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Abstract

The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between

stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the

possible dismptions that could occur at the WIPP over the 10,000 yr regulato~ period specified by the U.S.

Environmental Protection Agency (40 CFR 191,40 CFR 194) and subjective uncertainty arising tlorn an inability to

uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective

uncertainty is disc- including assignment of distributions, uncertain variables selected for inclusion; analysis,

correlation contro~ sample size, statistical confidence on mean complementary cumulative distribution functions,

generation of Latin hypercube samples, sensitivity analysis techniques, and scenarios involving stochastic and

subjective uncertainty.
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1. Introduction

At aconceptual level, the 1996 perfomnance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) is

underlain by three entities (ENl, EN2, EN3): EN 1, a probabilistic characterization of the likelihood of different

i%tures occurring at the WIPP site over the next 10,000 yr (Sect. 3, Ref. 1); EN2, a procedure for estimating the
.

radionuclide releases to the accessible environment associated with each of the possible fidures that could occur at

the WIPP site over the next 10,000 yr (Sect. 4, Ref. 1); and EN3, a probabilistic characterization of the uncertainty in

the parameters used in the dethition of EN1 and EN2 (Sect. 5, Ref. 1). T’he third entity, EN3, and its role in the

1996 WIPP PA is the primary focus of this article.

When viewed formally, EN3 is defined by a probability space (S~u, ~ ~, p=u) for subjective uncertainty

(Sect- 5, Ref. 1). Further, the elements Xw of the sample space S*Uare vectors of the form

%= [q> X2? .-.>% V], (1)

where each Xj is an imprecisely known input to the analysis and n V is the number of such inputs.

The uncertainty in the xj, and hence in X~U,is characterized by developing a distribution

Dj,j = 1,2, -.., nV, (2)

u

for each x} Each distribution is based on all available knowledge about the corresponding variable and descnies a

degree of belief as to where the appropriate value to use for this variable is located. This degree of belief is

conditioml on the numerical, spatial and temporal resolution of the models selected for use in the 1996 WIPP PA

(Sect. 4, Ref. 1; Refs. 2- 6). When appropriate, correlations between imprecisely-known variables are also possible,

with such correlations indicating a dependency in the knowledge about the correlated variables. It is the distributions

in Eq. (2) and any associated correlations between the Xj that define (SSU, ~ SloPsu).

The characterization of the (subjective) uncertainty in variables used as input to the 1996 WIPP PA derives flom

experimental programs carried out in support of the development of the WIPP and also from other sources of

information. The experimental programs that helped characterize input to the 1996 WIPP PA are reviewed in Ref. 7,

and the procedures used to develop characterizations of subjective uncertainty are discussed in Sect. 2. The% the

uncertain variables incorporated into the 1996 WIPP PA and the distributions and correlations assigned to these

variables are described in Sects. 3 -5. Further, the archival storage and retrieval of data is discussed in Refs. 8

and 9.

Latin hypercube sampling] 0 is used to propagate the effects of subjective uncertainty in the 1996 WIPP PA

(Sect. 5, Ref. 1; Sect. 9. Ref. 11). Technical aspects of the generation of Latin hypercube samples (LHSS) in the

1



. ,

1996 WIPP PA are d~cussed in Sects. 6 - 8, including sample size (Sect. 6), statistical confidence on mean

complementary cumulative distribution fictions (CCDFS) (Sect. 7), and generation of replicated LHSS (Sect. 8).

An important aspect of the use of Latin hypercube sampling to propagate the effects of subjective uncertainty in

the 1996 WIPP PA is that this propagation generates a mapping from uncertain analysis inputs to corresponding

analysis results. This mapping can then be explored with sensitivity analysis techniques based on examination of

scatterplots, regression analysis and correlation analysis to determine the dominant variables influencing the

uncertain~ in the model predictions underlying the analysis (Sect. 9). AI] major analysis results generated in the

1996 WIPP PA are examined with the indicated sensitivity analysis procedures.3d~ 12-14

Scenaxios are an important conceptual part of the representation of stochastic uncertainty and correspond to.,$.

subsets of the associated sample space S~, (Sect. 14, Ref. 11). An important extension of the scenario concept is to

scenarios thatare subsets of the sample space S ~ associated with subjective uncertainty ancl more generally, to

scenarios that derive from the sample spaces f6r both stochastic and subjective uncertainty (Sect. 10). A concluding

discussion on the treatment of subjective uncertainty in the 1996 WIPP is given in Sect. 11.

2.

This article is based on material contained in Chapt. 5 of Ref. 15.

Assignment of Distributions

The word _ter” here means a number that must be supplied to a computer model of a system ~ order that

the model’s associated computer program will mm Elsewhere in this presentatio~ parameters are ofien called “input

variables” or simply ‘%riables.” We will nevertheless use “parameter” throughout this section to be consistent with

earlier documents relating to subjective uncertainty in the 1996 WIPP PA (e.g., App. P& Ref 16.)

The computatioml models used in the 1996 WIPP PA required more than 1500 parameters, which can be

divided into two categories: (i) program conf@ration parameters, the numbers used to control rate-of-convergence

and accuracy of numerical solutions of the model equations (e.g., time-step limits, convergence criteria, array

dimensions, . ..). and (ii) model configuration parameters, which are numbers that speci@ geometrical or physical

properties of features, events and processes being modeled (e.g., areas of mined openings, rock permeabilities, rates

of mining and drilling in vicinity of site, . ..). Program configuration parameters, the “knobs” of a computer

pro- ideally are assi-med values by persons who perform a computation with the intent of reducing run times,

numerical errors, or memory requirements. Model configuration parameters, on the other han~ ideal] y are assigned

values based on empirical evidence associated with the system being modeled; such evidence may exist in the form

of desi~ drawings, results of site specific field and laboratory experiments (or experiments with system analogies),

scientific literature. or the specialized knowledge of experts. Because of absent, insufficient or equivocal empirical

inforrnatio% many model cotilguration parameters are imprecisely know that is, there is uncertainty concerning the
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values they should take in the context of the problem under consideration. This kind of uncertainty can be

quantitatively expressed by constructing probability distributions for the values to be taken on by the imprecisely

known parameters. Such distributions characterize subjective uncertainty.

The 1470 model configuration paramete~ in the 1996 WIPP PA calculations were divided into four categories

on the basis of the kinds of information that were used to assign parameter values. Category 1 parameters (409 of

them) were assigned values (or distribution of values) using data from site-specific field or laborato~ experiments.

Category 2 parameters (89 of them) represented the inventory and properties of WIPP wastes as defined in the

Baseline Inventory Report (BIR revisions 2 and 3; Ref. 17)- Category 3 parametem (256 of them) were precisely

known quantities, ~lly constants, taken from technical handbooks and the open scientific literature (e.g., the

acceleration of gravity, the half-life of U-235, . ..). Category 4 parameters (7 ~6 of them) were those quantities whose

values (or distributions of Aues) codd only be assigned using the professional judgments of WIPP Project

investigators. Ultimately, these parameters led ton V= 57 uncertain variables in the 1996 WIPP PA (Sect. 3).

The procedure used to assign values or distributions to the parameters in the 1996 WIPP PA is conceptuahzed in

Fig. 1. The imprecisely known parameters are assigned values along one of the Paths 1 – 3 indicated on the diagram

Path 1 was the route taken in assigning values to those Category 1 parameters for u’hich there were three or more

relevant measurements; the rationale for using Student-t distributions for the mean value of these empirically based

parameters is given in Ref. 18. Parameters for which there were fewer than three measurements were treated as

Category 4 parameters and processed according to the logic of Paths 2 and 3. Path 3 was the route taken m assigning

values to the majority of Category 4 parameters (few investigators seemed cotildent of their own ability to assign an

analytical form and measures of location to a parameter’s distribution). The ratiomle for constructing a piecewise-

linear empirical cumulative distribution fimctio~ as indicated at the end of Path 3, is also given in Ref. 18.

3. Uncertain Variables

The 1996 WIPP PA selected nV= 57 imprecisely-known variables (i.e., parameters as used in Sect. 2) for

inclusion in the analysis (Table 1). The individual variables in Table 1 (i.e., ANHBCEXP, AAWBCVGP, ....

WTAUFi41L) correspond to the elements xj of the vector X.u in Eq. (l). Several criteria were used in the selection

process, including observed importance in past analyses, perceived importance with respect to the 1996 WIPP PA,

and general level of interest in the variable. All uncertain variables incorporated into the 1996 WIPP PA are inputs

to the models used to estimate radionuclide releases to the accessible environment (Sect. 4, Ref. 1; Refs. 2- 6).

Specifically, none of the uncertain variables affect the definition of the probability space (Ssl, ~ sly PJ fo’

stochastic uncertainty (Sect. 3, Ref. 1; Ref. 11), although there is no conceptual reason that excludes (S~U, ~ ~u,

Psu) horn containing such variables.
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4. Variable Distributions

A distribution that characterizes subjective uncertainty is indicated for each of the variables in Table 1. These

distributions characterize a degree of belief as to where the appropriate value to use for each variable is located and

correspond to the distributions Dj in Eq. (2). Examples of fo~ of these diswiutions are provided in Fig- 2; ~er,

all 57 distributions are available elsewhere (App. A, Ref. 15; App. Pm Ref. 16). The truncations associated with

ANHCOMP result from the restriction that the defined distribution cannot contain values that fall outside the

observed range for the variable.

5. Correlations

,-:.
‘Most of the variables in Table I are assumed to be uncorrelated. However, the pairs (ANHCOMP, ANHPRM),
:,.

(HALCOMP, HALPIW) and (BPCOMP, BPPRM) are assumed to have rank correlations of -0.99,-0.99 and -0.75,
,.

respectively (Fig. 3). These correlations result from a belief that the underlying physics implies that a large value for

one variable in a pair should be associated with a mail value for the other variable in the pair. The scatterplots in

Fig. 3 result ffom the Latin hypercube samples described in Sect. 8, with the rank correlations within the pairs

(ANHCOMP, ANHPRM), (HALCOA4P, HALPRM) and (BPCOMP, BPPRM) induced with the Irnan and Conover

restricted pairing technique (Ref. 74; Sect. 3.2, Refi 75).

The dism%utions and associated correlations indicated in Table 1 and Figs. 2 and 3 define the probability space
*

(Sin, ~ ~, PJ for subjective uncertainty. The vector X,UinEq. (1) has the form

X== [ANHBCEXP, ANHBCVGP, .... JVZAUFAIL], (3)

where the individual elements of xm are the variables described in Table 1.

6. Sample Size for Incorporation of Subjective Uncertainty

The guidance in 40 CFR 194.34(d) (Ref. 76) states that ‘The number of CCDFS generated shall be large enough

such tha~ at cumulative releases of 1 and 10, the maximum CCDF generated exceeds the 99th percentile of the

population of CCDFS with at least a 0.95 probability.” For a Latin hypercube or random sample of size n, the

preceding guidance is equivalent to the inequality

1 – 0.99”>0.95. (4)

which results in a minimum value of 298 for n. In consistency with the preceding result, the 1996 WWF PA uses an

LHS of size 300 to integrate over the probability space (S~u, d ~u.pJ for subjective uncertainty. Actually, as



discussed in the next sectioq three replicated LHSS of size 100 each are used, which results in a total sample size of.

300.

7. Statistical Confidence on Mean CCDF

The guidance in 40 CFR 194.34(f) states that “Any compliance assessment shall

demonstrates that there is at least a 95 percent level of statistical cotildence that the

provide information which

mean of the population of

CCDFS meets the containment requirements of $191.13 of this chapter.” Given that Latin hypercube sampling is to

be use~ the confidence intervals required in 194.34(9 can be obtained with a replicated sampling technique

proposed in Ref. 77. In this technique, the LHS is repeatedly generated with dii%erent random seeds. These samples

lead to a sequence F, (R> T = 1,2,..., nR, of estimated mean exceedance probabilities, where ~r (R) defines the

mean CCDF obtained for sample r (i.e., F,(R) is the mean probability that a normalized release of size R will be

exceeded, see Fig. 5, Ref. 1) and nR is the number of independent LHSS generated with different random seeds.

‘lle~

nR

F(R) = ~~(l?) f nR

r= I

and

[

nR

}

1/2

SE(R) = ~[~(R) - p(R)]2 / nR(nR – 1)

/-=1

(5)

(6)

provide an additional estimate of the mean CCDF and an estimate of the standard error associated with the mean

exceedance probabilities. The t-distribution with nR– 1 degrees of tieedom can be used to place confidence intervals

around the mean exceedauce probabilities for individual R values (i.e., around ~(R) ). Specifically, the l-a

confidence interval is given by F(R)+ tl +2 SE(R), where tl 42 is the 1-a/2 quantile of the t-distribution with

nR–1 degrees of freedom (e.g., tlw = 4.303 for a = 0.05 and nR = 3). The same procedure can also be used to

place pointwise confidence rntervals around percentile curves.

