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and dyon solutions. The spectrum of the solutions is discrete in asymptotically
flat or de Sitter space, whereas it is continuous in asymptotically anti-de Sitter
space. The solutions are regular everywhere and specified with their mass, and non-
Abelian electric and magnetic charges. In asymptotically anti-de Sitter space a class
of monopole solutions have no node in non-Abelian magnetic fields, and are stable
against spherically symmetric perturbations.

1. Introduction

In flat space there cannot be any static solution in the pure Yang-Mills theory in four
dimensions[1]. Only with scalar fields monopole solutions exist, the topology of the
scalar field playing a crucial role there. The inclusion of the gravity opens a possibility of
having a soliton solution. The gravitational force, being always attractive, may balance
the repulsive force of the non-Abelian gauge fields. Such configurations were indeed found
in asymptotically flat and de Sitter space some time ago [2]-[9]. Unfortunately all of them
turned out unstable against small perturbations {10]-{13].

*Current address: Brookhaven National Laboratory, Building 510A, Upton, NY 11973, U.S.A.
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The situation drastically changes in asymptotically anti-de Sitter space. The negative
cosmological constant (A < 0) provides negative pressure and energy density, making a
class of monopole and dyon configurations stable [14]-[17]. We review the current status
of such solutions.

2. Equations

The equations of motion in the Einstein-Yang-Mills theory are

R — %g‘“’(R ~2A) = 87G T*

F* ., +elA, F*]1=0 . €))
To find soliton solutions we make a spherically symmetric, static ansatz:
H(r) dr?
ds? = —— 2 dt* + + r2(df? + sin? 6 d¢?)
p(r)? H(r)
7 T 1 - w(r)
A= —QZ{U(T)—Tidt— Tejkla:k dm,} (2)

with boundary conditions »(0) = 0 and H(0) = p(0) = w(0) = 1. It is convenient to
parameterize )
2m(r) Ar

F T3 ®)
where m{r) is the mass contained inside the radius r. p(r) = 1 and m(r) = 0 corresponds
to the Minkowski, de Sitter, or anti-de Sitter space for A = 0, > 0, or < 0, respectively.
u(r) and w(r) represent the electric and magnetic Yang-Mills fields, respectively.

The equations in (1) reduce to

H(ry=1-

2
7 :_%L{&uszHwa}' @

Near the origin v = ar, w = 1-br%, m = v(a? +4b%)r® /2, and p = 1 —v(a? +4b?)r?, where
(a,b) are two parameters to be fixed and v = 47G/e®. With given (a,b) the equations in
(4) are numerically integrated from r = 0 to r = oo.

In general, solutions blow up at finite r, unless (a, b) take special values. We are looking
for everywhere regular soliton configurations with a finite ADM mass M = m{co).
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3. Conserved charges

Non-Abelian solitons are characterized by the ADM mass and non-Abelian electric and
magnetic charges. The kinematical identities (F*” )., = 0 and (F#* )., = 0 lead to
conserved charges given by [ dSy /—g (F**, F*9). They are gauge variant, and therefore
there are infinitely many conserved charges. Most of them vanish for solutions under
consideration. Non-vanishing charges are

Qr e 11""0 il
(QM = I dSk/—gTr 7, ko , Tr= "

_ u1Po
N ( 1- w% ) ) (5)
In the second equality the coefficients u;, pp, and wg are defined by the asymptotic

expansion u ~ ug + (u1/r) + - -- etc.. These two charges are conserved as there exists a
unitary matrix S satisfying 7, = S73571.

4. Solutions in the A =0 or A > 0 case

It has been shown in [18] and [17] that solutions are electrically neutral (a = 0, u(r) = 0).
Solutions exist only for a discrete set of values of b. In the A = 0 case, wg = w(o0) = 1
so that Qpr = 0. In the A > 0 case, @p # 0. The Bartnik-McKinnon solution in the
A = 0 case is depicted in fig. 1.
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Figure 1. Bartnik-McKinnon solution in the A = 0 theory.

Solutions are characterized by the number of nodes, n, in w(r); n =1,2,3,---. All of
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these solutions are shown to be unstable against small spherically symmetric perturba-
tions [10]-[12].

5. Solutions in the A < 0 case

5.1. Configurations

The A < 0 case is qualitatively different in many respects from the A = 0or A > 0
case. First there are dyonic solutions in which electric fields are non-vanishing; u(r) # 0.
Secondly solutions exist in a finite continuum region in the parameter space (a,b) as
opposed to discrete points. Thirdly there exist solutions with no node (n = 0) in w(r).

A typical monopole solution with no node in w is depicted in fig. 2. Depending on
the value of b, the asymptotic value w(oo) can be either greater than 1, or between 0 and
1, or negative.
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Figure 2. Monopole solution in the A < 0 theory. There are a continuum of solutions. Dyon
solutions have similar behavior, with the additional u(r) monotonically increasing from zero to
the asymptotic value in the range (0 ~ 0.2).

