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Abstract. In this paper we pre%ent applications of methods from wavelet analysis to
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to a variational approach in the general case we have the solution as a multiresolution
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extension of our results to the cases of periodic orbital particle motion and arbitrary
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on a biorthogonal wavelet approach. Also we consider a different variational approach,

which is applied to each scale
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I INTRODUCTION

This is the first part of our two-part presentation in which we consider applica-
tions of methods from wavelet analysis to nonlinear accelerator physics problems.
This is a continuation of results from [1]-[6], which is based on our approach to
investigation of nonlinear problems - general, with additional structures (Hamil-
tonian, symplectic or quasicomplex), chaotic, quasiclassical, quantum, which are
considered in the framework of local (nonlinear) Fourier analysis, or wavelet anal-
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gives us the possibility of working with well-localized bases in functional spaces
and with the general type of operator ( differential, integral, pseudodifferential) in
such bases.

We consider the application of multiresolution representation to a general non-

linear dvnamical system with the polynomial type of nonlinearities. In part II we

**) This work was performed under the auspices of the U.S. Departmentof Energy under Contract
No. DE-AC02-98CH10886.



consider this very useful approximation in the cases of orbital motion in a storage
ring, a particle in the multipolar field, effects of insertion devices on beam dynam-
ics, and spin orbital motion. Starting in part IIT A from variational formulation of
initial dynamical problem we construct via multiresolution analysis (part I1I B) ex-
plicit representation for all dynamical variables in the base of compactly supported
(Daubechies) wavelets. Our solutions (part III C) are parametrized by solutions
of a number of reduced algebraical problems, one of which is nonlinear with the
same degree of nonlinearity, and the rest are the linear problems which correspond
to a particular method of calculation of scalar products of functions from wavelet
bases and their derivatives. Then we consider the further extension of our previous
results. In part V we consider modification of our construction to the periodic
case; in part VI we consider generalization of our approach to variational formu-
lation in the biorthogonal bases of compactly supported wavelets, and in part VII
to the case of variable coefficients. In part IV we consider the different variational
approach which is based on ideas of para-products (A) and approximation for a
multiresolution approach, which gives us the possibility for computations in each
scale separately (B).

II  PROBLEMS AND APPROXIMATIONS

We consider below a number of examples of nonlinear accelerator physics prob-
lems which are from the formal mathematical point of view not more than nonlinear
differential equations with polynomial nonlinearities and variable coefficients.

A Orbital Motion in Storage Rings

We consider as the main example the particle motion in storage rings in a stan-
dard approach, which is based on consideration of [7]. Starting from Hamiltonian,
which described classical dynamics in storage rings,

H(7, P,t) = c{x® + mic?}/? 1 ep (1)

and using Serret-Frenet parametrization, we have the following Hamiltonian for
orbital motion in machine coordinates:

H(x,Px737Pz>0,Pa;S) =Po — [1 +f(po‘] ’ [1 + K-+ K, - Z] X (2)
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Then, after standard manipulations with truncation of power series expansion
of square root, we arrive at the following approximated Hamiltonian for particle
motion:
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Then we use series expansion of function f(p,) from [1]:

f5o) = JO) 4 F O + [ OFF 4. =pr =g+ (5)
and the corresponding expansion of RHS of equations (4). In the following we
take into account only arbitrary polynomial (in terms of dynamical variables) ex-
pressions and neglect all nonpolynomial types of expressions; i.e. we consider such
approximations of RHS which are not more than polynomial functions in dynami-
cal variables and arbitrary functions of independent variable s ("time” in our case,
if we consider our system of equations as a dynamical problem).



B Particle in the Multipolar Field

The magnetic vector potential of a magnet with 2n poles in Cartesian coordinates
is

A=Y Kufulz,y), (6)

where f, is a homogeneous function of z and y of order n.
The real and imaginary parts of the binomial expansion of

falz,y) = (& +1y)" ' (7)
correspond to regular and skew multipoles. The cases n = 2 to n = 5 correspond
to low-order multipoles: quadrupole, sextupole, octupole, decapole.

