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CHAPTER 1. GENERAL INTRODUCTION

Our century is characterized by huge technological achievements, many of them being
the result of understanding and controlling the electric conduction properties in materials.
Ever since J. J. Thomson’s discovery of the electron in 1897 and Drude’s classical transport
theory three years later, our technology continuously advanced with large steps, to today’s
modern telecommunication and digital computing world. Tailoring the conducting properties of
semiconductors, which led to the transistor revolution in electronics, or the careful development
of new alloys and ceramics, today’s high-temperature superconductors, are among the most
important examples of how materials are processed, or artificially created, in order to obtain
the desired electric properties.

Over the last couple of decades, the need for more speed and bandwidth in the telecom-
munications and computer industry has turned researchers towards the search for ways to use
light instead of electrons. Already, fiber-optic cables, lossless dielectric structures that simply
guide light, have revolutionized the telecommunications industry and are in every day use.
However, in order to replace the electrons with light, novel materials with optical properties
similar to the electronic properties of the semiconductors would be needed; materials that
would control the transmission of light, forbidding it for some frequencies, for all or some
directions, thus perturbing the electromagnetic density of states. They should be able to be
doped, creating donor and acceptor levels, and to localize light within them. What would be
needed is materials with a “photonic band gap”.

Photonic Band Gap (PBG) materials in one dimension are already in wide use. The
familiar Bragg reflector is the basis for various devices, such as dielectric mirrors, Fabry-Perot

filters, distributed feedback lasers etc. It consists of a periodic array of alternating layers of
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different dielectric constants. For light with the proper frequency and incidence angle, all
waves reflected from different layers will interfere coherently, resulting in zero transmission. It
wasn’t however until 1987 when Yablonovitch at Bellcore Laboratories and John at Princeton
University, suggested the existence of a complete, in all 47 directions, photonic band gap.

Electromagnetic waves in dielectric structures exhibiting three-dimensional periodicity will
undergo multiple scattering if their wavelength is comparable to the lattice spacing. For some
structures, due to coherent interference, there will be no propagating modes in any direction
for a range of frequencies, giving rise to a photonic band gap. The physical picture is no
different from the electronic case, where multiple scattering of the electrons from the periodic
ionic potential gives rise to energy band gaps. For the band gap frequencies all states are
completely suppressed, leading to a strong modification of the radiative dynamics inside the
structure. New exciting possibilities have now opened: suppression of spontaneous emission
from excited atoms inside the material; creation of high-Q microcavities when introducing
defects or doping in the structure. It is worth noting that modification of the electromagnetic
density of states may also be possible using metallic cavities, but not in the optical range due
to absorption. The race was on, for the theorists to study these materials and obtain the
optimal structure parameters, and for the experimentalists to construct them.

Photonic band gap structures can also be doped with nonlinear dielectric materials, i.e.,
materials having an intensity-dependent dielectric constant. The dynamic changes of the ef-
fective dielectric contrast inside the structure lead to a rich variety of exciting phenomena.
Optical limiting, gap soliton formation, bistable and/or multistable input-output response are
some of the most important features. Promising future novel applications include all-optical
switches, logic gates, transistors, pulse shapers, as well as set-reset fast memory elements.

This dissertation aims to study two regimes of Photonic Band Gap materials. The first
one focuses on the properties and dynamics of one-dimensional layered PBG structures doped
with nonlinear material, while the second one focuses on the physical mechanisms that are
behind the formation of the spectral gaps in two-dimensional Photonic Band Gap materials.

In the next section we present an introduction to the literature, theoretical background, and




numerical methods for photonic band gap materials, followed by a similar section for nonlinear
optics in photonic band gap materials. Next, there is a small section stating the objectives
that are fueling our work, followed by an preliminary introduction to the research effort that

will be presented in the subsequent chapters.

Photonic band gap materials

The idea of a spectral gap is not new. It rather dates back to 1914, in the attempts to
explain the observed large x-ray reflections in crystals and the development of the dynamical
theory of x-ray diffraction [1, 2]. However, the observed gaps were very narrow and only
along certain directions, due to the very small refractive index contrasts that x-rays effectively
experience inside the crystal, and so the idea of a complete, in all directions, photonic band
gap was never actually conceived, or at least never taken seriously enough.

