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ABSTRACT

Two programming models for parallelizing the Angular Domain Decomposition (ADD) of the
discrete ordinates (S,) approximation of the neutron transport equation are examined. These are
the shared memory model based on the POSIX threads (Pthreads) standard, and the message
passing model based on the Message Passing Interface (MPI) standard. These standard libraries
are available on most multiprocessor platforms thus making the resulting parallel codes widely
portable. The question is: on a fixed platform, and for a particular code solving a given test
problem, which of the two programming models delivers better parallel performance? Such
comparison is possible on Symmetric Multi-Processors (SMP) architectures in which several
CPUs physically share a common memory, and in addition are capable of emulating message
passing functionality. Implementation of the two-dimensional, S, Arbitrarily High Order
Transport (AHOT) code for solving neutron transport problems using these two parallelization
models is described. Measured parallel performance of each model on the COMPAQ
AlphaServer 8400 and the SGI Origin 2000 platforms is described, and comparison of the
observed speedup for the two programming models is reported. For the case presented in this
paper it appears that the MPI implementation scales better than the Pthreads implementation on
both platforms. ' ‘



1. INTRODUCTION

The Symmetric Multi-Processors (SMP) architecture has been gaining popularity, both on its own
and as the building block of larger multiprocessor computers. An SMP is comprised of a
collection of powerful CPUs with equal access to a common, or shared, memory in addition to
a hierarchy of cache(s) local to each processor. As such, it supports the shared-memory
programming model in which interprocessor communication is accomplished via storage in
common areas of memory. A standard, portable library of routines designed to facilitate the
shared-memory programming model, Pthreads, that allows a process to start other light-weight
processes, or threads, is available on most SMPs. At the same time, the Message Passing
Interface (MPI) standard that supports the message-passing, or distributed-memory, programming
model is also available on some SMPs. While an optimal implementation of MPI will not
communicate between processors by physically passing messages on SMPs, it will provide
additional portability to this architecture by simulating such a communication mode using the
shared memory. The additional flexibility afforded to the programmer in terms of selecting the

programming model presents an opportunity for achieving better parallel performance. In this
work we compare the parallel performance of each programming model using the AHOT code.
AHOT solves the two-dimensional discrete ordinates (S,) equations using the Arbitrarily High
Order Transport method of the Nodal type. Parallel AHOT is tested on both a COMPAQ
AlphaServer 8400 and an SGI Origin 2000.

In Sec. 2 we briefly review the Angular Domain Decomposition (ADD) that we employ to
parallelize the mesh sweep, which is the most time consummg component of the S, method. We
describe the implementation of the parallelized algorithm using both the shared memory and the
message passing programming models in Secs. 3, and 4, respectively. We report measured
parallel performance on the COMPAQ AlphaServer 8400 and SGI Origin 2000 as a function of
the number of participating processes for both models, and compare the scaling of the speedup

factors. '

2. ANGULAR DOMAIN DECOMPOSITION

The most general discrete ordinates calculation that is based on the first order form of the
transport equation can be decomposed into a sequence of mesh sweeps along a single angular
direction at a time. Due to the large number of times this procedure is repeated in a typical
calculation (once per quadrature angle, per iteration) it has become the focus of efforts to
parallelize S, methods. Among the three primary domain decompositions that have been
attempted for S, methods: energy, angle, and space,’ Angular Domain Decomposition (ADD)
possesses the following desirable features:

1. Intrinsic domain decomposition in non-curvilinear geometry: The angular fluxes are coupled
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primarily through the scattering/multiplication source which is fixed during a mesh sweep.
(Additional coupling can result from reflective or periodic boundary conditions; at a
minimum, the directions within an octant in angular space are mutually independent within ‘
a mesh sweep. Moreover, if all boundary conditions are fixed-value, including vacuum, then
all angular directions are mutually independent.) Hence, identical arithmetic operations are
performed (perhaps not in the same order) in the parallel algorithm as in the sequential mesh
sweep, yielding identical (within arithmetic precision) intermediate and final results. This
implies that the number of iterations required to achieve convergence is independent of the
number of subdomains, or participating processes. This is important for achieving high
parallel speedup, relative to the serial code.

2. Perfect load balance: All mesh sweeps comprise about the same computational load, and thus
consume the same amount of time to execute even on irregular grids. This results in a
perfect load balance among the processes participating in the calculation (assuming the
number of processes divides the number of discrete ordinates that are mutually independent)
thereby eliminating process idleness. Furthermore, this enables static scheduling of angles
to participating processes, which is more efficient than dynamic scheduling in the absence
of process idleness.

