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The dynamics of low-x partons ir, the transverse plane of a high-energy nuclear 

collision is classical, and therefore admits a fully non-perturbative numerical treat- 

ment. We report results of a recent study estimating the initial energy density in 

the central region of a collision. Preliminary estimates of the number of gluons per 

unit rapidity, and the initial transverse momentum distribution of gluons, are also 

provided. 

In heavy-ion experiments, planned at RHIC later this year, gold ions are 
expected to collide at fi = 200 GeV per nucleon. A few years later 6 = 5.5 
TeV per nucleon will be attained in heavy ion collisions at LHC. In the central 
region of these collisions, a combination of very high center-of-mass energy 
with a very large number of participating valence quarks will likely give rise 
to a novel regime of &CD, one characterized by a very high parton density. 

This regime does not easily lend itself to a description based on conventional 
approaches. Collisions involving large transverse momenta can be adequately 
described in terms of pairwise scattering of individual partons comprising the 
colliding systems. Final-state interactions of secondary partons formed therein 
can be safely neglected ‘. However, as the parton density grows, final-state in- 
teractions of secondary partons must he taken into account. This requirement 
is only partially satisfied by multiple scattering or by classicai cascade descrip- 
tions, which ignore the coherence of the secondary field configuration 2. 

The coherence of the secondary partons is incorporated naturally into the 

classical effective field theory approach of McLerran and Venugopalan (MV) 3. 
If the parton density in the colliding nuclei is high at small 2, classical mcth- 

ods are applicable. It has been shown recently that a RG-improved general- 
ization of this effective action reproduces several key results in small-x QCD: 
the leading U, log(l/z) BFIiL equation, the double log GLR equation and its 
extensions, and the small-.t, DGLAP equation for quark dist.ributSions ‘I. 



Briefly, the model is based on the following assumptions. Partons in a 
nucleus are separated into high-x and the low-x components. The former 
corresponds to valence quarks and hard sea partons. These high-x partons are 
considered recoilless sources of color charge. For a large Lorentz-contracted 

nucleus, this results in a static Gaussian distribution of their color charge 

density p in the transverse plane: 

The variance p2 of the color charge distribution is the cnly dimensional pa- 
rameter of the model, apart from the linear size L of the nucleus. For central 
impact parameters, p is given in terms of single-nucleon structure functions ‘: 

&9(x> Q2) + c 

with the separation scale x0 E Q/d, rg = 1.12 fm, and NC the number of 
colors. It is assumed, in addition, that the nucleus is infinitely thin in the 
longitudinal direction. Under this simplifying assumption the resulting gauge 
fields ;re boost-invariant. 

The small x fields are then described by the classical Yang-Mills equations 

DpFpv = Jv (1) 

with the random sources on the two light cones: J, = x1 2SV,*S(xT)~l,2(r~). 

The two signs correspond to two possible directions of motion along the beam 
axis z. As shown by Kovner, McLerran and Weigert (KMW), low x fields in 
the central region of the collision obey sourceless Yang-Mills equations (this 
region is in the forward light cone of both nuclei) with the initial conditions in 
the A, = 0 gauge given by 

A’=A’,+A;; A* = *$x’[Af,A;]. (2) 

Here the pure gauge fields Ai,2 are solutions of (1) for each of the two nuclei 

in the absence of the other nucleus. 
Equation (1) with the initial condition (2) can now he solved, in order to 

obtain the resulting gluon field configuration at late proper times. Since the 
initial condition depends on the random color source, averages over realizations 
of the source must be performed. This aspect of the solution resembles the 
classical thermal theory, wherein an average is performed over initial conditions 
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Figure 1: Transverse-plane energy density per unit rapidity versus proper time for the values 

5.66 (diamonds), 35.36 (plusses), and 297 (squares) of g2&. Both the energy density and 

the proper time are expressed in units of g2p. The solid lines are fits of the data to the form 

a + /3exp(-v). 

