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Abstract. In this paper we present applications of methods from wavelet analysis to 
polynomial approximations for a number of accelerator physics problems. According 
to a variational approach in the general case we have the solution as a multiresolution 
(multiscales) expansion on the base of compactly supported wavelet basis. We give an 
extension of our results to the cases of periodic orbital particle motion and arbitrary 
variable coefficients. Then we consider rnore flexible variational method which is based 

on a biorthogonal wavelet approach. Also we consider a different variational approach, 
which is applied to each scale. 

I INTRODUCTION 

This is the first part of our two-part presentation in which we consider applica- 
tions of methods from wavelet analysis to nonlinear accelerator physics problems. 
This is a continuation of results from [l]-[6], which is based on our approach to 
investigation of nonlinear problems - general, with additional structures (Hamil- 
tonian, symplectic or quasicomplex), chaotic, quasiclassical, quantum, which are 
considered in the framework of local (nonlinear) Fourier analysis, or wavelet anal- 
ysis. Wavelet analysis is a relatively novel set of mathematical methods, which 
gives us the possibility of working with well-localized bases in functional spaces 
a,nd with the general type of operators (differential, integral, pseudodifferential) in 
such bases. 

We consider the application of multiresolution representation to a general non- 
linear dynamical system with the polynomial type of nonlinearities. In part II we 

* *) This work was performed under the auspices of the U.S. Departmentof Energy under Contract 
No. DE-ACOZ-98CH 10886. 
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cronsider this very useful approximation in the cases of orbital motion in a storage 
ring, a particle in the multipolar field, effects of insertion devices on beam dynam- 
ics, and spin orbital motion. Starting in part III A from variational formulation of 
initial dynamical problem we construct via multiresolution analysis (part III B) ex- 
plicit representation for all dynamical variables in the base of compactly supported 
(Daubechies) wavelets. Our solutions (part III C) are parametrized by solutions 
of a number of reduced algebraical problems,’ one of which is nonlinear with the 
same degree of nonlinearity, and the rest are the linear problems which correspond 
to a particular method of calculation of scalar products of functions from wavelet 
bases and their derivatives. Then we consider the further extension of our previous 
results. In part V we consider modification of our construction to the periodic 
case; in part VI we consider generalization of our approach to variational formu- 
lation in the biorthogonal bases of compactly supported wavelets, and in part VII 
to the case of variable coefficients. In part IV we consider the different variational 
a‘pproach which is based on ideas of para-products (A) and approximation for a 
nnultiresolution approach, which gives us the possibility for computations in each 
scale separately (B). 

II PROBLEMS AND APPROXIMATIONS 

We consider below a number of examples of nonlinear accelerator physics prob- 
lems which are from the forma1 mathematical point of view not more than nonlinear 
differential equations with polynomial nonlinearities and variable coefficients. 

A Orbital Motion in Storage Rings 

We consider as the main example the particle motion in storage rings in a stan- 
dard approach, which is based on consideration of [7]. Starting from Hamiltonian, 
which described classical dynamics in storage rings, 

X(r’, P, t) = c{7r2 + m~c2}1/2 + eq5 , (1) 

and using Serret-Frenet parametrization, we have the following Hamiltonian for 
orbital motion in machine coordinates: 

X(x, Pz, 2, p,, a,~,; s) = p, - [I + f(pa] . [l + K, . x + K, . z] x (2) 
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Then, after standard manipulations with truncation of power series expansion 
of square root, we arrive at the following approximated Hamiltonian for particle 
motion: 

3c = I . [2)2 + H . z12 + [pz - H - xl2 
2 P + f (PA 

+p,-[l+KX*x+Kz-,_] (3) 

.f(pa) + ; * [KZ + g] - x2 + ; - [KZ - g] - z2 - N - x2 + 

; . (X3 - 32~~) + & . (2” - 6x2a2 + x4) 

1 L eV( s) 
+,2*=*x. 1 , 

and the corresponding equations of motion: 
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Then we use series expansion of function f (PO) from [I]: 

f(p,) = f(0) + f’(O)p, + f”(o);P; +. . . = p, - -+ . fp; +. . . (5) 

and the corresponding expansion of RHS of equations (4). In the following we 
take into account only arbitrary polynomial (in terms of dynamical variables) ex- 
pressions and neglect all nonpolynomial types of expressions; i.e. we consider such 
approximations of RHS which are not more than polynomial functions in dynami- 
c<al variables and arbitrary functions of independent variable s (“time” in our case, 
if we consider our system of equations as a dynamical problem). 



