276. Variable 7 in LHS.
Additional information: Ref. 67.

WRGSSAT—Residual gas saturation in waste (dimensionless). Used in BRAGFLO. Defines S, in Eq. (15) of
Ref. 2 for use in regions 23, 24 in Fig. 1 of Ref. 2. Also used in BRAGFLO_DBR; see Sect. 4 of Ref. 4.
Distribution: Uniform. Range: 0 to 0.15. Mean, median: 0.075, 0.075. Variable 6 in LHS. Additional
information: Ref. 68.
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Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

WSOLAM3C—Logarithm of scale factor used to define solubility in Castile brine of americium in oxidation
state III (dimensionless). Solubility calculated from WSOLAM3C used in NUTS, PANEL. Defines UF(Br,
Ox, EI) in Table 1 of Ref. 5, which is a multiplier on solubility prediction with FMT (Ref. 69). Distribution:
Piecewise uniform. Range: -2.00 to 1.40. Mean, median: 0.18, -0.09. Variable 37 in LHS. Additional
information: Refs. 63, 70 - 72. A

WSOLAM3S—Same as WSOLAM3C but for Salado brine. Variable 36 in LHS. Note: WSOLAM3C,
WSOLAM3S, WSOLPU3C, WSOLPU3S, WSOLPU4C, WSOLPU4S, WSOLTH4S, WSOLU4S, WSOLU6C,
WSOLUGS have same distribution (see WSOLAM3C) but are sampled independently.

WSOLPU3C—Same as WSOLAM3C but for plutonium. Variable 39 in LHS.
WSOLPU35—Same as WSOLAM3C but plutonium in Salado brine. Variable 38 in LHS.
WSOLPU4C—Same as WSOLAM3C but for plutonium in oxidation state IV. Variable 41 in LHS.

WSOLPU45—Same as WSOLAM3C but for plutonium in oxidation state IV in Salado brine. Variable 40 in
LHS.

WSOLTH4S5—Same as WSOLAM3C but for thorium in oxidation state IV in Salado brine. Variable 45 in LHS.
WSOLU45—Same as WSOLAM3C but for uranium in oxidation state IV in Salado brine. Variable 42 in LHS.
WSOLU6C—Same as WSOLAM?3C but for uranium in oxidation state VI. Variable 44 in LHS.

WSOLU6S—Same as WSOLAM3C but for uranium in oxidation state VI in Salado brine. Variable 43 in LHS.

WTAUFAIL—Shear strength of waste (Pa). Used in CUTTINGS_S. Defines 7(R,1) in Eq. (13) of Ref. 3.
Distribution: Uniform. Range: 0.05 to 10 Pa. Mean, median: 5.03 Pa, 5.03 Pa. Variable 33 in LHS.
Additional information: Ref. 73.




Table 2. Example Rank Correlations in Replicate 1

WGRCOR
WMICDFLG
HALCOMP
HALPRM
ANHCOMP
ANHPRM
BPCOMP
BPPRM

1.0000
0.0198
0.0011
—-0.0068
0.0080
0.0049
0.0242
-0.0514
WGRCOR

1.0000
0.0235
-0.0212
0.0336
-0.0183
0.1071
~0.0342
WMICDFLG

1.0000
-0.9879
~0.0123

0.0037
-0.0121

0.0035
HALCOMP

1.0000
-0.0025
0.0113
0.0057
0.0097
HALPRM
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1.0000
-09827  1.0000

-0.0184 00078  1.0000
00283  -00202 -0.7401  1.0000
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6. Correlation Control (Adapted from Sect. 3.2 of Helton 1993)

Control of correlation within a sample can be very important. If two or more variables are correlated, then it is
necessary that the appropriate correlation structure be incorporated into the sample if meaningful results are to be
obtained in subsequent uncertainty/sensitivity studies. On the other hand, it is equally important that variables do not

appear to be correlated when they are really independent.

It is often difficult to induce a desired correlation structure on a sample. Indeed, most multivariate distributions
are incompatible with the majority of correlation patterns that might be proposed for them. Thus, it is fairly common
to encounter analysis situations where the proposed variable distributions and the suggested correlations between the
variables are inconsistent; that is, it is not possible to have both the desired variable distributions and the requested

correlations between the variables.

In response to this situation, Iman and Conover (1982) have proposed a method of controlling the correlation
structure in random and Latin hypercube samples that is based on rank correlation (i.e., on rank-transformed .
variables) rather than sample correlation (i.e., on the original untransformed data). With their technique, it is
possible to induce any desired rank-correlation structure onto the sample. This technique has a number of desirable
properties: (i) It is distribution free. That is, it may be used with equal facility on all types of distribution functions.
(ii) It is sTnple. No unusual mathematical techniques are required to implement the method. (iii) It can be applied to
any sampling scheme for which correlated input variables can logiéal]y be considered, while preserving the intent of
the sampling scheme. That is, the same numbers originally selected as input values are retained; only their pairing is
affected to achieve the desired rank correlations. This means that in Latin hypercube sampling the integrity of the
intervals 1s maintained. If some other structure is used for selection of values, that same structure is retained.

(iv) The marginal distributions remain intact.

For many, if not most, uncertainty/sensitivity analysis problems, rank-correlation is probably a more natural
measure of congruent variable behavior than is the more traditional sample correlation. What is known in most
situations is some idea of the extent to which variables tend to move up or down together; more detailed assessments

of variable linkage are usually not available. It is precisely this level of knowledge that rank correlation captures.

The following discussion provides an overview of the Iman/Conover procedure for inducing a desired rank
correlation structure on either a random or a Latin hypercube sample. A more detailed discussion of the procedure is
given in the original article. The procedure begins with a sample of size m from the n input variables under

consideration. This sample can be represented by the m x n matrix
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where x;; is the value for variable j in sample element i. Thus, the rows of X correspond to sample elements, and the

columns of X contain the sampled values for individual variables.