drawn from the canonical ensemble. In fact, the analogy between the MV 
effective theory and the classical thermal theory goes further. This analogy 
can be made explicit by considering the perturbative solution of (1) obtained by 
KMW. They showed that in perturbation theory the gluon number distribution 
by transverse momentum (per unit rapidity) suffers from an infrared divergence 
and argued that the distribution must have the form 

for kl >> cu,~. We can now draw a parallel between p and the temperature T of 
the thermal system. In particular, the log term suggesk that the perturbative 
description breaks down for kl - cy,~. Likewise, the perturbative thermal 

theory loses validity at the non-perturbative scale k - g”T. 
It is t.herefore clear that a fully non-pert.urbative study of MV model is 

necessary. The model is discretized on a latt.ice in the transverse plane and 
t.he lat,tice field equations solved numerically. Boost invariance and periodic 
boundary conditions in the transverse plane are assumed. Technical detGls 
of t,he lat.ticc formulation can be found in Ref. ‘. The: quantity g2p and i.he 



linear size L of the nucleus are the only physically interesting dimensional 
parameters of the MV mode17. Any dimensional quantity q can then be written 

as (s2,$%(g2G), h w ere d is the dimension of q. All the non-trivial physical 
information is contained in the dimensionless function fp(gzpL). On a lattice, 
q will generally depend also on the lattice spacing a; we will seek to remove 
this dependence by taking the continuum limit a + 0. Finally, we estimate 
the values of the dimensional parameter g2pL which correspond to key collider 
experiments. Assuming Au-Au collisions, we take L = 11.6 fm (for a square 

nucleus!) and estimate the standard deviation p to be 0.5 GeV for RHIC and 
1 GeV for LHC 5. Also, we have approximately g = 2 for energies of interest. 
The rough estimate is then g2pL w 120 for RHIC and g2pL sv 240 for LHC. 
Clearly, there is some variation in g2pL due to the various uncertainities in 
this estimate. The expression we will derive is a non-perturbative formula, 
from which one can deduce the number or energy of produced gluons for a 
particular choice of g2pL. 
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Figure 2: Transverse-plane energy density (in units of g2p) per unit rapidity versus g2pL. 
The error bars are smaller than the plotting symbols. 

Results of a numerical investigation (for SU(2) only) are as follows. We 
first compute the energy per unit transverse area per unit rapidity, deposited in 
the central region by the colliding nuclei. As Figure 1 illustrates, this quantity 
tends to a constant at late proper times. It is this asymptotic value of the 
energy density that we wish to determine. If we express the energy density in 

4 



units of g2p and extrapolate our numerical findings to the continuum limit, 
we find that the energy density depends on the dimensionless parameter g2pL 
as described in Figure 2. Note the very slow variation of this dimensionless 
function in the entire range of y2pL values, which includes both our RHIC and 
LHC estimates. Using this plot, and assuming, in accordance with Ref. “, the 

(NC” - l)/Nc d P d e en ence of the energy on the number of colors N,, we arrive 
at the values of 2700 GeV and of 25000 GeV for the transverse energy per unit 
rapidity at RHIC and at LHC, respectively ‘. 
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Figure 3: Transverse-plane gluon number density per unit rapidity versus g’& fr-om 

Coulomb gauge fixing (diamonds) and from relaxation (plusses). 

Next, we report our preliminary estimates of low-z gluon multiplicities in 
the central region. Determination of the total number of produced gluons is 
of ccnsiderable interest: this quantity may he directly related to the number 
of produced hadrons . lo Further, the momentum distribution of gluons in the 
transverse plane can be used as initial data for a Boltzmann-type equation 
describing evolut,ion of t(he gluon gas towards thermal equilibrium ‘I. 

The particle number is a well-defined notion in a free ficid theory when+ 
IIamiitonian in momenl urn space has t Ilr: form 
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Figure 4: Transverse-plane gluon number (per unit rapidity) distribution for g2& = 35.5 
(plusses) and for g2.uL = 297 (diamonds). The transverse momentum is expressed in units 

of g2p. The solid line is a fit of the g2pL = 35.5 data to the perturbative expression (3). 

where d(k) is k-th momentum component of the field, I is its conjugate mo- 
mentum, and w(k) is the corresponding eigenfrequency. The average particle 
number of the k-th mode is then 

(5) 

where, in our case, the average () is over the initial conditions. Obviously, any 
extension of this notion to interacting theories should reduce to the standard 
free-field definition of the particle number in the weak-coupling limit. However, 
this requirement alone does not define the particle number uniquely outside 
a free theory. We therefore use two different generalizations of the particle 
number to an interacting theory, each having the correct free-field limit. We 
verify that the two definitions agree in the weak-coupling regime corresponding 
to late proper times in the central region. We note, however, that the theory in 
question may have low-lying metastable states. If, for a small value of g2pL, 
the system finds itself in the vicinity of a metastability, then the syst.em is 
far from linearity, and both our definitions of the number make little sense. 
We therefore restrict our attention to values of g’pL for which energies of 
metastable minima are much lower t.han the average energy of a configuration. 
In all such cases the two definitions give resu1t.s close to each other. 



