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ABSTRACT 

Two programming models for parallelizing the Angular Domain Decomposition (ADD) of the 
discrete ordinates (S3 approximation of the neutron transport equation are examined. These are 
the shared memory model based on the POSIX threads (Pthreads) standard, and the message 
passing model based on the Message Passing Interface (MPI) standard. These standard libraries 
are available on most multiprocessor platforms thus making the resulting parallel codes widely 
portable. The question is: on a fixed platform, and for a particular code solving a given test 
problem, which of the two programming models delivers better parallel performance? Such 
comparison is possible on Symmetric Multi-Processors (SMP) architectures in which several 
CPUs physically share a common memory, and in addition are capable of emulating message 
passing functionality. Implementation of the two-dimensional, S, Arbitrarily High Order 
Transport (AHOT) code for solving neutron transport problems using these two parallelization 
models is described. Measured parallel performance of each model on the COMPAQ 
AlphaServer 8400 and the SGI Origin 2000 platforms is described, and comparison of the 
observed speedup for the two programming models is reported. For the case presented in this 
paper it appears that the MPI implementation scales better than the Pthreads implementation on 
both platforms. 
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1. INTRODUCTION 

The Symmetric Multi-Processors (SMP) architecture has been gaining popularity, both on its own 
and as the building block of larger multiprocessor computers. An SMP is comprised of a 
collection of powerful CPUs with equal access to a common, or shared, memory in addition to 
a hierarchy of cache(s) local to each processor. As such, it supports the shared-memory 
programming model in which interprocessor communication is accomplished via storage in 
common areas of memory. A standard, portable library of routines designed to facilitate the 
shared-memory programming model, Pthreads, that allows a process to start other light-weight 
processes, or threads, is available on most SMPs. At the same time, the Message Passing 
Interface (MPI) standard that supports the message-passing, or distributed-memory, programming 
model is also available on some SMPs. While an optimal implementation of MPI will not 
communicate between processors by physically passing messages on SMPs, it will provide 
additional portability to this architecture by simulating such a communication mode using the 
shared memory. The additional flexibility afforded to the programmer in terms of selecting the 
programming model presents an opportunity for achieving better parallel performance. In this 
work we compare the parallel performance of each programming model using the AHOT code. 
AHOT solves the two-dimensional discrete ordinates (SJ equations using the Arbitrarily High 
Order Transport method of the Nodal type. Parallel AHOT is tested on both a COMPAQ 
AlphaServer 8400 and an SGI Origin 2000. 

In Sec. 2 we, briefly review the Angular Domain Decomposition (ADD) that we employ to 
parallelize the mesh sweep, which is the most time consuming component of the S, method. We 
describe the implementation of the parallelized algorithm using both the shared memory and the 
message passing programming models in Sets. 3, and 4, respectively. We report measured 
parallel performance on the COMPAQ AlphaServer 8400 and SGI Origin 2000 as a function of 
the number of participating processes for both models, and compare the scaling of the speedup 
factors. 

2. ANGULAR DOMAIN DECOMPOSITION 

The most general discrete ordinates calculation that is based on the first order form of the 
transport equation can be decomposed into a sequence of mesh sweeps along a single angular 
direction at a time. Due to the large number of times this procedure is repeated in a typical 
calculation (once per quadrature angle, per iteration) it has become the focus of efforts to 
parallelize S, methods. Among the three primary domain decompositions that have been 
attempted for S, methods: energy, angle, and space,’ Angular Domain Decomposition (ADD) 
possesses the following desirable features: 

1. Intrinsic domain decomposition in non-curvilinear geometry: The angular fluxes are coupled 
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primarily through the scattering/multiplication source which is fixed during a mesh sweep. 
(Additional coupling can result from reflective or periodic boundary conditions; at a 
minimum, the directions within +.octant in angular space are mutually independent within 
a mesh sweep. Moreover, if all boundary conditions are fixed-value, including vacuum, then 
all angular directions are mutually independent.) Hence, identical arithmetic operations are 
performed (perhaps not in the same order) in the parallel algorithm as in the sequential mesh 
sweep, yielding identical (within arithmetic precision) intermediate and final results. This 
implies that the number of iterations required to achieve convergence is independent of the 
number of subdomains, or participating processes. This is important for achieving high 
parallel speedup, relative to the serial code. 

2. Perfect load balance: All mesh sweeps comprise about the same computational load, and thus 
consume the same amount of time to execute even on irregular grids. This results in a 
perfect load balance among the processes participating in the calculation (assuming the 
number of processes divides the number of discrete ordinates that are muq$ly independent) 
thereby eliminating process idleness. Fur&hermore, this enables static scheduling of angles 
to participating processes, which is more efficient than dynamic scheduling in the absence 
of process idleness. 