B Particle in the Multipolar Field 

The magnetic vector potential of a magnet with 2n poles in Cartesian coordinates 
is 

where fn is a homogeneous function of x and y of order n. 
The real and imaginary parts of the binomial expansion of 

fn(x, Y> = (;: + iYl>” (7) 

correspond to regular and skew multipoles. The cases n = 2 to n. = 5 correspond 
to low-order multipoles: quadrupole, sextupole, octupole, decapole. 

Then we have, in this particular case, the following equations of motion for a 
single particle in a circular magnetic lattice in the transverse plane (.t’, 3) ([g] for 
dlesignat ion) : 

(8) 

and the corresponding Hamiltonian: 

PZ + P; 
W~,P.~Y,P,J) = 2 + 

- Re c b (S) + i.L (S) 

n>2 (n+ l)! 
. (x + iy)(n+l’ 1 

(9) 

Then we may take into account arbitrary but finite number in expansion of RHS 
of Hamiltonian (9) and from our point of view the corresponding Hamiltonian 
equations of motion are also not more than nonlinear ordinary differential equations 
with polynomial nonlinearities and variable coefficients. 

C Effects of Insertion Devices on Beam Dynamics 

Assuming a sinusoidal field variation, we may consider, according to [9], the an- 
a.lytical treatment of the effects of insertion devices on beam dynamics. One of the 
major detrimental aspects of the installation of insertion devices is the resulting 
rleduction of dynamic aperture. Introduction of non-linearities leads to enhance- 
ment of the amplitude-dependent tune shifts and distortion of phase space. The 
nonlinea,r fields will produce significant effects at large betatron amplitudes. 



The components of the insertion device magnetic field used for the derivation of 
equations of motion are as follows: 

B, = $ . Bo sinh(k,z) sinh(k,y) cos(k~) 

B, = B, cosh(k,z) cosh(k,y) cos(ka) 

B, = --;I& cosh(k,z) sinh(k,y) sin(k,-), 
Y 

(10) 

with k%+ki = k2 = (2n-/A)“, where X is the period length of the insertion device, B. 
ilts magnetic field, and p the radius of the curvature in the field Bo. After a canonical 
transformation to change to betatron variables, the Hamiltonian is averaged over 
the period of the insertion device, and hyperbolic functions are expanded to the 
fourth order in x and y (or an arbitrary order). 

Then we have the following Hamiltonian: 

H = ;[p: +y;] + &[k:x2 + k;y21 

+ 12k2p2 
L[k:x4 + k;y4 + 3k;k2x2y2] 

- TbX(kgx2 + k;y’) - 2k,p,xy] . 

We also have in this case nonlinear (polynomial with degree 3) dynamical system 
with variable (periodic) coefficients. As a related case we may consider wiggler and 
undulator magnets. We have in the horizontal x - s plane the following equations: 

32 = -B-&B,(s) , 

i+ = i-&B,(s), 

where the magnetic field has periodic dependence on s and hyperbolic on 2. 

D Spin-Orbital Motion 

Let us consider the system of equations for orbital motion 

dq =fo,, dp dHort, 
dt= ap’ dt=-dq 

(12) 

(13) 

and the Thomas-BMT equation for classical spin vector (see [lo] for designation) 

ds 

dt = IL’ x s ’ 
(14) 



Here, 

where q = (ql, q2, qa),p = (pl,p2,p3) the canonical position and momentum, s = 
(sl, s2, s3) the classical spin vector of length ti/2, and x = (7rr, 7r2, 7r3) is the kinetic 
momentum vector. We may introduce in g-dimensional phase space z = (q,p, s) 
the Poisson brackets m 

Lf(4,9(4) = fP9P - fp9g + Ps x 9sl - s > (16) 
and the corresponding Hamiltonian equations: 

g = (2, H}, (17) 
with Hamiltonian 

H = %&I, P, t) + w(% P, t) - s. 

More explicitly we have 

dq a&+, 
+ a( 

w * s) 
_- 

dt- ap 3P 
dp aHorb a(w - s) 

x=-x-- aq 
ds 
- = [w x s] 
dt 

w 

(19) 

We will consider this dynamical system also in our second paper in this volume via 
a,n invariant approach, based on consideration of Lie-Poison structures on semidi- 
rlect products of groups. 