The procedure is based on rearranging the values in the individual columns of X so that a desired rank
correlation structure results between the individual variables. For convenience, let the desired correlation structure

be represented by the # x # matrix

1t €12 7 S
€21 €22 "0 €3
c=| T T 7 (5)

Cnl Cn2"" Cnn
where ¢y is the desired rank correlation between variables x; and x;. .

Althowmgh the procedure is based on rearranging the values in the individual columns of X to obtain a new matrix
X* that has a rank correlation structure close to that described by C, it is not possible to work directly with X.

Rather, it is necessary to define a new matrix

Sit S1iz v St
S21 S22 v $2

s=| 7 T 7 6)
Smi Sm2°"" Smn

that has the same dimensions as X, but is otherwise independent of X. Each columm of S contains a random
permutation of the m van der Waerden scores (Conover 1980) & l(i/m + 1), i =1, 2, . . . , m, where ®~! is the
inverse of the standard normal distribution. The matrix S is then rearranged to obtain the correlation structure
defined by C. This rearrangement is based on the Cholesky factorization (Golub and van Loan 1983) of C. That is,

a lower triangular matrix P is constructed such that
Cc=PPT. ()
This construction is possible because C is a symmetric, positive-definite matrix (Golub and van Loan 1983, p. 88).

If the correlation matrix associated with S is the # x n identity matrix (i.e., if the correlations between the values

in different columns of S are zero), then the correlation matrix for




S*=SpT (8)

is C (Anderson 1984, p. 25). At this point, the success of the procedure depends on the following two conditions:
(1) that the correlation matrix associated with S be close to the 7 x n identity matrix; and (2) that the correlation
matrix for S* be approximately equal to the rank correlation matrix for S*. If these two conditions hold, then the
desired matrix X* can be obtained by simply rearranging the values in the individual columns of X in the same rank
order as the values in the individual columns of S*. This is the first time that the variable values contained in X enter
into the correlation process. When X* is constructed in this manner, it will have the same rank correlation matrix as
S*. Thus, the rank correlation matrix for X* will approximate C to the saﬁe extent that the rank correlation matrix

for S* does.

The condition that the correlation matrix associated with S be close to the identity matrix is now considered.
For convenience, the correlation matrix for S will be represented by E. Unfortunately, E will not always be the
identity matrix. However, it is possible to make a correction for this. The starting point for this correction is the

Cholesky factorization for E:
E=QQ’ &)
This factgrization exists because E is a symmetric, positive-definite matrix. The matrix S* defined by
S*=s(QHy/PT (10)

has C as its correlation matrix. In essence, multiplication of S by (Q~!)7 transforms S into a matrix whose
associated correlation matrix is the n x n identity matrix; then, muitiplication by PT produces a matrix whose
associated correlation matrix is C. As it is not possible to be sure that E will be an identity matrix, the matrix S*
used in the procedure to produce correlated input should be defined in the corrected form shown in Eq. (10) rather

than in the uncorrected form shown in Eq. (8).

The condition that the correlation matrix for S* be approximately equal to the rank correlation matrix for S*
depends on the choice of the scores used in the definition of S. On the basis of empirical investigations, Iman and
Conover (1982) found that van der Waerden scores provided an effective means of defining S, and these scores are
incorporated into the rank correlation procedure in the widely used LHS program (Iman and Shortencarier 1984).
Other possibilities for defining these scores exist, but have not been extensively investigated. The user should
examine the rank correlation matrix associated with S* to ensure that it is close to the target correlation matrix C. If
this is not the case, the construction procedure used to obtain $* can be repeated until a suitable approximation to C
is obtained. Results given in Iman and Conover (1982) indicate that the use of van der Waerden scores leads to rank

correlation matrices for S* that are close to the target matrix C.
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Additional information on the Iman/Conover (i.e., restricted pairing) technique to induce a desired rank-
correlation structure is given in the original article. The results of various rank-correlation assumptions are
illustrated in Iman and Davenport (1982). The LHS program generates both random and Latin hypercube samples

with user-specified rank correlations between variables.

The numerical implementation of the sensitivity analysis techniques used in this report involves the investigation
of the effects of elements of X, on single elements of y(x,,). For notational convenience in the description of these

techniques, the mapping in Eq. (15) will be represented by

Xyl k=1,2,...,nLHS, . (16)
where
X = [xkl,xkz ""xk.nV] (17)

and y; corresponds to one element of y(X;). The vector X; corresponds to the vector X, ; in Eq. (15) with the

subscript su dropped to produce a less cumbersome notation.

To make efficient use of all available information, most of the sensitivity analysis results contained in this report
are based on a pooling of the results obtained for the three replicated LHSs (i.e., R1, R2, R3) discussed in Sect. 11.
Thus, the mapping in use is actually of the form

[Xp vl k=1,2, ..., 3 e nLHS, ' (18)

where k=1, 2, ..., 100 corresponds to results from replicate R1, £ = 101, 102, ..., 200 corresponds to results from
replicate R2, and & = 201, 202, ..., 300 corresponds to results from replicate R3. The discussions in this section will
refer to the simpler mapping in Eq. (16) rather than the mapping in Eq. (18), although the numerical examples will
actually be generated with the mapping in Eq. (18).

12.2 Scatterplots

The generation of scatterplots is undoubtedly the simplest sensitivity analysis technique and only involves

plotting the points
Cogo v k=1,2, ..., nLHS, (19)

for each element xjofxforj=1,2, ..., n¥V (see Eq. (17)). This produces n}¥ scatterplots that can then be examined
for relationships between y and the elements of X (i.e., the x). Asan example, the scatterplot in Fig. 3 shows a

nonlinear but monotonic relationship between borehole permeability (BHPRM) and cumulative brine flow down an




intruding borehole, with no brine flow taking place for small values of BHPRM and brine flow increasing rapidly for
larger values of BHPRM (see Sect. 2, Helton et al. 19984, for additional discussion). As another example, the
scatterplot in Fig. 4 shows a complex relationship between BHPRM and repository pressure that is both nonlinear
and noﬂmonotom'c, with repository pressure decreasing as BHPRM increases and then undergoing a sudden jump at
BHPRM = -11.7 (ie., at a permeability of 107117 m? = 2 x 10712 m?) (see Sect. 8.3, Helton et al. 1998d, for
additionél discussion). In contrast to the well-defined patterns in Figs. 3 and 4, the individual points will be

randomly spread over the plot when there is no relationship between y and a particular x;.

