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ABSTRACT

Plasticity corrections to elastically computed stress intensity
factors are often included in brittle fracture evaluation procedures.
These corrections are based on the existence of a plastic zone in the
vicinity of the crack tip. Such a plastic zone correction is included in
the flaw evaluation procedure of Appendix A to Section XI of the
ASME Boiler and Pressure Vessel Code. Plasticity effects from the
results of elastic and elastic-plastic explicit flaw finite element
analyses are examined for various sizé cracks emanating from the root
of a notch in a panel and for cracks located at fillet radii. The results
of these calculations provide conditions under which the crack-tip
plastic zone correction based on the Irwin plastic zone size
overestimates the plasticity effect for crack-like flaws embedded in
stress concentration regions in which the elastically computed stress
exceeds the yield strength of the material. A failure assessment
diagram (FAD) curve is employed to graphically characterize the
effect of plasticity on the crack driving force. The Option | FAD
curve of the Level 3 advanced fracture assessment procedure of British
Standard PD 6493:1991, adjusted for stress concentration effects by a
term that is a function of the applied load and the ratio of the local
radius of curvature at the flaw location to the flaw depth, provides a
satisfactory bound to all the FAD curves derived from the explicit flaw
finite element calculations. The adjusted FAD curve is a less
restrictive plasticity correction than the plastic zone correction of
Section XI for flaws embedded in plastic zones at geometric stress
concentrators. This enables unnecessary conservatism to be removed
from flaw evaluation procedures that utilize plasticity corrections.

INTRODUCTION

Brittle fracture evaluation procedures as given, for example, in
Section XI of the ASME Boiler and Pressure Vessel Code (ASME,
1998) or the British Standard PD 6493, 1991 use linear elastic stress
intensity factors for crack configurations in simple geometries to
characterize the crack driving force for crack-like flaws located in
regions of more complex geometry. In particular, the stress intensity
factor solutions applied to surface flaws in such geometries are often
those for surface cracks in finite thickness flat plates or in cylindrical

shells. This approach is often called the implicit method since the

stress intensity factor is determined implicitly from (1) the stress
distribution existing at the crack location but calculated in the absence
of the crack, and (2) a stress intensity factor solution for a structure
whose geometry may not resemble that of the region in which the
crack is located. An example of this is a stress concentration region
such as a notch or a fillet radius. The stress intensity factor calculation
directly accounts for neither the geometry of the structure nor the
source or nature of the loading that drives the crack. Explicit
procedures such as energy release rate or domain integral methods that
utilize finite element models with cracks included explicitly in the
model accommodate the interaction of the crack, the component
geometry, and the loading. This interaction can be especially
important when distinguishing between cracks driven by primary
loading, such as pressure, and secondary loading, such as thermal or
residual stresses.

The effects of plasticity in flaw evaluation procedures are often
expressed in terms of a plastic zone correction factor (see, for
example, ASME, 1998) which is predicated on the assumption that the
flaw is located in a region whose behavior is elastic if the flaw did not
exist. Furthermore, in the presence of the crack-like flaw, a plastic
zone existing in the vicinity of the crack tip simulates the plasticity
etfect. The size of the plastic zone is presumed to be small relative to
the crack size or any other characteristic dimension. An effective
crack size is then defined as the sum of the actual crack size and the
distance from the crack tip to the center of the plastic zone (i.e., the
plastic zone radius). For a material that does not strain harden, the
plastic zone radius under these conditions is approximated by the
distance ahead of the crack tip in which the elastically calculated stress
component acting normal to the crack surface exceeds the yield stress.
This is described, for example, in Kanninen and Popelar (1985).

Consider now the case of a flaw contained within a region in
which the stresses calculated in the absence of the flaw exceed the
vield stress of the material while the surrounding structure remains
elastic. Thus the entire system behaves elastically, except for the
localized stress concentration region which undergoes plastic strain.
In this case, the higher stressed zone is subject to a strain concentration
due to “elastic follow-up” of the stiffer or lower stressed regions.
Such a strain concentration may exist, for example, at the radius of a
fillet or the root of a notch. Under sufficiently high magnitudes of




load, the plastic zone partially or completely envelops the flaw. It is
important to distinguish between the localized plastic zone induced by
a geometric stress concentrator and the crack-tip plastic zone, which is
developed due to the presence of a flaw in an otherwise elastic stress
field. A plasticity correction characterized by a crack-tip plastic zone
corrected effective crack size applied to an elastic stress intensity
factor solution, therefore, is suspect for a flaw that is already
embedded in a localized plastic zone. In some cases, however, J
integral solutions estimated by calculating the elastic stress intensity
factor with a crack-tip plastic zone correction and converting the
calculated K; to J may be reasonably accurate even though the
elastically calculated stresses exceed the yield stress. In these cases,
the crack is deep enough to relieve the stresses in the stress
concentration region sufficiently to focus the plasticity at the crack tip.