But from the point of view used in this paper we may consider approximations 
similar to preceding examples and then also arrive to at some type of polynomial 
dynamics. 

III POLYNOMIAL DYNAMICS 

The first main part of our consideration is some variational approach to this 
problem, which reduces the initial problem to the problem of solving functional 
equations at the first stage and some algebraical problems at the second stage. We 
have the solution in a compactly supported wavelet basis. Multiresolution expan- 
sion is the second main part of our construction. The solution is parameterized 
bly solutions of two reduced algebraical problems, one being nonlinear and the sec- 
ond being some linear problem, which is obtained from one of the next wavelet 
constructions: Fast Wavelet Transform (FWT), Stationary Subdivision Schemes 
(SSS), the method of Connection Coefficients (CC). 



A Variational Met hod 

Our problems may be formulated as the systems of ordinary differential equations 

dxi/dt = fi(xj, t), (i,j = I, . . . . TL> , PO> 

with fixed initial conditions xi(O), where fi are not more than polynomial functions 
of dynamical variables Xj and have arbitrary dependence of time. Because of time 
dilation we can consider only the next time interval: 0 5 t 5 1. Let us consider a 
set of functions, 

@i(t) = sidyi/dt + figi (21) 

amd a set of functionals 

(22) 

where yi(t)(yi(O) = 0) are dual variables. It is obvious that the initial system and 
the system 

Pi(X) = 0 (23) 

a,re equivalent. In the last part we consider a more general approach, which is 
based on the possibility of taking into account underlying symplectic structure and 
using a more useful and flexible analytical approach, related to bilinear structure 
of initial function. 

Now we consider formal expansions for xi, yi: 

xi(t> = xi(o) + C XfPk(t) 
k 

where, because of initial conditions, we need only (&.(O) = 0. Then we have the 
following reduced algebraical system of equations on the set of unknown coefficients 
At of expansions (24): 

(25) 

I.ts coefficients are 

Now, when we solve system (25) and determine unknown coefficients from formal 
expansion (24) we therefore obtain the solution of our initial problem. It should be 
noted that, if we consider only the truncated expansion (24) with N terms, then we 
have from (25) the system of N x n algebraical equations; and the degree of this 



atlgebraical system coincides with the degree of initial differential system. So, we 
have the solution of the initial nonlinear (polynomial) problem in the form 

k=l 
(27) 

where coefficients XF are roots of the corresponding reduced algebraical problem 
(25). Consequently, we have a parametrization of the solution of the initial problem 
by solution of the reduced algebraical problem (25). The first main problem is a 
problem of computations of coefficients of the reduced algebraical system. As we 
will see, these problems may be explicitly solved in the wavelet approach. 

Next we consider the construction the of explicit time solution for our problem. 
The obtained solutions are given in the form (27), where Sk(t) are the basis func- 
tions and AX are roots of the reduced system of equations. In our first wavelet case, 
Jck(t) are obtained via multiresolution expansions and represented by compactly 
supported wavelets, and Xi are the roots of the corresponding general polynomial 
system (25) with coefficients, which are given by FWT, SSS or CC constructions. 
According to the variational method giving the reduction from the differential to 
the algebraical system of equations, we need to compute the objects 7: and pji, 
which are constructed from objects: 

(28) 

for the simplest case of Riccati systems, where the degree of nonlinearity equals 
two. For the general case of arbitrary n we have analogous to (28) iterated integrals 
with the degree of monomials in integrand, which is one bigger than the degree of 
the initial system. 

B Wavelet Framework 

Our constructions are based on a multi-resolution approach. Because affine group 
of translations and dilations are part of the approach, this method resembles the 
action of a microscope. We have a contribution to the final result from each scale 
of resolution from the whole infinite scale of spaces. More exactly, the closed 
subspace Q(j E Z) corresponds to level j of resolution, or to scale j. We consider 
a r-regular multiresolution analysis of L2(R”) (of course, we may consider any 
different functional space), which is a sequence of increasing closed subspaces Vi: 



(29) . ..\I* c 111 c 1; c 1; c 1; c . . . ) 

satisfying the following properties: 

n b,; = 0, U\; = L*(R"), 
jEZ _iEZ 

f(X) E $5 <=> f(ZX) E q+1, 

f(X) E 1% <=> f(X - AT) E VO, ,‘dk E Z”. (30) 

There exists a function 9 E VO such that {(P~,~(x) = cp(~ - k), k E Z”} forms a 
Riesz basis for I&. 