Sometimes scatterplots alone will completely reveal the relationships between model input (i.e., elements of X)
and model predictions (i.e., y). This is often the case when only one or two inputs dominate the outcome of the
analysis. Further, scatterplots often reveal nonlinear relationships, thresholds and variable interactions that facilitate
the understanding of model behavior and the planning of more sophisticated sensitivity studies. Iman and Helton
(1988) provide an example where the examination of scatterplots revealed a rather complex pattern of variable
interactions. The examination of scatterplots is always a good starting point in a sensitivity study. The examination
of such plots when Latin hypercube sampliﬁg 1s used can be particularly revealing due to the full stratification over

the range of each input variable.

12.3 Regression Analysis

A more formal investigation of the mapping in Eq. (16) can be based on regressibn analysis. In thissapproach, a

model of the form

n
J=1
is developed from the mapping between analysis inputs and analysis results shown in Eq. (16), where the x; are the
input variables under consideration and the b; are coefficients that must be determined. The coefficients b; and other

aspects of the construction of the regression model in Eq. (20) can be used to indicate the importance of the

individual variables x; with respect to the uncertainty in y.

The' construction of the regression model in Eq. (20) is considered first. To keep the notation from becoming
unwieldy, » will be used to denote the number of independent variables under consideration (i.e., # = nV as used in
Eq. (17)) and m will be used to denote the number of observations under consideration (i.e., m = nLHS or 3  nLHS
as used in Eqgs. (16) or (18)). As shown in Eq. (16), there exists a sequence y;, k = 1, ..., m, of values for the output

variable. When expressed in the form of the model in Eq. (20), each y; becomes




n
yk=bo+z b_] ij +8k 5 k=1,...,m, ' (21)
= |

where the error terms g, £ = 1, ..., m, equal the difference between the observed value y; and the corresponding
predicted value y; defined by Eq. (20). At this point, the b; are still unknown. What is desired is to defermine the
bjm Qome suitable manner. The method of least squares is widely used and will be employed here (Harter 1983,
Eisenhart 1964). As a result of its extensive use, there exist a number of excellent textbooks on least squares
regression analysis (Myers 1986, Weisberg 1985, Seber 1977, Draper and Smith 1981, Daniel et al. 1980, Neter and
Wasserman 1974). The purpose of the following discussion is to present just enough information to be able to
describe some of the applications of regression-based techniques in sensitivity analysis. The indicated textbooks, as

well as many others, provide far more information on regression analysis than can be presented here.
To determine the by, it is convenient to use the following matrix representation for the equalites in Eq. (22):

y=Xb +¢g, : (22)

where

b 11y - X bo €]
y={ : |, X={: : i1, b= : and e=| : |.
Ym Ixpp e Xppp b, Em

-
In the least squares approach, the intent is to determine the b; such that the sum
2
. " n -
SB) = Y |vi-bo=Y bxg| =(y-Xo) (y-Xb) (23)
k=l j=1

is a minimum. Put another way, the b; are determined such that the sum Zk s,zf involving the error terms is a

minimum. The determination of the b; in the least squares approach is just an exercise in calculus and is based on

consideration of the first derivatives of S(b) with respect to the individual b; (Draper and Smith 1981).

This derivation leads to the following matrix equation that defines the coefficient vector b for which the sum

S(b) given in Eq. (23) is 2 minimum:
X7Xb = Xy. (24)

For the analysis to produce a unique value for the coefficient vector b, it is necessary that the matrix X7X be

invertible. Then, b is given by




b = (X7X)~! XTy. (25)

The matrix X7X will always be invertible when the columns of X are linearly independent. This usually is the case in
a sampling-based study in which the number of sample elements (i.e., m) exceeds the number of independent

variables (i.e., n).

The following identity holds for the least squares regression model and plays an important role in assessing the

adequacy of such models:
m m m
D0k =D Gk =P+ G- 26)
k=1 k=1 k=1

where J; denotes the estimate of y; obtained from the regression model and ¥ is the mean of the y; (Draper and
Smith, 1981). Since

-

> G-’ @7

k=1

provides a measure of variability about the regression model, the ratio

B=Y (Ge-5) [ D te-3) " @
k=1

k=1

provides a measure of the extent to which the regression model can match the observed data. Specifically, when the
variation about the regression model is small (i.e., when T,( 7, — y,)? is a small relative to Z;( 5, — 7)), then the
corresponding R value is close 1, which indicates that the regression model is accounting for most of the uncertainty
in the y;. Cénversely, an R? value close to zero indicates that the regression model is not very successful in

accounting for the uncertainty in the y;. Another name for R? is the coefficient of multiple determination.

An important situation occurs when the rows of the matrix X (i.e., the variable values at which the model is
evaluated) are selected so that X’X is a diagonal matrix. In this case, the columns of X are said to be orthogonal, and -

the estimated regression coefficients are given by

b= (X7X)! XTy

dy 0~ 07'[1 1 1 ] [n
=] 0d O] fxpxn X || (29)
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and so each element b; of b is given by

m m m
2 : a
bj = Z xkjyk /dj =Z xijk Z ij B (_70)
k=1 k=1 k=1

The important point to recognize is that the estimate of the regression coefficient b; for the variable x; depends only
on the values for x; in the design matrix X (i.€., Xpj, ey Xpyj)- ThlS is true regardless of the number of variables
included in the regression. As long as the design is orthogonal, the addition or deletion of variables from the model
will not change the regression coefficients. Further, when the design matrix X is orthogonal, the R2 value for the

regression can be expressed as

m m
R2 = (5%-3) /D (a-5) = RE+R3 +-+RY, Gl
k=1 k=1

where Rjg is the R? value that results from regressing y on only x; (Eq. (11I-74) Helton et al. 1991). Thus, R} is
equal to the contribution of x; to R? when the design matrix X is orthogonal.
The regression model in Eq. (20) can be algebraically reformulated as

n

(y-;)/s‘=z (8,57 19)(x,; -%,) /5 " (32

j=1
where

m m /2
y=Y yiim 5= (w-3)fm-1|

k=1 k=1

m m 1/2

F:'J-:Z xg /m, §;= Z (x,g—fj)z/(m—l)

k=1 k=1

The coefficients & j§ I /5 appearing in Eq. (32) are called standardized regression coefficients (SRCs). When the x;
are independent, the absolute value of the SRCs can be used to provide a measure of variable importance.
Specifically, the coefficients provide a measure of importance based on the effect of moving each variable away

from its expected value by a fixed fraction of its standard deviation while retaining all other variables at their




expected values. Calculating SRCs is equivalent to performing the regression analysis with the input and output

variables normalized to mean zero and standard deviation one.

