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ABSTRACT

This paper describes the development of incipient
yield and subsequent collapse surfaces for a plate
containing a large number of small circular
penetrations arranged in an equilateral triangular
array. The collapse surface developed here is
appropriate for formulating a generic elastic-plastic
flow theory for perforated materials. A unit cell is
defined to characterize the mechanical response of
an equilateral triangular array of penetrations. An
elastic-perfectly plastic [EPP] finite element
analysis [FEA] computer program is used to
calculate the EPP response of the unit cell. A
sufficient number of load cases are solved to define
the complete incipient yield and collapse sutfaces
for the unit cell. A fourth order yield function is
defined by squaring the Von Mises quadratic yield
function and retaining only those terms that are
required for the symmetry dictated by the triangular
array. Curve fitting is used to determine the
coefficients of the fourth order function to match the
incipient yield and collapse data calculated for the
unit cell by FEA.

The incipient yield function in the plane of the plate
incorporating the penetration pattern is shown to be
almost rhomboidal in shape while the collapse
curve is more elliptical. The fourth order yield
function which passes through the incipient yield
data possess regions where the surface is concave
- a concern when developing a plasticity theory
based on the function. Fitting the coefficients of the
fourth order function to the collapse data results in
a curve which is shown to be always convex thus

N. Hutula

having all positive outward normal vectors which is
a required”property for the development of plasticity
flow theories.

NOMENCLATURE

P
d
h

P
G, q

EQS
Sy
so= ~sy

Pitch of pattern, mm
Diameter of penetrations, mm
Minimum ligament width, (P-d), mm
Ligament efficiency, h/P
Stress and strain for i = xx, W, ZZ,
xy, ZX,yz components, MPa and
mmlmm
Equivalent solid
Yield stess of material, MPa
Effective yield stress of EQS material,
MPa

P, Q, R, T, Curve fit coefficients
Y , z,, z~

INTRODUCTION

There are many applications of flat perforated
plates in the design of heat exchangers and
pressure vessels. Calculation of stresses and
deformations for perforated plates is greatly
simplified by using a’model that replaces the
perforated region with an equivalent solid [EQS]
material for which the structural response is
identical to the structural response of the actual
perforated material.
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The EQS method has been well developed for the
elastic response of perforated ‘materials for hole
patterns typically used in modern heat exchanger
design such as equilateral triangular and square
arrays of circular penetrations. The work of Slot
(1972) and Slot and O’Donnell (1971 ) are typical of
the fundamental works in this area. The technology
for use of elastic methods in design is summarized
by Paliwal and Saxena, (1993) and Ukadgaonker,
et al. (1996). The elastic methods have matured to
a sufficient state that elastic EQS procedures are
incorporated in the ASME Boiler and Pressure
Vessel Code Sections Vlll and Ill. Jones (1978)
and Jones et al. (1998) have applied these
methods for application to elastic FEA programs.
Code procedures are in the process of being
updated based on the effortsofOsweiiler(1991 ).

With the recent advances in computer technology,
elastic-plastic [EP] analysis has become practical
for general structures using finite element analysis
[FEA]. EP-FEA can provide a more realistic
assessment of a structure allowing for better
balance between strength requirements which
typically call for thicker sections to lower
mechanical stresses and fatigue requirements
which typically call for thinner sections in order to
lower cyclic thermal stresses.

In this paper, equivalent solid plate methods are
developed for use in EPP-FEA of perforated plates.
A collapse surface is obtained that is appropriate
for the development of limit load analyses by way of
EPP-FEM of flat perforated plates with an
equilateral triangular array of circular holes. The
collapse surface is shown to satisfy the
fundamental properties required by the periodicity
of the triangular pattern. Requirements for the yield
surface are given in general terms so that sufficient
fundamental data can be obtained for any specific
hole pattern. An example is given for a pattern with
a ligament efficiency (p) of 0.31733 where ligament
efficiency is h/P, f’ is the pitch of the pattern, and h
is the minimum ligament width.

oped a very practical way of EPP solutions to
perforated plates based on the “cut-out” factor
concept. Porowski and O’Donnell defined the cut-
out factor as the lowest limit load possible for a
perforated material for all possible ratios of in-
plane stress bi-axiality ratios, o,~ Ow or aY~GXX.
The cut-out factor was typically limiting for a biaxial
stress ratio of -1.0 and generally quite conservative
for positive biaxiality ratios.