The function cp is regular and localized: cp is C’-‘; p(‘-l) is almost’ 
dlifferentiable and for almost every x E R”, for every integer (u 5 T: 
integers p there exists constant, CP such that 

I da&g II cr,(1+ IxI>-” ’ 

everywhere 
and for all 

(31) 

Let q(x) be a scaling function, $(x) a wavelet function and vi(z) = P(X - i). 

Scaling relations that define cp, $J are 

N-l N-l 

p(X) = c ak@X - k) = c akipkPX), 

k=O k=O 

N-2 

(32) 

Q(X) = C (-1)“m+142x + k). (33) 
k=-1 

Let indices C, j represent translation and scaling, respectively and 

$7$(X) = 2j/242jx - e> ; (34) 

then the set (vj,k}, k E Z” forms a Riesz basis for \cj. The wavelet function $I is 
used to encode the details between two successive levels of approximat’ion. Let Wj 
ble the orthonormal complement of I$ with respect to 1/>+1: 

Then just as k) 
are Wj spanned 

is spanned by dilation and translations of the scaling function, so 
by translations and dilation of the mother wavelet Gjk(x), where 

'$jk(x) = Pj12?+!J(2jX - k), (36) 

All expansions which we used are based on the following properties: 

{$jk), .i,k E Z is a Hilbertian basis of L*(R) 

{'pjk}j>O,kEZ is an orthonormal basis forL2(R), 

L2(R) = T$GlVj, 
j=O 

or 

{ (pO,k, $j,k} j>O,kEZ is an orthonormal basis forL2(R). 

(37) 



C Wavelet Computations 

Now we give construction for computations of objects (28) in the wavelet case. 
We use a compactly supported wavelet basis: an orthonormal basis for functions 
in L2(R). 

Let f : R -+ C and the wavelet expansion be 

If in formulae (38) cjk = 0 for j > J, then f(z) has an alternative expansion in 
terms of dilated scaling functions only f(z) = C cJepJe(z). This is a finite wavelet 

expansion, and it can be written solely in terms of translated scaling functions. 
Also we have the shortest possible support: scaling function DN (where N is even 
mteger) will have support [0, N - l] and N/2 vanishing moments. There exists 
A > 0 such that DN has AN continuous derivatives; for small N, X > 0.55. To 
solve our second associated linear problem we need to evaluate derivatives of f(x) 
in terms of P(X). Let cpp” = d”cpe(x)/dx”. We consider computation of the wavelet 
- Galerkin integrals. If id(z) is a d-derivative of function f(z), then we have 

P(z) = CeclPt(z), and values (p!(z) can be expanded in terms of V(X), 

&(4 = c XmiPm(4 
m 
00 

A, = .I d(z)~rn(z)dx, 

(39) 

-03 

where A,, are wavelet-Galerkin integrals. The coefficients A, are 2-term connection 
coefficients. In general we need to find (di > 0), 

30 

Adldz...d, _ 
elez...e,, - (40) 

-CO 

For Riccati case we need to evaluate two and three connection coefficients 

cc 

A&& _ O3 
e - s pdl (x)ppd2 (z)dz, AdldZd3 = s pdl (z)pF (z)p$(x)dx . (41) 

-CC 

According to the CC method [ll] we use the next construction. When N in the 
scaling equation is a finite even positive integer, the function cp(z) has compact 
support contained in [0, N - 11. For a fixed triple (d,, d2, ds) only some A$,$ds are 
nonzero: 2 - N 5 E 5 N - 2, 2 - N 5 m 5 N - 2, ]e - rn] 5 N - 2. There are 
AI = 3N2 - 9N + 7 such pairs (e, m). If AdldZd3 is an M-vector, whose components 
are numbers A:zZd3, then we have the first reduced algebraical system : A satisfy 
tlhe system of equations (d = dr + d2 + ds), 



,a odd& 
‘ 

_ ~~-d~ddz& 
-3 

> =Ie,m;q,r = c apaq-2e+par-2m+p . (42) 
P 

I3y moment equations we have created a system of Al + d + 1 equations in M 
unknowns. It has rank hl and we can obtain unique solution by combination of LU 
decomposition and QR algorithm. The second reduced algebraical system gives us 
the 2-term connection coefficients: 

,1Adldz _ $-dlidldz 
---I , d = dl -I- &, =Ie,q = ~apaq-2~+p (43) 

P 

For a nonquadratic case we have additiohal analogously linear problems for objects 
(40). Solving th ese linear problems, we obtain the coefficients of a nonlinear alge- 
braical system (25), and after that we obtain the coefficients of wavelet expansion 
(27). As a result we obtained the explicit time solution of our problem in the base 
of compactly supported wavelets. We use for modelling D6, D8, and DlO functions 
and programs RADAU and DOPRI for testing. 