Friedman (1999) assessed the adequacy of the crack-tip plastic
zone correction for flaws emanating from the root of a notch. The
notch geometry represents a typical concave geometric stress
concentrator defined by parallel surfaces. Another type of concave
geometric stress concentrator is a fillet radius. This geometry,
however, is characterized by surfaces perpendicular to each other. A
concave stress concentrator, such as a notch, fillet, or circular
penetration, differs from a convex concentrator, such as a nozzle
corner, in that a tangent plane constructed at a point on the surface lies
within the structure for the former, while a tangent plane at a convex
surface lies outside the structure. The results reported by Friedman
(1999) for flaws at notches and the results of a study carried out for
surface flaws at flange fillet radii show that under certain conditions,
the crack-tip plastic zone correction is overly conservative. This
provides justification for relaxing the correction for surface flaws at
locations on a concave geometric stress concentrator and forms the
basis for developing general rules for the treatment of plasticity effects
for surface flaws at concave stress concentrators.

CRACK-TIP PLASTIC ZONE CORRECTION TO ELASTIC
STRESS INTENSITY FACTOR SOLUTION

In the implicit flaw evaluation procedure of ASME Section X1
(ASME, 1998), stress intensity factors are calculated by performing a
linear elastic stress analysis without including the flaw in the model.
The stress at the flaw location acting through the depth of the flaw is
then used to determine the stress intensity factor. The plasticity
corrected stress intensity factor is based on the crack-tip plastic zone
correction which is embodied in the X solution in the form:

Klzoeq‘\‘na/Q (nH

The flaw shape parameter Q= é;—q y" &, is the complete
elliptic integral of the second kind and is approximated in Section XI
by &,=1+4.593 (a/ )%, where a and ¢ are the flaw depth and
length, respectively. qy is the plastic zone correction given by:

q, = (Geq” Gys) 16 @)

wheregeq is the equivalent crack opening stress and Gys is the

material yield strength. The corresponding elastic solution Ky, is
given by the same expression with the plastic zone correction

removed; thus, ég replaces Q in Eq. (1). Q is then expressed in terms
of Ky, as:

2
Q=§§ 1__1..{5_!2} (3)

6ma Gys

This gives the following for K; as a function of K;,:

Ki= Kie 703 “
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This expression corresponds to a plastic zone size a, =
(K[/cys)zlén. Note that the plastic zone corrected K| is indeterminate if

the elastically computed K|, 2 GysV6ma . Consistent with the ASME

Section XI plastic zone correction, elastically computed stress
intensity factors determined from explicit rather than implicit flaw
models can be corrected for plastic zone effects using Eq. (4).

FLAWS AT NOTCH ROOTS

Fracture evaluations of shallow surface flaws emanating from a
notch in a panel subject to tensile loading are directed at assessing
flaws in a geometrically concave stress concentration region defined
by two parallel surfaces. Figure [ illustrates the notched panel
configuration and geometry. Three sets of two-dimensional elastic
and elastic-plastic explicit flaw finite element J integral calculations
were performed for various size flaws under plane strain conditions.
The results of these calculations were given by Friedman (1999) and
are summarized below.

Figure 2 shows plots of K; vs. flaw depth obtained using (1) the
implicit flaw procedure presuming a linearized stress distribution
through the flaw depth with no crack-tip plastic zone correction, and
(2) a linear elastic explicit flaw finite element analysis. The two
curves agree reasonably well, thus providing confidence ‘that the
implicit procedure is a reasonable procedure for evaluating stress
intensity factors for flaws at notches.

