

ATM Forum Technical Committee

TITLE: Proposed Utopia Bus Structure for OC192 Data Rates

SOURCE: Dave King
GTE Government Systems
77 A Street
Needham MA, 02194
(781) 455-5832
dave.king@gsc.gte.com

Lyndon Pierson
Sandia National Laboratories
Box 5800
MS 0806
Albuquerque NM, 87185
(505) 845 8212
lgpiers@sandia.gov

OSTI

DATE: October 1998, Gold Coast, Australia

DISTRIBUTION: PHY

ABSTRACT: This contribution proposes a 64 bit wide bus structure that will operate at rates in excess of 10Gbps as a strawman for a OC192c Utopia Specification.

NOTICE: This contribution has been prepared to assist the ATM Forum. This proposal is made by the authors as a basis of discussion. This contribution should not be construed as a binding proposal on the authors or their companies. Specifically, the authors and their companies reserve the right to amend or modify the statements contained herein.

1. Introduction

The presently adopted Utopia Specifications (Level 1 and 2) as well proposed Utopia Level 3 are limited to operating up to 3.2Gbps data rates. Since OC48 interfaces are already appearing commercially, this contribution is intended to start the process necessary for the migration to the 10Gbps rates found with OC192c.

2. Description

The presently proposed Utopia Level 3 is a 32 bit wide, point-to-point, CMOS interface which operates at a maximum frequency of 104MHz. Therefore, the Level 3 specification will transfer data rates up to 3.2Gbps. This specification was the starting point of this contribution.

In order to reach the 10Gbps necessary for OC192c, three major changes were made to the Utopia 3 structure: 1) bus width expanded to 64 bits, 2) low voltage Pseudo ECL (PECL) drivers and receivers, and 3) an operating frequency of in excess of 180MHz.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

2.1 Bus Structure

Figure 1 shows the proposed bus structure. The HEC byte has been removed and four user-defined bytes have been introduced to the ATM cell format.

FIGURE 1, Octet Format

Bit 63	Bit 55	Bit 47	Bit 39	Bit 31	Bit 23	Bit 15	Bit 7	Time
Header 1	Header 2	Header 3	Header 4	UDF 1	UDF 2	UDF 3	UDF 4	1
Payload 1	Payload 2	Payload 3	Payload 4	Payload 5	Payload 6	Payload 7	Payload 8	2
Payload 9	Payload 10	Payload 11	Payload 12	Payload 13	Payload 14	Payload 15	Payload 16	3
Payload 17	Payload 18	Payload 19	Payload 20	Payload 21	Payload 22	Payload 23	Payload 24	4
Payload 25	Payload 26	Payload 27	Payload 28	Payload 29	Payload 30	Payload 31	Payload 32	5
Payload 33	Payload 34	Payload 35	Payload 36	Payload 37	Payload 38	Payload 39	Payload 40	6
Payload 41	Payload 42	Payload 43	Payload 44	Payload 45	Payload 46	Payload 47	Payload 48	7