In the following we consider the extension of this approach to the case of periodic 
boundary conditions, the case of presence of arbitrary variable coefficients and a 
more flexible biorthogonal wavelet approach. 

IV EVALUATION OF NONLINEARITIES SCALE BY 
SCALE 

A Para-product and Decoupling between Scales 

Before we consider two different schemes of modification of our variational ap- 
proach we consider different scales separately. For this reason we need to compute 
errors of approximations. The main problems come of course from nonlinear terms. 
We follow the approach from [12]. 

Let Pj be the projection operators on the subspaces I/>,j E 2: 

Pj : L2(R) -+ 15 

(pjf)(x) = C < f, Pj,k > cPj,k(z) > 
k 

(44) 

and Qj are projection operators on the subspaces lI>: 

Qj = Pj-1 - Pj . (45) 

So, for u E L2 (R) we have uj = Pju and uj E Ij, where {I+}, j E Z is a 
multiresolution analysis of L2(R). It is obvious that we can represent ui in the 
following form: 

Uz = 2k(PJu)(Qju) + c(Qju)(Qj/l) + ZL~ . 
j=l j=l 

(46) 



In this formula there is no interaction between different scales. We may consider 
each term of (46) as bilinear mappings: 

For numerical purposes we need formula (46) with a finite number of scales, but 
when we consider limits j + 00 we have 

n2 = C(PP~U + Qju)(Qju), (49) 
jEZ 

which is para-product of Bony, Coifman and Meyer. 
Now we need to expand (46) into the wavelet bases. To expand each term in (46) 

ilnto wavelet basis, we need to consider the integrals of the products of the basis 
fiunctions, e.g., 

M&!;.,(k, k’, e) = SJi q!$(+,!$,(~)$&~)dx, (50) 
--cx 

where j’ > j and 

7&(X) = 2-j’2q(2-+r - k) (51) 

a’re the basis functions. If we consider compactly supported wavelets then 

A@$LW(k, k’, e) = 0 for Ilc - k’( > kO, (52) 

where k0 depends on the overlap of the supports of the basis functions and 

I wiww (k - k’, 2’k - e)) 5 C - 2-“‘* . (53) 

L,et us define j0 as the distance between scales so that for a given E all the coefficients 
in (53) with labels r = j - j’, r > j0 have absolute values less than E. For the 
purposes of computing with accuracy E, we replace the mappings in (47), (48) by 

hf&,f,l : Wj X it) + Vj @J<jl<j, wjl . -- (55) 

Since 

and 



’ we may consider bilinear mappings (54), (55) on I>,_, x \&_l. For the evaluation of 
(54), (55) as mappings \,>,_ 1 x \ij,,-l -+ I>,_, , we need significantly fewer coefficients 
than for mappings (54), (55). It is enough to consider only coefficients 

hl(k, k’, l?) = 2-j12 Im p(x - k)ip(x - k’)p(x - Qdx, 

where p(x) is the scale function. Also we have 

- M(/?, k’, e) = 2-j’%o(lc - e, k’ - e>, 159) 

where 

Now, as in section (3C), we may derive and solve a system of linear equations to 
find hfo (p, q). 

B Non-regular Approximation 

We use the wavelet function $(z), which has Ic vanishing moments J x”$(x)dx = 
0, or equivalently xk = C cafe for each k, 0 5 k 5 K. 