Then we have, in this particular case, the following equations of motion for a

single particle in a circular magnetic lattice in the transverse plane (z,y) ([8] for
designation):

2
(Ll _ks)e=Re |5 Enlo) + (o) (x + \"] (8)
ds?  \p(s)? Ji s n! J
5 r 1
d- kn(s) + tjn(s) ,
k(s = —gm | $ Ry
an
and the corresponding Hamiltonian:
p: +p; 1 \ 2 y’
H(x7p.ta Y, Dy, S) = 9 + kp( )2 kl(s)) ) —2— + kl(s)—é— (9)

Then we may take into account arbitrary but finite number in expansion of RHS
of Hamiltonian (9) and from our point of view the corresponding Hamiltonian
equations of motion are also not more than nonlinear ordinary differential equations
with polynomial nonlinearities and variable coefficients.

C Effects of Insertion Devices on Beam Dynamics

Assuming a sinusoidal field variation, we may consider, according to [9], the an-
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alytical treatment of the effects of insertion devices on bea amic

major detrimental aspects of the installation of insertion devices is the resulting
reduction of dynamic aperture. Introduction of non-linearities ieads to enhance-
ment of the amplitude-dependent tune shifts and distortion of phase space. The
nonlinear fields will produce significant effects at large betatron amplitudes.



The components of the insertion device magnetic field used for the derivation of
equations of motion are as follows:

I

ks
B, P By sinh(k,x) sinh(k,y) cos(kz)
Y
B, = By cosh(k,x) cosh(k,y) cos(kz) (10)
B,

k
= —k—Bo cosh(k,x) sinh(k,y) sin(kz),
Yy

with k2+k2 = k* = (21/))?, where X is the period length of the insertion device, By
its magnetic field, and p the radius of the curvature in the field By. After a canonical
transformation to change to betatron variables, the Hamiltonian is averaged over
the period of the insertion device, and hyperbolic functions are expanded to the
fourth order in x and y (or an arbitrary order).

Then we have the following Hamiltonian:

1
H= [ +pj] +

1
12k2p?
sin(ks)

B 2kp

1

+ [kaz' + kjy* + 3k2K 2%y (11)

po(k22® + k2y°) — 2k.pyay]

We also have in this case nonlinear (polynomial with degree 3) dynamical system
with variable (periodic) coeflicients. As a related case we may consider wiggler and
undulator magnets. We have in the horizontal x — s plane the following equations:

e
i =—-5—B~B; ) 12
z Smfy (s) (12)
§ = i—B,(s),
my

where the magnetic field has periodic dependence on s and hyperbolic on z.

D Spin-Orbital Motion

Let us consider the system of equations for orbital motion

dq 8Ho,b dp aHorb
_—= —— —_—= —— 1
dt op ’ dt dq (13)

and the Thomas-BMT equation for classical spin vector (see [10] for designation)

% =wXs , (14)



Here,

Horp = oy 7?2 + moc? + e®, (15)

we——(aragp- CEBT (G 1Y)
meye \ mgc* (1 +v)  mec \ 1+7v) )
where ¢ = (¢, %, q3), 7 = (P, P2, p3) the canonical position and momentum, s =
(s1, S2, s3) the classical spin vector of length h/2, and © = (7, 79, 73) is the kinetic
momentum vector. We may introduce in 9-dimensional phase space z = (g,p, s)
the Poisson brackets . )
{(£(2),9(2)} = fagp — fo9¢ +[fs X gs] -5, (16)
and the corresponding Hamiltonian equations:
i ={z,H}, (17)
with Hamiltonian
H= Hnrb((Iapa t) + w(%[’\a t) * 8. (18)
More explicitly we have
dq O0H,» O(w:s)
dat op + dp
dp OH,y O(w-s) o
at - 0q - J0q )
ds
i [w x 3]

We will consider this dynamical system also in our second paper in this volume via
an invariant approach, based on consideration of Lie-Poison structures on semidi-
rect products of groups.

Rt fram tha Dol int af
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similar to preceding examples and then also arrive to at some
dynamics.

IIT POLYNOMIAL DYNAMICS

The first main part of our consideration is some variational approach to this
problem, which reduces the initial problem to the problem of solving functional
equations at the first stage and some algebraical problems at the second stage. We
have the solution in a compactly supported wavelet basis. Multiresolution expan-
sion is the second main part of our construction. The solution is parameterized

by solutions of two reduced algebralcal problems one being nonlmear and the sec-
ond being some linear problem, which is obtained from one of the next wavelet
constructions: Fast Wavelet Transform (FWT), Stationary Subdivision Schemes

(SSS), the method of Connection Coefficients (CC).