The first suggestions for the possibility of a complete photonic band gap [1, 4, 5] in artificial
dielectric structures exhibiting three-dimensional periodicity came in 1987, independently from
Eli Yablonovitch at Bellcore labs [6] and Sajeev John at Princeton [7], each with a different
motivation. Yablonovitch was looking for ways to control spontaneous emission. If the photon
emitted by an excited atom inside a photonic band gap material fell inside the frequency gap,
then spontaneous emission would be inhibited [8]. This opens many possibilities [9, 10, 11, 12].
Atoms or molecules inside a photonic band gap material could be locked into excited states. If
one could tailor the frequency gap to overlap with the electronic band edge, then the electron-
hole recombination process could be controlled in a photonic band gap material, enhancing
the performance of semiconductor lasers or other solid state devices [6, 13, 14]. John on the
other hand was interested in the possibility of observing Anderson localization for photons in
a dielectric structure. The motivation for suggesting the photonic crystal was to strengthen
his hypothesis that photon localization may occur in strongly scattering dielectrics; a photonic

band gap can create strongly localized states of light.




Literature review

Yablovitch’s actual initial idea was a three-dimensional analog of the distributed-feedback
laser. In a distributed-feedback laser [15] the index of refraction is periodically modulated along
the laser axis. Periodicity opens up a forbidden frequency gap for propagation perpendicular to
the layers [16]. A small discontinuity will effectively work as a Fabry-Perot resonator [17] with
the lasing frequency being the Fabry-Perot resonator mode. If the index of refraction could be
periodically modulated along the other two dimensions as well, yielding a full photonic band
gap, then the possible phase space for spontaneous emission would be drastically modified,
enhancing laser efficiency.

The search was on for the geometry that would yield a gap for the smallest dielectric con-
trast. The first call was for a three-dimensional checkerboard structure, with a face-centered-
cubic (fcc) lattice symmetry [6]. Bragg back-scattering at the Brillouin zone boundaries will
lift the degeneracies, or at least some of them, and open a gap for any contrast value. If all
these small gaps in the individual directions appeared in the same frequency, a full photonic
band gap would open. This suggests that the structure with the most spherical Brillouin zone,
the fcc lattice structure, would be the best candidate. Simple calculations for the fecc lattice
put a lower limit of 1.21 [6] and 1.46 [7] to the necessary refractive index contrast for a gap to
open up. Both approaches, however, used the one-dimensional simplification, and it was not
clear what the actual lower limit should be. In fact, as we will see later, the fcc structure with
spherical scatterers exhibits only a pseudogap between the first two bands, a small frequency
region with strong reduction in the photonic density of states, but not a complete photonic
band gap.

Besides the lattice symmetry, the spatial distribution of the dielectric material in real
space still needed to be determined as well. Yablonovitch and Gmitter at Bellcore employed
a “cut-and-try” method [18], where they fabricated many different fcc dielectric structures
and then measured their transmission to see if a frequency gap existed. All experiments were
done in the microwave regime, with the lattice constant around a few centimeters, to ease the

manufacturing process. In 1989, after two years and some dozens of attempted structures,




they identified only one structure with a complete photonic band gap [18]. This was an fce
arrangement of overlapping air spheres in dielectric material of refractive index 3.5 (they used
the commercial low-loss dielectric Emerson & Cumming Stycast-12) with air filling ratio of
86%.

In the meantime theoretical interest started growing. The first attempts of solving the full
three-dimensional problem employed a scalar wave approximation ignoring the vector nature
of the electromagnetic field under the assumption that the two polarizations could be solved
separately. The equivalent scalar Maxwell’s equation, then, is cast into an infinite eigenvalue
problem using a plane wave expansion of both the fields and the dielectric function [19, 20], or
solved with other methods familiar from electronic band theory [21, 22]. The results indicated
the existence of large gaps not only for the structure indicated by Yablonovitch, but also for the
case of dielectric spheres in an fcc arrangement in air, contrary to the experimental results.
In addition, even for the cases with qualitative agreement, they predicted different midgap
frequency and gap width. It was apparent that neglect of the vector nature of light was way
more important than initially thought.