3. Medium parallel grain size: The amount of useful computation performed between two 
synchronization points defines the parallel grain size. ADD’s granularity lies somewhere 
between that of energy (coarse) and spatial (fine) domain decompositions. Compared to 
energy and spatial domain decomposition, ADD incurs a relatively smaller parallelization 

’ penalty, but produces relatively fewer independent processes that can be executed 
simultaneously. The limited parallelization penalty enhances parallel efficiency, a desirable 
effect. The limited number of independent processes limits the potential for speedup, and is 
an undesirable constraint. This forces a compromise between the two .effects that is guided 
by the target architecture (e.g. shared memory), the class of applications (e.g. typical problem 
size), and additional performance measures beyond the hardware utilization (e.g. turnaround 
time). 

Parallel algorithms based on ADD have been developed, implemented and analyzed on a wide 
variety of multiprocessor platforms encompassing shared and distributed memory architectures.’ 
Two examples are the production neutral particle transport code TORT2 and the Arbitrarily High 
Order Transport (AHOT) test code. 3 TORT has been available for many years on CRAY 
UNICOS platforms and is capable of execution in multitasking mode, which is a shared memory 
environment. Its performance, measured and modeled, on a variety of CRAY models, e.g. Y/MP, 
C90, and J90, has been reported previously.4 While significant speedup was achieved, the lack 
of portability of the multitasked code, and the limited potential for scaling to a large number of 
processes led us to explore other alternatives as summarized below. 

Recently, TORT was converted to run under the POSIX threads, Pthreads, standard, a portable 
library of routines for SMP architectures. This version was installed and tested on several 
platforms including an g-CPU COMPAQ AiphaServer 8400, a 2-CPU Sun Spare Ultra-2, a 
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32-CPU SGI Origin 2000, and a 2-CPU Ppro PC running the GNWLinux operating system. The 
main purpose of this exercise was to illustrate the portability of the resulting code. In addition, 
performance measurements on a few test problems exhibited reasonable speedup but at rapidly 
deteriorating parallel efficiency as the number of processes increased. Perhaps more impressive 
than the parallel performance of the Pthreaded-TORT is its almost perfect portability; only minor 
modifications were necessary to install and execute the code on the several platforms listed 
above. This is important because the parallel inefficiency observed on a given system may be 
a consequence of the implementation of Pthreads, not a property of the parallel algorithm in 
general. 

The complex production nature of TORT, and particularly its memory management functionality, 
made it difficult to examine the scahng potential of ADD because it was difficult to distinguish 
between the causes of loss of efficiency that were genuine to the parallel algorithm, and those 
that were a consequence of its implementation in TORT. For this reason we shifted our attention 
to the two-dimensional test code AHOT which is far less sophisticated in its capabilities, but 
much cleaner in its programming, thus more faithful to the solution algorithm in its performance. 
In the remainder of this paper we focus on the parallel implementation of AHOT based on ADD 
using two programming models via fully portable standard libraries, Pthreads and MPI. 

‘3. SHARED MEMORY PROGRAMMING MODEL 

The main advantage of the shared memory programming model is the simplicity of programming 
in it, especially if the programmer starts from a serial code that is to be parallelized. Basically, 
the programmer needs to identify the data that must be shared among the participating processes 
and place them in common locations in memory. Libraries that implement multiprocessing on 
shared memory platforms possess instructions to synchronize access to these shared data. Data 
that are not shared by the participating processes are stored in private areas of the memory, and 
typically hold intermediate variable values, loop indices, etc. The similarity between this 
programming model and standard modular programming on traditional serial computers is 
evident: variables (scalars or arrays) declared in common blocks, or accessed by address location 
are shared between processes, otherwise variables are private. 

Synchronization of the participating processes on shared memory architectures is accomplished 
by a variety of mechanisms. The two that were employed in earlier parallelizations of transport 
calculations are: 

1. Mutual exclusion (mutex) locks that permit execution of a section of code enclosed in the 
lock by only one process at a time. 

2. Barriers that suspend execution at a specific point until all participating processes reach that 
point. 
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In addition to simplifying the parallelization process, shared memory architectures provide an 
inexpensive means to implement dynamic scheduling. This mode of assigning concurrent 
processes to an active processor can reduce the adverse effects of load imbalance in time sharing 
environments. This is achieved by listing the identifying index of all conc,urrent processes in a 
queue stored in the common area of memory. Each active process, under lock, grabs the next 
index from the queue and increments the queue position by one for the next process to grab; it 
then conducts the mesh sweep for the angle corresponding to the index it grabbed. 