Elastic and deformation theory plasticity calculations were
conducted using explicit flaw finite element models. Tensile stresses
were applied to the models to assess the ASME Section XI plasticity.
correction for flaws embedded completely within a localized plastic
zone induced by the stress concentrator as well-as for flaws penetrating
the plastic zone into elastic material. Since applied loads produce
higher crack driving forces than equivalent boundary displacements,
these calculations were carried out for the limiting case of the applied
tensile stress, which also maximizes the effect of plasticity on the
crack driving force. J integrals were computed for crack sizes of 0.1,
0.3, and 0.9 inch, and for applied tensile stresses ranging from 5 ksi to
50 ksi.

Plasticity effects are characterized by defining a parameter K; =

{3/}, where J, and I are the elasticaily calculated J integral and

the J integral computed including deformation theory plasticity
modeling, respectively. K. is an inverse measure of plasticity since
lower values of K, indicate an enhanced plasticity effect. K




associated with the crack-tip plastic zone correction prescribed in
ASME Section Xl is given by K, = K;/K|, where K| is determined as a
function of Kj, from Eq. (4). This gives:
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The plasticity effect embodied in K; varies with the applied load.
The load is also characterized by a dimensionless parameter in order to
relate the plasticity correction to the applied load in a general manner.
Designating the dimensionless load parameter by L., curves of K; vs.
L, can be plotted to define relationships between the effect of plasticity
on the crack driving force and the applied loading. Curves of this sort
are often designated as failure assessment diagram (FAD) curves
since, with the inclusion of information on fracture toughness, they
can be utilized to distinguish flaw stability from unstable crack
growth. Hong, et al. (1994) used the Central Electricity Generating
Board (CEGB) R6 FAD method developed by Ainsworth (1984) to
assess flaws in a stress concentration region. In the R6 FAD approach,
L, is defined as the ratio of the applied load to the limit load of the
uncracked ligament.

Friedman (1999) presented the results of deformation plasticity”

calculations based on tensile properties characteristic of both SA-508
Class 2 steel and the higher strength SA-508 Class 4 steel. Using a
variation of the FAD approach, the results showed that for all load
levels and for relatively shallow flaws with depths up to 0.3 inch, the
magnitude of the ASME Section XI crack-tip plastic zone correction is
much greater than that of the plasticity correction obtained using
explicit flaw finite element J integral results. The plasticity correction
is overestimated for these flaw sizes regardless of whether the flaws
are completely embedded in the plastic zone induced by the stress
concentration or they penetrate the plastic zone into elastic material.
(The plastic zone is defined as the region in which the elastically
computed von Mises equivalent stress calculated in the absence of the
flaw exceeds the yield strength of the material.) For the flaw with
depth a = 0.9 inch, on the other hand, the crack-tip plastic zone
correction is not overly restrictive for load magnitudes low enough
that the flaw penetrates beyond the plastic zone into elastic material.
These results demonstrated that the ASME Section XI plasticity
correction should be mitigated for flaws of any size provided they are
embedded within a localized zone of plasticity induced by the stress
concentrator. Therefore, the replacement of the crack-tip plastic zone
correction by a plasticity correction described by a less restrictive
FAD curve is appropriate for a flaw embedded within the plastic zone
existing in the absence of the flaw. .

FLAWS AT FILLET RADII

Relatively shallow surface flaws emanating from flange fillet
radii are considered next. The fillet represents a concave stress
concentrator defined by perpendicular or nearly perpendicular surfaces
(i.e.. a 90" included angle). As illustrated in Fig. 3, the flaw is located
at a point on the surface of the fillet radius that is defined by an angle
of 22.5" from the horizontal and is oriented at the same angle fromi the
horizontal. This location and orientation approximate that of the peak
stress and the maximum stress gradient, respectively, from the surface
of the fillet radius. A localized plastic zone in which a flaw of up to
0.4 inch in depth is embedded characterizes the stress concentration

region. An outer elastic stress field surrounds the plastic zone. Elastic
and elastic-plastic J integral finite element analyses were conducted
using explicit flaw models for three combinations of fillet radius, R,

and flaw depth, a:

R=1"a=02"
R=1",a=04"
R=2"a=04"

The flange is loaded by a uniform pressure acting on the bearing
surface as shown in Fig. 3 Linear elastic and elastic-plastic analyses
were conducted for each of the three models using the same SA-508
Class 2 and Class 4 material properties employed for the notched panel
analysis. Implicit flaw stress intensity factor calculations use the
methodology given in Appendix A of ASME Section XI (ASME,
1998). Eq. (4) implements the ASME Section X1 crack-tip plastic
zone correction.