8. Generation of Replicated LHSS

The LHS pro&gram7s,79 was used to produce three independently generated LHSS of size nLHS = 100 each for a

total of 300 sample elements. Each individual replicate is an LHS of the form

XSU,J= [ql, Xkz, .--, x~nl .]./l=l,2,..., ns=looloo. (7)
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In the context of the replicated sampling procedure described in Sect. 7, nR = 3 replicates are being use~ with each

repiicate of size 100. For notational convenience, the replicates are designated by RI, R2 and R3 for replicates 1, 2

and 3, respectively.

At the beginning of the analysis, only the 31 variables in Table 1 that are used as input to BR+GFLO had been

filly specitled (i.e., their distributions Dj had been unambiguously defined); the remaining variables now listed in

Table 1 were still under development. To aIIow the calculations with BR.AGFLO to procee~ the previously

indicated LHSS were generated fkom n V = 75 variables, with the fust 31 variables being the then specified inputs to

B&4GFL0 and the remainin g 44 variables being assigned uniform distributions on [0, 1]. Later, when the

additional variabies in Table 1 were fully specifie~ the tiormly distributed variables were used to generate

sampled values ffom them consistent with their assigned distributions. This procedure allowed the analysis to go.

forward while maintaining the integrity of the Latin hypercube sampling procedure for the overall aualysis.

With n V = 75 in the LHSS and 31 variables already assigne~ 44 additional variables were available for

incorporation into the analysis. To assure that the number of available positions in the LHSS was not exceeded each

group of investigators developing characterizations of variable uncertainty was assigned a maximum number of

variables that the y couId elect to have incorporated into the analysis, with the sum of these maximum being less than

44. Ultimately, 26 additional variables were selected for incorporation into the analysis, which produced the 57

variables in Table 1.
w

The hnan and Conover restricted pairing technique74 was used to induce requested comelations and also to

assure that uncorrelated variables had correlations close to zero. Due to the sequential manner in which the variables

were develope~ it was actually only the fust 31 variables used as input to BIL4GFL0 that could have specfled non-

zero correlations. The correlations for the remaining variables were controlled in the sense that they were forced to

be close to zero.

The variable pairs (ANHCOMP, ANHPRM), (HALCOMP, HALPRM) and (BPCOMP, BPPRM) were assigned “

rank comelations of-0.99, -0.99 and –0.75, respectively (Sect. 5). Further, all other variable pairs were assigned

rank correlations of zero. The restricted pairing technique was quite successful in producing these correlations

(Table 2). Specifically, the correlated variables have correlations that are close to their specified values and

uncorreIated variables have correlations that are close to zero.

9. Sensitivity Analysis

Evaluation of one or more of the models used to estimate radionuclide releases to the accessible environment

(Sect. 4, Ref. 1; Ref. 2- 6) with the LHS in Eq. (7) (see Table 6, Ref. 11) creates a mapping

[%.L> Y(x s~.k)l, ~ = 1,2 . . . .. nLHS, (q
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from analysis inputs (i.e., Xm,k) to analysis results (i.e., y(x,U,~)), where y(x,U,~) denotes the results obtained with the

model or models under consideration. A vector notation is used for y because, in general, a large number of

predicted results is produced by each of the models used in the 1996 WIPP PA. In additio% Y(xW,J could also

correspond to a CCDF for normalized release constructed from model results associated with X~U,& Sensitivity

anaIysis invoIves an exploration of the mapping in Eq. (8) to determine how the uncertainty in individual elements of

Xm affects the uncertainty m individual elements of y(x~U). A variety of techniques are available for use in this

explomtiom including examination of scatterplots, regression analysis, stepwise regression analysis, correlation and

partial couelatiort analysis, and rank transformations of data (Sect 3.5, Ref 75; Sect 6.10, Ref 15).

Sensitivity analysis has played an important role in prior PAs for the WIPP. In particular, sensitivity analyses

were carried out in support of the 1990 (Ref. 80), 1991 (Ref. 81, Vol. 4; Refs. 82, 83) and 1992 (Ref. 20, Vols. .4, 5;

Ref. 84) WIPP PAs. In additio~ analyses on the effects of gas generation were carried out in conjunction with the

1991 ‘WIPP PA (Refs. 85- 88), and an analysis on the health effects associated with drilling intrusions was carried

out in conjunction with the 1996 WIPP PA (Ref 89). The preceding sensitivity analyses corttriiuted to the

development of the WIPP by ident@ing the dominant contributions to the uncertainty in the predicted behavior of

the WIPP and also by providing an extensive check that the models in use were implemented correctly.

10. Scenarios Involving Stochastic and Subjective Uncertainty

Scenarios are usually defied to be subsets E~l of the sample space S51 for stochastic uncertainty, !fnd scenario

probabilities p~r (E~l) are defined by the function p~l associated with the probability space (S~fi ~ ~b pJ for

stochastic uncertainty (Sect. 14, Refi 11). This definition is consistent with the concept that a scenario is something

that could happen in the future. However, this definition is also consistent with the broader concept that a scenario is

simply a subset of the sample space S associated with an arbib-ary probability space (S, ~ , p); or to be

technically correct a scenario is an element of the set ~ associated with the probability space (S, ~ , p) (Sect.

14, Ref. 11).

A probability space (Sw, ~ .U, ~,u) for subjective uncertainty has now been introduced. Consistent with the

concept that scenarios are subsets of the sample space associated with an arbitrary probability space, scenarios could

also be defined to be subsets E~U of S~U (i.e., elements of ~ ,U), with corresponding probabilities given by

PsJEw)-

Although a subset E~r of S~l and also a subset E~U of S~Ucan be formally thought of as being scenarios in the

sense of being subsets of the sample space associated with a particular probability space, E$l and E~u are very

different entities. In particular, E~t contains vectors xS, of the form defined in Eq. (1) of Ref. 11, and E~Ucontains

~,, of the form defined in Eqs. (1) and (3). Further, the probability p~l(E~,) for E~~ characterizes thevectors X

likelihood that a vector X,7in ES, will match the occurrences that will take place at the WIPP over the next 10,000 yr,
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and the probability PW(E$U) for E~u characterizes a degree of belief that a vector x~u in E~Ucontains the appropriate

values for the 57 variables in Table 1 for use in the 1996 WIPP PA. Given the difference between scenarios derived

from SXtand scenarios derived from S~u, a careful specification of what is meant by a scenario is always necessary in

an analysis that involves multiple probability spaces.

The probability spaces (Sm ~ ~~,pJ and (Sw, ~ .U, pJ can be combined to produce an additional

probability space (S, ~ , p), where the elements x of the sample space S are vectors of the form

Thus, under the convention that scenarios are subsets of the sample space associated with an arbitrary probability

space, scenarios could also be defined to be sets of vectors of the form defined in Eq. (9). In this case, the definition

of a scenario would involve the specification of what could occ~ in the fiture (i.e., the part of x defined by X*I)and

the specification of fixed but unknown values for parameters required in the analysis (i.e., the part of x defined by

Au)-

The probability space (S, z! , p) can be developed from (S~l, ~ .t,PsJ and (%, ~ ,U,pm) by deftig each

element E of ~ by

= {x: x = [x,t,x..], x., = El> x,. E %/},
u

(10)

where E~l = ~ ~, and E~U = ~ SW If the probability spaces (S.f, ~ s,>P.,) and (L> ~ m, p..) are independent

(i.e., the occurrence of a particular element X5, of S,, does not affect the deftition of (S.u, ~ m, PJ, and the

occurrence of a particular element x~Uof S~Udoes not affect the deftition of (S~,, ~ ~1,pJ), then

(11)p(E) ‘P(E5/ X Em) ‘PSI O%) Pw(%).

If (S.,, ~ .,, pJ and (S~u, ~ ~, pJ are not independen~ then a more complicated deftition for p is requirecl

with the exact nature of this deftition being a fiction of the dependencies that exist between (S~r, ~ .,, P,,) and

(%> J WI, PSJ

In the 1996 WIPP PA, (Ssl, ~ ,1, p,,) and (S~u, ~ SU,P5J m independent with the result that the relationship

in Eq. (11) holds. This would not be the case if a parameter required in the deftition of (S$t, ~ St,p~,) was treated

as being uncertain and thus included in X,U. For example, a more complex deftition for p in Eq. (11) would be

required if the drilling rate in Eqs. (3) - (5) of Ref. 11 was treated as being uncertain. Although none of the

quantities used in the definition of (S,f, A S,, p,,) in the 1996 WIPP PA were considered to be Uncertab such

uncertainties were considered in a verification analysis performed at SNL for the U.S. EP.A (Ref. 90); in particular,
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the probability that a drilling intrusion would penetrate pressurized brine (Sect. 5, Ref. 11) was treated as being

uncertain and included in the deftition of x~u.

As described in conjunction with the probability spaces (SS1, ~ St,PsJ), ($U, ~ SU,PJ and (S = S,, x Ss., d

, p), the concept of a scenario is consistent in the sense of being a subset of a sample space and yet can involve quite

difilerent entities due to the d~erent probability spaces potentially under consideration. Thus, when the use of

scenarios is discussed it is important to specify clearly which of many possl%le probability spaces is under

consideration.

Unless specified otherwise, use of the term scenario in the 1996 WIPP PA refers to subsets of the sample space

S~l for stochastic uncertainty (Sect. 14, Ref. 11). However, due to the use of Monte Carlo procedures to incorporate

the effects of stochastic and subjective uncertainty into the 1996 WIPP PA the use of terminology related to

scenarios does not play a large role in the description of this analysis.

11. Discussion

The characterization of subjective uncertainty in the 1996 WIPP PA has been described. In particular,

subjective uncertainty is characterized by a probability space (S~U, ~ ,U, pJ and leads to a distribution of the

CCDFS specified by the EPA in 40 CFR 191 (Refs. 91, 92). In tunL the individual CCDFS in this disrnbution arise

from a probabili~ space (S~f, J ~1,pJ for stochastic uncertainty. 11 The location of the distibution~of CCDFS

relative to the boundary Iine specified in 40 CFR 191 provides a measure of the confidence with which it is beIieved

that this regulation will be met.

The intent of the 1996 WIPP PA was to use the probability space (S~U, ~ SU,PJ in the development of an

unbiased representation of the subjective, or state of knowledge, uncertainty in its outcomes. Thus, the goal in

assigning the distributions that defined (S~U, ~ . . . p,.) was to neither deliberately overestimate nor deliberately

underestimate the possible values for individual variables. Such assignments then lead to unbiased estimates of the

uncertainty in the outcomes of the analysis. The need for such uncertainty estimate: in analyses supporting important

decisions has been widely emphasized (Sect. 6, Ref. 1).

There is one important area in which the 1996 WIPP PA did not attempt to assess the uncertainty in its inputs.

The EPA gave very specific guidance in 40 CFR 194 (Ref. 76) on how the drilling and mining rates should be

determined in assessing compliance with 40 Cl% 191 (Sects. 2, 8, Ref. 11). As a result these two rates, which play

an important role in the de ftition of the probability space (S~l, ~ .,, PJ for stochastic uncertain~, were assigned

fixed values rather than distributions. Thus, the 1996 WIPP PA does not incorporate the possible effects of

uncertainty in these two analysis inputs; rather, the outcomes of the PA are conditional on the values specified by the

EP.A.
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A concern is sometimes expressed that analysts will be unduly optimistic when asked to characterize the

uncertain~ in analysis inputs (i.e., will tend to supply variable values that will cause analysis outcomes to appear to

be more favomble than they should be). The experience of the authors is that the opposite is the case. In particular,

there is a tendency on the part of the analysts to supply conservative values (i.e., values that cause analysis outcomes

to appear to be less favorable than they should be). Thus, when a characterization of subjective uncertainty is

develope~ it is important for everyone involved to understand that the intent is to develop an accurate (i.e., honest)

representation of the current state of knowledge that is neither unduly optimistic nor unduly pessimistic. Without

such a representation% it is Mlcult to interpret and use the uncertainty and sensitivity analysis results that arise from

a propagation of subjective uncertainty.