Let Pj again be the orthogonal projector on space Vj. By tree algorit,hm we have 
for any u E L2(R) and C E Z, that the wavelet coefficients of Pe(u), i.e. the set 

{< %tij,k >,j 5 l-13 E z}, can be computed using hierarchical algorithms from 
the set of scaling coefficients in Vt, i.e. the set { < u, pe,k >, k E Z} [13]. Because 
for scaling function ip we have in genera1 only J cp(x)dx = 1, therefore we have for 
any function u E L2(R): 

lim 1 2j’2 < U, 'pj,k > -u(x) I= 0 ’ 
j+oo,k2-J +Z 

If the integer n(cp) is the largest one so that 

t’hen if u E G’(“+l) 

s xacp(x)dx = 0 for llasn , (62) 

with ucn+l) is bounded we have for j + 00 uniformly in k: 

1 2jj2 < U,(pj,k > -u(k2-j) (= 0(2-j(n+l’). (63) 

Such scaling functions with zero moments are very useful for us from the point 
of view of time-frequency localization, because we have for the Fourier component 
d)(d) of them, that exists some C(cp) E R, so that for w --+ 0 6(LJ) = 1 + cr(cp) 
1 w 12r+2 (remember that we consider r-regular multiresolution analysis). Using this 



type of scaling functions lead to superconvergence properties for general Galerkin 
alpproximation [13]. Now we need some estimates in each scale for non-linear terms 
of type u * f(u) = f o U, where f is C’“” (in previous and future parts we consider 
only truncated Taylor series action). Let us consider the non-regular space of 

alpproximation r/r of the form 

with bVj c M/j.. We need an efficient and precise estimate of f o u on r. Let us set 
for q E Z and u E L2(R) 

n fq(u) = 2-“’ c f(2q’2 < UT 'pq,k >> . iPq,k . (65) 
kc2 

We have the following (important for us) estimation (uniformly in q) for u, f(u) E 
Mn+t’) [13]: 

IK? (f(u)) - J-J fq(U)ilL” = 0 (2-(n+l)q) . (66) 

F’or non-regular spaces (64) we set 

II f&4 = n f,(u) + c p$I 
e=q,p-1 J 

. n fe+1(u) (67) 

Then we have the following estimate: 

I/PC (f(u)) - n f#IlL’ = 0(2-(n+1)q) 
7 (68) 

uniformly in q and v (64). 

This estimate depends on q, not p, i.e. on the scale of the coarse grid, not on 
t.he finest grid used in definition of P. We have for total error 

llf(u> - J-J fpbll = IIf - P#4llL~ + IlqAfb> - II f&4llL~ 7 (69) 

and since the projection error in v: [If(u) - Pv (f(u)) jlL2 is much smaller than 
tlhe projection error in VP, we have the improvement (68) of (66). In our concrete 
calculations and estimates it is very useful to consider our approximations in the 
particular case of c-structured space: 

P-l 

r;’ = Vq + c span{$j,l,, k E [2(jp1) - C, 2tj-l) + C] mod 2j) . (70) 
j=q 



V VARIATIONAL WAVELET APPROACH 
FOR PERIODIC TRAJECTORIES 

We start with an extension of our approach to the case of periodic trajectories. 
The equations of motion corresponding to Hamiltonians (from part II) may also 
be formulated as a particular case of the general system of ordinary differential 
equations dxi/dt = fi(xj, t), (i,j = 1, . . . . n), 0 5 t 2 1, where fi are not more than 
polynomial functions of dynamical variables xj and have arbitrary dependence of 
time but with periodic boundary conditions. According to our variational approach 
we have the solution in the following form: 

xi(t) = Xi(O) + c &k(t), G(O) = Xi(l), (71) 
k 

where Xk are again the roots of reduced algebraical systems of equations with the 
same degree of nonlinearity, and pk(t) corresponds to useful types of wavelet bases 
(frames). It should be noted that coefficients of reduced algebraical system are 
the solutions of additional linear problem and also depend on a particular type of 
wavelet construction and type of bases. 

This linear problem is our second reduced algebraical problem. We need to find 
in general situation objects 

(x, 

AdldZ...d, _ 
e1e2...en - P;; (x)dx, (72) 

-CO 

but now in the case of periodic boundary conditions. Now we consider the procedure 
of their calculations in the case of periodic boundary conditions in the base of 
periodic wavelet functions on the interval [O,l] and corresponding expansion (71) 
inside our variational approach. Periodization procedure gives us 

$j,k(x) s c qj,k(x - c> 

ecz 
(73) 

‘$j,k(Z) = c $j,k(z - e) . 
eez 

So, $, ~,6 are periodic functions on the interval [O,l]. Because pj,k = pj,kf if 
k = k’mod(2j), we may consider only 0 5 k 5 2j, and, as a consequence, our 

multiresolution has the form U $5 = L2[0, 11, with Cj = span{$j,k}?!i [14]. In- 
j>O 

tegration by parts and periodicity gives useful relations between objects (72), in 
particular the quadratic case (d = dl + d2): 