J integral solutions were determined as functions of applied load
for the three explicit flaw finite element models and converted to
equivalent stress intensity factors K; using:

EJ
= 6
Ki Jl—vz (6)

Figure 4 gives piots of the elastically calculated finite element K|
solutions and the corresponding linear elastic implicif flaw solutions.
The two solutions agree well for all three combinations of fillet radius
and flaw size.

Figure 5 shows plots of the equivalent K; from Eq. (6) against the
applied load obtained from the elastic and deformation plasticity
analyses. Figure 5 also plots the plastic zone corrected ASME Section
X1 K, solutions for both SA-508 Class 2 and Class 4 materials. The
results for the three combinations of fillet radius and flaw depth are
qualitatively similar:

1. Inclusion. of plasticity in the finite element model increases the
crack driving force for load-controlled conditions for which the
loading is applied pressure.

2. Plasticity effects are greater for SA-508 Class 2 material than
for higher strength Class 4 material.

3. The ASME Section XI plastic zone correction to the K;
solution is overly conservative even for relatively low magnitudes of
the applied [oad.

FAD BASED PLASTICITY CORRECTION

The previous sections addressed the generation of plasticity
corrections for two distinct cases of a geometric stress concentration
defined by a concave surface: (1) the stress concentration at the root of
a notch defined by two parallel surfaces (included angle of 0"), and (2)
the stress concentration at a fillet radius defined by two perpendicular
surfaces (included angle of 90"). In both cases, the loading on the
uncracked ligament is combined bending and tension. A more general
relationship expressed in terms of a FAD curve provides an adequate
bound for the two extremes of concave surface geometric stress
concentrators. This curve provides a less restrictive plasticity
correction for flaws in stress concentration regions.

FAD Curve Options
The proposed bounding FAD curve is based on one of the three
options prescribed in the Level 3 (Advanced) Flaw Assessment




Method developed by the British Central Electricity Generating Board
(CEGB) (Ainsworth, 1983), and incorporated into British Standard PD
6493 (1991). The methodology applies to welded structures in
general. Stress concentrations due to structural discontinuities are
accounted for by calculating peak stresses using appropriate stress
concentration factors applied to nominal stresses. Effects of plasticity
induced by the stress concentrator and its interaction with the crack are
not considered in PD 6493 (1991). The stress concentration correction
given by Hong, et al. (1994) is used for this purpose.

The CEGB Level 3 method utilizes a flaw assessment diagram

constructed in the form K, vs. L, where K, = /(J./J) and L, =

Ori/Oys. Okr iS a reference stress that, when normalized with respect to
the yield stress oy, is equal to the ratio of the applied load to the limit
load; i.e., L, = Gi/Cys = F/F,, where F is a measure of the applied load
and F, is the corresponding limit load. Note that the limit load F,, is
associated with the yield stress oy, If the limit load were
characterized in terms of the flow stress, which is defined as the
average of the yield and ultimate strengths, to accommodate strain
hardening, the limit load would be reached at L, = 1.30 for SA-508
Class 2 material or 1.12 for SA-508 Class 2, rather than L, = 1.0.

Three options are given in PD 6493 (1991) for constructing the
K, vs. L; FAD curve. These options, given in order of increasing
complexity, are:

Option 1:

K, = fi(L,) = (1-0.14L,9[0.3+0.7exp(-0.65L,%)] )

This is a relatively simple relationship that is independent of
material properties.
Option 2:

0.5

2
Kr = fZ(I-‘r) = Eeref + 1 Gl‘ﬁf Gref (83)
O ref 2 Egref Gys

& is related to Oy via the Ramberg-Osgood power law

relationship:- €cd/Eys = Crei/Oys + a(omflcys)“, where &, - 6,/E and o
and n are the power law parameters. Since L, = 0,/0y,, Eq. (8a) can
be expressed in terms of L, as:

2 -0.5
L ] &b)

- - n-1 _1__
K,— = fz(Lr) = ]i(l+0er )+ 2m

This relationship, which depends on the power law strain
hardening parameters of the material, applies to all fracture susceptible
materials in general. PD 6493 (1991) gives plots of the Option 2 K,
vs. L; FAD curve for carbon steel, quenched and tempered steel, and
austenitic stainless steel.

Option 3:

K, =1f3(Ly) . &)
f3(L.) is determined directly from the results of explicit flaw

elastic and elastic-plastic finite element analyses. Therefore, all
explicit flaw finite element results correspond to Option 3.