A Variational Method
Our problems may be formulated as the systems of ordinary differential equations
dx;/dt = fi(z;,t), (,j=1,..,n) , (20)

with fixed initial conditions x;(0), where f; are not more than polynomial functions
of dynamical variables z; and have arbitrary dependence of time. Because of time
dilation we can consider only the next time interval: 0 < ¢ < 1. Let us consider a
set of functions,

®,(t) = xdy;/dt + fiy; (21)

and a set of functionals
1
Eyz) = / &, (t)dt — zy; |1, (22)
0

where y;(¢)(y:(0) = 0) are dual variables. It is obvious that the initial system and
the system

Fi(z) =0 (23)

are equivalent. In the last part we consider a more general approach, which is
based on the possibility of taking into account underlying symplectic structure and
using a more useful and flexible analytical approach, related to bilinear structure
of initial function.

Now we consider formal expansions for x;, y;:

zi(t) = 2i(0) + D Afor(t)  wi(8) = D nfen(t), (24)
k T

where, because of initial conditions, we need only ¢x(0) = 0. Then we have the
following reduced algebraical system of equations on the set of unknown coefficients
M of expansions (24):

> ke X = A7(A;) =0 (25)
k
Its coeflicients are

Hkr = /01 ‘P;;(t)@r(t)dt, 7{ = /01 fz‘(l'j,t)cpr(t)dt. (26)

Now, when we solve system (25) and determine unknown coefficients from formal
expansion (24) we therefore obtain the solution of our initial problem. It should be
noted that, if we consider only the truncated expansion (24) with N terms, then we
have from (25) the system of N x n algebraical equations; and the degree of this



algebraical system coincides with the degree of initial differential system. So, we
have the solution of the initial nonlinear (polynomial) problem in the form

zi(t) = 2;(0) + i XXk (1), (27)
k=1

where coefficients A\¥ are roots of the corresponding reduced algebraical problem
(25). Consequently, we have a parametrization of the solution of the initial problem
by solution of the reduced algebraical problem (25). The first main problem is a
problem of computations of coefficients of the reduced algebraical system. As we
will see, these problems may be explicitly solved in the wavelet approach.

Next we consider the construction the of explicit time solution for our problem.
The obtained solutions are given in the form (27), where X(¢) are the basis func-
tions and A% are roots of the reduced system of equations. In our first wavelet case,
Xk (t) are obtained via multiresolution expansions and represented by compactly
supported wavelets, and A}, are the roots of the corresponding general polynomial
system (25) with coeflicients, which are given by FWT, SSS or CC constructions.
According to the variational method giving the reduction from the differential to
the algebraical system of equations, we need to compute the objects v/ and puj;,
which are constructed from objects:

0; = Xi(7)dr,
0
1
vi; = | Xi(r)X;(r)dr,
i = [ X)X (), (28)

1
Briy = | K1) Xi(7) X;(7)dT
0

for the simplest case of Riccati systems, where the degree of nonlinearity equals
two. For the general case of arbitrary n we have analogous to (28) iterated integrals
with the degree of monomials in integrand, which is one bigger than the degree of
the initial system.

B Wavelet Framework

Our constructions are based on a multi-resolution approach. Because affine group
of translations and dilations are part of the approach, this method resembles the
action of a microscope. We have a contribution to the final result from each scale
of resolution from the whole infinite scale of spaces. More exactly, the closed
subspace V;(j € Z) corresponds to level j of resolution, or to scale j. We consider
a r-regular multiresolution analysis of L?(R") (of course, we may consider any
different functional space), which is a sequence of increasing closed subspaces V;:



Vel clpclVici,co. (29)

satisfying the following properties:

NVv;=0, UV;=L4RY,

jez jEZ
f(z) € V; <=> f(2z) € Vj4,
flz)eVo<=> flzx—k)e W, ,VkeZ" (30)

There exists a function ¢ € 1§ such that {pox(x) = p(x — k), k € Z"} forms a
Riesz basis for V. ‘

The function ¢ is regular and localized: ¢ is C™™%; (=1 is almost everywhere
differentiable and for almost every x € R™, for every integer < r; and for all
integers p there exists constant C), such that

| 0%p(x) [< Cp(1 +[z)7F (31)

Let o(z) be a scaling function, ¥(z) a wavelet function and g;(r) = p(z — 7).
Scaling relations that define ¢, 1 are