3. Medium parallel grain size: The amount of useful computation performed between two

- synchronization points defines the parallel grain size. ADD's granularity lies somewhere

between that of energy (coarse) and spatial (fine) domain decompositions. Compared to

energy and spatial domain decomposition, ADD incurs a relatively smaller parallelization

~ penalty, but produces relatively fewer independent processes that can be executed

simultaneously. The limited parallelization penalty enhances parallel efficiency, a desirable

effect. The limited number of independent processes limits the potential for speedup, and is

an undesirable constraint. This forces a compromise between the two effects that is guided

by the target architecture (e.g. shared memory), the class of applications (e.g. typlcal problem

size), and additional performance measures beyond the hardware utilization (e.g. turnaround
time).

Parallel algorithms based on ADD have been developed, implemented and analyzed on a w1de
variety of multiprocessor platforms encompassing shared and distributed memory architectures.'
Two examples are the production neutral particle transport code TORT? and the Arbitrarily High
Order Transport (AHOT) test code.> TORT has been available for many years on CRAY
UNICOS platforms and is capable of execution in multitasking mode, which is a shared memory
environment. Its performance, measured and modeled, on a variety of CRAY models, e.g. Y/MP,
C90, and J90, has been reported previously.* While significant speedup was achieved, the lack
of portability of the multitasked code, and the limited potential for scaling to a large number of
processes led us to explore other alternatives as summarized below.

Recently, TORT was converted to run under the POSIX threads, Pthreads, standard, a portable

library of routines for SMP architectures. This version was 1nstalled and tested on several
platforms including an 8-CPU COMPAQ AlphaServer 8400, a 2-CPU Sun Sparc Ultra-2, a
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32-CPU SGI Origin 2000, and a 2-CPU Ppro PC running the GNU/Linux operating system. The
main purpose of this exercise was to illustrate the portability of the resulting code. In addition,
performance measurements on a few test problems exhibited reasonable speedup but at rapidly
deteriorating parallel efficiency as the number of processes increased. Perhaps more impressive
than the parallel performance of the Pthreaded-TORT is its almost perfect portability; only minor
modifications were necessary to install and execute the code on the several platforms listed
above. This is important because the parailel inefficiency observed on a given system may be
a consequence of the implementation of Pthreads, not a property of the parallel algorithm in
general.

The complex production nature of TORT, and particularly its memory management functionality,
made it difficult to examine the scaling potential of ADD because it was difficult to distinguish
between the causes of loss of efficiency that were genuine to the parallel algorithm, and those
that were a consequence of its implementation in TORT. For this reason we shifted our attention
to the two-dimensional test code AHOT which is far less sophisticated in its capabilities, but
much cleaner in its programming, thus more faithful to the solution algorithm in its performance.
In the remainder of this paper we focus on the parallel implementation of AHOT based on ADD
using two programming models via fully portable standard libraries, Pthreads and MPIL.

3. SHARED MEMORY PROGRAMMING MODEL

The main advantage of the shared memory programming model is the simplicity of programming
in it, especially if the programmer starts from a serial code that is to be parallelized. Basically,
the programmer needs to identify the data that must be shared among the participating processes
and place them in common locations in memory. Libraries that implement multiprocessing on
shared memory platforms possess instructions to synchronize access to these shared data. Data
that are not shared by the participating processes are stored in private areas of the memory, and
typically hold intermediate variable values, loop indices, etc. The similarity between this
programming model and standard modular programming on traditional serial computers is
evident: variables (scalars or arrays) declared in common blocks, or accessed by address location
are shared between processes, otherwise variables are private.

Synchronization of the participating processes on shared memory architectures is accomplished
by a variety of mechanisms. The two that were employed in earlier parallelizations of transport
calculations are:

1. Mutual exclusion (mutex) locks that permit execution of a section of code enclosed in the
lock by only one process at a time. '

2. Barriers that suspend execution at a specific point until all participating processes reach that
point. :




In addition to simplifying the parallelization process, shared memory architectures provide an
inexpensive means to implement dynamic scheduling. This mode of assigning concurrent
processes to an active processor can reduce the adverse effects of load imbalance in time sharing
environments. This is achieved by listing the identifying index of all concurrent processes in a
queue stored in the common area of memory. Each active process, under lock, grabs the next
index from the queue and increments the queue position by one for the next process to grab; it
then conducts the mesh sweep for the angle corresponding to the index it grabbed.