A;;:: = (-l)d1h;$;d1;‘$$2 = @;2_,1 f h%2_kl . (74) 

So, any 2-tuple can be represented by Ai. Then our second additional linear prob- 
lem is reduced to the eigenvalue problem for {1ji}0<k<2J by creating a system of 2j -- 



. - 

hiomogeneous relations in ~1: and inhomogeneous equations. So, if we have a dila- 
tion equation in the form y(x) = fix kEZ h422 - lc), then we have the following 
hiomogeneous relations: 

N-l N-l 

14; = Zd c c h,h&+,,_,, 

m=O e=o 
(75) 

olr in such form L4Ad = 2dXd, where X” = {h~}O<~<‘U. Inhomogeneous equations -- 
are: 

D 

C hl,dA,d = d!2-j'2, (76) 

where objects IM,d(]e] 5 N - 2) can be computed by a recursive procedure 

Md = 2-$d+l)/Qjd 
“k 

e e7 ilip” =< Zk, lpo,e >= C 
0 

nk-jI@, A$ = 1. 
j=o 3 

(77) 

S #o, we reduced our last problem to a standard linear algebraical problem. Then 
we used the same methods as in part III C. As a result we obtained for closed 
trajectories of orbital dynamics described by Hamiltonians from part II the explicit 
time solution (71) in the base of periodized wavelets (73). 

VI VARIATIONAL APPROACH IN BIORTHOGONAL 
WAVELET BASES 

Now we consider further generalization of our variational wavelet approach. In 
[1]-[3] we consider different types of variational principles which give us weak solu- 
tions to our nonlinear problems. 

Before this we consider the generalization of our wavelet variational approach to 
the symplectic invariant calculation of closed loops in Hamiltonian systems [3]. We 
also have the parametrization of our solution by some reduced algebraical prob- 
lem; but in contrast to the general case where the solution is parametrized by 
construction based on scalar refinement equation, in the symplectic case we have 
parametrization of the solution by matrix problems ~ Quadratic Mirror Filters 
equations [3]. But because integrand of variational functionals is represented by a 
bilinear form (scalar product), it seems more reasonable to consider wavelet con- 
structions [15] which take into account all advantages of this structure. 

The action functional for loops in the phase space is [16], 

(78) 

The critical points of F are those loops 7, which solve the Hamiltonian equations 
associated with the Hamiltonian H and hence are periodic orbits. By the way, 



a,11 critical points of F are the saddle points of the infinite Morse index, but sur- 
prisingly this approach is very effective. This will be demonstrated using several 
variational techniques starting from minimax due to Rabinowitz and ending with 
Floer homology. So, (Al, w) is equal to symplectic manifolds, H : Ad -+ R, H is 
Hamiltonian, SH is the unique Hamiltonian vector field defined by 

+-H(X)+) = -dH(x)(v), u E T,M, x E AI, (79) 

where w is the symplectic structure. A T-periodic solution r(t) of the Hamiltonian 
equations, 

i = X,(x) onhl , (80) 

is a solution, sat#isfying the boundary conditions z(T) = x(O),T > 0. Let us 
consider the loop space Sz = CY” (S1, R2n), where S’ = R/Z, of smooth loops in 
R2n. Let us define a function @ : Cl -+ R by setting 

@(x) = /,’ f <-Ji,x>dt- 
s 

’ H(x(t))dt, xc0 . 
0 

(81) 

The critical points of @ are the periodic solutions of i = S,(x). Computing the 
d.erivative at x E fl in the direction of 3 E R, we find 

Q’(x)(g) = $e(x + &]c=o = 1’ < -Ji - vH(x), y > dt (82) 

Consequently, @‘(x)(y) = 0 f or all y E R if the loop x satisfies the equation 

-Ji(t) - vH(x(t)) = 0 ; (83) 

i.e., x(t) is a solution of the Hamiltonian equations, which also satisfies x(0) = r(l), 
i.e., the periodic of period 1. Periodic loops may be represented by their Fourier 
series: 

X(t) = c ek2nJtxk, xk E R2k, (84) 
k:EZ 

where J is the quasicomplex structure. We give relations between the quasicomplex 
s.tructure and wavelets in our second paper in this volume (see also [3]). But now 
we need to take into account underlying bilinear structure via wavelets. 