An example regression analysis is now given. The output variable (i.e., y) is pressure (Pa) in the repository at
10,000 yr under undisturbed (i.e., EO) conditions (i.e., the pressure values above 10,000 yr in Fig. 5). To keep the
example at a convenient size, 3 independent variables (ie., xj) will be considered (Table 1): pointer variable for
microbial degradation of cellulose (WMICDFLG), halite porosity (HALPOR), and corrosion rate for steel
(WGRCOR). The following regression model is obtained using the preceding three variables and the pooled LHS in
Eq. (18) (i.e., n=3 and m = 300):

y=5.72 x 10% +2.46 x 105 ¢ WMICDFLG + 1.55 x 108 « HALPOR + 1.52 x 1020 « WGRCOR. (33)

The coefficients in the preceding model show the effect of a one unit change in an input variable (i.e., an xj) on the
output variable (ie., ). The sign of a regression coefficient indicates whether y tends to increase (a positive
regression coefficient) or tends to decrease (a negative regression coefficient) as the corresponding input variable

increases. Thus, y tends to increase as each of WMICDFLG, HALPOR and WGRCOR increases.

It is hard to assess variable importance from the regression coefficients in Eq. (33) because of the effects of units
and distribution assumptions. In particular, the regression coefficient for WGRCOR is much larger than the
regression coefficients for WMICDFLG and HALPOR, which does not necessarily imply that WGRCOR has greater
influence on the uncertainty in y than WMICDFLG or HALPOR. Variable importance is more clearly shown by the
following reformation of Eq. (33) with SRCs:

y=0.722 WMICDFLG + 0.468 HALPOR + 0.246 WGRCOR. 34)

The SRCs in Eq. (34) provide a better characterization of variable importance than the unstandardized coefficients in
Eq. (33). Fof perturbations equal to a fixed fraction of their standard deviation, the impact of WMICDFLG is
approximately 50% larger than the impact of HALPOR (i.e., (0.722 - 0.468)/0.468 = 0.54) and almost 200% larger
than the impact of WGRCOR (i.e., (0.722 — 0.246)/0.246 = 1.96). Both regression models have an R? value of 0.79

and thus can account for approximately 79% of the uncertainty in y.

12.4 Correlation and Partial Correlation

The ideas of correlation and partial correlation are useful concepts that often appear in sampling-based
uncertainty/sensitivity studies. For a sequence of observations (x; y;), i = 1, ..., m, the (sample) correlation ry,
between x and y is defined by
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where X and y are defined in conjunction with Eq. (32). The correlation coefficient r, provides a measure of the

linear relationship between x and y.
The nature of the correlation coefficient 7, is most readily understood by considering the regression
y= bo + blx. . (36)

The definition of r.. in Eq. (35) is equivalent to the definition

re = sign(b| }(R)172, » (37)

where sign(b;) = 1 if &) 2 0, sign(b;) = -1 if b, < 0, and R? is the coefficient of determination that results from
regressing y on x. With respeét to interpretation, the correlation coefficient r;, provides a measure of the linear
relationship between x and y, and the regression coefficient by characterizes the effect that a unit change in x will

haveony.

‘When more than one input variable is under consider;cltion, partial correlation coefficients (PCCs) can be used to
provide a measure of the linear relationships between the output variable y and the individual input variables. The
PCC between y and an individual variable x, is obtained from the use of a sequence of regression models. First, the

following two regi'ession models are constructed:

n n
}‘;=b0+z bjxj and§p=c0+z Cij. (38)

_]:=1 J:=]

JEP J*p

Then, the results of the two preceding regressions are used to define the new variables y — y and x, — x p- BY
definition, the PCC between y and x,, is the correlation coefficient between y — 7 and x, — x,. Thus, the PCC
provides a measure of the linear relationship between y and x, with the linear effects of the other variables removed.
The preceding provides a rather intuitive development of what a PCC is. A formal development of PCCs and the

relationships betwee_n PCCs and SRCs is provided by Iman et al. (1985).

The PCC characterizes the strength of the linear relationship between two variables after a correction has been

made for the linear effects of the other variables in the analysis, and the SRC characterizes the effect on the output




variable that results from perturbing an input variable by a fixed fraction of its standard deviation. Thus, PCCs and
SRCs provide related, but not identical, measures of variable importance. In particular, the PCC provides a measure
of variable importance that tends to exclude the effects of other variables, the assumed distribution for the particular
input variable under consideration, and the magnitude of the impact of an input variable on an output variable. In
contrast, the value for an SRC is significantly influenced by both the distribution assigned to an input variable and
the impact that this variable has on an output variable. However, when the input variables in an analysis are
uncorrelated, an ordering of variable importance based on either the absolute value of SRCs or the absolute value of
PCCs will yield the same ranking of variable importance, even though the SRCs and PCCs for individual variables
may be quite different (Iman et al. 1985).

Many output variables are functions of time or location. A useful way to present sensitivity results for such
variables is with plots of PCCs or SRCs. An example of such a presentation for the pressure curves in Fig. 5 is given
in Fig. 6, which displays two sets of curves. The one set (Fig. 6a) contains SRCs plotted as a ﬁmctidn of time; the
other set (Fig. 6b) contains PCCs plotted in a similar manner. For both sets of curves, the dependent variables are
" pressures at fixed times, and each curve displays the values of SRCs or PCCs relating these pressures to a single

mput variable as a function of time.