Our first definition is straightforwazd. We impose the Coulomb gauge 
condition in the transverse plane: e J. . Al = 0 and substitute the momentum 
components of the resulting field configuration into (5). At this point, there are 

two possibilities open to us. We can assume w(k) to be the standard massless 
(lattice) dispersion relation and use the middle expression of (5) to compute 

n(k). Alternatively, we can determine n(b) from the rightmost expression of 
(5); the middle expression of (5) can then be used to obtain w(lc). 

Our second definition is based on the behavior of a free-field theory under 
relaxation. Consider a simple relaxation equation for a field in real space, 

&d(Z) = -dHl@(x), (6) 

where t is the relaxation time (not to be confused with real or proper time) 
and H is the Hamiltonian. For a free field (H = H,) the relaxation equa- 
tion has exactly the same form in the momentum space with the solution 
d(k, t) = q5(k, 0) exp(-w2(kjt). The potential energy of the relaxed free field is 

V(1) = (l/2) Ck w2(k)l@, t)1”. IL .- t1 IS len easy to derive the following integral 
expression for the total particle number of a free-field system: 

Now (6) can be solved numerically for interacting fields. Subsequently, V(t) can 
be determined, and N can be comput.ed by numerical integration. Note that in 
a gauge theory the re!axation equations are gauge-covariant, and the relaxed 
potential V(t) is gauge-invariant, entailing gauge invariance of this definition 
of the particle number. This is an at,tractive feature of the relaxation method. 
‘3n the other hand, this technique presently only permits determination of the 
total particle number and cannot be used to find the number distribution. 

Our findings are summarized in Figures 3 and 4. We consider these re- 

sults preliminary, since we are yet to perform a careful extrapolation to the 
continuum limit, as we did in the case 3f the energy. In the case of the en- 
ergy measurement, the systematic error related to a finite lattice cutoff was 
of the order of 10%. For the part,icle number, which is better behaved in the 
ultra.violet than the energy, this s>.stematic error should be smaller. 

As Figure 3 shows, our two definitions of the particle number agree on a 
20,% level in a wide range of values of g’pL, ~vhich includes the RHIC and 
the LHC regin-.es. If we write the part.icle number per unit rapidity as hi = 
(,g//L)yv((r?pL), 1.1 ien f~(g’llL) = 0.14 * 0.03 in that range. 

WC now estimate t.hc number of gluons produced in one unit of rapidit,)?, 

at c.cnt.ral rnpidit.ics, at RIIIC and I_H(_:. 11.~2 extrapolate to S1J(3) in a manna 



analogoues to that of the energy estimate. For g2pL M 116 (RHIC) and fN = 
0.13-0.15, we obtain N, = 778-897. For g2pL M 232, (LHC) we obtain Ns = 
3100-3600. For the same range of f’s, a g2pL = 150 value for RHIC would 
give Ns = 1300-1500, and g2pL = 300 for LHC would give 1J, = 5200-6000. 
Since N, depends quadratically on g2pL, and the latter is not known with 
with great precision, the range of the prediction is significant. What would be 
more interesting though is the slope f of the ratio of the two, for which we 
have a prediction up to 20% at present. Varying the energies, and sizes of the 
nuclei, should enable one to extract this quantity. This point, and comparisons 
to predictions from other models, will be discussed further in a forthcoming 
paper 12. 

Finally, Figure 4 shows how N is distributed among various momentum 
modes, for two extreme cases: g2pL m 300 and g2pL M 35.5. For comparison, 
we also show a fit of the high-momentum tail (/cl >> g2p of the g2pL R 

35.5 distribution to the perturbative expression (5). On the low-lcl end of 
the spectrum our fully non-perturbative result deviates significantly from the 
perturbative prediction and remains finite at kl = 0. Note that the deviation 
first occurs for kl of the order of the non-perturbative scale g2p. 

In summary, our numerical implementation of MV model allows one to take 
into account non-perturbative effects at high parton density in the central re- 
gion. We have derived non-perturbative formulae which relate the energy and 
number of produced gluons to the gluon density and the size of the incoming 
nuclei. Varying the energy and the size of nuclei should enable us to test the 
predictive power of these formulae. Our treatment can be made more accu- 
rate by switching from the SU(2) to the true physical SU(3) gauge group, by 
relaxing the assumption of exact boost invariance, and by replacing periodic 
boundary conditions by more realistic ones. We plan to address these issues 
in future work. 
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