The full vector solutions came shortly afterwards [23, 24, 25], using the plane wave expan-
sion method modified to take into account the additional degree of freedom coming from the
light polarization. Computations for Yablonovitch’s proposed structure indicated that there
was no complete gap between the lowest two bands, but only a pseudogap. The degeneracies
at the W and U symmetry points of the fec Brillouin zone were not lifted, resulting in just a
strong reduction in the photonic density of states for these frequencies. The lowa State group
(25] however found a way to lift the symmetry induced degeneracies by changing the spatial
distribution of the dielectric material inside the unit cell. They added a second air sphere in
the unit cell creating a diamond lattice. For a refractive index of 3.6, they calculated gaps
with as large as 15.7% midgap ratio (Aw/w,) for dielectric spheres in air at filling ratio 37%
and 28.8% for the case of air spheres with filling ratio 81%. It is amusing though that the
fecc arrangement of air spheres did after all have a complete gap at higher frequencies [26, 27],

between the 8th and 9th bands.




It became apparent that any non-spherical configuration for the dielectric material inside
the fcc unit cell will lift the above-mentioned degeneracies and will produce a full gap [28].
Calculations for a number of different geometries with the underlying diamond symmetry group
indicated wide gaps and a lower limit of 1.87 for the required index contrast. Yablonovitch
quickly devised a way of constructing a dielectric diamond lattice by drilling cylindrical holes
into the dielectric material [29]. The experimental results demonstrated for the first time
a complete photonic band gap, in perfect agreement with the theoretical predictions [28].
This is a nice example of theoretical work guiding successfully the experimental work. Other
geometries and fabrication techniques have also been used since then: a layer-by-layer structure
(30, 3, 32], first proposed by the Iowa State group, or colloidal suspensions [33, 34].

A lot of work has also been done for two-dimensional photonic band gap structures[35, 36].
These systems are much easier to fabricate, and the photonic gaps should open wider and
for smaller contrast. Assume the dielectric modulation to be only on the 2 — y plane and
in-plane wave propagation. The structure consisting of parallel, infinitely long air cylinders in
a dielectric background, arranged in a triangular lattice, was shown to be the optimal case [37],
together with the one consisting of dielectric cylinders in air arranged in the graphite structure
[38]. Experiments done in the microwave regime [39, 40] showed excellent agreement with the
theoretical predictions.

Although periodicity has been the important issue for the existence of photonic band gaps,
it has been shown that the gap is sustained even in the presence of a fair amount of disorder
[41]. In two dimensions, it was found that higher order photonic gaps close quickly with
increasing disorder, while the lower order gaps, especially the first one, remain open for large
values of the disorder [42]. For all frequencies however, light becomes localized. In three
dimensions [43] similar disorder tolerance was found, provided the topology of the structure
was not changed (e.g. for structures with network topology the gaps will disappear easily by
breaking the network).

Exciting applications of photonic band gap materials in laser science would require their

use as high-) microcavities in the optical range. For example, a light-emitting diode (LED)
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surrounded by an optical cavity will have only a single electromagnetic mode available for
the output spontaneous emission. Thus it can acquire many of the coherence properties of
lasers, effectively operating as a threshold-less laser device. That means that photonic band
gap materials should be able to be “doped” creating localized electromagnetic modes inside
the gap, in a similar way that their electronic counterparts, the semiconductors, are doped.
Indeed, adding dielectric material inside the photonic band gap structure introduces a localized
defect “donor” mode inside the gap with its frequency close to the upper gap edge. On the
other hand, removing dielectric material introduces an “acceptor” mode close to the lower gap
edge [44, 45, 46].

Finally, there have been some theoretical studies on the modification of atomic interactions
and processes in photonic band gap materials [21, 48]. It has been shown that if the photon
emitted, by an excited atom in a photonic band gap material, has frequency inside the photonic
gap, then after tunneling away for a couple of lattice constants, it would eventually return and
get re-absorbed by the atom. The photon would be localized around the atom, resulting in
an excited atom-photon stable bound state, similar to the electron-impurity bound states in
semiconductors. If many atoms were put together in the photonic crystal, they would interact
and couple together through their localized photons, creating a photonic impurity band inside
the gap. Also studies on the emission power from electric dipoles [27, 11] showed total inhibition

of emission in the photonic band gap as well as strong enhancement around the band edges.