We started with two hierarchical sequences of approximations spaces [15]: 

. . . v-2 c I’_1 c v’o c v, c Ih . . . ) . . . c-2 c v-1 c vo c VI c v2 . . . ) (85) 

and as usual, 146 is a complement to T/o in b;, but now not necessarily an orthogonal 
complement. New orthogonality conditions now have the following form: 

k%(, I I;, It”0 I co, 1,; I I%& G I It) > (86) 



translates of $ span T/t’o, t,ranslates of *J span Eo. Biorthogonality conditions 
a,re 

where $J~~(x) = 2j/2$(2j~ - Ic). Functions V(X), (P(x - Ic) form a dual pair: 

< cp(z - k), (p(x - e> >= 6k1, < cp(~ - Ic),q(z - e) >= 0 for ‘dk, V!. (88) 

F?unctions p, c,Z generate a multiresolutibn analysis. cp(~ - Ic), @(x - Ic) are synt#hesis 

functions, and Cp(z - a), $(z - t/‘) are analysis functions. Synthesis functions are 
biorthogonal to analysis functions. Scaling spaces are orthogonal to dual wav_elet 
spaces. Two multiresolutions are intertwining 15 + l4$ = \>+I, Cj + bEj = Vj+l. 
These are direct sums but not orthogonal sums. 

So, our representation for a solution now has the form 

(89) 

where synthesis wavelets are used to synthesize the function. But bjk comes from 
inner products with analysis wavelets. Biorthogonality yields 

So, now we can introduce this more complicated construction into our variational 
aapproach. We have a modification only on the level of computing coefficients of 
a, reduced nonlinear algebraical system. This new construction is more flexible. 
The biorthogonal point of view is more stable under the action of a large class of 
operators, while the orthogonal (one scale for multiresolution) is fragile all compu- 
tations are much simpler and we accelerate the rate of convergence. In all types of 
Hamiltonian calculation, which are based on some bilinear structures (symplectic 
or Poissonian structures, bilinear form of integrand in variational integral), this 
framework leads to greater success. 

VII VARIABLE COEFFICIENTS 

In the case when we have a situation where our problem is described by a system 
of nonlinear (polynomial)differential equations, we need to consider extension of 
our previous approach, which can take into account any type of variable coefficients 
(periodic, regular or singular). We can produce such an approach if we add in our 
construction an additional refinement equation, which would encode all information 
about variable coefficients [17]. According to our variational approach we need to 
compute integrals of the form 



(91) 

where now bij(t) are arbitrary functions of time, where trial functions pt, v2 satisfy 
a refinement equation: 

C&(t) = c n&cp42t - k) 
keZ 

(92) 

If we consider all computations in the class of compactly supported wavelets, then 
only a finite number of coefficients do not vanish. To approximate the non-constant 
coefficients, we need to choose a different refinable function (~3, along with some 
llocal approximation scheme, 

(&f)(x) := c fi,k(f)v3(2’t - k>, 

@EZ 
(93) 

vvhere F[,k are suitable functionals supported in a small neighborhood of 2-ek, and 
then replace bij in (91) by Bebij(t). In this particular case, one can take a char- 
acteristic function and can thus approximate non-smooth coefficients locally. To 
guarantee sufficient accuracy of the resulting approximation to (91) it is important 
to have the flexibility of choosing (~3 different from (pl, (p2. In the case when D is 
some domain, we can write 

&j(t) ID= c bij(t)?(D@‘t - k), 
Osk+ 

(94) 

where XD is a characteristic function of D. So, if we take (~4 = x0, which is again 
a, refinable function, then the problem of the computation of (91) is reduced to the 
problem of calculation of the integral 

H(kl, kz, k3, k4) = H(k) = (95) 

I RS (p4(2jt - kl)cp3(2et - k2)& (art - k3)p$(2St - k4)dx . 

The key point is that these integrals also satisfy some sort of refinement equation: 

2-“‘H(k) = C bzk_eH(f!), 
eEz 

p = dl + dz. (96) 

This equation can be interpreted as the problem of computing an eigenvector. Thus, 
we reduced the problem of the extension of our method to the case of variable 
coefficients to the same standard algebraical problem as in the preceding sections. 
So, the general scheme is the same one, and we have only one more additional linear 
algebraic problem by which we, in the same way, can parameterize the solutions of 
the corresponding problem. 

An extended version and related results may be found in [l]-[6]. 
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