The parallelization penalty on shared memory architectures results from the overhead of starting 
the participating processes, initializing the synchronization mechanisms, and the spin time. The 
first two can be reduced by the programmer to an insignificant level in large computations by 
performing these activities only once at the outset of execution, and avoiding their repetition. 
The spin time refers to the amount of time the CPUs spend doing no useful computations while 
waiting at a synchronization point, thus spin time depends on run time conditions that are beyond 
the control of the. programmer. Furthermore, most operating systems implement sophisticated 
algorithms that adjust the length of spin time according to the dominant computational load 
history at a given time. Another common reason for loss of parallel efficiency on shared memory 
architectures is memory contention which is typically hard to diagnose, and sometimes impossible 
to eliminate due to safety features of the operating system. 

To enable the comparison with the &lPJ. version described, ,in $e~~Cfollowing section, a static IS. xx , . . r 
scheduling policy is implemented in the Pthreads version of AHOT. Tvvd”domain decompositions 
are applied: the mesh sweep is decomposed along the angular variables, ADD, while the 
computation of the iteration residual, is con,ducted, along a spatial domain decomposition. The 
angles are assigned to-threads with ,a str&le equal to the number of threads requested by the user 
at run time. The spatial domain decomposition is implemented in blocks of rows and are 
assigned to threads with a stride computed from the number of blocks of rows available in the 
problem. Since the mesh sweep dominates the computational time this implementation is termed 
ADD in spite of the fact that it is a hybrid domain decomposition. 

The code is organized such that the creation of the requested threads and mitialization ,of the 
mutex lock and four barriers are completed outside the inner iterations module. ,For ,each inner 
iteration the loop over angles that implements the mesh sweeps is executed by each thread for 
angles statically assigned to it as described above. The angular flux spatial moments computed 
in the process of a mesh sweep are accumulated by each thread in a private array in order to 
avoid synchronization points that would result in.finer granularity and a higher potential for loss 
of parallel efficiency. At the conclusion of a mesh sweep along all angles in a thread’s domain, 
the thread accumulates, in a shared array, the contribution to the new iterate of the scalar flux 
spatial moments. The accumulation is performed under a serializing lock. This is followed by 
a barrier point in order to ensure that the convergence test stage does not commence until all 
contributions to the new iterate have been accumulated. 

The convergence test stage starts with each thread computing the largest pointwise iteration 

5 



residual in its assigned block of rows and then storing this value and its location index in private 
locations. Once all threads have completed this activity, they synchronize at the second barrier, 
then under lock they compute the largest magnitude iteration residual and save it in a shared 
location. This is followed by the third barrier to guarantee that no thread will proceed before a 
final determination of iterative convergence is reached. At this point all threads have access to 
the global iteration residual. If the user specified convergence criterion is satisfied, then all 
threads exit the inner iterations module and join the parent thread which successfully terminates 
the computation. If convergence has not been achieved but a new iteration is to be started, the 
threads update in parallel the shared arrays of the old and new iterates of the scalar flux spatial 
moments, synchronize at the fourth barrier, and then proceed to perform the next iteration. If 
convergence is not achieved and the user specified number of iterations has been exhausted, the 
threads exit the inner iterations module and join the parent thread which then terminates the 
execution and warns the user of the lack of convergence. -..^ . , 

The algorithm as surmnarized above was implemented in AHOT using ‘the standard Pthreads 
instructions, and was successfully installed and executed on an 8-CPU COMPAQ AlphaServer 
8400, a 2-CPU Sun Spare Ultra-2, and a 32-CPU SGI Origin 2000. Sample measured parallel 
performance is reported in Sec. 5. 

,I/ 

4. MESSAGE PASSING PROGRAMMING MODEL 
_ .-c 1 i _:. ., 

“. 
The programming model for message passing architectures is complicated by the fact that it has 
no immediate analogy in traditional serial programmin g. In this case the CPUs comprising the 
target platform possess (physically or logically) uncoupled memory spaces and data exchanges 
among participating processors must be accomplished via explicit message exchange. Another 
difficulty of the message passing programming model arises from the way messages must be 
exchanged. At specific points in the instruction flow in different processes the programmer must 
anticipate the need for data exchange, and the program must coordinate both sending and 
receiving processes to conduct this exchange. This requires complete definition of the message 
contents from type and length to location in memory on both processes involved. Among the 
various types of message exchange methods available, blocking exchanges are the safest because 
they protect the contents of the message from being overwritten by subsequent instructions until 
they have been copied elsewhere, either in the send buffer or sent to the receiving process. For 
this reason, message exchange is the primary method of synchronization on message passing 
platforms. 