N-1 N—-1

plz) =Y arp(2z — k) = ) appr(22), (32)
k=0 k=0
N-=2

P(a) = Y (=1 farip(2z + k), (33)
k=-1

Let indices ¢, j represent translation and scaling, respectively and
pile) = 2Pp(Dz —0) ; (34)

then the set {p;x}, k € Z" forms a Riesz basis for V;. The wavelet function 1 is
used to encode the details between two successive levels of approximation. Let W;
be the orthonormal complement of V; with respect to Vji:

Then just as V; is spanned by dilation and translations of the scaling function, so
are W, spanned by translations and dilation of the mother wavelet ¢ (x), where

Win(z) = 220z — k). (36)
All expansions which we used are based on the following properties:
{¥it}, Jj.k €Z isa Hilbertian basis of L*(R)
{¥jk}i>okez is an orthonormal basis forL*(R),
i
L*(R) = Vo W, (37)
j=0
or

{@ok Vjx}i>okez is an orthonormal basis forLz(R).



C Wavelet Computations

Now we give construction for computations of objects (28) in the wavelet case.
We use a compactly supported wavelet basis: an orthonormal basis for functions
in L*(R).

Let f: R — C and the wavelet expansion be

@) = 3 erorla) + 3 X epptbela) (38)

LeZ j=0keZ

If in formulae (38) cjx = 0 for j > J, then f(z) has an alternative expansion in
terms of dilated scaling functions only f(x) = ¥ cjppe(x). This is a finite wavelet
€Z

expansion, and it can be written solely in terms of translated scaling functions.
Also we have the shortest possible support: scaling function DN (where N is even
integer) will have support [0, N — 1] and N/2 vanishing moments. There exists
A > 0 such that DN has AN continuous derivatives; for small N, A > 0.55. To
solve our second associated linear problem we need to evaluate derivatives of f(x)
in terms of p(z). Let ¢} = d"pe(x)/dx™. We consider computation of the wavelet
- Galerkin integrals. If f%z) is a d-derivative of function f(z), then we have
f4z) = Syapi(x), and values ¢¢(x) can be expanded in terms of ¢(x),

¢4 (x) = Y Anomlz), (39)
A= [ GH@)om(z)dx,

where A, are wavelet-Galerkin integrals. The coefficients )\, are 2-term connection
coefficients. In general we need to find (d; > 0),

00
didz...dn __ d;
Afin = [ Mot @de (40)
-0
For Riccati case we need to evaluate two and three connection coefficients

oo
A = [7 @)t @)dn, A = [ ot @) @)pt @ . (41)
- — 00
According to the CC method [11] we use the next construction. When N in the
scaling equation is a finite even positive integer, the function ¢(x) has compact
support contained in [0, N — 1]. For a fixed triple (d,, dy, d3) only some A;’;,f"d" are
nonzero: 2— N << N-2, 2-N<m<N-2, |[f—m|<N -2 There are
M =3N?% - 9N + 7 such pairs (£,m). TIf A4%% js an M-vector, whose components
are numbers A%%2% then we have the first reduced algebraical system : A satisfy

m

the system of equations (d = d; + dy + d3),
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By moment equations we have created a system of M + d + 1 equations in M
unknowns. It has rank M and we can obtain unique solution by combination of LU
decomposition and QR algorithm. The second reduced algebraical system gives us
the 2-term connection coefficients:

ANBE = 21N G =dy dy, Ay =Y apag-2e4p (43)
P

For a nonquadratic case we have additional analogously linear problems for objects
(40). Solving these linear problems, we obtain the coefficients of a nonlinear alge-
braical system (25), and after that we obtain the coefficients of wavelet expansion
(27). As a result we obtained the explicit time solution of our problem in the base
of compactly supported wavelets. We use for modelling D6, D8, and D10 functions
and programs RADAU and DOPRI for testing.

In the following we consider the extension of this approach to the case of periodic
boundary conditions, the case of presence of arbitrary variable coefficients and a
more flexible biorthogonal wavelet approach.

IV EVALUATION OF NONLINEARITIES SCALE BY
SCALE

A Para-product and Decoupling between Scales

Before we consider two different schemes of modification of our variational ap-
proach we consider different scales separately. For this reason we need to compute
errors of approximations. The main problems come of course from nonlinear terms.
We follow the approach from [12].