12.5 Stepwise Regression Analysis

When many input variables are involved, the direct construction of a regression model containing all input
variables as shown in Eq. (20) may not be the best approach for several reasons. First, the large number“of variables
makes the regressi‘on model tedious to examine and unwieldy to display. Second, it is often the case that only a
relatively small number of input variables have an impact on the output variable. As a result, there is no reason to
include the remaining variables in the regression model. Third, correlated variables result in unstable regression
coefficients (i.e., coeﬁiciems whose values are sensitive to the specific variables included in the regression model).
When this occurs, the regression coefficients in a model containing all the input variables can give a misleading
representation of variable importance. As a side point, if several input variables are highly correlated, consideration
should be given to either removing all but one of the correlated variables or transforming the variables to correct for
(i.e., remove) the correlations between them. Fourth, an overfitting of the data can result when variables are
arbitrarily forced into the regression model. This phenomenon occurs when the regression model attempts to match
the predictions associated with individual sample elements rather than match the trends shown by the sample

elements collectively.

Stepwise regression analysis provides an alternative to constructing a regression model containing all the input
variables. With this approach, a sequence of regression models is constructed. The first regression model contains
the single input variable that has the largest impact on the uncertainty in the output variable (i.e., the input vaniable

that has the largest correlation with the output variable y). The second regression model contains the two input




variables that have the largest impact on the output variable: the input variable from the first step plus whichever of
the remaining variables has the largest impact on the uncertainty not accounted for by the first variable (i.e., the
input variable that has the largest correlation with the unéertainty in y that cannot be accounted for by the first
vériable). The third regression model contains the three input variables that have the largest impact on the output
variable: the two input variables from the second step plus whichever of the remaining variables has the largest
impact on the uncertainty not accounted for by the first two variables (i.e., the input variable that has the largest
correlation with the uncertainty in y that cannot be accounted for by the first two variables). Additional models in
the sequence are defined in the same manner until a point is reached at which further models are unable to
meaningfully increase the amount of the uncertainty in the output variable that can be accounted for. Further, at each
step of the process, the possibility exists for an already selected variable to be dropped out if it no longer has a
significant impaét on the amount of uncertainty in the output variable that can be accounted for by/the regression

model; this only occurs when correlations exist between the input variables.

Several aspects of stepwise regression analysis provide insights on the importance of the individual variables.
First, the order in which the variables are selected in the stepwise procedure provides an indication of their
importance, with the most important variable being selected first, the next most important variable being selected
second, and so on. Second, the R? values (see Eq. (28)) at successive steps of the analysis also provide a measure of
variable importance by indicating how much of the uncertainty in the dependent variable can be accounted for by all
variables selected through.each step. When the input variables are uncorrelated, the differences in the R2 values for
the regression models constructed at successive steps equals the fraction of the total uncertainty i~the output
variable that can be accounted for by the individual input variables being added at each step (see Eq. (31)). Third,
the absolute values of the SRCs (see Eq. (32)) in the individuai regressionA models provide an indication of variable
importance. Further, the sign of an SRC indicates whether the input and output variable tend to increase and

decrease together (a positive coefficient) or tend to move in opposite directions (a negative coefficient).

An important situation occurs when the input variables are uncorrelated. In this case, the orderings of variable
importance based on order of entry into the regression model, size of the‘ R? values attributable to the individual
variables, the absolute values of the SRCs, and the absolute values of the PCCs are the same. In situations where the
input variables are believed to be uncorrelated, one of the important applications of the previously discussed
restricted pairing technique of Iman and Conover (Sect. 8) is to ensure that the correlations between variables within
a Latin hypercube or random sample are indeed close to zero. When variables are correlated, care must be used in
the interpretation of the results of a regression analysis since the regression coefficients can change in ways that are
basically unrelated to the importance of the individual variables as correlated variables are added to and deleted from
the regression model (see Sect. 7.2, Helton et al. 1998e, for an exampie of the effects of correlated variables on the

outcomes of a regression analysis).




When the stepwise technique is used to construct a regression model, it is necessary to have some criteria to stop
the construction process. When there are many independent variables, there is usually no reason to let the
construction process continue until all the vanables have been used. It is also necessary to have some criteria to
determine when a variable is no longer needed and thus can be dropped from the regression model. As indicated

earlier, this latter situation only occurs when the input variables are correlated.

The usual criterion for making the preceding decisions is based on whether or not the regression coefficient
associated with an input variable appears to be significantly different from zero. Specifically, the t-test is used to
determine the probability that a regression coefficient as large as or larger than the one constructed in the analysis
would be obtained if| in reality, there was no relationship between the input and output variable, and, as a result, the
apparent relationship that led to the constructed regression coefficient was due entirely to chance (Sect. 7.5, Neter
and Wasserman 1974). The probability of exceeding a regression coefficient due to chance variation is often
referred to as an a-value. The actual derivation of the o-value depends on assumptions involving normaiity and
random variation that are not satisfied in sampling-based sensitivity studies for computer models since there is no
variation in the predictions for a fixed set of input. However, the s-test and the associated o-value still constitute a
useful criterion for adding or deleting variables from a regression model in a sensitivity study since they provide a
measure of how viable the relationship between the input and output variable would appear to be in a study in which
this relationship could possibly have arisen from random variation. Sensitivity studies often use an a-value of 0.01

or 0.02 to add a variable to a regression model and a somewhat larger value to drop a variable from the model.

As models involving more variables are developed in a stepwise regression analysis, the possibility exists of
overfitting the data. Overfitting occurs when the regression model in essence "chases" the individual observations
rather than following an overall pattern in the data. For example, it is possible to obtain a good fitto a set of points
by using a polynomial of high degree. However, in doing so, it is possible to overfit the data and produce a spurious

model that makes poor predictions.