With more widespread use of computers, EP-FEA
and EPP-FEA solutions were developed for
perforated materials – i.e. Kichko et al. (1981),
O’Donnell et al. (1979), Slot andBranca(1974),
and Pai and Hsu (1975). These papers extended
the unit cell concept used to generate the elastic
EQS solutions to develop EP or EPP response of
the perforated material given loadings in the x and
y directions of the pattern. Figure 1 shows a typical
equilateral triangular pattern and Figure 2 shows a
unit cell. Typically these papers represented the
yield surface using an anistropic plastic yield
function such as in Hill (1956).

Figure 1. Triangular Penetration Pattern
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LITERATURE

In a series of papers, O’Donnell and Porowski
(1973) and Porowski and O’Donnell (1974), devel-
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Figure 2. Unit Cell
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Jones and Gordon (1979) developed an EPP-EQS
theory based on curve fitting the initial yield locus
and subsequent yield surfaces for a work hardening
material. Cu~e fitting was used because the
quadratic yield locus representation given in Hill
(1956) was observed to be insufficient to actually fit
the calculated yield loci predicted by FEA of the unit
cells.

In addition to the analytic work, results of a number
of experimental efforts have been reported in the
literature that support the yield surface shapes
calculated by FEA for triangular patterns. The work
of Litewka and Swacyuk (1981), Shiratori and
Ikegame (1969) and Konig (1986) are typical of
these experimental works.

Reinhardt (1998) proposed the use of a fourth order
yield function to represent the sutfaces observed
both experimentally and computationally. Reinhardt
(1998) demonstrated that by squaring the Hill
(1956) quadratic yield function, a fourth order
relationship is obtained:

CJeff(c,)=

(1)

where, for convenience, sir S2,S3are defined as

[1
s,

S2 =

S3

This function has sufficient generality to represent
the periodicity properties required by an equilateral
triangular pattern. The paper by McClellan and Mou
(1997) further qualified the fourth order yield
function with specific examples.

INCIPIENT YIELD SURFACE

In this paper, starting with the yield function
proposed by Reinhardt (1998), a function is
developed that can be used in a EPP-FEA program
for the purposes of calculating a limit load for a per-
forated plate. Consider the function provided in
Equation (1). As demonstrated by Reinhardt (1998)
the periodicity of the triangular pattern requires that
the same yield stress be obtained at every 60°
around the pattern. Using coordinate
transformations, Reinhardt (1998) showed that the
following relationships had to be observed in the
coefficients

S=O, U= R, W=-3T,
V=2Q, X=Q (2)

Accordingly, a yield function of the form

Oeff =

[Ps: + Q(s;+s:)2 + Rs:(s; + S;)+
Ts1s2(s;–3s3)]0”X= So

(3)

is sufficient to represent the yielding of the pattern.
By calculating the EQS stress that brings the
highest stressed point in the perforated material to
yield for a sufficient number of load cases, the
constants P, Q, R, and T solutions can be obtained.
Calling these points the incipient yield stress points
and using a unit cell representation for a pattern,
incipient yield stresses for the cell loaded in the x-
direction (Sm),y-direction (Sw), the equibiaxial case
(SJ, and the pure-shear case (SJ can be obtained
by elastic analysis such as available in Slot and
O’Donnell (1971 ). Elastic FEA solutions for a unit
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cell of the pattern as in ~ggre-2_is_also .a.vafld.:.... . .
approach to obtaining the incipient y~ld stresses.