Let P; be the projection operators on the subspaces 1, j € Z:

P, : I*(R) = V; (44)
(Pf 'T) Z<f7¢],k>¢1,() )

and ¢J; are projection operators on the subspaces W:

Q=Pi1—PF; . (45)

So, for u € L*(R) we have u; = Pju and u; € Vj, where {V;},j € Z is a
multiresolution analysis of L?(R). It is obvious that we can represent u? in the
following form:

= 23 (Pu(Qu) + Y (@)@ + (40



In this formula there is no interaction between different scales. We may consider
each term of (46) as bilinear mappings:

My Vi x Wy = L*(R) = V;@;5, W (47)

My W, x W, = LAR) =V; ©;5; Wy . (48)

For numerical purposes we need formula (46) with a finite number of scales, but
when we consider limits j — oo we have

u® =Y (2Pu + Q;u)(Q;u), (49)

JEZ

which is para-product of Bony, Coifman and Meyer.

Now we need to expand (46) into the wavelet bases. To expand each term in (46)
into wavelet basis, we need to consider the integrals of the products of the basis
functions, e.g.,

!

M b, K, ) = [ h@)o (o)ud ()dx, (50)

where 7' > j and
Wi(z) =272z — k) (51)
are the basis functions. If we consider compactly supported wavelets then
Midww(k K. 0)=0 for |k—Fk|> ko, (52)
where ky depends on the overlap of the supports of the basis functions and
|Myww(k —K,2k—¢)| < C-27M (53)

Let us define j; as the distance between scales so that for a given ¢ all the coefficients
in (53) with labels r = j — j', r > j, have absolute values less than . For the
purposes of computing with accuracy ¢, we replace the mappings in (47), (48) by

My Vi x Wy =V @j<jr<io Wy (54)
My : Wy x Wy = V; @ucyci Wy - (55)

Since
Vi®jcircio Wy = Vig-1 (56)

and



Vi C V=1, W, Cc Vi (37)

" we may consider bilinear mappings (54), (55) on Vj,_; x Vj,_;. For the evaluation of
(54), (55) as mappings Vj _; x Vj,_; — Vj,_1, we need significantly fewer coefficients
than for mappings (54), (55). It is enough to consider only coefficients

Mk K0 =27 [~ o = Bpla - F)ele - Hdx, (58)
where ¢(x) is the scale function. Also we have
Mk, K, 0) = 2792 My(k — £,k — 0), ' (59)
where
Mop,g) = [ #(z = p)olz — Q)pla)dx (60)

Now, as in section (3C), we may derive and solve a system of linear equations to
find My(p, q).

B Non-regular Approximation

We use the wavelet function v (z), which has k vanishing moments [ 2%y (xr)dx =
0, or equivalently ¥ = 3 cyp¢(x) for each k, 0 < k < K.

Let P; again be the orthogonal projector on space V;. By tree algorithm we have
for any u € L*(R) and ¢ € Z, that the wavelet coefficients of Py(u), i.e. the set
{<u,v¥jx >,j <€—1,k € Z}, can be computed using hierarchical algorithms from
the set of scaling coefficients in V}, i.e. the set {< u, g >,k € Z} [13]. Because
for scaling function ¢ we have in general only [ ¢(x)dx = 1, therefore we have for
any function v € L?(R):

lim | 29/2 <u, 0 > —uz) |[=0 . (61)

j—00,k277 —x

If the integer n(y) is the largest one so that
/xaap(z)dx =0 for 1<a<n , (62)

then if u € C™Y with w"*1 is bounded we have for j — oo uniformly in k:
| 2972 < u, 050 > —u(k279) |= 0279y, (63)

Such scaling functions with zero moments are very useful for us from the point
of view of time-frequency localization, because we have for the Fourier component
$(w) of them, that exists some C'(¢) € R, so that forw - 0 ®(w) =1+ C(p)
| w |**2? (remember that we consider r-regular multiresolution analysis). Using this



type of scaling functions lead to superconvergence properties for general Galerkin
approximation [13]. Now we need some estimates in each scale for non-linear terms
of type u — f(u) = fou, where fis C* (in previous and future parts we consider
only truncated Taylor series action). Let us consider the non-regular space of
approximation V' of the form

g<j<p-1

with I//P\Z C W;. We need an eflicient and precise estimate of f ou on V. Let us set
for g € Z and u € L*(R)

I1fa(w) =2792 3" F(29% <u,0pk >) - g - (65)
keZ

We have the following (important for us) estimation (uniformly in q) for u, f(u) €
H®FD [13):