The results of propagating and analyzing the effects of subjective uncertainty in the 1996 WIPP PA are

presented in a sequence of additional articles.s~, i2-14
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Figure Captions

Fig. 1. Conceptualization of procedure for assigting values to parameters in the 1996 WIPP PA.

Fig. 2. Examples of uncertain variables, their associated distributions, and sampled values obtained with a Latin

hypercube sample (Ref. 10; see Sect. 11) of size 100.

Fig. 3. ScatterPlots illustrating correlations within the pairs (ANHCOMP, ANHPRM), (HALCOMP, HALPRM) and

(BPCOMP, BPPRM).
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Fig. 1. Conceptualization of procedure for assigning values to parameters in the 1996 WIPP PA.
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Fig. 2. Examples of uncertain variables, their associated distributions, and sampled values obtained with a Latin
hypercube sample (Ref. 10; see Sect. 11) of size 100.
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Table 1. Uncertain Variables Incorporated into 1996 W IPP PA (See App. PAR, Ref. 16 for
additional information)

ANHBCEXP-Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Used in BRAGFLO.

Defines k in Eqs. (10) - (12) of Ref. 2 for regions 20, 21, 28 of Fig. 1 of Ref. 2 for use with Brooks-Corey

model; defines A in m = M{1+A) in Eqs. (19) - (21) of Ref. 2 for use with van Genuchten-Parker model in same

regions. See .4NHBCVGP. Distribution: Student’s with 5 degrees of fieedorn. Range: 0.491 to 0.842.

Mea% Medirux 0.644. Variable 25 in LHS. Additional information Ref. 19; Ref. 20, Vol. 3, p. 2-54.

ANHBCVGP-Pointer variable for selection of relative permeability model for use in anhydrite. Used in

BWGFLO. See ANHBCLYP. Distributiorx Discrete with 60?4. O, 40~o 1. Value of O implies Brooks-Corey

model defined by Eqs. (10)-(12) of Ref. 2; value of 1 implies van Genuchten-Parker model de~ed by Eqs.

(19)-(21) of Ref. 2. Variable 22 in LHS. Additional informatiorx Ref. 19; Ref. 20, Vol. 3, p. A-149.

ANHCOA4P-Bulk compressibility of anhydrite (pa-l). Used in BRAGFLO. Pore compressibility ~~ in Eq.

(7) of Ref. 2 defined by ANHCOMP divided by initial porosity (i.e., ~ in TabIe 1 of Ref. 2) for use in regions

20,21,28 of Fig. 1 of Ref. 2. Distribution Student’s with 3 degrees of freedom. Range 1-09 x 10-11 to 2.75

x 1o-1o “Pa-1. Meq Mediam 8.26 x 10-11 Pa-1. Correlation: -0.99 rank correlation with ANHPRM.

Variable 21 in LHS. Additional information Refs. 21,22.

ANHP&Logarithrn of intrinsic anhydrite permeability (mZ). Used in BIL.4GFL0. Defines permeability

tensors ~, K~ in Eqs. (2), (3) of Ref. 2 for regions 20,21,28 in Fig. 1 of Ref. 2- SpecitlcalIy, the anhydrite is

assumed to be isotropic, with result that ANHPRM is the logarithm of the diagoml elements of ~ for the

indicated regions and similarly defines the diagonal elements of Kg after a correction is made for the

Klinkenberg effect as shown in Eq. (30) of Ref. 2. Distriiutiorx Student’s with 5 degrees of ~dorn. Range:

–2 1.0 to –17.1 (i.e., permeability range is 1 x 10-21 to 1 x 1O-1Z-I rn2). Me- Me&am –18.9. Correlation

-0.99 rank correlation with AIVHCOMP. Variable 20 in LHS. Additional tiorrnatioz Refs- 19,21,22.

ANRBRSA T-Residual brine saturation in anhydrite (dimensionless)- Used m BRAGFLO. Defines S~, in Eqs.

(14) - (15) of Ref- 2 for use in regions 20,21,28 of Fig. 1 of Ref. 2. Distribution Student’s with 5 degrees of

freedom Range; 7.85 x 10-3 to 1.74 x 10-1. Me- Mediam 8.36 x 10-2. Variable 23 in LIB- Additional

informatiorx Ref. 19; Ref. 20, Vol. 3, p. 2-52.
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Table 1. Uncertain Variables Incorporated into 1996 W IPP PA (Continued)

ANRGSSA T—Residual gas saturation in anhydrite (dimensionless). Used in BWGFLO. Defines Sgr in Eq.

(15) of Ref. 2 for use in regions 20, 21, 28 of Fig. 1 of Ref. 2. Distribution Student’s with 5 degrees of

freedom. Range: 1.39 x 10-2 to 1.79 x 10-1. Mew median 7.71 x 10-2. Variable 24 in LHS. Additioml

information: Ref. 19; Ref. 20, Vol. 3, p. 2-53.

BHPRM-Logarithm of intrinsic borehole permeability (n#). Used in BRAGFLO. Defines permeability

tensors Kg, K~ in Eqs. (2), (3) of Ref. 2 for region 1 in Fig. 1 of Ref- 2 when borehole with properties similar to

silty sand is present. Specifically, the borehole is assumed to be isotropic, with result that BHPRM is the

logarithm of the diagonal elements of Kb for the indicated region and sirnikdy defines the diagonaI elements of

Kgafter a correction is made for the Klinkenberg effect as shown in Eq. (30) of Ref. 2. Distribution Uniform.

Range: -14 to -11 (i.e., permeability range is 1 x 10-14 to 1 x 10-1 I rn2). Mem mediarr –12.5. Variable 30

in LHS. Additional information: Ref. 23.

BPCOA4P-Logarithm of bulk compressibility of brine pocket (Pa-1). Used in BRAGFLO. Pore

compressl~ility ~~ in Eq. (7) of Ref. 2 defined by 10~PCOJfP divided by initial porosity (i.e., ~ in Table 1 of

Ref. 2) for use in region 30 of Fig. 1 of Ref. 2. Distribution Triangular. Range –1 1.3 to –8.00 (i.e., bulk

compressibility range is 1 x 10-11-3 to 1 x 10-8 Pa–1). Mew mode: –9.80, –1 0.0. Correlatiorx -0.75 rank

correlation with BPPRM. Variable 29 in LEES.Additional information Ref. 24.

BPINTP&Initial pressure in brine pocket (Pa). Used in BIL4GFL0. Defines pb (x, y, –5) in Table 4 of

Ref. 2 for region 30 in Fig. 1 of Ref 2. Distribution: Triangular. Range: 1.11 x 107 to 1.70 x 107 Pa. M-

mode 1.36 x 107 Pa, 1.27 x 107 Pa. Variable 27 m LHS. Additional information Ref. 25; Ref- 20, Vol. 3,

Sect. 4.3.

BPPRk.&Logtithm of intrinsic brine pocket permeability (rd). Used in BIU4GFL0. Defines permeability

tensors Kg,Kbin Eqs. (2), (3) of Ref. 2 for region 30 in Fig. 1 of Ref 2. Specifically, the brine pocket is

assumed to be isotropic, with result that BPPRM is the logarithm of the diagonal elements of Kb for the

indicated region and similarly defines the diagonal elements of Kg after a correction is made for the

IUinkenberg effect as shown in Eq. (30) of Ref. 2. Distribution Triangular. Range –14.7 to –9.80 (i.e.,

permeability range is 1 x 10-1’$-7 to 1 x 10-980 rd). Mea mode: –12.1, –1 1.8. Correlation: -0.75 with

BPCOMP. Viuiable 28 in LHS. Additional information Refs. 26,27.
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Table 1. Uncertain Variables Incorporated into 1996 W IPP PA (Continued)

f?PVOL-Pointer variable for selection of brine pocket volume. Used in BR4GFL0. Distribution Discrete,

with integer values 1, 2, .... 32 equalIy likely. Originally intended to select from 32 equally-Iikely brine pocket

maps obtained by assuming five regions beneath repository, with each region either containing or not

containing pressurized brine. This produces 32 (i.e., 25) possible brine pocket maps. This approach was

abandoned when more information on brine pockets became available (Ref. 28) and the only role that BPVOL

now plays is to determine volume of brine (m3) contained in the brine pocket. Specifically, the volumes are

32,000, 64,000, 96,000, 128,000 and 160,000 m3 if the originai maps contained O or 1, 2, 3, 4 or 5 brine

pockets, and the corresponding probabilities are 0.1875, 0.3125,0.3125,0.15625 and 0.03125. The indicated

volumes define V~m in Eq. (17) of Ref. 2 and thus define A for region 30 in Fig. 1 of Ref. 2; in addition, the

number of chilling intrusions rzD required to deplete the pressurized brine beneath the repository is defined by

nD = 2 Vb~32,000 (i.e., 2, 4, 6, 8 or 10 intrusions depending on whether the associated brine volume is

32,000, 64,000, 96,000, 128,000 or 160,000 m3; see nD in Table 5 of Ref- 11). For the presentation of

sensitivity analysis results, BP VOL is assigned the brine volumes that correspond to the sampled integer values.

Variable 31 in LHS. Additional information Refs. 28-30.

CF’RCPO;<ulebra bcture (i.e., advective) porosity (dimensionless). Used in SECOTP2D. Defines $ in

Eq. (13) of Ref. 6. Distribution: Logunifonn- Range: 1.00 x lN to 1.00 x lo-~. Meaq medi~ 2.10 x

10-3, 1.00 x 10-3- Variable 50 in LHS. Additional informatiorc Refs- 31,32.

CFRCSP<ulebra tl-acture spacing (m). Used in SECOTP2D. Equal to half the distance between fractures

(i.e., the Culebra balfrnatrix block length). Defines B in Eq. (22) and Fig- 7 of Refl 6. Distriiutiom Uniflorm.

Range: 0.05 to 0.5 m Mearq median 0.275 ~ 0.275 m. Variable 49 in LEN. Additional iniiormatiox Refs.

33,34-

CMKDAA4Natrix distribution coefficient (n#/kg) for americium in +3 oxidation state. Used in

SECOTP2D. Defines K~&in Eq- ( 19) of Ref. 6 for Arn3+. Distributioru Uniform. Range 0.02 to 0.5 rnMcg.

Meatq median: 0.26 mJ/kg, 0.26 m~ikg. Variable 57 in LHS. Additional information Ret 35.,

CMKDPU3-Same as CIUKDAM3 but for plutonium in +3 oxidation state. Distribution: Uniform. Range:

0.02 to 0.5 rdkg. Me- mediam 0.26 rn%lcg, 0.26 mVkg. Variable 54 in LHS.

CMKDPU4-Same as CMKDAM3 but for plutonium in +4 oxidation state. Distribution: Uniform Range:

0.9 to 20 mJ/kg. Mean, median: 10.0 mJ/’kg, 10.0 mJikg. Variable 55 in LHS-
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Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

CA4KDTH4-Same as CMKDAM3 but for thorium in +4 oxidation state. Distribution: Uniform. Range: 0.9

to 20 mjllcg. Mean, median 10.0 mVkg, 10.0 mjllcg. Variable 56 in LHS.

CMKDU4--Same as CMKD.4M3 but for uranium in +4 oxidation state. Distribution: Uniform Range: 0.9 to

20 mYkg. Mean, median 10.0 m3/kg, 10.0 m~llcg. Variable 53 in LHS.

CMKDU6-Same as CMKDAM3 but for uranium in +6 oxidation state. Distribution: Uniform Range: 3.0 x

10-~ to 3.0x 10-2 ms/’lcg. Me- median 1.50x 10-2 ins/kg, 1.50x 10-2 ins/kg.

CMTMPOR*lebra matrix (i.e., diffhsive) porosity (dimensionless).

SECOTP2D. Defines $’ in Eq. (18) of Ref. 6. Distribution PieceWise uniform.

mediam 0.16, 0.16. VariabIe 51 in LHS. Additioml information. Refs. 36, 37.

CTRA&Pointer variable for selecting transmissivity field. Used in SECOFL2D.

Variable 52 in LHS.

Used in SECOFL2D and

Range: 0.01 to 0.25. Mew

Distribution Discrete, with

integer values 1, 2, .... 100 equally likely. Each integer value identifies one of 100 transrnissivity fields

constructed with GRASP_INV for use in analysis. Transmissivity fields define T@, y) in Eq. (7) of Ref. 6.

Variable 3; in LHS. Additioml information Ref. 38; Ref- 20, Vol.3,p.2-91.