The parallelization penalty on shared memory architectures results from the overhead of starting
the participating processes, initializing the synchronization mechanisms, and the spin time. The
first two can be reduced by the programmer to an insignificant level in large computations by
performing these activities only once at the outset of execution, and avoiding their repetition.

The spin time refers to the amount of time the CPUs spend doing no useful computations while
waiting at a synchronization point, thus spin time depends on run time conditions that are beyond
the control of the programmer. Furthermore, most operating systems implement sophisticated
algorithms that adjust the length of spin time according to the dominant computational load
history at a given time. Another common reason for loss of paraliel efficiency on shared memory
architectures is memory contention which is typically hard to diagnose, and sometimes impossible
to eliminate due to safety features of the operating system.

To enable the comparison with the MPI version described in the following section, a static
scheduling policy is implemented in the Pthreads version of AHOT. Two domain decompositions
are applied: the mesh sweep is decomposed along the angular variables, ADD, while the
computation of the iteration residual is conducted along a spatial domain decomposition. The
angles are assigned to threads with a stride equal to the number of threads requested by the user
at run time. The spatial domain decomposmon is implemented in blocks of rows and are
assigned to threads with a stride computed from the number of blocks of rows available in the
problem. Since the mesh sweep dominates the computational time this implementation is termed
ADD in spite of the fact that it is a hybrid domain decomposition.

The code is organized such that the creation of the requested threads and initialization of the
mutex lock and four barriers are completed outside the inner iterations module. For each inner
iteration the loop over angles that implements the mesh sweeps is executed by each thread for
angles statically assigned to it as described above. The angular flux spatial moments computed
in the process of a mesh sweep are accumulated by each thread in a private array in order to
avoid synchronization points that would result in finer granularity and a higher potential for loss
of parallel efficiency. At the conclusion of a mesh sweep along all angles in a thread's domain,
the thread accumulates, in a shared array, the contribution to the new iterate of the scalar flux
spatial moments. The accumulation is performed under a serializing lock. This is followed by
a barrier point in order to ensure that the convergence test stage does not commence until all
contributions to the new iterate have been accumulated.

The convergence test stage starts with each thread computing the largest poihtwise iteration
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residual in its assigned block of rows and then storing this value and its location index in private
locations. Once all threads have completed this activity, they synchronize at the second barrier,
then under lock they compute the largest magnitude iteration residual and save it in a shared
location. This is followed by the third barrier to guarantee that no thread will proceed before a
final determination of iterative convergence is reached. At this point all threads have access to
the global iteration residual. If the user specified convergence criterion is satisfied, then all
threads exit the inner iterations module and join the parent thread which successfully terminates

_the computation If convergence has not been achieved but a new iteration is to be started, the

threads update in parallel the shared arrays of the old and new iterates of the scalar flux spatial
moments, synchromze at the fourth barrier, and then proceed to perform the next iteration. If
convergence is not achieved and the user specified number of iterations has been exhausted, the
threads exit the inner iterations module and join the parent thread which then termmates the
execution and warns the user of the lack of convergence

The algorithm as summarized above was 1mp1emented in AHOT using the standard Pthreads
instructions, and was successfully installed and executed on an 8-CPU COMPAQ AlphaServer
8400, a 2-CPU Sun Sparc Ultra-2, and a 32—CPU SGI Ongm 2000. Sample measured parallel
performance is reported in Sec. 5.

4. MESSAGE PASSING PROGRAMMING MODEL

The programming model for message passing architectures is complicated by the fact that it has
no immediate analogy in traditional serial programming. In this case the CPUs comprising the
target platform possess (physically or logically) uncoupled memory spaces and data exchanges
among participating processors must be accomplished via explicit message exchange. Another
difficulty of the message passing programming model arises from the way messages must be
exchanged. At specific points in the instruction flow in different processes the programmer must

anticipate the need for data exchange, and the program must coordinate both sending and

receiving processes to conduct this exchange. This requires complete definition of the message
contents from type and length to location in memory on both processes involved. Among the
various types of message exchange methods available, blocking exchanges are the safest because
they protect the contents of the message from being overwritten by subsequent instructions until
they have been copied elsewhere, either in the send buffer or sent to the receiving process. For
this reason, message exchange is the prlmary method of synchromzauon on message passmg
platforms. o