The main advantage of message passing architectures is the potential for better parallel scaling 
to a larger number of processes. Also, in the message passing programming model the 
programmer has better control on the conduct of the computation, via explicit decisions to 
communicate, by virtue of the lower possibility of interference by the operating system. The 
primary source of parallelization penalty here is the cost of message exchange which is typically 
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characterized by a latency component to initialize a message and a volume component 
characterizing the communication bandwidth. Hence, it is crucial in message passing 
programming to reduce the number of messages and the volume of traffic to the absolute 
minimum, and to overlap computation with communication as much as possible. Earlier studies 
that attempt to evaluate latency and data traffic volume as a, function of platform characteristics 
for transport methods have identified algorithms, e.g. Bucket Algorit&that perform better on 
computers with particularly low latency. 

In the context of the AHOT code three communication strategies aimed at improving the 
performance of global reduce operations and reducing the memory requirement on physically 
distributed memory architectures were examined, and their performance measured and modeled.5 
That study implemented the parallels instructions using the PVM (Parallel Virtual Machine) 
library. In the present work, the three communication strategies investigated earlier are briefly 
reviewed below. In the interest of cross-platform portability, they were implemented using the 
standard MPI library. 

The parallelization of the AHOT code- on message passing architectures is also based primarily 
on ADD. Thus the master process reads the input data which specifies the problem configuration 
and selects various options, constructs arrays representing the fixed source, angular quadrature, 
material composition and cross section data, etc., and broadcasts all necessary input to the slave 
processes. Each process, master or slave, proceeds with mesh sweeps along the angles statically 
assigned to it, and accumulates the contribution to the scalu flux spatial moments in a local 
array. At the conclusion_,@, all mesh sweeps all participating processes accumulate their local ‘,.. ..____* L.L._*iX. 
arrays, which contain partial contributions to the scalar flux spatial moments, into the new iterate 
array. The array accumulation is based -on _, global reduce operations that are implemented 
differently in each of the three considered strategies. . 

In the first strategy, termed MPI, the native MPI global reduce operation is used. This of course 
can vary from one platform to another, but often it is based on a spanning tree connection 
topology among the participating processes. In such a scheme, half the participating processes 
send their partial contributions to the other half, that performs the sum, then half the remaining 
processes send again, and so on. This is followed by a broadcast stage in which the new iterate 
is sent to all participating processes along the same spanning tree topology described above. The 
main advantage of this scheme is that it reduces the number of messages exchanged to a 
minimum, a crucial benefit on platforms that possess high communication latency. On the other 
hand, its disadvantages include a substantial idleness as the number of active processes is cut by 
half in e,ach step of each of the two stages, and the additional idleness that results if the number 
of processes is not a power of 2. 

The second of the three communication strategies is based on the Bucket Algorithm which 
performs the global reduce operation on a monodirectional ring topology, In this scheme, each 
of the P participating processes starts by passing a bucket containing the P-th subvector of its 
local contribution to the scalar flux spatial moments to its neighbor along the monodirectional 
ring. Each process then sums the subvector it just received into the corresponding local 
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subvector which contains its own contribution, then sends the bucket to its neighbor, and so on. 
By the time each bucket has circumnavigated the entire ring, each process will contain the 
completely updated iterate for its subvector. In the broadcast stage, each process sends the new 
iterate subvector to its neighbor again along the monodirectional ring. The bucket algorithm 
typically results in a larger number of messages than the spanning tree scheme, however, it 
produces a smaller volume of data traffic that is not concurrent, hence outperforming the native 
global reduce on platforms with small communication latency. The main advantage of the 
Bucket Algorithm is that it does not constrain the number of participating processes to powers 
of 2, thereby all but eliminating idleness if the number of processes divides the number of angles. 
Its disadvantages include a greater number of arithmetic operations, and of messages exchanged, 
In addition, it requires implementation by the programmer since it is not available in standard 
MPI libraries. Clearly this can result in suboptimal performance since it is programmed at’ a 
relatively high level and, for the purposes of cross-platform portability, will not take into account 
individual features of the target platforms that impact parallel performance. 

The third communication strategy is very similar to the Bucket Algorithm except it attempts to 
simulate a production environment by distributing the large flux iterates arrays and the fixed. 
source array over the memories of the participating processes. In .the implementation of this ’ 
scheme in AHOT, termed Distributed Memory, these arrays are blocked by rows. in the y-’ 
direction. This arrangement implies a significantly larger communication penalty as each sweep 
of a block of rows must start with the owner process broadcasting the. fixed scattering plus fixed 
source subarray in its local memory to all participating processes. The advantage here is the 
great reduction in the required memory since little duplication of these large arrays is necessary. .‘.. 
Communication in this scheme is conducted along a bi-directional ring, and some overlapping .,_,.’ 
of computation and communication is introduced for the sake of higher parallel efficiency. Since 
messages collide in a bi-directional ring comprised of only two processors, it is necessary to 
execute this algorithm on three or more CPUs. 

