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Abstract 

In the pure Einstein-Yang-Mills theory in four dimensions there exist monopole 
and dyon solutions. The spectrum of the solutions is discrete in asymptotically 
flat or de Sitter space, whereas it is continuous in asymptotically anti-de Sitter 
space. The solutions are regular everywhere and specified with their mass, and non- 
Abelian electric and magnetic charges. In asymptotically anti-de Sitter space a class 
of monopole solutions have no node in non-Abelian magnetic fields, and are stable 
against spherically symmetric perturbations. 

1. Introduction 

In flat space there cannot be any static solution in the pure Yang-Mills theory in four 

dimensions[l]. Only with scalar fields monopole solutions exist, the topology of the 
scalar field playing a crucial role there. The inclusion of the gravity opens a possibility of 

having a soliton solution. The gravitational force, being always attractive, may balance 

the repulsive force of the non-Abelian gauge fields. Such configurations were indeed found 

in asymptotically flat and de Sitter space some time ago [2]-[9]. Unfortunately all of them 

turned out unstable against small perturbations [lo]-[13]. 

*Current address: Brookhaven National Laboratory, Building 510A, Upton, NY 11973, U.S.A. 
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The situation drastically 
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class of monopole and dyon 
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2. Equations 
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changes in asymptotically anti-de Sitter space. The negative 
0) provides negative pressure and energy density, making a 
configurations stable [14]-[17]. We review the current status 

The equations of motion in the Einstein-Yang-Mills theory are 

Rp” - +R - 211) = &rG T’“” 

FpVip + e[A,, Fp”] = 0 . 

To find soliton solutions we make a spherically symmetric, static ansatz: 

ds2 = --%idt2 + dr2 +r2(de2 +sin’8d42) 
PW2 H(r) 

1 - w(r) 
T2 tjkl x1; dx, 

(1) 

(2) 

with boundary conditions U(O) = 0 and H(0) = p(0) = w(O) = 1. It is convenient to 
parameterize 

2dT) H(r) = I - - - $ , (3) T 

where m(r) is the mass contained inside the radius r. P(T) = 1 and m(r) = 0 corresponds 
to the Minkowski, de Sitter, or anti-de Sitter space for A = 0, > 0, or < 0, respectively. 
U(T) and W(T) represent the electric and magnetic Yang-Mills fields, respectively. 

The equations in (1) reduce to 

(?Jpu’) = 2 uw2 

(4) 

Near the origin u = ar, w = 1-br2, m = w(a2+4b2)r3/2, andp = l-rr(a2+4b2)r’, where 
(a, b) are two parameters’ to be fixed and v = 4rG/e2. With given (a, b) the equations in 
(4) are numerically integrated from r = 0 to r = co. 

In general, solutions blow up at finite T, unless (a, b) take special values. We are looking 
for everywhere regular soliton configurations with a finite ADM mass M = m(m). 
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3. Conserved charges 

Non-Abelian solitons are characterized by the ADM mass and non-Abelian electric and 
magnetic charges. The kinematical identities (P”;,);, = 0 and (Ff‘“” ;P);V = 0 lead to 

conserved charges given by s dSk J-9 ( Fko, Fko). They are gauge variant, and therefore 
there are infinitely many conserved charges. Most of them vanish for solutions under 
consideration. Non-vanishing charges are 

UlPO = ( 1 1-w; . 

In the second equality the coefficients ur, PO, and we are defined by the asymptotic 
expansion 21 - 210 + (211 /r) + . . etc.. These two charges are conserved as there exists a 
unitary matrix S satisfying rr = SrsS-l. 

4. Solutions in the A = 0 or A > 0 case 

It has been shown in [18] and [17] that solutions are electrically neutral (CZ = 0, U(T) = 0). 
Solutions exist only for a discrete set of values of b. In the A = 0 case, we = w(oo) = f 1 

so that QM = 0. In the A > 0 case, QM # 0. The Bartnik-McKinnon solution in the 
A = 0 case is depicted in fig. 1. 

Bartnik-McKinnon solution 

I 
A = 0. a=O, b=0.45372 

0.1 1 
r 

Figure 1. Bartnik-McKinnon solution in the A = 0 theory 

Solutions are characterized by the number of nodes, n, in w(r); n = 1,2,3,. . . All of 
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these solutions are shown to be unstable against small spherically symmetric perturba- 
tions [lo]-[12]. 

5. Solutions in the A < 0 case 

5.1. Configurations 

The A < 0 case is qualitatively different in many respects from the A = 0 or A > 0 
case. First there are dyonic solutions in which electric fields are non-vanishing; u(r) # 0. 
Secondly solutions exist in a finite continuum region in the parameter space (a, b) as 
opposed to discrete points. Thirdly there exist solutions with no node (n = 0) in ‘w(r). 

A typical monopole solution with no node in w is depicted in fig. 2. Depending on 
the value of b, the asymptotic value w(co) can be either greater than 1, or between 0 and 
1, or negative. 

0.8 - 

0.6 - Monopole in AdS w(r) 
0.4 - 

A=401 a=O,b=O.OOl 
0.2 

\! 

m(r) 
O- 

Figure 2. Monopole solution in the A < 0 theory. There are a continuum of solutions. Dyon 
solutions have similar behavior, with the additional U(T) monotonically increasing from zero to 
the asymptotic value in the range (0 - 0.2). 