CTRANSFM-Muhiplier on transmissivity field in presence of mining of potash reserves within the land

withdrawal boundary (dimensionless). Used in SECOFL2D. Transmissivity field selected by CTRAN is

multiplied by CTWNSFM to obtain values for kl(x, y) and kz(x, y) in Eqs. (8) and (9) of Ref. 6; defines SFA4

in Eqs (8) and (9) of Ref. 6 for mining. Distribution: Uniform Range: 1 to 1000. M- median: 500.5,

500.5. Variable 34 in LHS. Additional information Refs. 39-41.

CULCL.Ll&CIimate scale factor for Culebra flow (i.e., veloci~) field (dimensionless). Used in SECOTP2D.

Culebm flow field is multiplied by CULCLZ’ to obtain v,(x, y) in Eq- (1 1) of Ref @ defines SFC in Eq. (1 1)

of Ref. 6. Distributiorx PieceWise @orrm Range: 1 to 2.25. Me- median: 1.31, 1.17. Variable 48 in

LHS. Additional information Refs. 42,43.

HALCOA4P-Bulk compressibility of halite (pa-l). Used in BRAGFLO. Pore compressibility /3/in Eq. (7) of

Ref. 2 defined by.HALCOMP divided by initial porosity (i-e., to in Table 1 of Ref. 2) for use in region 19 of

Fig. 1 of Ref. 2. Distriiutiom Uniform. Range: 2.94 x 1O-IZ to 1.92 x 1o-1o Pa-1. Me~ mediarx 9.75 x

10-1 I Pa–1, 9.75 x 10-11 “Pa-1. Correlation: -0.99 rank correlation with HALPRM. Variable 19 in LHS.

Additioml information Ref. 44.
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Table 1. Uncertain Variables Incorporated into 1996 W IPP PA (Continued)

kL4LP0R-Halite porosity (dimensionless). Used in BWGFLO. Defines $0 in Eq. (7) of Ref. 2 for region 19

in Fig. 1 of Ref. 2. Distribution PieceWise uniform. Range: 1.0 x 10-3 to 3 x 10-2. Me- mediam 1.28 x

10-2, 1.00 x 10-2. Variable 17 in LHS. Additional information Ref. 45; Ref. 20, Vol. 3, p. 2-41.

HALPRM-Logarithm of halite permeability (mZ). Used in BRAGFLO. Defines permeability tensors Kg, K~

in Eqs. (2), (3) of Ref. 2 for region 19 in Fig. 1 of Ref. 2. Specifically, the halite is assumed to be isotropic,

with result that HALPRM is the logarithm of the diagonal elements of Kb for the indicated region and similarly

defines the diagoml elements of Kg afler a comection is made for the Klinkenberg effect as shown fi Eq. (30)

of Ref. 2. Distribution Uniform Range: –24 to –2 1 (i.e., permeability range is 1 x 10-24 to 1 x IO-21 rn2).

Meaq median: –22.5, –22.5. Correlation: -0.99 rank correlation with HALCOA4P. Variable 18 in LHS.

Additional inforrnatiorx Refs. 46-48.

SALPRES-Initial brine pressure, without the repository being presenq at a reference point located in the

center of the combined shafts at the elevation of the midpoint of MB 139 (Pa). Used in BR4GFL0. Defines

PW, which is used to define p~(x, y, O) (Table 4 of Ref. 2). With respeet to computational ceils in Fig. 1 of

Ref. 2, defines inihaI brine pressure at location of cell (23,6). Distriiutioru Uniform Range: 1.104 x 107 to

1.389 x 107 Pa. Mean, mediam 1.247 x 107 Pa, 1.247 x 107 Pa. Variable 26 in LHS. Additional

information: Ref. 49; Ref. 20, Vol. 3, p. 2-38.

SHBCEXP-Brooks-Corey pore distribution parameter for shaft (dimensionless). Used in BFL4GFL0.

Defines L in Eqs. (10) - (12) of Ref. 2 for regions 3-11 in Fig. 1 of Ref. 2. Distribution: Piecewise uniform.

Range: 0.11 to 8.10. Me- rnediam 2.52,0.94. Variable 16 in LHS. Additional informatiorx Refs. 50-52.

SHPRMASP—Logarithm of intrinsic permeability (d-) of asphalt component of shafi seal (rrP). Used in

BIUGFLO. Permeability tensors Kg,K~inEqs. (2), (3) of Ref. 2 for region 5 in Fig. 1 of Ref 2 are fimctions ‘

of asphalt permeability (i.e., k~ = 10x, x = SHPRMASP, in Eq. (35) of Ref. 2), halite permeability (i.e., kout =

10$, x = HALPRM, in Eq. (36) of Ref. 2, and shaft DRZ permeability (i.e., kin= I(P, x = SIKPRMDRZ, in Eq.

(36) of Ref. 2), with diagonal elements of K~defined by k= in Eq. (35) of Ref. 2 and the diagonal elements of

Kg defined similarly after a correction is made for the Klinkenberg effect as shown in Eq. (30) of Refi 2.

Distriiutiom Triangular. Range: –21 to ;18 (i.e., perrixability range is 1 x 10-21 to 1 x 1O-IS rn2). Mew

mode: –19.7, –20.0. Variable 11 in LHS. Additional information Refs. 50, 51, 53.
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Table 1. Uncertain Variables incorporated into 1996 W IPP PA (Continued)

.

SHPRMCL Y—Logdlnn of intrinsic permeability (rnz) for clay components of shafl. Used in BIL4GFL0.

Defines permeability tensors Kg, K6 in Eqs. (2), (3) of Ref. 2 for regions 4, 10 in Fig. 1 of Ref. 2; specifically,

the clay component is assumed to be isotropic, with result that SHF’RMCL 1’ is the logarithm of the diagonal

elements of K~ for the indicated regions and the diagonal elements of Kg are defined similarly afier a

correction is made for IUinkenberg effect as shown in Eq. (30) of Ref. 2. Plays same role in deftition of ‘Kg,

Kb for regions 8, 9 in Fig. 1 of Ref 2 as SHPRMASP does in the deftition of ~, Kb for region 5 in Fig. 1 of

Ref. 2, with result that Kg, Kb are fimctions of SHPRMCL Y, HALPRM and SHPRMDRZ. Distribution

Triangular. Range: –21 to -17.3 (i.e., permeability range is 1 x 10-21 to 1 x 10-17-3 @. Me- mode:

–18.9, -18.3. Variable 9 in LHS. Additional information: Refs. 50,51,53.

SHPRMCOName as SHPRMCL Y (as used for regions 4, 10 in Fig. 1 of Ret 2) but for concrete component

of shrdi seal (i.e., region 6 in Fig. 1 of Ref. 2) for O to 400 yr. Distribution. Triangular. Range: -17.0 to

–14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 m2). Me- mode: –15.3, –15.0. Variable 10 in LHS.

Additional idorrnation Refs. 50,51,53.

SHPRMD~Z+ogaritbm of intrinsic permeability (rd) of DRZ surrounding shaft. Used in BRAGFLO.

Defines kin in Eq. (36) of Ref. 2. Used in definition of effective permeability for shaft in re@ons 5,8,7 and 9

of Fig. 1 of Ref 2. See SHPRMASP, SHPRMCL Y, SHPRMHAL. Distriiutiorx Triangular. Range: -17.0 to

–14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 mz). Mea mode: –15.3, –15.0. Variable 12 in LHS.

Additional tiormatiom Refs. 50,51,54.

SHPR.MH.4L+ointer variable (dimensionless) used to select intrinsic permeability in crushed salt component

of shaft seal at different times. Used in BRAGFLO. Distriiutior- Uniforrm Range: O to 1. Me- mode

0.5, 0.5. A distribution of permeability (~) in the crushed salt component of the shafl seal (i.e., region 7 in

Fig. 1 of Refi 2) is defined for each of the following time intervaIs: [0, 10 yr], [10, 25 yr], [25, 50 yr], [50, 100

Y], [100,200Y], [200,10,000 yT] (see Table 2, Ref 50). SHPRMLL4L is used to seIect a permeabdity vaiue

from the .cunudative distribution fimction for permeability for each of the preceding time intervals with result

that a rank correlation of 1 exists between the permeabilities used for the individual time intervals. Once

selecte~ crushed salt permeabilities are used to define Kg,K~inEqs. (2), (3) of Ref- 2. For region 7 (Fig: 1 of

Ref. 2) in the same manner as SHPRMASP is used to define Kg,K~for region 5 (Fig. 1 of Ref. 2)- variable 13

in LHS. Additioml intlormation: Refs. 50, 51, 55.
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Table 1. Uncertain Variables Incorporated into 1996 WIPP PA (Continued)

SHRBRSAT—Residual brine saturation in shaf? (dimensionless). Used in BRAGFLO. Defines S~r in Eqs. (24)

- (25) of Ref. 2 for regions 3-11 in Fig. 1 of Ref. 2. Distribution: Uniform. Range: O to 0.4. Mew median

0.2,0.2. Variable 15 in LHS. Additional informatiorx Refs. 50,51.

SHRGSS,4 T—Residual gas saturation in shaft (dimensionless). Used in BRAGFLO. Defines Sg, in Eq. (25) of

Ret 2 for regions 3-11 in Fig. 1 of Ref. 2. Distribution Uniform Range: O to 0.4. Meam median: 0.2,0.2.

Variable 14 in LHS. Additional information Refs. 50, 51,56.

WASTWICK-increase in brine saturation of waste due to capillary forces (dimensionless). Used in

BRAGFLO. Defines SWic~in Eq. (72) of Ref 2 for regions 23, 24 in Fig. 1 of Ref. 2. Distribution Uniform

Range: O to 1. Mean, mediarx 0.5,0.5. Variable 8 in LHS.

WFBETCEL<cale factor used in de ftition of stoichiometric coefficient for microbial gas generation .

(dimensionless). Used in BRAGFLO. Defines ~ in Eq. (71) of Ref. 2 for regions 23,24 in Fig. 1 of Ref. 2.

Distribution Uniform Range: O to 1. Meq median: 0.5,0.5. Variable 5 in LHS. Additionrd information

Refs. 57, ~8.

WGRCOR<orrosion rate for steel under inun&ted conditions in the absence of C@ (m/s). Used in

BRAGFLO. Defines Rc~ in Eq. (50) of Ref. 2 for regions 23, 24 in Fig. 1 of Ref. 2. Distribution: Uniform

Range: O to 1.58 x lo--l~ rids. Mean, mediam 7.94 x 10-J5 m/s, 7.94 x lo--l~ rnh. Variable 1 in LHS.

AdditiomI information Ref. 57.

WGRMICH+icrobial deegadation rate for cellulose under humid conditions (mol/lcgos). Used in

BRAGFLO. Defines R~ in Eq. (52) of Ref. 2 for regions 23, 24 in Fig. 1 of Ref. 2- Distribution Uniform- ..

Rangti O to 1.27 x 10--9 mol/kg*s. Me% median: 6.34 x 1o-1o mol/kgOs, 6.34 x 1o--1omollkgos. Variable 4

in LHS. Additional information Ref. 57.

WGRMlC14icrobial degradation rate for cellulose under inundated conditions (mohlcgos). Used in

BRAGFLO. Defines Rmi in Eq- (52) of Ref. 2 for regions 23, 24 in Fig. 1 of Ref 2. Distriiutiom Uniform

Range: 3.17 x 10_10 to 9.51 x 10_9 moll?-cgs Meaq mediam 4.92 x 10-9 molkgw, 4.92 x 10-9 mol/kg*s.

Variable 3 in LHS. Additional iniiormation: Ref- 57.
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Table 1. Uncertain Variables Incorporated into 1996 W IPP PA (Continued)

lVMICDFLG-Pointer variable for microbial degradation of cellulose. Used in BR4GFL0. Distribution

Discrete, with 50% O, 25?4. 1, 25?4. 2. WMICDFLG = O, 1, 2 implies no microbial degradation of cellulose,

microbial degradation of only cellulose, microbial degradation of cellulose, pIastic and rubber. Variable 2 in

LHS. Additional information: Ref. 59.

WPRTDIAM—Waste particle diameter (m). Used in CUTTINGS_S. Defines d in Eqs. (40) and (41) of

Ref. 3. Distribution Loguniform. Range: 4.0 x 10-5 to 2.0 x 10-1 m. Mea% median: 2.35 x

1@ m. Variable 32 in LHS. Additional information Refs. 60, 61.