. 

In each of the above communication strategies, the convergence test section of the code was 
conducted in a way compatible with that strategy. For the MPI scheme the native global 
maximum function was used to compute and broadcast the largest magnitude iteration residual, 
while for the Bucket Algorithm a spatial domain decomposition was implemented as described 
in the shared memory implementation. In the Distributed Memory scheme, the native global 
maximum function was employed. In all cases the small, almost negligible cost, of the 
convergence test section made the choice of parallel scheme immaterial. 

The AHOT code implementing these three communication strategies was translated to employ 
MPI for communication, and was successfully installed and tested on an 8-CPU COMPAQ 
AlphaServer 8400, a 32-CPU SGI Origin 2000, and a 24-CPU IBM SP2. In this case, also, the 
MPI code was almost perfectly portable to these different platforms. Measured parallel 
performance for the three strategies outlined above is presented in Sec. 5 and compared to the 
performance of the Pthreads version of AHOT. 
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5. NUMERICAL RESULTS AND CONCLUSIONS 

The Pthreads and three MPI versions of AHOT were used to solve a simple test problem on a 
COMPAQ AlphaServer 84Oc) and an SGI Origin 2000. The test problem is a one group, tw o 
region configuration based on a 16 x 16 uniform mesh with all vacuum boundary conditions and 
an S,, angular quadrature. For the purpose of this test we used a third order spatial expansion 
of the dependent variables in Legendre polynomials, and required all computed spatial moments 
to converge to a relative criterion of lo4 in all runs, which resulted in convergence in 27 
unaccelerated inner iterations. Correctness of the parallel code was verified by comparing the 
converged scalar flux with the values from the serial run. Agreement was verified to within the 
convergence criterion. __ “.. 

The measured elapsed time (set) for the runs with the Pthreads version and the three message 
passing schemes versions of AHOT vs the number of participating processes is shown in Table 
I for the COMPAQ AlphaServer 8400 and in Table II for the SGI- Origin 2OOO platforms. Not= 
that in the Pthreads implementation the number of requested threads must evenly divide the 
number of angles in the quadrature. (The S,, quadrature contains 36 angles per octant.) Also, the 
Distributed Memory version cannot be executed with fewer than 3 processes, and results are not 
available for 5 or 7 CPUs because in these cases the blocking of rows results in one process that 
owns an empty block. 

Table I. Performance (Elapsed set) of Parallel AHOT on COMPAQ AlphaServer 8400 

Serial 1 2 3 4 5 6 7 8 

Pthreads 40.8 45.6 27.3 20.0 15.9 10.5 

MPI 44.5 22.5 15.2 11.9 10.7 8.1 8.1 7.1 

Bucket 46.1 24.9 15.5 12.8 10.6 8.1 8.2 7.2 

Dist Memory 16.6 12.0 8.0 7.7 

In general these results exhibit reasonable speedup as the number of participating processes 
increases. The AlphaServer displays slightly better scaling, but the difference is probably not 
significant given the vagaries of system load on time sharing computers. Comparison of the 
results shown in Tables I and II illustrates the far better performance of message passing versions 
over the Pthreads version for the two platforms considered. This is not surprising since earlier 
experience suggests that, even though it is harder to develop a message passing version from a 
sequential code, message passing typically possesses higher parallel efficiency. This is largely 
due to the ease of identifying the sources of parallel inefficiency, which enhances the 
programmer’s ability to optimize performance on a target platform. Also, the measured results 
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demonstrate insensitivity of the parallel performance to the MPI communication strategy; each 
of the message passing implementations show approximately equal scaling. This is a hopeful sign 
for production codes where distributing the memory requirement across participating processes 
might be necessary. Of course it still remains to be verified that this observation, namely the 
insensitivity of the parallel performance to the MPI communication strategy, holds when CPUs 
outside of a single box of an SMP are employed. 

Table II. Performance (Elap ;ed set) of Parallel AHOT o : SGI Origin 2000 
_ . 

_: - 

.; u -’ -,c, Serial 1 

Pthreads 74.2 74.5 

MPI 80.8 

Bucket 81.2 

Dist Memory ’ ’ 

2 3 4 5 

74.1 1 37.6 t 32.8 t 
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