5.2. Monopole and dyon spectrum

When a = 0 and b is varied, a continuum of monopole solutions are generated. With A
given, solutions appear in a finite number of branches. The number of branches increases
as A = 0. For A = —0.01 there are only two branches, which are displayed in fig. 3.

The upper branch ends near the point (@Qar = 1, M = 1). The end point corresponds
to the critical spacetime geometry discussed in the next subsection.
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Solutions with no node in w(r) are special. They are stable against small perturbations
as discussed in Section 6. They exist in a limited region in the parameter space as depicted
in fig. 4.
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Figure 3. Monopole spectrum at A = —0.01. n is the number of the nodes in w(r).

When the parameter b is increased, the solution either blows up or reaches a critical
configuration. The end point in the upper branch in fig. 3 represents such a critical
spacetime with b = b, = 0.70. H{r) vanishes at r = r,. However, r = r; is not a

standard event horizon appearing in black hole solutions.

When b is very close to bc, H{i) almos

is displayed in fig. 5.

Al— b=25& H »Y harameg tancant to tha avig at » Turther nf+) vanishes In other
e, H(r) becomes tangent to the axis at rp. Further p(r) vanishes. In other
words the space end = r;. It is an open question whether such conﬁguratlons really

represent possible spacet‘me.

These critical spacetimes have universal behavior. Their magnetic charge is quantized,

0O = 1. whereas their electric charge nh is not. There are two additional narameters

g M — x5, Will wailar UL Lialgc a5 110, L ACIC AT AQQILICHAL palallltills,

A and v = 47G/e?. When v|A| < 1, the critical spacetime is described near r;, by

1
mo= g (VI+@Al-1) ~ o

w(r) ~ 2yt/?
H(r) ~ 4y°
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Figure 4. Spectrum of nodeless dyons.

m(r) ~ Sva(l-y)

p(r) ~ .poy’

where y:l——r—ZO. (6)
Th

Except for pg all coefficients and critical exponents are independent of Qg and |A|(< 1/v).

6. Stability

The stability of the solutions is examined by considering small perturbations. If they
exponentially grow in time, the solutions are unstable, whereas if they remain small, they
are stable. In the linearized theory, the problem is reduced to finding eigenvalues of a
Schrodinger equation.

The analysis is simplified in the tortoise coordinate p defined by dp/dr = p/H. The
range of p is finite for A < 0; 0 < p < pmax- For monopole solutions

d2
{—d—pz-FU(p)}x:wzx ©
(i) Odd parity perturbations

H o 2 (dw\?
Uodd—;%g(l'i"w)"'m(%) ) (8)
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Figure 5. Dyon solution very close to the critical spacetime. At the critical value b. the space
ends at rp. p(r) =0 for v > rs.

V= — Xodd , OW=—— —l—)(rzp(Sl/)

(ii) Even parity perturbations

H d ( Huw'"
Usven = —— (3w? — 1) + 4v-—
even = g (30 ) Udp( pr ) ®)
_ 0H  4v , op\' _ A
B0 =X s ==, (T) =Tl

Here ' denotes a r-derivative. The boundary condition for odd parity perturbations
is given by xodsa = 0 at p = 0 and d(wxodd)/dp = 0 at p = pmax- For even parity
perturbations xeven = 0 at both ends. If Eq. (7) admits no boundstate (w? < 0), then
the solution is stable.

Although U,ygq(p) is positive definite, the corresponding eigenvalues may not be posi-
tive due to the nontrivial boundary condition imposed on xo,44- For solutions with no node
in w(r), both Uyqq and Ueyen behave as 2/p? near the origin, but are regular elsewhere.
One can prove that all w24, w2, > 0. In other words nodeless monopole solutions are
stable against spherically symmetric perturbations.

When w has n nodes at py (k =1,---,n), Usaq become singular there. There appear
n negative w2,, modes, which generally diverges at the singularities. Ueven also becomes
negative in the vicinity of the nodes, and there appear negative w?,,. Solutions with
nodes in w(r) are unstable.
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7. The A — 0 limit

When the cosmological constant approaches zero, more and more branches of monopole
solutions emerge. In the A — O limit the spectrum becomes discrete, there appearing
infinitely many (unstable) solutions.

How is it possible? The nodeless, stable solutions must disappear. One parameter
family of solutions must collapse into one point in the moduli space of solutions. In fig. 6
we have plotted the monopole spectrum with various values of A. One can see that as A
approaches zero, new branches of solutions appear, and each branch collapses to a point
in the A — 0 limit. The nodeless solutions disappear as their ADM mass vanishes.

The result is indicative of a fractal structure in the moduli space of the solutions.

18
Monopole spectrum
16+

Figure 6. Monopole spectrum with varying A.

8. Summary

We have shown that there exist stable monopole and dyon solutions in the Einstein-Yang-
Mills theory in asymptotically anti-de Sitter space. They have a continuous spectrum.
Their implication to physics is yet to be examined.
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