The FEA approach was used here for a plate with a
ligament efficiency of 0.31733. The ABAQUS
(1997) program was used to compute a (cr~, Ow)
interaction surface for the incipient yield points
based on the unit cell FEA model which is shown in
Figure 3.

Figure 3. FEA Model of Unit Cell

The boundary conditions for the anaiyses are
described in Figures 4 and 5. By changing the
prescribed displacements, & and ~, solutions for
various (a=, Ow) values can be obtained. FEA was
used to obtain the solutions in Table 1. The in-
plane loading cases were run as generalized plane
strain problems making the solutions independent
of the plate thickness. The EQS values of o= and
aw were calculated by dividing the vector forces
from FEA, resulting from the displacement
boundary condition, by the area of the face on
which the force was calculated.

The incipient yield surface for the data in Table 1 is
shown in Figure 6. The data in Table 1 is fit to
Equation (3) using MATHEMATICAL (1997) to
determine the coefficients P= 2.0439,Q=79.8215,
R = 70.5655, and T = 115.07. The predicted
surface agrees very well with the computed surface
although it is not always convex. This property is
an important consideration in plasticity flow theory
development as notedinMendelson(1968).
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Eigure_.4..Boundary .Conditions for Normal X-Load
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Figure 5. Boundary Conditions for Normal Y-Load
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Figure 6. Incipient Yield Surface
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COLLAPSE SURFACE

The goal of this study is to develop a surface
appropriate for representation of the collapse or
limit load of a perforated material. Consider a three-
dimensional surface of the form

0,,( = {~{ P(CTxx + CW)4 + Q[(CJXX- (su)’ + 47:,]2

+ R(CJH+ aw )2[(om – aw )2+ 472]

+ T(o; – Oj)[(aM – OW)2– 12z$}0.5

+ Y[a: – a= (0= + ayy )] + 3217:, + 3227: }0”5

= so (4)

It is noted that to satisfy the periodicity of a
triangular pattern, Z, = Z2. However, Z1 and Zz are
allowed to be independent here to provide an
improved approximation for the Zwand 7X yielding.
A collapse surface is developed using the unit cell
problems defined in Table 1 loaded until the col-
lapse or limit load of the perforated material is
reached. The ABAQUS (1997) program is used to
analyze the FEA model of the unit cell shown in
Figure 3 for a small strain, small deflection elastic-
perfectly plastic model. The 20-node reduced
integration hexagonal element was used.

Since the o=, Zw, and ~zare independent of the
other stresses, only three independent solutions
are necessary to obtain the coefficients Y, Z1 and
Z2. These solutions are given in Table 2. “The
remaining coefficients are obtained by using the
same procedure as for incipient yield, in that& and
8Ydisplacements in Figure 4 are varied to give a
number of (a=, crw)combinations for o= = ~w = z=
= ‘c~ = 0.0.

A typical load deflection curve is shown in Figure 7
for the on case. The collapse load for each load
case is taken to be the last converged solution
computed by ABAQUS and as seen in Figure 7
represents the load for which a small increase in
load provides a very large increase in deflection.

Figure 7. Load Deflection Curve for the OmCase
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Collapse solutions to the (a=, ~w) cases, shown in
Table 3, give a collapse surface as shown in Figure
8 for the case where the only non-zero stresses are
on and OW
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Figure 8. Collapse Surface for a== O Plane
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There are similar interaction curves between all six
stress components such that a six dimensional
sutface in stress space coordinates can be
generated. Figure 8 shows the collapse surface for
C== Oplane. Any particular value of a= provides a
unique a= - GWsutface. Figure 9 shows a three-
dimensional collapse surface in general
(an, Ow, a=) coordinates.