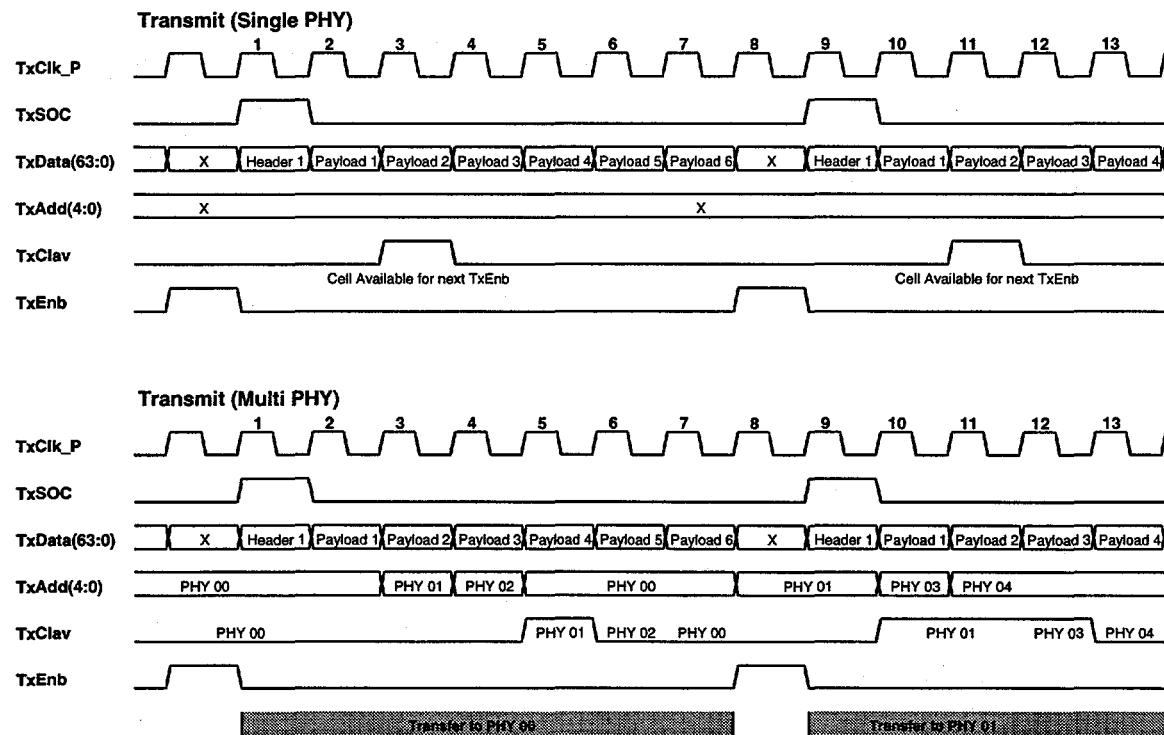
2.2 Interface Definitions

The I/O definitions for this proposal are based heavily on the present work on the Utopia Level 3 specification. Tables 1 and 2 define the basic interface necessary to support this interface. This structure only supports a point-to-point connection between the ATM and PHY devices. It also supports an optional multi PHY device given all the PHY devices are housed in one physical device.

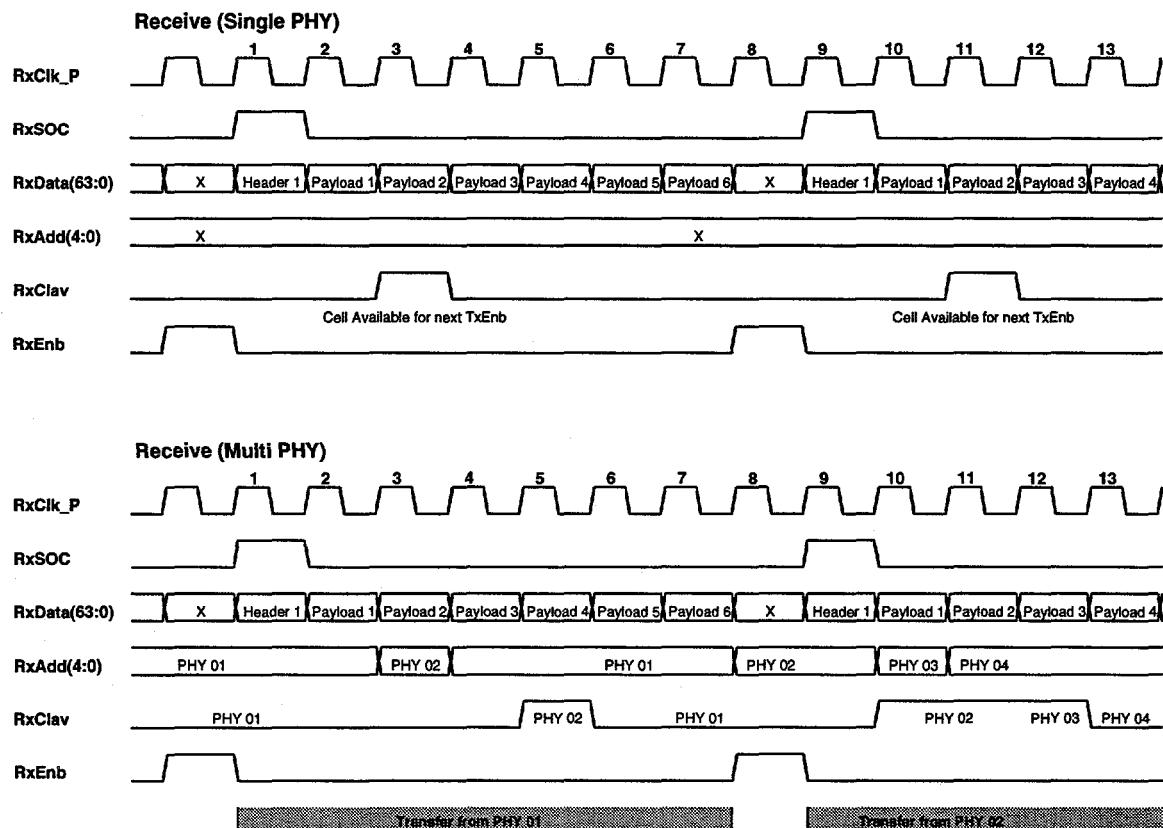
The interface technology necessary to support 180MHz operation is proposed to be Low Voltage, Pseudo Emitter Coupled Logic (LvPECL). This is a 3.3v supplied, high speed I/O supported by the mainstream ASIC foundry houses.