1P, (f () = T fa(w)llr2 = O (27F09) (66)
For non-regular spaces (64) we set
[ =11fw)+ > Py [fe(w) (67)
{=q,p—-1

Then we have the following estimate:
1P=(f(w) = [T fp(@)llze = O(270+D9) (68)

uniformly in q and V' (64).
This estimate depends on g, not p, i.e. on the scale of the coarse grid, not on
the finest grid used in definition of V. We have for total error

1/ (w) = TT 5 @)l = 1/ (w) = Pp(f(@))lle2 + 1Py(f(w) = [T fp @)z, (69)

and since the projection error in V: ||f(u) — Py (f(u)) ;2 is much smaller than
the projection error in V;, we have the improvement (68) of (66). In our concrete
calculations and estimates it is very useful to consider our approximations in the
particular case of c-structured space:

V=V, + 3 span{y;, k€ 2070 —¢,207Y 4 ¢] mod 27} . (70)

Jj=q



V  VARIATIONAL WAVELET APPROACH
FOR PERIODIC TRAJECTORIES

We start with an extension of our approach to the case of periodic trajectories
The cquauuua O1 mMotion CUITE‘:SI)OI‘G‘ i
be formulated as a particular case of the general system of ordinary differential
equations dx;/dt = fi(xj,t), (i, =1,..,n), 0 < ¢ <1, where f; are not more than
polynomial functions of dynamical variables z; and have arbitrary dependence of
time but with periodic boundary conditions. According to our variational approach

we have the solution in the fn]]nwmo‘ form:
zi(t) = 2:0) + 3o ANoe(t),  @i(0) = zi(1), (71)
k

where AF are again the roots of reduced algebraical systems of equations with the

same degree of nonlinearity, and (t) corresponds to useful types of wavelet bases

(frames). It should be noted that coefficients of reduced algebralcal system are

the solutions of additional linear p

wavelet construction and type of bases.
This linear problem is our second reduced aigebraical problem. We need to find

in general situation objects

oC
Adrde.dn _ [ 7 difo\a. [
Nty by / 11 Pe; \X)UX, \
-0

but now in the case of periodic boundary conditions. Now we consider the procedure
of their calculations in the case of periodic boundary conditions in the base of
periodic wavelet functions on the interval [0,1] and corresponding expansion (71)
inside our variational approach. Periodization procedure gives us

Pip(x) = pip(z = 0) (73)
tez
l/)], Z Vil —
tez
So, ¢,v¢ are periodic functions on the interval [0,1]. Because @;; = @;p if
k = K'mod(2'), we may consider only 0 < k < 2/, and, as a consequence, our
e Var Yt Lo a1 T2Ia 11 il T cean foa 1201 raa1 T
JTTUILHTES0OIULION I1dd ulle 10111 U V] = L lU, lJ, WIUIL Vj = dpa li J,k}k—o ‘kJ 111-
Jj20
PRRRNSUIRE Y IR [k | 4PN SENN. JUNUNIRPRPY (A (R, [P TS PR RPN NN £ 73 ) —
LERIaLION DYy palls ald perioudicCity Bives useliul 1elatlols peltweenl O jJectd \lé}, il
particular the quadratic case (d = dy + d»
didy _ dy A 0,d2+d; _
Ak1,k2 - (—1) Ak1,k2 7/\k1 ky — AO ko—ky — Akz ki ‘ (74)

So, any 2-tuple can be represented by A¢. Then our second additional linear prob-
lem is reduced to the eigenvalue problem for {A{}o<x<o; by creating a system of 2/



homogeneous relations in A¢ and inhomogeneous equations. So, if we have a dila-
tion equation in the form ¢(x) = V2 Y 4cz hrp(2x — k), then we have the following
homogeneous relations:

" d ‘Ad [\‘7_\1 Ll . - . d P
Ak < L L hl’A€+2k—m7 (75)

or in such form AX? = 29X\ where \¢ = {Ag}ogkgw. Inhomogeneous equations
are:

. T . A . A —a PREEEEN
S MEAE = di27I7?, (76)
¢
where objects M2(|¢| < N — 2) can be computed by a recursive procedure
‘ Y p
. . k -
Me — o—i2d+1)2p0d  Afk _ - ok, b { \nk —Ipfl o AME =1 (77)
[ P lyle, A l[ Raundi NP 73 9 U’l / LJ LVIO, AVlO 1. \l l}

So, we reduced our last problem to a standard linear algebraical problem. Then

we used the same methods as in parf TIT C. As a result we obtained for closed

ICuiiys

trajectories of orbital dynamics described by Hamiltonians from part IT the explicit
time solution (71) in the base of periodized wavelets (73).