Theoretical formulation and numerical methods

There are many similarities between electron waves in the periodic ionic potential of a
crystal and electromagnetic waves in an artificial periodic dielectric structure. An electron of

mass m is described by the scalar Schrodinger equation

_+2
Harth(7) = {%V + V(f)} b() = B(), @

while the photon is described by the vector Maxwell equations [50]

2

HonH (7) = {v x %VX} A7) = A, )




The periodicity is expressed in the potential V(7 + E) = V() for the electron and in the
dielectric function ¢(7+ I?:) = ¢() for the photon, where R represents lattice vectors. F and
1 stand for the energy eigenvalue and eigenfunction respectively for the electronic case while
w?/c? and H for the square of the frequency eigenvalue and the eigenmode respectively for
the photonic case. Both operators H are linear and Hermitian [14]. Periodicity, linearity, and
Hermiticity of the problem means that all concepts of real crystals, such as, reciprocal space,
Brillouin zones, dispersion relations, Bloch wavefunctions, Van Hove singularities, etc., will be
applied successfully to the photon case as well. Then if the energies of the electrons in a crystal
are arranged into energy bands separated by gaps [51], it is expected that for the appropriate
structural parameters, the same should be true for photons in a photonic crystal.

The Plane Wave Expansion method follows very closely from the corresponding nearly free
electron approximation and pseudopotential numerical methods used in electronic band theory
[51]. Since the dielectric constant €(7) is periodic, the solution is expanded in an infinite Bloch
sum of plane waves [25, 26] for each wave vector % in the Brillouin zone

2 "
Hy(7) =37 > Hzpéae' ™97, (3)
§ A=1
where the sum is over all reciprocal lattice vectors § and the two possible transverse polarization

vectors &; 5. Using the Fourier transform of the periodic dielectric constant

(M) = S, (@)

1 -
€ = e(Me 9" dr, 5
¢ Vcell /cell (_) ( )

where V. is the volume of the Wigner-Seitz cell, and substituting into Eq. (2) we end up with

an infinite eigenvalue problem

- - €8y —&xép Hg w? { Hg
- P A | g g,
Do lk+gllk+ 3§l 5 =3 (6)
g —&18y &8y Hg o Hgzo
In the infinite problem it should not make any difference if we used the Fourier transform nz_z

of the inverse of the dielectric function 7(7) = 1/¢(7) instead of eg?_l 5+ However, it does make

a difference when we truncate the problem into a finite eigenvalue problem in order to solve




it. In most cases when reconstructing ¢(7), eg?_l P provides a better representation than nz_g,
and so a faster convergence as a function of the number of terms kept in the truncation [5].

The problem can also be cast in terms of the electric field

VX [V x B@] = e B )

Substituting the Fourier expansions of E(7) and () into Eq. (7) we end up with an infinite

generalized Hermitian eigenvalue problem
(E+§jx[(k+§7XE Zeg 7Ey =0 (8)

Upon truncation it will yield the same results as the ones obtained by solving the problem cast
in terms of H, only if e;_l 7 s used in the latter case [5].

In two dimensions the two polarizations can be decoupled, resulting in two scalar eigen-
value problems: one for the electric field polarized parallel to the axis of the cylinders (E, or

transverse magnetic (TM) polarization), expressed in terms of the electric field
|k + §1°Es = = Zeg 7By, 9)

and one for the magnetic field parallel to the cylinders (H, or TE-polarization), expressed in
term of the magnetic field
2

55 91+ 98 = S ()

where now the summation is over the two-dimensional reciprocal lattice vectors §. In two
dimensions, for cylinders of circular cross section with radius R and dielectric constant ¢,
embedded in a dielectric background ¢, with filling ratios f, less than closed packed, €5 is

easily evaluated analytically and is the same for any lattice arrangement

J1(|§1R
¢g = &0g,0 + 2falea — 6")_ll(gl"lg% ()

where J; is the first order Bessel function. Both polarizations generally exhibit gaps but usually

at different frequencies. A complete photonic band gap for both polarizations has been found
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for a triangular arrangement of air cylinders in dielectric [37] and for a graphite arrangement
of solid dielectric cylinders in air [38].