The main advantage of message passing architectures is the potential for better parallel scaling
to a larger number of processes. Also, in the message passing programming model the
programmer has better control on the conduct of the computation, via explicit decisions to
communicate, by virtue of the lower possibility of interference by the operating system. The
primary source of parallelization penalty here is the cost of message exchange which is typically -
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characterized by a latency component to initialize a message and a volume component
characterizing the communication bandwidth. Hence, it is crucial in message passing
programming to reduce the number of messages and the volume of traffic to the absolute
minimum, and to overlap computation with communication as much as possible. Earlier studles
that attempt to evaluate latency and data traffic volume as a function of platform characteristics
for transport methods have identified algorithms, e.g. Bucket Algorithm, that perform better on
computers with partlcularly low latency.

In the context of the AHOT code three communication strategies aimed at improving the
performance of global reduce operations and reducing the memory requirement on physically
distributed memory architectures were examined, and their performance measured and modeled.’
That study implemented the parallel instructions using the PVM (Parallel Virtual Machine)
library. In the present work, the three communication strategies investigated earlier are briefly
‘reviewed below. In the interest of cross-platform portability, they were implemented using the
standard MPI library.

The parallelization of the AHOT code on message passing archltectures is also based pnmanly
on ADD. Thus the master process reads the input data which specifies the problem configuration
and selects various options, constructs arrays representing the fixed source, angular quadrature,
material composition and cross section data, etc., and broadcasts all necessary input to the slave
processes. Each process, master or slave, proceeds with mesh sweeps along the angles statically
assigned to it, and accumulates the contribution to the scalar flux spatial moments in a local
array. At the conclusion of all mesh sweeps all participating processes accumulate their local
arrays, which contain partlal contnbutlons to the scalar flux spatial moments, into the new iterate
array. The array accumulation is based on global reduce operations that are implemented
differently in each of the three consxdered strategies.

In the first strategy, termed MPI, the native MPI global reduce operation is used. This of course
can vary from one platform to another, but often it is based on a spanning tree connection
topology among the participating processes. In such a scheme, half the participating processes
send their partial contributions to the other half, that performs the sum, then half the remaining
processes send again, and so on. This is followed by a broadcast stage in which the new iterate
is sent to all participating processes along the same spanning tree topology described above. The
main advantage of this scheme is that it reduces the number of messages exchanged to a
minimum, a crucial benefit on platforms that possess high communication latency. On the other
hand, its disadvantages include a substantial idleness as the number of active processes is cut by
half in each step of each of the two stages, and the additional idleness that results if the number
of processes is not a power of 2, '

The second of the three communication strategies is based on the Bucket Algorithm which
performs the global reduce operation on a monodirectional ring topology. In this scheme, each
of the P participating processes starts by passing a bucket containing the P-th subvector of its
local contribution to the scalar flux spatial moments to its neighbor along the monodirectional
ring. Each process then sums the subvector it just received into the corresponding local
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subvector which contains its own contribution, then sends the bucket to its neighbor, and so on.
By the time each bucket has circumnavigated the entire ring, each process will contain the
completely updated iterate for its subvector. In the broadcast stage, each process sends the new
iterate subvector to its neighbor again along the monodirectional ring. The bucket algorithm
typically results in a larger number of messages than the spanning tree scheme, however, it
produces a smaller volume of data traffic that is not concurrent, hence outperforming the native
global reduce on platforms with small communication latency. The main advantage of the
Bucket Algorithm is that it does not constrain the number of participating processes to powers
of 2, thereby all but eliminating idleness if the number of processes divides the number of angles.
Its disadvantages include a greater number of arithmetic operations, and of messages exchanged.
In addition, it requires implementation by the programmer since it is not available in standard
MPI libraries. Clearly this can result in suboptimal performance since it is programmed at-a
relatively high level and, for the purposes of cross-platform portability, will not take into account
individual features of the target platforms that impact parallel performance.

The third communication strategy is very similar to the Bucket Algorithm except it attempts to
simulate a production environment by distributing the large flux iterates arrays and the fixed.
source array over the memories of the participating processes. In the implementation of this
scheme in AHOT, termed Distributed Memory, these arrays are blocked by rows in the y-
direction. This arrangement implies a significantly larger communication penalty as each sweep
of a block of rows must start with the owner process broadcasting the fixed scattering plus fixed
source subarray in its local memory to all participating processes. The advantage here is the
great reduction in the required memory since little duplication of these large arrays is necessary.