VI VARIATIONAL APPROACH IN BIORTHOGONAL
WAVELET BASES

Now we consider further generalizatlo of our variational wavelet approach In
tlons to our nonlinear problems.

Before this we consider the generalization of our wavelet variational approach to
the symplectic invariant calculation of closed loops in Hamiltonian systems [3]. We
also have the parametrization of our solution by some reduced algebraical prob-
lem; but in contrast to the general case where the solution is parametrized by
construction based on scalar refinement equation, in the symplectic case we have
parametrization of the solution by matrix problems — Quadratic Mirror Filters

equations [3]. But because mtegrand of varlatlonal functionals is represented by a
bilinear form (scalar product), it seems more reasonable to consider wavelet con-
structions [15] which take into account all advantages of this structure.

The action functional for loops in the phase space is [16],

F(v) = [ pia~ [ H(t(0)dt (79)

The critical points of F' are those loops v, which solve the Hamiltonian equations
associated with the Hamiltonian H and hence are periodic orbits. By the way,



all critical points of F' are the saddle points of the infinite Morse index, but sur-
prisingly this approach is very effective. This will be demonstrated using several
variational techniques starting from minimax due to Rabinowitz and ending with
Floer homology. So, (M,w) is equal to symplectic manifolds, H : M — R, H is

Hamiltonian, X H is the uniaue Hamiltonian vector field defined hv

A AGRALIIIVVAIIGRARy 4 B3 VT UL UT daQainnidViiaGal VOL LU ataa Lliaanatta

wy/ Y. (Y Y= ——AH (Y1) 7 AT » c AT (70)

\“2H\wjy, Uy GLi\d j\UV ), VT & pive, LT AVE \fJ)

whora 11 tha cumnlacntio ctriictnra T _narindic enalitinan »I(#) Af tha amilfanian

YYiliuviv Wo1o uiiuo O“V lllyl(;\;l;l\; aviuLuvulLlco F S § lJUl 1UuUiL suviuuvivlil 1‘/\(’1 Ul ui11C 1iailiinuvuliiiall
equations,

£ =Xg(zr) onM , (80)

is a solution, satisfying the boundary conditions z(7T') = z(0),T > 0. Let us
consider the loop space ) = C®(S!, R*), where S = R/Z, of smooth loops in
R?™. Let us define a function ® : Q — R by setting
foYED! i A P ~ A+ [1 Ir
Y\J/}—I/O 2\ d/,..b/U/b
The critical points of ® are the periodic solutions of £ = Xg(z). Computing the
derivative at x € Q) in the direction of y € €2, we find

! — IT

\ 1 a) _ | SR (o) e~ 2 (Q\
)= = ¢1—cg)|6=0—/0 < —vr—Vii\x),y > al (82)

(X { .
ICFAY

$
Consequently, ®'(x)(y) = 0 for all y € Q if the loop x satisfies the equation

—Ji(t) - VH(xz(t)) =0 ; (83)

i.e., z(¢) is a solution of the Hamiltonian equations, which also satisfies 2(0) = x(1),
i.e., the periodic of period 1. Periodic loops may be represented by their Fourier
series:

t) —_ z 6k27rJt.iL’k, T € RQk, (84)

LcZ,
keZ

where J is the quasicomplex structure. We give relations between the quasicomplex
structure and wavelets in our second paper in this volume (see also [3]). But now

we nead to take into account underlving h\]innnr structure ‘nn \xm\m]nfg

1LV VY VAT 11100 QULUULIY URIUT Iy i1 RJEiilL TR SviuLvul v WaQyTiTu

We started with two hierarchical sequences of approximations spaces [15]:
VacV,cVicVicV...,, ...VacV,cVcVicl,..., (85)

and as usual, W7 is a complement to V; in V7, but now not necessarily an orthogonal
complement. New orthogonality conditions now have the following form:

Wy L Vo, Wy L Vo, Vi LW, Vi LW (86)



translates of ¥ span Wy, translates of " span Wo. Biorthogonality conditions
are

< Wk, Yy >= /:Vo in(x) e (2)dx = S 0y, (87)

where y;,(z) = 2/%2(27z — k). Functions ¢(z), p(x — k) form a dual pair:

<plr —K) .ol — ) >=08. < oplr—k) . wlr—0>=0 for VYk. V/f (8&8)
A 71 TN /- ey ST AR SN /- el \ /

\ . . : :
Functions ¢, ¢ generate a multiresolution analysis. ¢(x —k), ¥(x — k) are synthesis

functions, and ¢(z — £), ¥(z — ¢) are analysis functions. Synthesis functions are
biorthogonal to analysis functions. Scaling spaces are orthogonal to dual wavelet

spaces. Two multiresolutions are intertwining V; + W, = Vi, Vi+ W, = V.
These are direct sums but not orthogonal sums.
So, our representation for a solution now has the form
FOEY — N Bl (1) (R0
S\ = 2 05k Wikt ), \OJ)
Ik

where synthesis wavelets are used to synthesize the function. But 5jk comes from
inner products with analysis wavelets. Biorthogonality yields

bim = [ () dan (2} (90)

So, now we can introduce this more complicated construction into our variational
approach. We have a modification only on the level of computing coefficients of
a reduced nonlinear algebraical system. This new construction is more flexible.
The biorthogonal point of view is more stable under the action of a large class of
operators, while the orthogonal (one scale for multiresolution) is fragile all compu-

3

tations are much simpler and we accelerate the rate of convergence. In all types of
Hamiltanian rolanla hisrh haced Aan gnme hilinoar ot +t11rag lantir
1i1aliiiuuldiiall \,a,u,u1auuu, Wlllbll ouc IJG;DUU Uil OUILLIT pllilical Dbl Ubbul co \D)’ lll}llC\/Ulb

or Poissonian structures, bilinear form of integrand in variational integral), this
framework leads to greater success.

VII VARIABLE COEFFICIENTS

In the case when we have a situation where our problem is described by a system
of nonlinear (polynomial)differential equations, we need to consider extension of
our previous approach, which can take into account any type of variable coefficients

(p eI'IOdlC regular or smgular) We can produce such an approach if we add in our
construction an additional refin hich information
about variable coefficients [17]. According to our variational approach we need to

compute integrals of the form

ement equauiuu, which would encode all infor



[ b0 (2 = k) () (2™~ ko), (91)

Lm.m P N arn avhitravy flinrtinng af +imae whare trial fiinatiang aatiaf
VIITITC HHUW UZ]\b} alc ailvliul daly TUILICLIvIS Ul Lle, wliclo viial lullbblUllD W]_, k’/ aumy
a refinement equation:
wi(t) = ) aupi(2t — k) (92)
keZ
T o cnnicidor all anscnsid o bt ~a o tlhin Alaco AF fnrantlsr iy Lan

If we consider all Lumpuuauuus in the class of w"rpa y Suppor ted W*‘velets tnen
only a finite number of coefficients do not vanish. To approximate the non-constant
coeflicients, we need to choose a different refinable function 3, along with some
local approximation scheme,

(Bef) () := Y For(f)es (2°t — k), (93)
a€Z

where Fy are suitable functionals supported in a small neighborhood of 2%k, and
then replace b;; in (91) by Beb;;(f). In this particular case, one can take a char-
acteristic function and can thus approximate non-smooth coeflicients locally. To

guarantee sufficient accuracy of the resulting approximation to (91) it is important

to have the flexibility of choosing 3 different from 1, 9. In the case when D is
some domain, we can write

1 [N L < 1 7N FN
0;5{t) Ip= 2 0ij{l)XD\4
0<k<2t

where xp is a characteristic function of D. So, if we take @4 = xp, which is again
a refinable function, then the problem of the computation of (91) is reduced to the
problem of calculation of the integral

H(k‘l,kg, k‘g, k4) = H(k) = (95)
[ oa(@t — k1) oa(2t — ko) (27t — k)i (2°t — ky)dx

19

The key point is that these integrals also satisfy some sort of refinement equation:

27 MH(k) =Y by oH(E), p=d +do. (96)
Zez

This equation can be interpreted as the problem of computing an eigenvector. Thus,
we reduced the problem of the extension of our method to the case of variable
coefficients to the same standard algebraical problem as in the preceding sections.
So, the general scheme is the same one, and we have only one more additional linear

algebralc problem by whlch we, in the same way, can parameterize the solutions of

An extended version and related results may be found in [1]-[6].
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