The plane wave expansion method is very useful because of its simplicity. The only re-
quirement is the calculation of the Fourier transform of the dielectric function in the unit
cell or, if larger systems are to be studied, in a suitably chosen supercell. This calculation is
usually done numerically. Problems, however, arise when the materials under study exhibit a
frequency dependence in their dielectric constant. In the plane wave method one uses a fixed
wave vector k and calculates the frequency eigenvalues w(E) corresponding to it. What would
be needed is a method that uses a fixed frequency w and calculates the corresponding wave
vectors.

This is achieved by the Transfer Matrix method, first introduced in 1992 [11, 53]. In this
method one first discretizes space into a fine grid uniform cubic grid, on which the electric
field and the dielectric constant function are defined. The magnetic field is defined on a similar
inter-penetrating grid, such that both grids together form a bcc lattice. In such setting, E (7)
and E(F) are not on the same point, but displaced by d = (¢/2,a/2,a/2), where a is the
separation distance between two grid points. On this grid we will solve the time-independent

Maxwell’s equations
V x E = —iwB, V x H = iwD, (12)
or, transformed into k space
kx E=wB, kx H=-wD, (13)
where D(7) = eoe(F) E() and B(7) = pop(7)H (). In the first of Eqs. (13) we approximate
k. = (ia) " !exp(ikza) — 1], etc., (14)
and in the second,

kr ~ (—ia) " [exp(—ikya) — 1], etc. (15)

If now Egs. (13) are transformed back into real space, we will get a set six difference equations.

The z component of each field can be eliminated, since it is always related with the other




11

two components. Making the substitution A’ = (i/aweg) H we finally arrive to four equations

relating the ¢ and y components of the two fields

a2w2 =
Eo(f+¢) = —p(F)H, () + Ex(F) + € (7 H,(F+ &) — Hy(7) - Hy (7 — b) + Hy (7))
— 7+ a)[H)(F) - H)(F+2) — HL(F+& - b) + H.(F+ 7)), etc., (16)

HL(7+8) = e(F+ O By (7 + ) + HL(P)

- m,ﬂ(yv- B4+ O)[Ey(F+8) — Ey(F =348 — Ex(F— &+ b+) + E,(F— 5+ 7))

+ P F OBy (F+E48) — Ey(F+3T) — Ex(F+b+3) + E,(F+7)], etc,, (17)

where the vectors 7, 5,(':' that define the cubic mesh are of length @ and point to the z,y, 2
directions respectively. In this scheme, Egs. (16) are used to find the electric field components
on one plane of cells in terms of the electric and magnetic fields on the previous (—¢) plane,
while Egs. (17) are used to find the magnetic field in next plane of cells terms of the electric
field on that plane and the magnetic fields on the previous one. Thus, given the initial fields
on one side of the structure we can find the fields on the other one. The matrix connecting
them is called the transfer matriz. If the structure is just the unit cell of a periodic system,
then from the eigenvalues of the transfer matrix we can get the band structure E(w) [11].

The power of this method is that one can choose a slab finite in the z direction, set up the
transmitted fields on one side, and numerically integrating Maxwell’s equations along the z
axis until the other side of the slab. Projecting the fields there into left and right propagating
plane waves we can reconstruct the incident and reflected waves, thus obtaining the reflection
and transmission coefficients of the finite slab, something the plane wave method can not
provide. Besides that, it’s numerical complexity scales better with size, since for a structure
with L X L x L grid cells, the transfer matrix has dimension 4L2 ~ O(L?) while for a plane
wave method using a basis set of L X L x L plane waves to describe the fields, the matrix for
diagonalization has dimension 2L3 ~ O(L3), and the diagonalization of a matrix of dimension
N scales as O(N3).