Figure 6 provides plots of the Option 1 FAD curve from Eq. (7)
and the Option 2 FAD curves from Eg. (8b) for SA-508 Class 2 and
Class 4 materials. The Ramberg-Osgood fitting parameters at 70°F are
o =2.144, n = 6.03 for Class 2 material and o = 1.620, n = 9.88 for
Class 4. Figure 6 shows that the Option 2 curves give a somewhat
greater plasticity effect than the Option 1 curve for L, values up to
about 0.7, which encompasses the expected range of L, values. The
plasticity effect for Class 2 material is greater than that for Class 4
material due to the greater strain hardening capacity of the former.

Plasticity effects may be accommodated by using either the
Option 1 or Option 2 methods with calculated values of K that are
reduced by a stress concentration correction term given by Hong
(1994). Comparisons of the Option 3 K, = f3(L,) results obtained from
the explicit flaw finite element analyses are made with the following
FAD curves:

1. Option 1 K, =f,(L,) FAD curve.

2. Option 1 K, = fi(I,) FAD curve with the stress concentration
correction.

3. Option 2 K, =f,(L,) FAD curve. .

4, Option 2 K, = f,(L,) FAD curve with the stress concentration
correction.

5. Chell modification to Option 2 FAD curve.

The stress concentration correction (Hong, 1994) requires that the
K, vs. L, curve of either Option 1 or Option 2 be lowered by the
quantity B, which is as follows:

B=1.582B;{exp[-(1-] .25Lr)2]-0.368} L. £0.8 (10a)

B =8, L.>08 (10b)
where

Bl =0.0416 (R/ a)x().735-u.09071n(R/u)| an

and R/a s the ratio of the local radius of curvature to the flaw depth.
The Chell (1998) modification to the Option 2 FAD curve
replaces Eq. (8b) with the following equation for K;:

=05

I
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18afl+1,2)\n+1 )| O

The first term within the brackets { } of Eq. (12) is associated
with the classical crack-tip plastic zone correction modified to account
for strain hardening, while the second term is associated with the fully
plastic J integral solution employed in J-estimation scheme solutions
(Chell, 1998). The Chell modification introduces the elastically
computed stress intensity factor Ky, as an independent variable needed
to determine the plasticity correction K,. This is similar to the
plasticity correction given by Eq. (5), but differs from Options 1 and 2
as well as the Hong (1994) correction to Options 1 and 2, which
depend only on L, and, for Option 2, the strain hardening parameters.

+oL" (12)




Determination of Reference Stress Parameter L

A general expression for L, is developed from the load
transmitted across a section that is coplanar with the flaw. The load is
expressed in terms of combined membrane and bending loads that act
to open the flaw. Assuming that the limit load of the flawed section is
attained when that section forms a plastic hinge, the locus of
combinations of membrane load P, and bending load M, at the limit
load condition for a section with a rectangular shape and a thickness h,
is given by:

MM + (Po/Piim) = 1 (13)

Piim = Oyeh and My, = ny-h2/4 are the limit loads corresponding
to pure membrane load and pure bending load, respectively, across the
unflawed ligament. Therefore, P, and M, are the “net section” loads.
As illustrated in Fig. 8, this limit equation presumes that the presence
of a crack-like flaw of depth “a” reduces the load carrying capacity
(i.e., the limit load) of the section as if the defect effectively reduced
the section thickness from thickness “t” to effective thickness h=t - a.

Conventional stress analyses are conducted in the absence of the
flaw; thus, loads transmitted across a section are computed with
respect to the “gross section” as if no flaw existed. Letting P," and
M," be the gross section membrane load and bending load,
respectively, acting across the unflawed section (see Fig. 7) at the limit
load condition, P, = P, and M, = M, + P,%a/2. Letting Gy, = P,"t
and og, = 6M(,“/t2, respectively, be the equivalent linear membrane and
bending stresses acting across the unflawed section of thickness t, Eq.
(13) is used to obtain the following expression for the uniform
membrane stress at the limit load condition:

2
Ouo= 225\ 198 381 Lof{ 2| [%B 32 14)
3 1Vlow Tt t) loy ¢

Op/Cy is the ratio of the nominal bending stress to the nominal
membrane stress and is presumed to remain fixed during loading to the
limit condition.