WOXSTA T—Pointer variable for elemental oxidation states (dimensionless). Solubilities

WOXSTA T used in NUTS, PANEL (see Eqs. (6)-(9) and Table 1) of Ref. 5; retardations

104 w 2.80 X

obtained with

obtained with

WOXSTA T used in SECOTP2D (see Eq. (19) of Ref. 6). Distribution Uniform Range: O to 1. Mea%

median: 0.5, 0.5. Reset to WOXSTA T = O, 1 for WOXSTA T < 0.5, 0.5< WOXSTA T< 1. WOXSTA T = O

implies use of CMKDPU3, CMKDU4, WSOLPU3C, WSOLPUS, WSOL U4S; WOXSTA T = 1 implies use of

CMKDPU4, CMKDU6, WSOLPU4C, WSOLPU4S, WSOL U6C, WSOLU6S. Variable 47 in LHS. Additional

information Refs. 62,63.

WPHUMOX3-Ratio of concentration of actinides attached to humic colloids to dissolved concentration of

actinides for oxidation state III in Castile brine (dimensionless). See SFHUm (Br, Ox, El) in Table 1 of Ref. 5.

Distribution: Piecewise uniform Range: 0.065 to 1.60. Meq median: 1.10, 1.37. Variable 46 in LHS.

Additiord information Refs. 64-66.

W~RNSA T~esidual brine sa~tion in waste (dimensionless)- Used in 13RAGFL0. Defines Sb, in Eqs.

(14) - (15) of Ref. 2 for use in regions 23,24 in Fig- 1 of Ref. 2. AIso used in BRAGFLO_DBR; see Sect. 4 of

Ref. 4. Distriiutiorx Uniform- Range: O to 0.552. Me- mediam 0.276, 0.276. Variable 7 in LHS.

Additioml information Ref. 67.

WRGSSA Z-Residual gas saturation in waste (dimensionless). Used ti BRAGFLO. Defines Sg, in Eq. (15) of

Ref. 2 for use in regions 23, 24 in Fig. 1 of Ref. 2. Also used in BRAGFLO_DBR; see Sect. 4 of Ref. 4.

Distriiutiorx Uniform. Range: O to 0.15. Meanj median: 0.075, 0.075. Variable 6 in LHS. Additional

information: Ref. 68.
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Table 1. Uncertain Variables Incorporated into 1996 W IPP PA (Continued)

WSOLAM3C—Logarithm of scale factor used to define volubility in Castile brine of americium in oxidation

state III (dimensionless). Volubility calculated from WSOLAA43C used in NUTS, PANEL. Defines UF(13r,

Ox, El) in Table 1 of Ref. 5. which is a multiplier on volubility prediction with FMT (Ref. 69). Distribution

PieceWise uniform. Range: –2.00 to 1.40. Mea% median: 0.18, -0.09. Variable 37 in LHS. Additional

information Refs. 63,70-72.

WSOLAM3~ame as WSOLAM3C but for Salado brine. Variable 36 in LHS. Note: WSOL4M3C,

WSOLAM3S, WSOLPU3C, WSOLPU3S, WSOLPU4C, WSOLPU4S, WSOLTH4S, WSOLU4S, WSOLU6C,

WSOLU6S have same distribution (see WSOLAM3C9 but are sampled independently.

WSOLPU3C<ame as WSOLAM3C but for plutonium. Variable 39 in LHS.

WSOLPU3~ame as WSOLAM3C but plutonium in Salado brine. Variable 38 in LHS.

WSOLPU4C+ame as WSOLAM3C but for plutonium in oxidation state IV. Variable41 in LHS.

WSOLPU4Wame as WSOLAM3C but for plutonium in oxidation state IV in Salado brine. Variable 40 in

LHS.

WSOLTH4&+krne as WSOLAM3C but for thorium in oxidation state IV in Salado brine. Variable 45 in LHS.

WSOLU4~ame as WSOL.4M3C but for uranium in oxidation state IV in Salado brine. Variable 42 in LHS.

WSOLU6Cqame as WSOLAM3C but for uranium in oxidation state VL Variable 44 in LHS.

WSOLU6Wame as WSOLAM3C but for uranium in oxidation state VI in Salado brine. Variable 43 in LHS.

WZA UFAIL-Shear strength of waste (Pa). Used in CUTTINGS_S. Defines ~(R,l) in Eq. (13) of Refi 3.

Distri%utiom Uniform Range: 0.05 to 10 Pa. Meq median: 5.03 Pa, 5.03 Pa. Variable 33 in LHS.

Additional information Ref. 73.
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Table 2. Example Rank Correlations in Replicate 1

WGRCOR 1.0000

WIWICDFI!.G 0.0198 1.0000

HA LCOMP 0.0011 0.0235 1.0000

HALPRA4 –0.0068 –0.02 I2 -0.9879 1.0000

ANHCOMP 0.0080 0.0336 -0.0123 -0.0025 I .0000

ANHPRM 0.0049 -0.0183 0.0037 0.0113 –0.9827 1.0000

31

BPCOMP 0.0242 0.1071 -0.0121 0.0057 -0.0184 0.0078 1.0000

BPPRM -0.0514 -0.0342 0.0035 0.0097 0.0283 -0.0202 -0.7401 [.0000

WGRCOR WMICDFLG HALCOMP HALPRM ANHCOMP ANHPRM BPCOMP BPPRM
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6. Correlation Control {Adapted from Sect. 3.2 of Helton 1993)

Control of correlation within a sample can be very important. If two or more variables are correlated, then it is

necessa~ that the appropriate correlation structure be incorporated into the sample if meaningfid resuhs are to be

obtained in subsequent uncertaintylsensitivity studies. On the other hand, it is equally important that variables do not

appear to be correlated when they are really independent.

It is often difllcult to induce a desired correlation structure on a sample. Indeed, most multivariate disrnbutions

are incompatible with the majority of correlation patterns that might be proposed for them. Thus, it is fairly common

to encounter analysis situations where the proposed variable distributions and the suggested correlations between the

variables are inconsistent that is, it is not possible to have both the desired variable distributions and the requested

correlations between the variables.

In response to this situatio% Iman and Conover (1982) have proposed a method of controlling the correlation

structure in random and Latin hypercube samples that is based on rank correlation (i.e., on rank-transformed

variables) rather than sample correlation (i.e., on the originaI’ untransformed data). With their technique, it is

possible to induce any desired rank-correlation structure onto the sample. This technique has a number of desirable

properties: (i) It is distribution free- That is, it maybe used with equal facility on all types of distribution functions.

(ii) It is sffnple. No unusual mathematical techniques are required to implement the method. (iii) It can be applied to

any sampling scheme for which correlated input variables can logically be considered, while preserving the intent of

the sampling scheme. That is, the same numbers originally selected as input values are retained onIy their pairing is

affected to achieve the desired rank correlations. This means that in Latin hypercube sampling the integrity of the

intervals is maintained. If some other structure is used for selection of values, that same structure is retained.

(iv) The marginal distributions remain intact.

For many, if not most uncertainty/sensitivity analysis problems, rank-correlation is probably a more natural

measure of congruent variable behavior than is the more traditional sample correlation. What is known in most

situations is some idea of the extent to which variables tend to move up or down together, more detaded assessments

of variable linkage are usually not available. It is precisely this level of knowledge that rank correlation captures.

The foIIowing discussion provides an overview of the Iman/Conover procedure for inducing a desired rank

comelation structure on either a random or a Latin hypercube sample. A more detailed discussion of the procedure is

given in the original article. The procedure begins with a sample of size m from the n input variables under

consideration. This sample can be represented by the m x n matrix
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(4)

where XJ is the value for variable j in sanqde eIement i. Thus, the rows of X correspond to sampie elements, and the

columns of X contain the sampled values for individual variables.

The procedure is based on rearranging the values in the individual columns of X so that a desired rank

correlation structure results between the individual variables. For convenience, let the desired correlation structure

be represented by the n x n matrix

c=

c11 C12 ... /-,n

C,l c,, ... ~,n

-Cnl Cn, ..- Cnn

(5)

-1

where Cti is the desired rank correlation between variables xk and x~ a

Althomgh the procedure is based on rearraq$ng the values in the individual columns of X to obtain a new matrix

X* that has a rank correlation structure close ;O that descriied by C, it is not possible to work directly with X.

Rather, it is necessary to define a new matrix

[
S11 Slz

. . . ~,n 1

1::‘1s= ‘? ‘z?‘-” ‘?

Sml Sm, --- Smn

(6)

that has the same dimensions as ~ but is otherwise independent of X. Each column of S contains a random

permutation of the m van der Waerden scores (Conover 1980) @l(i/m + 1), i = 1, 2, -.., m, where 0-1 is the

inverse of the standard normal distriiutiom The matrix S is ken rearranged to obtain the correlation structure

defined by C. This rearrangement is based on the Cholesky factorization (Golub and van Loan 1983) of C. That is,

a lower triangular matrix P is constructed such that

c = PP~. (7)

This construction is possible because C is a symmetric, positivedefinite matrix (Golub and van Loan 1983, p. 88).

If the correlation matrix associated with S is the n x n identity matrix (i.e., if the correlations between the values

in different columns of S are zero), then the correlation matrix for



s’= Spr (8)

is C (Anderson 1984, p. 25). At this point, the success of the procedure depends on the following two conditions:

(1) that the correlation matrix associated with S be close to the n x n identity matrix; and (2) that the correlation

matrix for S* be approximately equal to the rank correlation matrix for S*. If these two conditions hold, then the

desired matrix X* can be obtained by simply rearranging the values in the individual cohtmns of X in the same rank

order as the values in the individual columns of S*. This is the fmt time that the variabIe values contained in X enter

into the correlation process. When X* is constructed in this manner, it will have the same rank correlation matrix as

S*. Thus, the rank correlation matrix for X* will approximate C to the same extent that the rank correlation mati

for S* does.

The condition that the correlation matrix associated with S be close to the identity matrix is now considered.

For convenience, the correlation matrix for S will be represented by E. Unfortunately, E will not always be the

identity matrix. However, it is possible to make a correction for this. The starting point for this correction is the

Choles~ factorization for E:

E = QQT. (9)

This fact~rization exists because E is a symmetric, positivedeftite matrix. The matrix S* defined by

S*= s(Q-l)?_pT (lo)

has C as its correlation matrix In essence, multiplication of S by (Q-l )r transforms S into a matrix whose

associated correlation matrix is the n x n identity matri~, them muhipIication by P~ produces a matrix whose

associated correlation matrix is C. As it is not possible to be sure that E will be an identity ma~ the matrix S*

used in the procedure to produce correlated input should be defined in the corrected form shown in Eq. (10) rather

than in the uncorrected form shown in Eq. (8).

The condition that the correlation matrix for S* be approximately equal to the rank correlation matrix for S*

depends on the choice of the scores used in the definition of S. On the basis of empirical investigations, Iman and

Conover ( 1982) found that van der Waerden scores provided an effective means of defining S, and these scores are

incorporated into the rank comelation procedure in the widely used LHS program (Iman and Shortencarier 1984).

Other possibilities for defmi.ng these scores exis$ but have not been extensively investigated. The user should

examine the rank correlation matrix associated with S* to ensure that it is close to the target corrdation matrix C. If

this is not the case, the construction procedure used to obtain S* can be repeated until a suitable approximation to C

is obtained. ResuRs given in Irnan and Conover ( 1982) indicate that the use of van der Waerden scores leads to rank

correlation matrices for S* that are close to the target matrix C.
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Additional information on the Irnan/Conover (i.e., restricted pairing) technique to induce a desired rank-

correlation structure is given in the original article. The results of various rank-correlation assumptions are

illustrated in hnan and Davenport (1982). The LHS program generates both random and Latin hypercube samples

with user-specified rank correIahons between variables.

The numerical inqiementation of the sensitivity analysis techniques used in this report involves the investigation

of&e effects of elements of XSUon single elements of y(x~U). For notational convenience in the description of these

techniques, the mapping in Eq. (15) will be represented by

[Xby~], k= 1,2,..., nLHS, (16)

where

Xk= [Xki,xkz . . ..xknJ/] (17)

and y~ corresponds to one element of y(x~. The vector )(k corresponds to the vector x~u,k in Eq. (15) with the

subscript m dropped to produce a less cumbersome notation.

To make efficient use of all available inforrnatio~ most of the sensitivity analysis results contained in this report

are based~n a pooling of the results obtained for the three replicated LHSS (i.e., RI, R2, R3) discussed in Sect. 11.

Thus, the mapping in use is actually of the form

[xhykl, k= 1,2,...,3 ●nLHS, (18)

wherek= 1,2, . . . . 100 corresponds to results from replicate RI, k = 101, 102, . ...200 corresponds to results from

replicate R2, and k = 201, 202, . . .. 300 corresponds to results from replicate R3. The discussions in this section will

refer to the simpler mapping in Eq. (16) rather than the mapping in Eq. (18), although the numerical examples will

actually be generated with the mapping in Eq. (18).