For periodic systems both previous methods perform fast enough. For larger supercell

disordered systems, however, the computation time becomes too long. Also, they are both
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time-independent, and so they assume the existence of steady state solutions, leaving out
the possibility for studying dynamical time-dependent phenomena. There is a third, time-
dependent, ’order-N’ method, that solves the problem efficiently fast, without the need for
matrix diagonalization. This is the Finite-Difference-Time-Domain (FDTD) [9, 10] spectral
method [57]. Maxwell’s equations are again solved on a fine grid, but now in time domain.
Assuming a cubic grid cell of side a, the three electric field components are defined on the
middle of the cube’s facets normal to them, while the magnetic field components are defined
on the middle of the cube’s edges parallel to them. Thus each electric field component is
surrounded by a circulating magnetic field and vice versa, yielding a nice representation for
Maxwell’s integral equations as well. The corresponding difference equations for the space
derivatives are then central-difference in nature and second-order accurate. The electric and
the magnetic fields are also displaced in time, separated by half time step At/2, yielding
central-difference, second-order accurate equations for the time derivatives as well. Maxwell’s
equations are then used to evolve, from time step n to time step n + 1, the 2 component of

electric field that is defined on grid point ¢, 7, k

At
+1 n+1/2 n+1/2 n+1/2 n+1/2
Ezmj,k - ExIZJ’,k + a6k (Hzli,j+1/2,k - Hz|i,j—1/2,k - Hyli,j,k+1/2 + Hyli,j,k-l/:l) (18)

There are similar equations for the rest of the electric and magnetic field components [10].
Linear dispersion can be taken into account using explicitly the time convolution of the mate-
rial’s susceptibility tensor x(t) with the electric field [ x(t — ¢')E(#')d#' [10, 58]. The photonic
band structure is calculated as follows. For a suitably chosen supercell with applied periodic
boundary conditions and for a particular wave vector k£ the magnetic field is initiated to

2 I N - =)
H(A) = Z Z &, e (F+a)™+id(d) (19)
§j A=1

9

where ¢(§7) is a random phase, while the electric field is set to zero. During time marching,
the electric field values at some sampling grid points are saved as a time series, and at the
end they are numerically Fourier-transformed back to frequency space. The peaks found,
correspond to the eigenfrequencies for the particular & [57]. It is worth noting, again, that

due to the explicit knowledge of the system’s time history, the frequency dependence of the
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dielectric constant is easily taken into account. This method is also powerful because one
can easily use it to perform transmission “experiments” through a slab of the material, or
make detailed simulations of wave propagation through such materials with specific source
designs or requirements. For a large supercell, the spectrum for each k does not consist of
well separated peaks, but rather by a plethora of them. By adding the spectra of all k of the
irreducible first Brillouin zone we find that it reproduces remarkably well the photonic density
of states, for both periodic and disordered systems. Finally, it is very useful for the study of
nonlinear photonic band gap materials [58, 59, 60]. Transfer matrix time-independed methods
assume the existence of steady state solutions for any system, leaving out the possibility of
observing the rich dynamical response nonlinear materials have to intense radiation. The
explicit time dependence of this method is its true power: any dynamical process involved in

wave propagation can be taken into account.

Nonlinear optics in photonic band gap materials

The advent of optical fibers[61] has been an important milestone in the transition from
electronics to photonics technology. Replacing the cooper wires in electronic circuits, optical
fibers guide light, with a much larger bandwidth and low power losses and noise, revolutionizing
today’s telecommunications industry. The next step towards an all-optical digital technology
would be the optical switch, capable of doing the routing and logic decisions in gate arrays.
Since one light beam must interact with another for optical switching to occur, the optical
material must be nonlinear [62, 63, 64, 1], because the photon-photon interaction cross section
is almost zero in linear media.

Before the advent of the laser in 1960 [66] dielectric materials were thought to be essentially
linear. Different light beams would not interact with each other in them and the material would
remain unaffected by the light. The capability of intense coherent light beams that came with
the laser however made it possible to go further into the nonlinear response regime of the
materials. Intense light can change the properties of the medium, which, in turn, changes the

light itself, resulting in a rich variety of exciting phenomena [67, 2, 69, 70, 71]. Different light
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beams can interact with each other yielding sums and differences of frequencies [72], or just
harmonics of the single optical frequency [73]. Nonlinearity can also change the refractive index
of the medium, resulting in excitations of solitons [74, 69] and bistable input-output response
[2]. Tt is this last property that will be useful in designing all-optical switches.

Nonresonant optical nonlinearity is expressed in terms of field-dependent higher-order terms
in the susceptibility tensor x. The nature of this effect can be seen classically as the response
of an electron to an anharmonic potential driven by an electromagnetic field. For driving
fields much smaller than the interatomic fields the response is essentially linear, but for fields
comparable to the interatomic ones the deformation of the electron clouds (or wavefunctions),
and thus, of the medium polarization, becomes appreciable, and of course nonlinear. These
nonresonant, virtual optical interactions can be extremely fast, as opposed to resonant inter-
actions [64] like electron-hole pair production and recombination, opening the possibility for
ultrafast, all-optical THz-rate switching. Unfortunately, they are also much weaker, requiring
really intense electromagnetic fields.