5.2. Monopole and dyon spectrum 

When a = 0 and b is varied, a continuum of monopole solutions are generated. With A 
given, solutions appear in a finite number of branches. The number of branches increases 
as A -+ 0. For A = -0.01 there are only two branches, which are displayed in fig. 3. 

The upper branch ends near the point (QM = 1, A4 = 1). The end point corresponds 
to the critical spacetime geometry discussed in the next subsection. 
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So!utions with no node in w(r) are special. They are stable against small perturbations 
as discussed in Section 6. They exist in a limited region in the parameter space as depicted 
in fig. 4. 

1.4 

,.2 Monopole spectrum 

n=2 j-r=3 

0.8 n=l 
2 A = -0.01 

0.6 

Figure 3. Monopole spectrum at A = -0.01. n is the number of the nodes in W(T). 

5.3. Critical spacetime 

When the parameter b is increased, the solution either blows up or reaches a critical 
configuration. The end point in the upper branch in fig. 3 represents such a critical 
spacetime with b = b, = 0.70. H(r) vanishes at r = rh. However, r = rh is not a 
standard event horizon appearing in black hole solutions. 

When b is very close to b,, H(r) almost vanishes at T N rh. One of such configurations 
is displayed in fig. 5. 

At b = b,, H(r) b ecomes tangent to the axis at rh. Further p(r) vanishes. In other 
words the space ends at T = rh. It is an open question whether such configurations really 
represent possible spacetime. 

These critical spacetimes have universal behavior. Their magnetic charge is quantized, 
QM = 1, whereas their electric charge QE is not. There are two additional parameters, 
A and u = 4rG/e 2. When vlA[ < 1, the critical spacetime is described near rh by 

w(r) N 2y1/2 

H(r) - 4yz 
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Spectrum of nodeless (n=O) dyons 

0.0015 
I) 
5 0.001 
zi E 0.0005 
z! 
x 

0 

-0.0005 

-0.001 

-0.0015 

-0.002 

Figure 4. Spectrum of nodeless dyons. 

m(r) - ;m - Y) 

P(T) - JOY2 

where y=l-k>O. 

Except for ps all coefficients and critical exponents are independent of QE and /Ai (< l/v). 

6. Stability 

The stability of the solutions is examined by considering small perturbations. If they 
exponentially grow in time, the solutions are unstable, whereas if they remain small, they 
are stable. In the linearized theory, the problem is reduced to finding eigenvalues of a 
Schrodinger equation. 

The analysis is simplified in the tortoise coordinate p defined by dp/dr = p/H. The 
range of p is finite for A < 0 ; 0 5 p 5 pmax. For monopole solutions 

1 ii2 + U(P) x = w2x -- 1 
. (i) Odd parity perturbations 

u odd = 



J ,- 
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,.2 INear the critical spacetime 

=l .o I 
H(r) 

, . a=O.Ol, b=0.69, v- 
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Figure 5. Dyon solution very close to the critical spacetime. At the critical value b, the space 
ends at Th. p(T) = 0 for T > Th. 

(ii) Even parity perturbations 

u even = --& (32 - 1) + 4v-g (Jg) 

6H 
SW = Xevcn ) H = -F w’bw ) ($,’ = +s, 

(9) 

Here ’ denotes a r-derivative. The boundary condition for odd parity perturbations 
is given by X0&r = 0 at p = 0 and d(WXodd)/dp = 0 at p = pmax. For even parity 
perturbations xeven = 0 at both ends. If Eq. (7) admits no boundstate (w2 < 0), then 
the solution is stable. 

Although UOdd(P) is positive definite, the corresponding eigenvalucs may not be posi- 
tive due to the nontrivial boundary condition imposed on X0&. For solutions with no node 
in W(T), both U,,dd and u,,,, behave as 2/p2 near the origin, but are regular elsewhere. 
One can prove that all ~~~~~~~~~~ > 0. In other words nodeless monopole solutions are 
stable against spherically symmetric perturbations. 

When w has n nodes at Pk (k = 1,. . , n), Uodd become singular there. There appear 
n negative $jd,, modes, which generally diverges at the singularities. U,,,, also becomes 
negative in the vicinity of the nodes, and there appear negative w&_,. Solutions with 
nodes in W(T) are unstable. 
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7. The A -+ 0 limit 

When the cosmological constant approaches zero, more and more branches of monopole 
solutions emerge. In the A -+ 0 limit the spectrum becomes discrete, there appearing 

infinitely many (unstable) solutions. 

How is it possible? The nodeless, stable solutions must disappear. One parameter 
family of solutions must collapse into one point in the moduli space of solutions. In fig. 6 
we have plotted the monopole spectrum with various values of A. One can see that as A 
approaches zero, new branches of solutions appear, and each branch collapses to a point 
in the A + 0 limit. The nodeless solutions disappear as their ADR/i mass vanishes. 

The result is indicative of a fractal structure in the moduli space of the solutions. 

Monopole spectrum 

” 

-14 -12 -10 -8 oti6 -4 -2 0 2 

Figure 6. Monopole spectrum with varying A. 

8. Summary 

We have shown that there exist stable monopole and dyon solutions in the Einstein-Yang- 
Mills theory in asymptotically anti-de Sitter space. They have a continuous spectrum. 

Their implication to physics is yet to be examined. 
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