Communication in this scheme is conducted along a bi-directional ring, and some overlapping
of computation and communication is introduced for the sake of higher parallel efficiency. Since
messages collide in a bi-directional ring comprised of only two processors, it is necessary to
execute this algorithm on three or more CPUs.

In each of the above communication strategies, the convergence test section of the code was
conducted in a way compatible with that strategy. For the MPI scheme the native global
maximum function was used to compute and broadcast the largest magnitude iteration residual,
while for the Bucket Algorithm a spatial domain decomposition was implemented as described
in the shared memory implementation. In the Distributed Memory scheme, the native global
maximum function was employed. In all cases the small, almost negligible cost, of the
convergence test section made the choice of parallel scheme immaterial. ‘

The AHOT code implementing these three communication strategies was translated to employ
MPI for communication, and was successfully installed and tested on an 8-CPU COMPAQ
AlphaServer 8400, a 32-CPU SGI Origin 2000, and a 24-CPU IBM SP2. In this case, also, the
MPI code was almost perfectly portable to these different platforms. Measured parallel
performance for the three strategies outlined above is presented in Sec. 5 and compared to the
performance of the Pthreads version of AHOT.




5. NUMERICAL RESULTS AND CONCLUSIONS

The Pthreads and three MPI versions of AHOT were used to solve a simple test problem on a
COMPAQ AlphaServer 8400 and an SGI Origin 2000. The test problem is a one group, tw o
region configuration based on a 16 x 16 uniform mesh with all vacuum boundary conditions and
an S, angular quadrature. For the purpose of this test we used a third order spatial expansion
of the dependent variables in Legendre polynomials, and required all computed spatial moments
to converge to a relative criterion of 10 in all runs, which resulted in convergence in 27
unaccelerated inner iterations. Correctness of the parallel code was verified by comparing the
converged scalar flux with the values from the serial run. Agreement was verified to within the
convergence criterion.

The measured elapsed time (sec) for the runs with the Pthreads version and the three message
passing schemes versions of AHOT vs the number of participating processes is shown in Table
I for the COMPAQ AlphaServer 8400 and in Table I for the SGI Origin 2000 platforms. Noe
that in the Pthreads implementation the number of requested threads must evenly divide the
number of angles in the quadrature. (The S,4 quadrature contains 36 angles per octant.) Also, the
Distributed Memory version cannot be executed with fewer than 3 processes, and results are not
available for 5 or 7 CPUs because in these cases the blocking of rows results in one process that
owns an empty block.

Table I. Performance (Elapsed sec) of Parallel AHOT on COMPAQ AlphaServer 8400

Serial | 1 2 3 4 1 s 6 | 7 8

Pthreads 408 | 456 | 27.3 | 200 | 15.9 10.5
MPI 445|225 1521119107 | 81 | 81 | 7.1
Bucket 46.1 | 249 155|128 | 106 | 8.1 | 82 | 7.2
Dist Memory 166 | 12.0 8.0 | 77

In general these results exhibit reasonable speedup as the number of participating processes
increases. The AlphaServer displays slightly better scaling, but the difference is probably not
significant given the vagaries of system load on time sharing computers. Comparison of the
results shown in Tables I and IT illustrates the far better performance of message passing versions
over the Pthreads version for the two platforms considered. This is not surprising since earlier
experience suggests that, even though it is harder to develop a message passing version from a
sequential code, message passing typically possesses higher parallel efficiency. This is largely
due to the ease of identifying the sources of parallel inefficiency, which enhances the
‘programmer’s ability to optimize performance on a target platform. Also, the measured results
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demonstrate insensitivity of the parallel performance to the MPI communication strategy; each
of the message passing implementations show approximately equal scaling. This is a hopeful sign
for production codes where distributing the memory requirement across participating processes
might be necessary. Of course it still remains to be verified that this observation, namely the
insensitivity of the parallel performance to the MPI communication strategy, holds when CPUs
outside of a single box of an SMP are employed.

Table II. Performance (Elapsed sec) of Parallel AHOT on SGI Origin 2000

Seial | 1 [ 2 | 3[4 [5s[6 .78 |...
Pthreads 742 | 745 | 741 | 376 | 328 | 27.8
MPI 80.8 [ 39.7 | 29.4 [ 21.6 | 19.5 | 169 | 159 | 13.1
Bucket 81.2 | 41.1 | 28.1 | 224 [ 19.6 | 158 | 15.1 | 135 'm N
Dist Memory |- - -] 28.1 | 218 162 - |157]
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