The first-order linear term x; is, in general, frequency dependent and is responsible for
dispersion in the medium. The second-order susceptibility y2 introduces the field dependency
to lowest order. Assuming a local, weakly dispersive x2, the induced dipole moment per unit
volume is related to the applied electric field by P=¢ (X1E +X2EE). This term is responsible
for the electro-optic effect [16, 64}, second harmonic generation, and two wave frequency mixing
(63, 64]. Incorporation of such materials into laser systems gives the possibility for constructing
efficient sources of coherent radiation for any frequency [75]. As a third-rank tensor however,
x2 must vanish if the medium is symmetric under inversion through a center of symmetry.
Under this assumption, we will ignore this term throughout the rest of this work.

Most materials however exhibit a third-order susceptibility xs. This is responsible for third
harmonic generation and three-wave frequency mixing, as well as for an intensity-dependent
dielectric constant [64, 1]. The latter is the larger effect, and so ignoring the former and
assuming a nondispersive xs, we have a medium described by a Kerr nonlinearity P= eo(x1+

x3|E|?)E, or in terms of the electric displacement D = ¢y(ez + enz|E|?)E. In such materials,
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for a constant wave input, the input and output frequencies can be identical, but having an
intensity dependent dielectric constant can cause the output intensity to be a multi-valued
function of the input intensity. For certain input optical powers there may exist two distinct
transmission branches forming a hysteresis, or bistable, loop. The particular state the system is
in depends on the its history and can be controlled optically, forming an elementary all-optical
switch.

Many all-optical switching devices have been proposed or demonstrated with materials ex-
hibiting a Kerr, or other type, nonlinearity [2, 76]. One special case are the nonlinear periodic
multilayer, or distributed feedback, systems [14, 13, 79]. Because of the periodic modulation
of the linear part of the refractive index the waves undergo coherent backscattering, effectively
working as an optical power feedback mechanism. This results in a great enhancement of the
nonlinear effect, and so a reduction of the optical power threshold for observing it. In the
low intensity limit these structures are essentially Bragg reflectors, characterized by frequency
bands of high transmission separated by photonic band gaps. For high intensities and frequen-
cies inside the transmission band, bistability results from the modulation of transmission by
an intensity-dependent phase shift. For frequencies inside the photonic band gap, bistability
originates from gap soliton formation [5, 7, 15, 9, 84, 14]. It is the latter that takes full advan-
tage of the distributed feedback mechanism and can lead to very low optical power thresholds
for switching [6].

A remarkable property of materials exhibiting a Kerr nonlinearity is the formation of soli-
tons. In a linear dispersive medium, a pulse will broaden with time because of the different
group velocities each frequency component has. In a nonlinear medium however, under ap-
propriate conditions, this action can be balanced by the nonlinearity leading to self-sustained
soliton solutions, pulse envelopes that are preserved as they propagate in the medium. In a
one-dimensional layered photonic band gap material exhibiting a Kerr nonlinearity, the linear
dispersion is provided by the periodic modulation of the refractive index, which is present even
in the absence of any intrinsic material dispersion. This dispersion is largest for frequencies

inside the photonic band gap of the corresponding linear structure, and the corresponding

S e e e ey - -
b goe e meia o Sope S - o i



16

self-sustained soliton solutions are called gap solitons or solitary waves. Due to the strong
Bragg reflections, gap solitons can have very small group velocities. When they are excited
by an incident constant wave, under appropriate conditions, they may remain coupled to it,
resulting in standing-wave stationary gap solitons.