To protect against overfit, the Predicted Error Sum of Squares (PRESS) criterion can be used to determine the
adequacy of a regression model (Allen 1971). For a regression model containing g variables and constructed from m
observations, PRESS is computed in the following manner. For &k = 1,2,....m, the kth observation is deleted from the
original set of m observations and then a regression model containing the original g variables is constructed from the
remaining m — 1 observations. With this new regression model, the value _frq(k) is estimated for the deleted

observation y;. Then, PRESS i1s defined from the preceding predictions and the m original observations by

PRESS; =" (i ~5,h))". (39)
k=1




The regression model having the smallest PRESS value is preferred when choosing between two competing models,
as this is an indication of how well the basic pattern of the data has been fitted versus an overfit or an underfit. In
particular, PRESS values will decrease in size as additional variables are added to the regression model without an
overfitting of the data (i.e., PRESSq l> PRESSq.H), with an increase in the PRESS values (i.e., PRESSq < PRESSqﬂ)
indicating an overfitting of the data. In addition to PRESS, there are also a number of other diagnostic tools that can

be used to investigate the adequacy of regression models (Cook and Weisberg 1982, Belsley et al. 1980).

It is important to use scatterplots, PRESS values and other procedures to examine the reasonmableness of
regression models. This is especially true when regression models are used for sensitivity analysis. Such analyses
often involve many input variables and large uncertainties in these variables. The appearance of spurious patterns is

a possibility that must be checked for.

An example stepwise regression analysis is now presented for repository pressure at 10,000 yr under
undisturbed conditions (Fig. 5). The following 31 variables from Table 1 and contained in the three replicated LHSs
indicated in Eq. (14) are used as input to calculations performed with BRAGFLO in the 1996 WIPP PA:
ANHBCEXP, ANHBCVGP, ANRBRSAT, ANHCOMP, ANHPRM, ANRGSSAT, BHPRM, BPCOMP, BPINTPRS,
BPPRM, BPVOL, HALCOMP, HALPOR, HALPRM, SALPRES, SHBCEXP, SHPRMASP, SHPRMCLY,
SHPRMCON, SHPRMDRZ, SHPRMHAL, SHRBRSAT, SHRGSSAT, WASTWICK, WFBETCEL, WGRCOR,
WGRMICH, WGRMICI, WMICDFLG, WRBRNSAT and WRGSSAT. Variables within the pairs (ANHCOMP,
ANHPRM) and (HALCOMP, HALPOR) have rauk correlations of —0.99 (Table 1, Fig. 2), which creates*mstabilities
in regression results (Sect. 7.2, Helton et al. 1998¢). Therefore, to avoid the distracting effects that result from the
presence of highly correlated variables, ANHCOMP and HALCOMP will not be included as independent variables in
the following example. Thus, the data available for analysis are of the form

[xkl, Xk2s "'>xk,29,yk]’ k= 1, 2,...,m=300, . (40)

where y; is the value for pressure obtained with the Ath sample element (i.e., y = WAS_PRES at 10,000 yr in Fig. 5),
the Xy J=1,2, ..., 29, correspond to the variables indicated above with ANHCOMP and HALCOMP omitted, and a
valué of m = 300 results from pooling the three replicated LHSs (i.e., R1, R2, R3). '

The variables BHPRM, BPCOMP,‘ BPINTPRS, BPPRM and BPVOL do not effect repository pressure under
undisnul;ed conditions and thus could be omitted from consideration. However, they are left in this example to
increase the number of variables that must be considered in the stepwise process. Also, leaving such variables in an
analysis can be beneficial from an analysis verification perspective. In particular, an error in the implementation of
the analysis is indicated if such unimportant variables show up as having identifiable effects. Similarly, errors are

indicated when variables are identified as having effects that are inconsistent with their known usage within the

analysis.




The first step selects the input variable x; that has the largest impact on the output variable y. Specifically, this is
defined to be the variable that has the largest correlation, in absolute value, with y (see Eqgs. (35) and (37)). Thus, it
is necessary to calculate the correlations between v and each of the 29 input variables under consideration. For
illustration, Table 3 shows the 7 x 7 correlation matrix for y and the six input variables ultimately selected in the
stepwise regression, although the full correlation matrix would actually be (29 + 1) x (29 + 1). Each element in the
correlation matrix is the correlation between the variables in the corresponding row and column. As examination of
the cormrelation matrix in Table 3 shows, the variable WMICDFLG has the highest correlation with waste pressure,
which is denoted by WAS _PRES. Thus, the first step in the analysis selects the variable WMICDFLG. A regression
model relating y to WMICDFLG is then developed as shown in Eq. (25) with » = 1 and m = 300. The resuitant

regression model is
¥ =8.94 x 106+ 2.43 x 105 ¢ WMICDFLG, 41

which has an R? value of 0.508, an a-value of 0.0000, an SRC of 0.712 and a PRESS value of 1.20 x 10!5. This

model is summarized in Table 4.

The second step selects the input variable x; that has the largest impact on the uncertainty in the output variable y
that cannot be accounted by WMICDFLG, the variable selected in the first step. This selection is made by defining a

new variable
¥ =y—-y =y—(8.94 x 106 + 2.43 x 10% ¢« WMICDFLG), (42)

where ¥ is defined in Eq. (41), and then calculating the correlations between J and the remaining variables. The
variable with the largest correlation, in absolute value, with § is selected as the second variable for inclusion in the
model. In this example, the selected variable is HALPOR. The regression model at this step will thus involve the
two variables WMICDFLG and HALPOR and is constructed as shown in Eq. (6.10.11) with n =2 and m = 300. The

resultant regression model is
17 =6.89 x 10 +2.49 x 105 ¢« WMICDFLG + 1.57 x 108 « HALPOR. (43)
This mo_del 1s summarized in Table 4.

The third step selects the input variable x; that has the largest impact on the uncertainty in the output variable y
that cannot be accounted for by WMICDFLG and HALPOR, the two variables from the second step. This selection

is made by defining a new variable

¥ =y- 7 =y—(6.89 x 10°+2.49 x 105 WMICDFLG + 1.57 x 108 ¢ H4LPOR), (44)
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where y is defined in Eq. (43). The variable with the largest correlation, in absolute value, with y is selected as the
third variable for inclusion in the model. In this example, the selected variable is WGRCOR. The regression model
for this step will thus involve the three variables WMICDFLG, HALPOR and WGRCOR. The resultant regression

model is summarized in Table 4.