Figure 9. Collapse Surface for (a=, aw, a=)
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The MATHEMATICAL(1997) program is used to fit
Equation (4) to the collapse surface data given in
Table 3 by first calculating the Q term to match the
Sw case given in Table 2. Coefficients P, R, and T
are then fit to the data points shown in Figure 8.

For a ligament eff iciency of 0.31733 the complete
collapse surface is given by Equation (4) and the
coefficients

P = 0.52971
Q =11 .86453
R= 3.96229
T= 7.57493 (5)
Y= 0.30206
z, = 1.000
z*= 0.750

The analytic surfaces given by Equation (4) and the
coefficients in Eq (5) are compared to the explicit
EPP-FEA data in Figure 10 for a= = Oplane. The
maximum error between these surfaces is less than
about 7Y0. The collapse surface is convex for all but
very few locations on the surface. This was “
determined using MATHEMATICAL(1997), by
showing that the determinate of the Hessian matrix
is positive definite. It is anticipated that these
deviations from convexity will be impractical when
implementing a plasticity algorithm to compute limit
loads for an EQS material in a FEA program.

Figure 10. Analytic Collapse Surface
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CONCLUSIONS V. G. Ukadgaonker, P. A. Kale, N. A. Agnihotri and
R. Shanmuga Babu, 1996, “Review of Analysis of

A collapse surface was developed using three-
dimensional EPP-FEA of a unit cell representing an
infinite array of equilateral penetrations in a flat
plate. The collapse surface was analytically repre-
sented using a fourth order function that
incorporates the periodicity dictated by the 60°
periodicity of the hole pattern. A collapse surface
for a triangular array of holes of ligament efficiency
0.31733 was developed and shown to be
appropriate for development of an EPP-EQS theory
for perforated plates. The analytic surface agrees to
within 7% of the actual collapse surface obtained
by EPP-FEA of the unit cell representing the
penetration.
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Table 1. Incipient Yield Data
(All stresses zero except G, CYY)

Case
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

crn/&
0.0000
0.0456
0.0896
0.1399
0.1914
0.2470
0.3128
0.3784
0.4538
0.5399
0.6420
0.7690
0.8273
0.8545
0.8596
0.8589
0.8388
0.7853
0.7019
0.6359
0.5809
0.5389
0.5003
0.4669
0.4116
0.3645
0.3203
0.2772
0.2324
0.1825
0.1553
0.1248
0.0857
0.0445
0.0000

cJw/psv
0.7935
0.8025
0.8068
0.8213
0.8314
0.8423
0.8551
0.8569
0.8565
0.8559
0.8550
0.8533
0.8527
0.8466
0.8177
0.7896
0.7050
0.5790
0.4063
0.2723
0.1611
0.0769
0.0000

-0.0667
-0.1762
-0.1560
-0.3554
-0.4395
-0.5263
-0.6225
-0.6749
-0.7333
-0.7759
-0.7843
-0.7935

Table 2. Collapse Data for Out-of-Plane Normal
and Shear Loads

Case @lsv Coefficient
s= 1.8195 Y = 0.30206

SF 0.57770 z, = 1.0000

S= 0.66721 z~ = 0.7500

Sq 0.53881 Q =11 .86453

‘
where Sij means a load case where only the

(i, j) stress component is non-zero.

Table 3. Collapse Surface Data
(All stresses zero except an, Gw)

.

Case
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

CJ=lpsv
0.0000
0.1419
0.3126
0.5061
0.7262
0.9846
1.1147
1.2288
1.2748
1.2869
1.2688
1.2228
1.0767
0.9487
0.8306
0.7205
0.6184
0.5224
0.4287
0.3331
0.2316
0.1218
0.0000

CrWlj.ls”
1.1965
1.2854
1.3584
1.3837
1.3710
1.3116
1.2374
1.1303
1.0310
0.9489
0.8551
0.7078
0.2988
0.0000

-0.2305
-0.4170
-0.5688
-0.6958
-0.8093
-0.9108
-1.0061
-1.1045
-1.1965
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