12.2 Scatterplots

The generation of scatterpIots is undoubtedly the simplest sensitivity analysis technique and only involves

plotting the points

(19)(x&y~, k= 1,2, ..., nLHS,

for each eIement Xj of x forj = 1,2, . . . . n V (see Eq. (17)). This produces n V scatterplots that can then be examined

for relationships between y and the elements of x (i.e., the Xj). As an example, the scatterplot in Fig. 3 shows a

nonlinear but monotonic relationship between borehole permeability (BHPRA4) and cumulative brine flow down an
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intruding borehole, with no brine flow taking place for small values of BHPRM and brine flow increasing rapidly for

lager values of BHPRM (see Sect. 2, Helton et al. 1998d, for additional discussion). AS another example, the

scatterplot in Fig. 4 shows a complex relationship between BHPRM and repository pressure that is both nonlinear

and nonmonotonic, with repository pressure decreasing as BHPRM increases and then undergoing a sudden jump at

BHPRM=–11.7 (i.e., at a permeability of 10-11-7 ~ = 2 x 10-] 2 m2) (see Sect. 8.3, Helton et al. 1998d, for

additioml discussion). In contrast to the well-defined patterns in Figs. 3 and 4, the individual points will be

randordy spread over the plot when there is no relationship between y and a particular Xy

Sometimes scatterplo= alone will completely reveal the relationships beween model input (i.e., elements of x)

and modeI predictions (i.e., y). This is often the case when ordy one or two inputs dominate the outcome of the

analysis- Further, scatterplots often reveal nonlinear relationships, thresholds and vtiable interactions that facilitate

the understanding of model behavior and the planning of more sophisticated sensitivity studies. Irnan and Hehon

(1988) provide an example where the examination of scatterplots revealed a rather complex pattern of variable

interactions. The examination of scatterplots is always a good starting point in a sensitivity study. The examination

of such plots when Latin hypercube sampling is used can be particular y revealing due to the full stratification over

the range of each input variable.

42.3 Regression Analysis

A more formal investigation of the mapping in Eq. (16) can be based on regression analysis. In this%pproach a

model of the form

n

y=bo+
z

bj xj

j=l

(20)

is developed from the mapping between analysis inputs and analysis results shown in Eq. (16), where the Xj are the

input variables under consideration and the bj are coefficients that must be determined. The coefficients bj and other

aspects of the construction of the regression model in Eq. (20) can be used to indicate the importance of the

individual variables Xj with respect 10 the uncertainty in y.

The” construction of the regression model in Eq. (20) is considered f~st. To keep the notation from becoming

unwieldy, n will be used to denote the number of independent variables under considemtion (i.e-, n = n V as used in

Eq. (17)) and m will be used to denote the number of observations under consideration (i.e., m = nl.lil$ or 3. nLHS

as used in Eqs. (16) or (18)). As shown in Eq. (16), there exists a sequence yk, k = 1, .... M, of values for the output

\’ariable. When expressed in the form of the model in Eq. (20), each Ykbecomes

36



‘

n

yk = b* +z bj X@ +&k , k= 1,..., m,

j=l

(21)

where the error terms Ek, k = 1, . . .. m, equal the difference between the observed value .vk and the corresponding

predicted value jk defined by Eq. (20). At this point the bj are still unknown. What is desired is to determine the

bj m some suitable manner. The method of least squares is widely used and will be employed here (Harter 1983,

Eisenhart 1964). As a result of its extensive use, there exist a number of excellent textbmks on least squares

regression analysis (Myers 1986, Weisberg 1985, Seber 1977, Draper and Smith 1981, Daniel et al. 1980, Neter and

Wasserman 1974). The purpose of the following discussion is to present just enough information to be able to

describe some of the applications of re~ession-based techniques in sensitivity analysis. The indicated textbooks, as

well as many othe~, provide f~ more information on regression analysis than can be presented here.

To determine the b} it is convenient to use the following matrix representation for the equalities in Eq. (22):

y=xb+s,

where

y=

LYmJ L1.xm, -.. Xmn

(22)

In the least squares approach the intent is to determine the bj such that the sum

(23) -

[ 1
2

n

S(b) = ~ yk–bo-~ bjx~ = (y-)(b)T (y-Xb)

k=l j=]

is a minimum. Put another way, the bj are determined such that the sum
z

e ~ involving the error terms is a
k

minimum. The determination of the bj in the least squares approach is just an exercise in calculus and is based on

consideration of the first derivatives of S(b) with respect to the individual bj (Draper and Smith 1981).

Thk derivation leads to the foIlowing matrix equation that defines the coefficient vector b for which the sum

S(b) given in Eq. (23) is a minimum

X~Xb= x~y.

For the analysis to produce a

invertible. Then, b is given by

(24)

unique value for the coefficient vector b, it is necessary that the matrix X~ be

37



b = (X~X)-l x~y. (25)

The matrix X% will always be invertible when the columns of X are linearly independent. This usually is the case in

a sampling-based study in which the number of sample elements (i.e., m) exceeds the number of independent

variables (i.e., n).

The following identity holds for the least squares re~ession model and plays an important role in assessing the

adequacy of such models:

:(H)’ =:WN+:WY,)’>
k=l k=l k=l

(26)

where jk denotes the estimate of yk obtained born the regression model and ~ is the mean of the yk (Draper and

Smiti 198 I). Since

jj~k ‘,),)2
k=i

provides a measure of variability about the regression model, the ratio

,2=~(jk-~k)2/~(,k+’
k=l k=l

(27)

provides a measure of the extent to which the regression model can match the observed data. Specifically, when the

variation about the regression model is small (i.e., when EL{jk – yk)2 is a small relative to Z~ jk – ~ )2), then the

corresponding R2 value is close 1, which indicates that the re~ession model is accounting for most of the uncertainty

in the yk Conversely, an R2 value close to zero indicates that the regession model is not very successfid in

accounting for the uncertainty in the Yk. Another name for R2 is the coefficient of muhiple detem-iination.

An important situation occurs when the rows of the matrix X (i.e., the variable values at which the model is

evaluated) are selected so that X% is a diagoml matrix. In this case, the columns of X are said to be orthogonal, and

the estinyited regression coeftlcients are given by

b = (X~X)-l Xry

(29)

38



..
.

and so each element bj of b is given by

m m m

.bj = ~ ItiYk / dj =
z /zx&yk

k=l k=] k=l

2Xkj . (30)

The important point to reco@e is that the estimate of the regression coefficient bj for the variable xj depends only

on the values for Xj in the design matrix X (i.e., xl} .... Xmj). This is true regardless of the number of variables

included in the regression. As long as the design is onhogonal, the addition or deletion of variables from the model

will not change the regression coefficients. Further, when the design matrix X is orthogonr& the R2 value for the

regression can be expressed as

m

/

m

R2 = ~ (~k –7)2 ~ (j’k –7)2 = R; +R; +.--+R; , (31)

k=! k=l

where R; is the R2 value that results tlom regressing y on only Xj (Eq. (III-74) Helton et al. 1991). Thus, R; is

equal to the contribution of -xjto R2 when the design matrix X is orthogonal.

The regression model in Eq. (20) can be algebraically reformulated as

(y-J)”=i(bj;j’’)(xj-yj)/’j,
j=]

where

m

Y= z ~k /m,

k=] [ 1‘=xb’k‘J)2/(m-1) “2,
k=l

‘j=[~ (x!Q-yj)2~~-1)]’2.

M

(32)

The coefficients bj~j /~ appearing in Eq. (32) are called standardized regression coefficients (SRCS). When the xj

are independen~ the absolute value of the SRCS can be used to provide a measure of variable importance.

Specifically, the coef%cients provide a measure of importance based on the effect of moving each variable away

ffom its expected value by a freed fraction of its standard deviation while retaining all other variables at their
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expected values. Calculating SRCS is equivalent to performing the regression analysis with the input and output

variables normalized to mean zero and standard deviation one.

h example regression analysis is now given. The output variable (i.e., y) is pressure (Pa) in the repository at

10,000 yr under undisturbed (i.e., EO) conditions (i.e., the pressure values above 10,000 yr in Fig. 5). To keep the

example at a convenient size, 3 independent variables (i.e., x-) will be considered (Table 1): pointer variable for

microbial degradation of cellulose ( WMICDFLG), halite porosity (HALPOR), and corrosion rate for steel

( WGRCOR). The following regression model is obtained using the preceding three variables and the pooled LHS in

Eq. (18) (i.e., n = 3 and m = 300):

y = 5.72X 106+ 2.46 X 106 ● WMICDFLG + 1.55 X 108 ● HALPOR + 1.52 X 1020 ● WGRCOR. (33)

The coefficients in the preceding model show the effect of a one unit change in an input variable (i.e., an ~) on the

output variable (i.e., y). The sign of a regression coefficient indicates whether y tends to increase (a positive

regression coefficient) or tends to decrease (a negative regression coefllcient) as the corresponding input variable

increases. Thus, y tends to increase as each of WMICDFLG, HALPOR and WGRCOR increases.

It is hard to assess variable importance born the regression coefficients in Eq. (33) because of the effects of units

and distribution assumptions. In particular, the regression coefficient for WGRCOR is much larger than the

regression coefficients for WMICDFLG and HALPOR, which does not necessard y imp] y that WGl?COQas greater

influence on the uncertainty in y than WMICDFLG or HALPOR. Variable importance is more clearly shown by the

following reformation of Eq. (33) with SRCS:

y = 0.722 WMICDFLG + 0.468 HALPOR + 0.246 WGRCOR. (34)

The SRCS in Eq. (34) provide a better characterization of variable importance than the unstandardized coefficients in

Eq. (33). For perturbations equal to a fixed fraction of their standard deviatio~ the impact of WMICL)FLG is

appro~tely 50% larger than the impact of HALPOR (i.e., (0.722 – 0.468)/0.468 = 0.54) and almost 200% larger

than the impact of WGRCOR (i.e., (0.722 – 0.246)/0.246 = 1.96). Both regression models have an R2 value of 0.79

and thus can account for approximately 79°A of the uncertainty in y.

12.4 Correlation and Partial Correlation

The ideas of correlation and partial correlation are usefid concepts that often appear in sampling-based

uncertainty/sensitivity studies. For a sequence of observations (xi, ~i), i = 1, .. .. m, the (sample) correlation T-V

between x and y is defined by

40



‘v=[z’x~:’)’r[:’’’-’”r
(35)

where Z and > are defined in conjunction with Eq. (32). The correlation coefficient rq provides a measure of the

linear relationship betweenx and y.

The nature of the correlation coefficient rw is most readiIy understood by considering the regression

y = b. + blx. (36)

The definition of [v m Eq. (35) is equivalent to the definition

rw = sign(bl )(R2)1’2, (37)

where sign(bl ) = 1 if bl 20, sign(bl ) = –1 if b, <0, and R’ is the coefficient of determination that results horn

re~essing y on x. W’ith respect to interpretatio~ the correlation coet%cient rg provides a measure of the linear

relationship between x and y, and the regression coefficient bl characterizes the effect that a unit change in x will

have on y.

When more than one input variable is under conside~tio~ partial correlation coefficients (PCCS) cm- be used to

provide a measure of the Iinea, relationships between the output variable y and the individual input variables. The

PCC between y and an individual variable XPis obtained from the use of a sequence of regression models. FirsL the

following two regression models are constructed

n n

;=bo+
z

bjxj ~d?p=co+
z Cj ‘J - (38)

J=] j=]

J#p j*p

TheW the resuhs of the two preceding regressions are used to define the new variables Y – ~ md Xp – ~p. BY

deftitiow the PCC between y and XP is the correlation coefficient between y – ~ and XP – ip. Thus, the PCC

provides a measure of the linear relationship between y and XPwith the linear effects of the other variables removed.

The preceding provides a rather intuitive development of what a PCC is. A formal development of PCCS and the

relationships between PCCS and SRCS is provided by Iman et al. (1 985).

The PCC characterizes the strength of the linear relationship between two variables after a correction has been

made for the linear effects of the other variables in the analysis, and the SRC characterizes the effect on the output

41



variable that results from perturbing an input variable by a fixed fraction of its standard deviation. Thus, PCCS and

SRCS provide relate~ but not identical, measures of variable importance. In particular, the PCC provides a measure

of variable importance that tends to exclude the effects of other variables, the assumed distribution for the particular

input vtiable under consideratio~ and the magdude of the impact of an input variable on an output variable. In

con- the value for an SRC is si=ticantly influenced by both the distribution assigned to an input variable and

the iinpact that this variable has on an output variable. However, when the input variables in an analysis are

uncorrelate~ an ordering of variable importance based on either the absolute value of SRCS or the absolute value of

PCCS will yield the same ranking of variable importance, even though the SRCS and PCCS for individual variables

may be quite different (Iman et al. 1985).