Eq. (14) has been derived assuming conditions of plane stress.
The ASME Section XI procedure presumes plane strain conditions; its
plastic zone correction given by Egs. (2) or (4) likewise applies to
plane strain conditions. Therefore, a revision to the limit load equation
given above for Oy, is necessary. The flaw configurations under
consideration for stress concentration regions are most akin to those
for single-edge cracked plates under various combinations of
membrane and bending loads. Kumar, et al. (1981) present a number
of limit load solutions for edge cracked plates under both plane stress
and plane strain conditions. The ratio of the limit load under plane
strain conditions to the limit load for plane stress is 1.357 for the
single-edge cracked plate under uniform tension, 1.358 for the plate in
three-point bending, and 1.359 for the compact tension specimen. The
uniformity of these solutions justifies increasing the limit load by a
factor of 1.358 for all cases in which flaws exist at a geometric stress
concentrator so that, for plane strain conditions,

2
O = 1.358 2L J(—lei] +9(1_Ej_(21§_+3f‘.) (15)
3 Opm t t Opm t

L, is therefore given by:

L= GMIGM(V =

2
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Ow is the membrane stress applied across the gross section. Gy
and oy differ from 6,, and G, defined in Appendix A to ASME Section
XI as the equivalent membrane and bending stresses acting over the
depth of the flaw. The latter are used to evaluate stress intensity
factors from stress distributions linearized over the flaw depth. Eg.
(15) shows that the membrane stress at the limit load condition
decreases with increasing flaw size.

For the notched panel shown in Fig. 1, 63/0y =2 and t =3". For

. the flange fillet radius illustrated in Fig. 3, op/Gy = 4.126 and t =

14.69" for fillet radius R = 1", and op/oy = 4.306 and t = 14.78" for
fillet radius R = 2". With this information, the Option 1 and Option 2
FAD curves plotted in Fig. 6 and their modifications to accommodate
cracks in stress concentration regions are constructed and compared
with the corresponding Option 3 FAD curves obtained directly from
finite element solutions.

Plasticity Cotrection for Flaws in Notched Panel

Figures 8-10 show plots of the Option 1, Option 2, and Option 3
(explicit flaw finite element analysis) FAD curves for the notched
panel with flaw depths 0.1 inch, 0.3 inch, and 0.9 inch, respectively,
for both SA-508, Class 2 and Class 4 materials. These figures also
include plots of the corresponding ASME Section XI crack-tip plastic
zone correction (PZC) FAD curve for which K, is calculated from Eqg.
(5) as well as the Chell modified Option 2 FAD curve. Figures 8 and
9 apply to relatively shallow flaws. They show that except for very
low values of L, for which the loading magnitude is small enough that
the flaw is not embedded in a plastic zone, the crack-tip plastic zone
correction in the ASME Section XI brittle fracture evaluation
procedure significantly overestimates the plasticity effects. The
deeper 0.9 inch flaw extends beyond the localized plastic zone into
elastic material. Figure 10 shows that the ASME Section X1 plastic
zone correction provides a very good estimate of the plasticity effect
for SA-508, Class 2 material, while it underestimates the plasticity
effect somewhat for Class 4 material.

Figure 8 shows that neither the Option 1 nor Option 2 FAD
curves bound the Option 3 explicit flaw finite element plasticity
correction FAD curve for a very shallow flaw. For the deeper 0.3-inch
flaw, Fig. 9 shows that the Option 2 curve provides a lower bound, but
the Option 1 curve is unconservative. For the 0.9-inch deep flaw that
extends into elastic material, both the Option 1 and Option 2 curves
lower bound the Option 3 curve, but are more restrictive than the
ASME Section XI plastic zone correction.




The Option 1 and Option 2 FAD curves adjusted for the stress
concentration using the correction terms of Eqgs. (10) and (11) lower
bound the plasticity effect at all load levels, although they become
increasingly conservative at higher load levels. Since the Option 1
corrected curve is less restrictive than the Option 2 corrected curve and
is simpler to implement because it does not depend on material
properties, Option 1 is preferred.

The Chell modification to the Option 2 FAD curve as given by
Eq. (12) also gives a reasonably conservative estimate of the plasticity
correction for the shallower flaw depths of 0.1 inch and 0.3 inch for
which the flaws are embedded in a plastic zone. Since the Chell
model was developed specifically for flaws at notches, this result is

not surprising. Figure 10 shows, however, that the Chell modification -

slightly underpredicts the plasticity correction for the 0.9-inch flaw at
relatively low load levels.