As shown in Table 4, the stepwise procedure then continues in the same manner through a total of six steps, until

10 more variables can be found with an a-value less than 0.02. At this point, the stepwise procedure stops.

At each step, the stepwise procedure also checks to see if any variable selected at a prior step now has an o-
value that exceeds a specified level, which is 0.05 in this analysis. If such a situation occurs, the variable will be
dropped from the analysis, with the possibility that it may be reselected at a later step as other variables are added

- and deleted from the model. This type of behavior only occurs when there are correlations between the input

variables. As shown in the example correlation matrix in Table 3, the restricted pairing technique has been
successful in keeping the correlations between the input variables close to zero. Thus, no variables meet the criterion

to be dropped from the regression model once they have been selected at a prior step.

Another result of this lack of correlation is that the regression coefficients do not change significantly as
additional variables are added to the regression model. As examination of Table 4 shows, the regression coefficients
for a specific variable are essentially the same in all regression models containing that variable. Further, as indicated
in Eq. (31), the R? values obtained for successive models can be subtracted to obtain the contribution to the
uncertainty in y due to the newly added variable. Thus, for example, WMICDFLG accounts for approxi;nately 51%
of the uncertainty in y (i.e., R? = 0.508), while WMICDFLG and HALPOR together account for approximately 73%
of the uncertainty (i.e., RZ = 0.732). As a result, HALPOR by itself accounts for approximately 73% - 51% = 22%

of the uncertainty in y. Similar results hold for the other variables selected in the analysis.

Table 4 also reports the PRESS values for the regression models obtained at the individual steps in the analysis.
A decreasing sequence of PRESS values indicates that the regression models are not overfitting the data on which
they are based. An increase in the PRESS values suggests that a model is overfitting the data, and thus that the
stepwise procedure should probably be stopped at the preceding step. As shown by the decreasing PRESS values in
Table 4, the regression models in this analysis are probably not overfitting the data from which they were

constructed.

Typically, a certain amount of discretion is involved in selecting the exact point at which to stop a stepwise
regression analysis. Certainly, a-values and the behavior of PRESS values provide two criteria to consider in
selecting a stopping point. Other criteria include the changes in the R? values that take place as additional variables
are added to the regression models and whether or not spurious variables are starting to enter the regression models.

When only very small changes in &2 values are taking place (e.g., < 0.01), there is often little reason to continue the




stepwise process. When o-values approach or exceed 0.01 and a large number of input variables are being
considered, it is fairly common to start getting spurious variables in the regression. Such variables appear to have a
small effect on the output variable which, in fact, is due to chance variation. In such situations, 2 natural stopping
point may be just before spurious variables start being selected. Another possibility is to delete spurious variables

from the regression model.

When the input variables are uncorrelated, a display of the results of a stepwise regression analysis as shown in
Table 4 contains a large amount of redundant information. A more compact display can be obtained by listing the
variables in the order that they entered in the regression model, the R? values obtained with the entry of successive
variables into the regression model, and the SRCs for the variables contained in the final model. Table 5 shows what

this surnmary looks like for the stepwise regression analysis pfesented in Table 4.

12.6 The Rank Transformation

Regression and correlation analyses often perform poorly when the relationships between the input and output
variables are nonlinear. This is not surprising since such analyses are based on developing linear relationships
between variables. The problems associated with poor linear fits to nonlinear data can often be avoided by use of the
rank transformation (Iman and Conover 1979). The rank transformation is a simple concept: data are replaced with
their corresponding ranks and then the usual regression and correlation procedures are performed on these ranks.
Specifically, the smallest value of each variable is assigned the rank 1, the next largest value is assigned the rank 2,
and so on up to the largest value, which is assigned the rank m, where m denotes the number of observ;tions. The

analysis is then performed with these ranks being used as the values for the input and output variables.

Example regression analyses with raw (i.e., un&ansformcd) and rank-transformed data follow. The output
variable (i.e., y) is cumulative briné flow over 10,000 yr under undisturbed (i.e., E0) conditions from the anhydrite
marker beds (MBs) to the disturbed rock zoné (DRZ, see Fig. 77, Vaughn et al. 1998) that surrounds the repository
(i.e., the cumulative flow values above 10,000 yr in Fig. 7). The results of the stepwise regression analyses with raw
and rank-transformed data can be summarized in the compact form illustrated in Table 5 and show that the analysis
with rank-transformed data is outperforming the analysis with raw data (Table 6). In particular, the analysis with
rank-transformed data can account for approximately 87% of the uncertainty in y (i.e., RZ = 0.869), while the
analysis with raw data can account for only 50% of the uncertainty in y (i.e., R? = 0.496). Further, the regression
with ran-k-u‘ansfonned data indicates a stronger effect for WMICDFLG (i.e., R2 = 0.425) than is indicated by the
regression with raw data (i.e., RZ = 0.423 — 0.320 = 0.103).

The analysis with rank-transformed data is more effective than the analysis with raw data because the rank
transformation tends to linearize the relationships between the independent variables (i.e.. the x;’s) and the dependent

variable (i.e., y). In particular, both WM/CDFLG and ANHPRM show a better defined linear relationship with y after
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the rank transformation (Fig. 8). The rank transformation improves the analysis when nonlinear but monotonic
relationships exist between the independent variables and the dependent variable. When more complex relationships
exist, the rank transformation may do little to improve the quality of an analysis. In such cases, more sophisticated
procedures may be required. For example, the chi square test can be used to test for deviations from randommess in
scatterplots (Kleijnen and Helton 1998, Wagner 1995); other techniques also exist (Hamby 1994, Saltelli and
Marivoet 1990).