TABLE 1 Transmit I/O

Pin Name	Direction	Type	Definition
TxClk	ATM to PHY	Dif LvPECL	Transmit transfer frequency. Rising edge of TxClk_P is the active edge for data transition.
TxData(63:0)	ATM to PHY	LvPECL	The 64 bit data path for Transmit data, from ATM to PHY. TxData[63] is the MSB, TxData[0] is the LSB.
TxClav/ TxFull*	PHY to ATM	LvPECL	Cell Available. To indicate that space for at least one cell is available in the PHY transmit cell buffer.
TxSOC	ATM to PHY	LvPECL	Transmit Start Of Cell. Active high signal asserted by the ATM Layer to indicate the start of cell position.
TxEnb*	ATM to PHY	LvPECL	Transmit Enable. Active low signal asserted by the ATM Layer during cycles when the TxData contains valid cell data. <i>Optional, transition indicates valid address on the TxAdd bus for multi PHY use.</i>
TxAdd(4:0) (Optional)	ATM to PHY	LvPECL	Transmit Address. To select the PHY port for which the transmit data is to be destined. The address is used in both Direct Status indication mode and the Single Clav (polling) mode.
TxPrt (Optional)	ATM to PHY	LvPECL	Data path parity. The TxPrt parity bit serves as the odd parity bit over TxData[63:0].


TABLE 2 Receive I/O

Pin Name	Direction	Type	Definition
RxClk	ATM to PHY	Dif LvPECL	Receive transfer frequency. Rising edge of RxClk_P is the active edge for data transition.
RxData(63:0)	PHY to ATM	LvPECL	The 64-bit data path for Receive data, from PHY to ATM. RxData[63] is the MSB, RxData[0] is the LSB.
RxClav/ RxFull*	PHY to ATM	LvPECL	Cell Available. To indicate that at least one cell is available in the PHY receive cell buffer Receive Interface.
RxSOC	PHY to ATM	LvPECL	Receive Start Of Cell. Active high signal asserted by the PHY Layer to indicate the start of cell position.
RxEnb*	ATM to PHY	LvPECL	Receive Enable. Active low signal asserted by the ATM Layer during cycles when the PHY port is allowed to send data. This then also indicates that the RxData contains valid cell data. <i>Optional, transition indicates valid address on the TxAdd bus for multi PHY use.</i>
RxAdd(4:0) (Optional)	ATM to PHY	LvPECL	Receive Address. To select the PHY port from which receive data is to be read. The address is used in both Direct Status indication mode and the Single Clav (polling) mode.
RxPrty (Optional)	PHY to ATM	LvPECL	Data path parity. The RxPrty parity bit serves as the odd parity bit over RxData[63:0].


2.3 Timing

Figures 2 and 3 give some examples of the timing, which would be supported, by this interfaces.

FIGURE 2, Transmit Timing Examples

FIGURE 3, Receive Timing Examples

3. Motions

This contributions includes four motions:

3.1 *Creation of a Utopia Level 4 Work Item and Living List Document*

The first motion of contribution 98-0697 is for the creation of an OC192 Work Item and it's accompanying Living List Document.

3.2 *Incorporation of a 64 Bit Wide Bus Structure*

The second motion is to incorporate section 2.1 (Bus Structure) of this contribution onto the newly defined OC192 Living List Document.

3.3 *Incorporation of an I/O Definition*

The third motion is to incorporate section 2.2 (Interface Definitions) of this contribution onto the newly defined OC192 Living List Document.

3.4 *Incorporation of Timing Examples*

Lastly, motion is made to incorporate section 2.2 (Interface Definitions) of this contribution onto the newly defined OC192 Living List Document.