Plasticity Correction for Flaws at Flange Fillet Radius

Figures 11-13 show plots of the Option 1, Option 2, and Option 3
FAD curves for flaws located at fillet radii. In all cases, the ASME
Section XI plastic zone correction is overly conservative. The Option
1 and Option 2 curves bound the Option 3 explicit tlaw finite element
curves for relatively large values of the loading parameter L,. but
underestimate the plasticity effect for lower magnitudes of load. The
Option 1 curve corrected for the stress concentration provides a
reasonably conservative estimate of the plasticity effect for all levels
of L,. The Chell modification of the Option 2 FAD curve, on the other
hand, is somewhat of an improvement over the ASME Section XI
correction; however, it is overly conservative in all cases.

The Option 3 explicit flaw finite element FAD curve depends on
the strain hardening characteristics of the material. The Option 3
curves of Figs. 11-13 show that except for low values of L,, the
plasticity correction is more pronounced for SA-508 Class 2 material
than for the higher strength Class 4 material. However, the differences
are small enough that separate bounding FAD curves that distinguish
between the two materials are not warranted.

Summary
The results plotted in Figs. 8-13 show that the Option 1 FAD

curve adjusted for stress concentration effects by the correction given
by Egs. (10) and (11) provides a satisfactory bound to the stress
intensity factor plasticity correction for all cases at all load levels,
Note that the ASME Section XI plastic zone correction is appropriate
for flaw depths and load levels for which cracks penetrate the plastic
region and extend into elastic material. However, the corrected Option
1 curve can still be used since in all cases it provides a conservative
bound to the Option 3 explicit flaw curve.

CONCLUSIONS

The results of explicit flaw finite element calculations for defects
located within localized regions of plasticity lead to the following
conclusions:

1. Elastic implicit flaw ASME Section XI stress intensity factor
solutions for flaws in stress concentration regions are reasonably
conservative estimates of the linear elastic stress intensity factor.
Plasticity corrections developed from explicit flaw finite element
analyses applied to the ASME Section X1 solution should yield
plasticity corrected stress intensity factor solutions that also are
reasonably conservative,

2. The crack-tip plastic zone correction in the ASME Section X1
flaw evaluation procedure overestimates plasticity effects for flaws
embedded in localized stress concentration regions in which the
elastically computed von Mises siress exceeds the material yield
strength. ‘This results from stress intensity factor solutions that are
based on the elevated stresses in the stress concentration region
containing the flaw, but that account directly for neither the geometry
of the region nor the presence of a zone of localized plasticity induced
by the stress concentrator. The ASME Section XI plasticity
correction, however, is appropriate and not overly restrictive if the
flaw size and the magnitude of loading are such that the defect
penetrates the plasticity region and extends into elastic material.

3. A generalized plasticity correction to an elastically computed
stress intensity factor solution is defined using a failure assessment
diagram (FAD) curve. The FAD curve graphically depicts the
plasticity effect as a function of the applied load normalized with
respect to the limit load of the section containing the flaw. The
enhancement of the crack driving force due to plasticity is estimated
conservatively by a FAD curve obtained from Option 1 of the Level 3

CEGB flaw assessment method. The curve is corrected for stress

concentration effects by a term that is a function of both the applied
load and the ratio of the local radius of curvature to the flaw depth.
The bounding Option 1 FAD curve, which in general is much less
restrictive than the ASME Section XI plastic zone correction for flaws
embedded in plastic zones, is independent of material properties.

4. Plasticity effects increase the crack driving force for conditions
of applied loading. A plasticity correction to the linear elastically
computed stress intensity factor solution should, therefore, be included
in fracture evaluations of components subject to such loading. The
Option 1 plasticity correction accommodates different material yield
strengths through the normalized applied load which is inversely
proportional to the yield strength so that the plasticity effect is greater
for lower strength materials. This allows the correction to be
expressed in terms of a FAD curve applicable to all materials.
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Figure 9. FAD Curves for Flaw at Notch
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Figure 10. FAD Curves for Flaw at Notch
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Figure 11. FAD Curves for Flaw at Fillet Radius
R =1inch,a=0.2inch
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Figure 12. FAD Curves for Flaw at Fillet Radius
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Figure 13. FAD Curves for Flaw at Fillet Radius
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