As is the case for stepwise regression analyses, analyses wth SRCs and PCCs of the type presented in Fig. 6 can
often be improved with the use of rank-transformed data. When the rank transform is used, the resultant plots will
contain standardized rank regression coefficients (SRRCs) and partial rank correlation coefficients (PRCCs). As an
example, the results of analyzing the cumulative brine inflows in Fig. 7 with both raw and rank-transformed data are
presented in Fig. 9, with each plot frame showing the five variables with the largest, in absolute value, SRCs, PCCs,
SRRCs and PRCCs as appropriate. As in the comparisons of stepwise regression analyses with raw and rank-
transformed data (Table 6), the analyses with rank-transformed data in Fig. 9 produc}e outcomes that indicate

stronger effects for individual variables than is the case for the analyses with raw data.




Table 2. Example Rank Correlations in Replicate 1

WGRCOR
WMICDFLG
HALCOMP
HALPRM
ANHCOMP
ANHPRM
BPCOMP
BPPRM

1.0000
0.0198
0.0011
—0.0068
0.0080
0.0049
0.0242
~0.0514
WGRCOR

1.0000
0.0235
~0.0212
0.0336
~0.0183
0.1071
~0.0342
WMICDFLG

1.0000
-0.9879
-0.0123

0.0037
-0.0121

0.0035
HALCOMP

1.0000
—0.0025
0.0113
0.0057
0.0097
HALPRM

1.0000
-0.9827 1.0000
-0.0184 0.0078 1.0000

0.0283 -0.0202  -0.7401 1.0000
ANHCOMP ANHPRM BPCOMP BPPRM

Table 3. Correlation Matrix for Variables Selected in Stepwise Regression Analysis for Pressure in the
Repository at 10,000 yr Under Undisturbed Conditions (i.e., y = WAS_PRES at 10,000 yr in

Fig. 5)
WMICDFLG 1.0000
HALPOR ~0.0348 1.0000 "
WGRCOR 0.0272 0.0216 1.0000
ANHPRM 0.0008 ~0.0039 0.0130 1.0000
SHRGSSAT ~0.0026 0.0395 ~0.0171 ~0.0042 1.0000
SALPRES 0.0560 ~0.0072 0.0010  —0.0117 0.0061 1.0000
WAS_PRES 0.7124 0.4483 0.2762 0.1303 0.0820 0.0993 1.0000
WMICDFLG HALPOR ~ WGRCOR  ANHPRM  SHRGSSAT = SALPRES  WAS_PRES




Tabie 4. Results of Stepwise Regression Analysis for Pressure in the Repbsitory at 10,000 yr Under
Undisturbed Conditions (i.e., y = WAS_PRES at 10,000 yr in Fig. 5)

Step? Variables? SRC® a-Valuesd R? Values® PRESS!

1 WMICDFLG 0.712 0.0000 ©0.508 1.20 x 1015

2 WMICDFLG 0.729 0.0000 . 0.732 6.59 x 1014
HALPOR 0.474 0.0000

3 WMICDFLG 0.722 0.0000 0.792 5.14 x 1014
HALPOR 0.468 0.0000
WGRCOR 0.246 0.0000

4 WMICDFLG 0.722 0.0000 0.809 4.79 x 1014
HALPOR .0.469 0.0000
WGRCOR 0.245 0.0000
ANHPRM 0.128 0.0000

5 WMICDFLG 0.722 0.0000 0.814 4.70 x 1014
HALPOR 0.466 0.0000
WGRCOR 0.246 0.0000
ANHPRM 0.129 0.0000
SHRGSSAT 0.070 0.0056

6 WMICDFLG 0.718 0.0000 0.818 4.63 x 1014
HALPOR 0.466 0.0000
WGRCOR 0.246 0.0000
ANHPRM 0.129 0.0000
SHRGSSAT 0.070 0.0055 : .
SALPRES 0.063 0.0012

Steps in the analysis

Variables selected at each step with ANHCOMP and HALCOMP excluded from entry into the regression model
Standardized regression coefficients (SRCs) for variables in the regression model at each step

a-values for variables in the regression model at each step )

RZ value for the regression model at each step

- N o 6 oo

Predicted ervor sum of squares (PRESS) value for the regression model at each step




Table 5. Compact Summary of Stepwise Regression Analyses for Pressure in the Repository at 10,000
yr Under Undisturbed Conditions (i.e., y = WAS_PRES at 10,000 yr in Fig. 5).

Step? Variable? SRC* R2d
1 WMICDFLG 0.718 0.508
2 HALPOR 0.466 0.732
3 WGRCOR 0.246 0.792
4 ANHPRM 0.129 0.809
5 SHRGSSAT : 0.070 0.814
6 SALPRES 0.063 0.818

2 Steps in stepwise analysis.
Variables listed in the order of selection in regression analysis with ANHCOMP and
HALCOMP excluded from entry into regression model.
¢ Standardized regression coefficients (SRCs) for variables in final regression model.
dCumulative 2 value with entry of each variabie into regression model.

Table 6. Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for
Cumutative Brine Flow over 10,000 yr under Undisturbed Conditions from the Anhydrite Marker
Beds to the Disturbed Rock Zone that Surrounds the Repository (i.e., y = BRAALIC at 10,000 yr

in Fig. 7).
Raw Data Rank-Transformed Data
Step? Variable® SRCt® R2 Variableb SRRC® R2
1 ANHPRM 0.562 0.320 WMICDFLG ~0.656 0.425
2 WMICDFLG -0.309 0.423 ANHPRM 0.593 0.766
3 WGRCOR -0.164 0.449 HALPOR ~0.155 0.802
4 WASTWICK -0.145 0.471 WGRCOR ~0.152 0.824
5 ANHBCEXP -0.120 0.486 HALPRM 0.143 0.845
6 HALPOR -0.101 0.496 SALPRES 0.120 0.860
7 WASTWICK ~0.010 0.869

Steps in stepwise regression analysis.

Variables listed in order of selection in regression analysis with ANHCOMP and HALCOMP excluded from entry into regression model.
Standardized regression coefficient (SRCs) in final regression model.

Cumulative R* value with entry of each variable into regression model.

Standardized rank regression coefficients (SRRCs) in final regression model.
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