Many output variables are functions of time or location. A usefid way to present sensitivity results for such

variables is with plots of PCCs or SRCS. An example of such a presentation for the pressure curves in Fig- 5 is given

in Fig. 6, which dispIays two sets of curves. The one set (Fig. 6a) contains SRCS plotted as a fimction of time; the

other set (Fig. 6b) contains PCCS plotted in a similar manner. For both sets of curves, the dependent variables are

pressures at fixed times, and each curve displays the values of SRCS or PCCS relating these pressures to a single

input variable as a fimction of time.

12.5 Stepwise Regression Analysis

JV%en many input variables are involve~ the direct construction of a regression model containing all input

variables as shown in Eq. (20) may not be the best approach for several reasons. Firs\ the large number~of variables

makes the regression model tedious to examine and unwieldy to display. Secon~ it is often the case that only a

relatively small number of input variables have an impact on the output variable. As a resulg there is no reason to

include the re rnaining variables in the regression model. l%ir~ correlated variables result in unstable regression

coefficients (i.e., coefilcients whose values are sensitive to the specific variables included in the regression model).

When this occurs, the regression coefficients in a model containing all the input variables can give a misleading

representation of variable importance. AS a side point if several input variables are highly correlate~ consideration

should be given to either removing all but one of the correlated variables or transforming the variables to correct for

(i.e., remove) the correlations between them Four@ an overfitting of the data can result when variables are

arbitrarily forced into the regression model. This phenomenon occurs when the regression model attempts to match

the predictions associated with individual sample elements rather than match the trends shown by the sample

elements collectively.

Stepwise regression analysis provides an alternative to constructing a regression model containing all the input

variables. With this approac~ a sequence of re-~ession models is constructed. The fwst regression model contains

the single input variable that has the largest impact on the uncertainty in the output \ranable (i.e., the input variable

that has the largem correlation with the output \’ariable y). The second regression model contains the two input
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variables that have the largest impact on the output variable: the input variable from the first step plus whichever of

the remaining variables has the largest impact on the uncertainty not accounted for by the fust variable (i.e., the

input variable that has the largest correlation with the uncertainty in y that cannot be accounted for by the f~st

variable). The third regression model contains the three input variables that have the largest impact on the output

variable the two input variables from the second step plus whichever of the re maining variables has the iargest

impact on the uncertainty not accounted for by the fit two variables (i.e., the input variable that has the largest

correlation with the uncertainty in y that cannot be accounted for by the fmt two variables). Additioml models in

the sequence are defined m the same manner until a point is reached at which further models are unable to

meaningfully increase the amount of the uncertainty in the output variable that can be accounted for. Further, at each

step of the proce~ the possl%ility exists for an aheady selected variable to be dropped out if it no longer has a

significant impact on the amount of uncertainty in the output variable that can be accounted for by the regression

model; this only occurs when correlations exist between the input variables.

Several aspects of stepwise regression analysis provide insights on the importance of the individual variables.

F* the order in which the variables are selected in the stepwise procedure provides an indication of their

importance, with the most important variable being selected fm~ the next most important variable being selected

second and so on. second the R2 values (see Eq. (28)) at successive steps of the analysis also provide a measure of

variable importance by indicating how much of the uncertainty in the dependent variable can be accounted for by all

variables selected through each step. When the input variables are uncorrelate~ the differences in the R2 values for

the regression models constructed at successive steps equals the fiction of the total uncertainty ~the output

variable that can be accounted for by the individual bput variables being added at each step (see Eq. (31)). l%ir~

the absolute values of the SRCS (see Eq. (32)) in the individual regression models provide an indication of variable

importance. Further, the sign of an SRC indicates whether the input and ou~ut variable tend to increase and

decrease together (a positive coefficient) or tend to move in opposite directions (a negative coefficient).

An important situation occurs when the input variables are uncorrelated. In this case, the orderings of variable

importance based on order of entry into the regression model, size of the” R2 values attributable to the individual

variables, tie absolute values of the SRCS, and the absolute values of the PCCS are the same. In situations where the

input variables are believed to be uncorrelate~ one of the important applications of the previously discussed

restricted pairing technique of Irnan and Conover (Sect. 8) is to ensure that the correlations between variables within

a Latin hypercube or random sample are indeed close to zero. When variables are correlate~ care must be used in

the interpretation of the results of a regression analysis since the regression coefficients can change in ways that are

basically unrelated to the importance of the individual variables as correlated variables are added to and deleted from

the regression model (see Sect. 7.2, Helton et al. 1998e, for an example of the effects of correlated variables on the

outcomes of a regression analysis).
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When the stepwise technique is used to construct a regression model, it is necessary to have some criteria to stop

the construction process. When there are many independent variables, there is usually no reason to let the

construction process continue until all the variables have been used. It is also necessary to have some criteria to

determine when a variable is no longer needed and thus can be dropped horn the regression model. As indicated

earlier, this latter situation only occurs when the input variables are correlated.

The usual criterion for making the preceding decisions is based on whether or not the regression coet%cient

associated with an input variable appears to be signiilcantly different from zero. Specifically, the t-test is used to

determine the probability that a regression coefficient as large as or larger than the one constructed in the analysis

would be obtained ~ in reality, there was no relationship between the input and output variable, rm~ as a re.sub+ the

apparent relationship that led to the constructed regression coefficient was due entirely to chance (Sect. 7.5, Neter

and Wasserman 1974). The- probability of exceeding a regression coefficient due to chance variation is often

referred to as an u-value. The actual derivation of the a-value depends on assumptions involving normality and

random variation that are not satisfied in sampling-based sensitivity studies for computer models since there is no

variation in the predictions for a freed set of input. However, the r-test and the associated a-value still constitute a

useful criterion for adding or deleting variables from a regression model in a sensitivity study since they provide a

measure of how viable the relationship between the input and output variable would appear to be in a study in which

this relationship could possibly have arisen from random variation. Sensitivity studies often use an a-value of 0.01

or 0.02 to add a variable to a re.gession model and a somewhat larger value to drop a variable from the modeI.

-1

As models involving more variables are developed in a stepwise regression analysis, the possldility exists of

overfitting the &ta. Overfitting occurs when the regression model in essence “chases” the individual observations

rather than following an overall pattern in the data. For example, it is possible to obtain a good fit to a set of points

by using a polynomial of high degree. However, in doing so, it is possible to overt% the data and produce a spurious

model that makes poor predictions.

To protect against overti$ the Predicted Error Sum of Squares (PRESS) criterion can be used to determine the

adequacy of a regression model (Allen 1971). For a regression model containing q variables and constructed from m

observations, PRESS is computed in the following manner. Fork= 1,2,...,m, the kth observation is deleted from the

original set of m observations and then a regression model containing the original q variables is constructed from the

rernainiig m – 1 observations. With this new regression model, the value jq(k) is estimated for the deleted

observation -Y& The@ PRESS is defined from the preceding predictions and the m original observations by

pwssq = ~ (Yk -;q(k))2
A=l
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The regression model having the smallest PRESS value is preferred when choosing between two competing models,

as this is an indication of how well the basic pattern of the data has been fitted versus an overfh or an underfit. In

particular, PRESS values will decrease in size as additional variables are added to the regression model without an

overfitting of the data (i.e., PRESSq > PRESS@ l), with an increase in the PRESS values (i.e., PRESSq < PRESS@l)

indicating an overfilling of the data. In addition to PRESS, there are also a number of other diagnostic tools that can

be used to investigate the adequacy of regression models (Cook and Weisberg 1982, Belsley et al. 1980).

It is important to use scatterplots, PRESS values and other procedures to examine the reasonableness of

regression models. This is especially true when regression models are used for sensitivity analysis. Such analyses

often involve many input variables and Iarge uncertainties in these variables- The appearance of spurious patterns is

a possl%ility that must be checked for.

h example stepwise regression analysis is now presented for repository pressure at 10,000 yr under

undisturbed conditions (Fig. 5). The foIlowing31 variables ffom Table 1 and contained in the three replicated LHSS

indicated in Eq. (14) are used as input to calculations performed with BRAGFLO in the 1996 WIPP PA

ANHBCEXP, ANHBCVGP, ANRBRSAT, ANHCOMP, ANHPRM, ANRGSSA T, BHPRM, BPCOMP, BPINTPRS,

BPPRM, BPVOL, HALCOMP, HALPOR, HALPRM, SALPRES, SHBCEXP, SHPRMASP, SHPRMCLY,

SHPRMCON, SHPRMDRZ, SHPRMHAL, SHRBRSA T, SHRGSSA T, WASTWICK, WF13ETCEL, WGRCOR,

WGRMICH, WGRMICI, WMICDFLG, WRBRNSA T and WRGSSA T. Variables ~thin the pairs (ANHCOMP,

ANHPRM) and (HALCOMP, HALPOR) have rank correlations of -0.99 (Table 1, Fig. 2), which createsinstabilities

in regression results (Sect. 7.2, EIelton et al. 1998e). Therefore, to avoid the distracting effects that result fkom the

presence of hib@y correlated variables, ANHCOMP and HALCOMP will not be included as independent variables in

the following example. Thus, the data available for analysis are of the form

[x~l,x~, ...,x~~~,y~], k= 1,2,..., m = 300, (40)

where yk is the value for pressure obtained with them sample element (i.e., y = WAS_PRES at 10,000 yr in Fig. 5),

thex~j= 1,2, . . .. 29, correspond to the variables indicated above with ANHCOMP and HALCOMP ornitte~ and a

value of m = 300 results from pooling the three replicated LHSS (i.e., Rl, R2, R3).

The variables BHPRM, BPCOMP, BPINTPRS, BPPRM and BP VOL do not effect repository pressure under

undisturbed conditions and thus couid be omitted from consideration. However, they are Iefi in this example to

increase the number of variables that must be considered in the stepwise process. Also, leaving such variables in an

analysis can be beneficial from an analysis verification perspective. In particular, an error in the implementation of

the analysis is indicated if such unimportant variables show up as having identifiable effects. Similarly, errors are

indicated when variables are identified as having effects that are inconsistent with their known usage within the

analysis.
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The f~st step selects the input variable Xj that has the largest impact on the output variable y. Specifically, this is

defined to be the variable that has the largest correlation, in absolute value, withy (see Eqs. (35) and (37)). Thus, it

is necessary to calculate the correlations between y and each of the 29 input variables under consideration. For

illustration Table 3 shows the 7 x 7 correlation matrix for y and the six input variables ultimately selected in the

stepwise re~essio% although the fill correlation matrix would actually be (29 + 1) x (29 + 1). Each element in the

correlation mm-ix is the correlation between the variables in the corresponding row and column. As examination of

the correlation matrix in Table 3 shows, the variable WMICDFLG has the hiL@est correlation with waste pressure,

which is denoted by WAS_PRES. Thus, the first step in the analysis selects the variable WMICDFLG. A regression

model relating y to B%i7CDFLG is then developed as shown in Eq. (25) with n = 1 and m = 300. The resultant

regression model is

(41)~ = 8.94X 106+ 2.43 X 106 ● WMICDFLG,

which has an R2 value of 0.508, an a-value of 0.0000, an SRC of 0.712 and a PRESS value of 1.20 x 1015. This

model is sumnmized in Table 4.

The second step selects the input variable Xj that has the largest impact on the uncertainty in the output variable y

that cannot be accounted by WMICDFLG, the variable selected in the first step. This selection is made by defining a

new variable

M

~ ‘y– j ‘y-(8.94X 106 +2.43 X 106* WMICDFLG), (42)

where ~ is defined in Eq. (41), and men calculating the correlations between ~ and the remaining variables. The

variable with the largest correlatio~ in absolute value, with ~ is selected as the second variable for inclusion in the

model. In this example, the selected variable is HALPOR. The regression model at this step wdl thus involve the

two variables WMICDFLG and HALPOR and is constructed as shown in Eq. (6. 10.11) with n = 2 and m = 300. The

resultant regression model is

; = 6.89 X 106+ 2.49 X 106 ● WItf]CDFLG + 1.57 X 108 ● HALPOR.. (43)

This model is sumnmizd in Table 4.

The third step selects the input variable Xj that has the largest impact on the uncertainty in the output variable y

that cannot be accounted for by WMICDFLG and HA LPOR, the two variables from the second step. This selection

is made by deftig a new variable

.; ‘}) – j =-y – (6.89 X 106+ 2.49 X 106 ● WMICDFLG + 1.57 x 108. HALPOR). (44)
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where ~ is defined in Eq. (43). The variable with the largest correlation, in absolute value, with ~ is selected as the

third variable for inclusion in the model. In this example, the selected variable is WGRCOR. The regression model

for this step will thus involve the three variables WMICDFLG, HALPOR and WGRCOR. The resultant regression

model is summarized in Table 4.

As shown in Table 4, the stepwise procedure then continues in the same manner through a total of six steps, until

no more variables can be fouhd with an a-value less than 0.02. At this poinL the stepwise procedure stops.

At each step, the stepwise procedure also checks to see if any variable selected at a prior step now has an a-

value that exceeds a specified level, which is 0.05 in this analysis. If such a situation occurs, the variable will be

dropped from the analysis, with the possibility that it maybe reselected at a later step as other variables are added

and deleted from the model. This type of behavior only occurs when there are correlations between the input

variables. As shown in the example correlation matrix in Table 3, the restricted pairing technique has been

successfid in keeping the correlations between the input variables close to zero. Thus, no variables meet the criterion

to be dropped from the regression model once they have been selected at a prior step.

Another result of this lack of correlation is that the regression coefficients do not change significantly as

additioml variables are added to the regression model. As examina tion of Table 4 shows, the regression coefficients

for a specific variable are essentially the same in all regression models containing that variable. Further, as indicated

in Eq. (31), the R2 values obtained for successive models can be subtracted to obtain the contribution to the

uncertainty in y due to the newly added variable. Thus, for example, WMICDFLG accounts for approximately 51‘A

of the uncertainty in y (i.e., R2 = 0.508), while WMICDFLG and HALPOR together account for approximately 73°/0

of the uncertainty (i.e., R2 = 0.732). As a resulL HALPOR by itself accounts for approximately ~3°/0 – 51’% = 22°/0

of the uncertainty in y. Similar results hold for the other variables selected in the analysis.

Table 4 also reports the PRESS values for the regression models obtained at the individual steps in the analysis.

A decreasing sequence of PRESS values indicates that the regression models are not overfitting the data on which

they are based. An increase in the PRESS values suggests that a model is overfitting the data, and thus that the

stepwise procedure should probably be stopped at the preceding step. As shown by the decreasing PRESS values in

Table 4, the regression models in this analysis are probably not overfitting the data horn which they were

constructed.

Typically, a certain amount of discretion is involved in selecting the exact point at which to stop a stepwise

regression analysis. Certainly, a-values and the behavior of PRESS values provide two criteria to consider in

selecting a stopping point. Other criteria include the changes in the R2 values that take place as additional variables

are added to the regression models and whether or not spurious variables are starting to enter the regession models.

When only very smalI changes in R2 values are taking place (e.g., s 0.0 I ), there is often little reason to continue the
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stepwise process. When a-values approach or exceed 0.01 and a large number of input variables are being

considered it is fairly common tostart getting spurious vtiables in the regression. Such variables appear to havea

small effect on the output variable which in fac$ is due to chance variation. In such situations, a natural stopping

point may be just before spurious variables start being selected. Another possibility is to delete spurious variables

from the regression model.

When the input variables are uncorrelate~ a display of the results of a stepwise regression analysis as shown in

Table 4 contains a large amount of redundant information. A more compact display can be obtained by listing the

variables in the order that they entered in the regression model, the R2 values obtained with the en~ of successive

variables into the regression model, and the SRCS for the variables contained in the final model. Table 5 shows what

this summary looks like for the stepwise regression analysis presented in Table 4.

12.6 The Rank Transformation

Regression and correlation analyses often perform poorly when the relationships between the input and output

variables are nonlinear. This is not surprising since such analyses are based on developing linear relationships

between variables. The problems associated with poor linear fits to nonlinear data can often be avoided by use of the

rank transformation (Iman.and Conover 1979). The rank transformation is a simple concept data are replaced with

their corresponding ranks and then the usual regression and correlation procedures are petiormed on these ranks.

Specifically, the smallest value of each variable is assigned the rank 1, the next largest value is assigned the rank 2,

and so on up to the largest value, which is assigned the rank m, where m denotes the number of observ~tions. The

analysis is km performed with these ranks being used as the values for the input and output variables.

Example regression analyses with raw (i.e., untransformed) and rank-transformed data follow. The output

variable (i.e., y) is cumulative brine flow over 10,000 yr under undisturbed (i.e., EO) conditions from the anhydrite

marker beds (Ml%) to the disturbed rock zone (DRZ, see Fig. ??, Vaughn et al. 1998) that surrounds the repository

(i.e., the cumulative flow values above 10,OOOyr in Fig. 7). The results of the stepwise regression analyses with raw

and rank-transformed data can be summarized in the compact form illustrated in Table 5 and show that the analysis

with rank-transformed data is outperforming the analysis with raw data (Table 6). In particular, the analysis with

rank-transformed data can account for approximately 87’% of the uncertainty in y (i.e., R2 = 0.869), while the

analysis with raw data can account for only 50°A of the uncertainty in y (i.e., R2 = 0.496). Further, the regression

with rank-transformed data indicates a stronger effect for WMICDFLG (i.e., R~ = 0.425) than is indicated by the

regression with raw data (i.e., R2 = 0.423 – 0.320 = O.) 03).

The analysis with rank-transformed data is more effective than the analysis with raw data because the rank

transformation tends to linearize the relationships between the independent variables (i.e., the Xj’s) and the dependent

variable (i.e., ~-). In particular, both WMJCDFLG and ANHPRM show a better defined linear relationship withy after
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the rank transformation (Fig. 8). The rank transformation improves the analysis when nonlinear but monotonic

relationships exist between the independent variables and the dependent variable. When more compIex relationships

exist the rank transformation may do little to improve the quality of an analysis. In such cases, more sophisticated

procedures may be required. For example, the chi square test can be used to test for deviations from randomness in

scatterplots (Kleijnen and Hehon 1998, Wagner 1995); other techniques also exist (Hamby 1994, Saltelli and

Marivoet 1990).

As is the case for stepwise regression analyses, analyses wth SRCS and PCCS of the type presented in Fig. 6 can

ofien be improved with the use of rank-transformed data. When the rank transform is used the resultant plots will

contain standardized rank regression coefficients (SRRCS) and partial rank correlation coefficients (PRCCS). As an

example, the results of analyzing the cumulative brine inflows in Fig. 7 with both raw and rank-transformed data are

presented in Fig. 9, with each plot fi-arne showing the five variables with the largest in absolute value, SRCS, PCCS,

SRRCS and PRCCS as appropriate. As in the comparisons of stepwise regression analyses with raw and rank-

transformed data (Table 6), the analyses with rank-transformed data in Fig. 9 produce outcomes that indicate

stronger effects for individual variables than is the case for the analyses with raw data.

n
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Table 2. Example Rank Correlations in Replicate 1

WGRCOR 1.0000

WMKDFLG 0.0198 I .0000

HA LCOMP 0.0011 0.0235 1.0000

HALPRM -0.0068 –0.02 12 –0.9879 1.0000

ANHCOMP 0.0080 0.0336 -0.0123 -0.0025 1.0000

ANHPRM 0.0049 –0.0183 0.0037 0.0113 -0.9827 1.0000

l?PcoA’fP 0.0242 0.1071 -0.0121 0.0057 -0.0184 0.0078 1.0000

BPPRM -0.0514 -0.0342 0.0035 0.0097 0.0283 -0.0202 –0.7401 1.0000

WGRCOR WMICDFLG HALCOMP HALPRM ANHCOMP ANHPRM BPCOMP BPPRM

Table 3. Correlation Matrix for Variables Selected in Stepwise Regression Analysis for Pressure in the
Repository at 10,000 yr Under Undisturbed Conditions (i.e., y = WAS_PRES at 10,000 yr in

Fig. 5)

Wh41CDFLG 1.0000

HALPOR -0.0348 1.0000
w

WGRCOR ().o~7~ 0.0216 1.0000

ANHPRM 0.0008 -0.0039 0.0130 1.0000

SHRGSSAT -0.0026 0.0395 -0.0171 -0.0042 I .0000

SALPRES 0.0560 –0.0072 0.0010 -0.0117 0.0061 1.0000

WAS_PRES 0.7124 0.4483 0.2762 0.1303 0.0820 0.0993 1.0000

WMICDFLG HALPOR WGRCOR ANHPRkl SHRGSSA T SALPRES WAS_PRES
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Table 4. Results of Stepwise Regression Analysis for Pressure in the Repository at 10,000 yr Under
Undisturbed Conditions (i.e., y = WAS_PRES at 10,000 yr in Fig. 5)

slim’ Variablesb SRO ci-Valuesd R2 Valuese PREssf

1 WMICDFLG

2 WMICDFLG

HALPOR

3 WMICDFLG

HALPOR

WGRCOR

4 WMICDFLG

HALPOR
WGRCOR

ANHPRM

5 WMICDFLG

HALPOR

WGRCOR

ANHPRM

SHRGSSA T

6 WMICDFLG

HALPOR

WGRCOR

ANHPRM

SHRGSSA T

SALPRES
a

b

c

d

e

f

0.712 0.0000 ‘ 0.508 1.20 x 1015

0.729 0.0000 0.732 6.59 X 1014

0.474 0.0000

0.722 0.0000 0.792 5.14 x 101’$

0.468 0.0000
0.246 0.0000

0.722 0.0000 0.809 4.79 x 1014

0.469 0.0000
0.245 0.0000
0.128 0.0000

0.722 0.0000 I

0.466 0.0000

0.246 0.0000
0.129 0.0000

0.070 0.0056

0.718 0.0000 0.818 4.63 X 1014

0.466 0.0000
0.246 0.0000

0.129 0.0000
0.070 0.0055 w

0.063 0.0012

0.814 4.70 x 1014

Stepsm thearrdysis

VariabIesselectedat eachstepwith ANHCOA4P and H.4LCOMP excluded from entry into the regression model

Standardized regression coefficients (SRCS)for variables in the regression model at each step

a-values for variables in the regression model at each step

1? value for the regression model at each step

Predicted error sum of squares (PRESS)valuefortheregressionmodelat eachstep
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Table 5. Compact Summary of Stepwise Regression Analyses for Pressure in the Repository at 10,000
yr Under Undisturbed Conditions (i.e., y = WAS_PRES at 10,000 yr in Fig. 5),

Stepa Variableb

1 WMICDFLG

2 HA LPfX?

3 WGRCOR

4 ANHPRM

5 SHRGSSA T

6 SALPRES

‘Stem in steowise analvsis.

SRCC

0.718

0.466,

0.246

0.129

0.070

0.063

~2d

0.508

0.732

0.792

0.809

0.814

0.818

H..LcOhfPexcluded fiorn entry into regression model.
c Standardized regression coefiicierrts (SRCS)forvariablesin final rqession modeI.
dCmulanve # ~IUe ~i(h ~~ of ~ch variableintoregressionm~eI.

Table 6. Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for
Cumulative Brine Flow over 10,000 yr under Undisturbed Conditions from the Anhydrite Marker
Beds to the Disturbed Rock Zone that Surrounds the Repository (i.e., y = BRAAL/C al 10,000 yr
in Fig. 7),

Raw Data

Steps Variableb SR(Y R2d

a

b

c

d
,

1

2
3
4
5
6
7

ANHPRM

WMICDFLG

WGRCOR

WASTWICK

ANHBCEXP

HALPOR

0.562

–0.309
-0.164

-0.145
–o. 120
–0.101

Steps in sqvise regression analysis.

0.320
0.423

0.449
0.471
0.486
0.496

Rank-Transformed Data I
Variableb I SRRce I R2d I
W.MICDFLG -0.656 0.425

ANHPRM 0.593 0.766

HALPOR -0.155 0.802

WGRCOR -0.152 0.824

HALPRM 0.143 0.845

SALPRES 0.120 0.860

WASTWICK -0.010 0.869

Variables listed in order of seleetion in regression analysis with ANHCCM4P and JiALc014fPexcluded from entry imo re-~sion model.

Standa~izcd regression coefticicnt (SRCS) in final regression model.
Cumu}arive Rz valuewith entry of each variable into regression model.
Standardized rank rc~ssion cocftlcierrts (SRRCS) in final regression model.
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