For waves whose frequency lies within the gap, hysteresis forms as follows: For a low in-
cident light intensity the structure acts as a Bragg reflector. Increasing the intensity after a
threshold value Igy results in the excitation of a stationary gap soliton. Because of the nonlin-
ear refractive index change, the area below the soliton is effectively an allowed (or transparent)
area. The incident wave couples to it and effectively tunnels through the structure, resulting in
high transmission, even though its frequency lies within the forbitten gap. The system is now
in the high transmission branch. Decreasing however the intensity will not force the system to
switch-down at Isy. The incident wave will still remain coupled to the soliton for the smaller
intensities, and at some point it will even reach a resonant ' = 1 transmission state. Decreas-
ing the intensity further, below a threshold value Isp, will cause the wave-soliton coupling to
break. The soliton then becomes unstable, it propagates out of the structure, and the system

switches back to the low transmission state.

Research objectives

This dissertation aims to study two regimes of photonic band gap materials. The first
one focuses on one-dimensional layered PBG structures doped with a nonlinear, Kerr-type
material. As pointed out earlier, such structures can exhibit bistability, an essential feature
for an all-optical switching device. Our points of interest, both theoretical and practical, are

to:

e Study existent, and/or develop our own, approximate structure models for solving the
problem of constant wave propagation in such materials: how they compare to exact
numerical solutions (or experimental data) of the real structure and what physical mech-

anisms are responsible for the differences there may exist.
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e Architectures that can achieve low power thresholds for switching using a minimum
amount of nonlinear material: use both approximate and realistic structure models, as
well as both analytical and numerical techniques, to study and understand their proper-

ties.

e Externally controlled switching mechanisms: use exact numerical simulations to study,
the dynamics of driving the system from one transmission state to the other by means

of pulse injection, it’s feasibility, as well as it’s limitations.

The second regime of study focuses on two-dimensional photonic band gap materials. Gen-
erally, there exist two mechanisms that can be responsible for the formation of the spectral
gaps. Bragg-like multiple scattering and excitation of single scatterer Mie resonances [8]. The
first one resembles the nearly free electron picture, for which the gap is opened from the wave’s
coherent backscattering due to the periodic lattice, and is the one generally accepted. The sec-
ond one resembles the strongly-localized, or tightly-bound, electron picture, in which the Mie
resonances are thought as analogous the the electronic orbitals, and so transmission is achieved
with resonance standing-waves hopping (tunneling) from one site to the other. Narrow trans-
mission bands are then formed around the Mie resonance frequencies, which are separated by
wide gaps. It is not clear which the dominant mechanism is in each different case (different
lattice realization, wave polarization etc), and how the system’s properties should depend on

it. Our points of interest are to:

e Identify the mechanism responsible for the formation of the spectral gaps for each dif-
ferent case: develop a physical model for the “strongly-localized” photon picture (which
has never been described before), and find in which cases it does provide an accurate

description of the system’s properties.

e Understand how the system’s properties depend on the mechanism forming the spectral
gaps: use numerical techniques to study, in each different case, the changes in the spectral
gaps and in the transmission of waves whose frequency falls in them, as the periodicity

of the structure is destroyed.
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Dissertation organization

In this dissertation we follow an alternative thesis format permitting the inclusion of papers
that are published (or submitted/to be submitted) in scholarly journals. Each subsequent
chapter therefore consists of a single paper, presented exactly the way it was (or will be)
published.

In the general introduction we provided the basic theoretical background, an extensive
literature review, and some of the numerical methods commonly used for photonic band gap
materials, as well as for nonlinear optics in photonic band gap materials. These should be
enough for understanding the research effort that is going to be presented in the next chapters.
The basic objectives for this effort have already been set in the previous section. Here we will
provide a brief introduction to each paper to be presented.

In Chapter 2 we examine an approximate structure model for a 1D layered nonlinear
structure. In this, the nonlinear material is concentrated in very thin, or é-function layers,
while the rest is linear. The model is tested against the more realistic case where the structure
consists of alternating linear and nonlinear finite width layers. Differences are found, and the
physical mechanisms responsible for them are identified. In Chapter 3 we use both the 4-
function approximation and the realistic finite width case to study an alternative architecture
that could provide low switching thresholds. This is, a single nonlinear layer sandwiched
between two linear structures. Both analytical and numerical calculations are presented. The
origins of the bistable behavior and the conditions under which low threshold switching can be
achieved are found. Also, the differences between the approximate and exact structure models,
and their physical origins, are identified. In Chapter 4 we use exact numerical simulations and
identify the weaknesses of time-independent solutions. We also study the dynamics of switching
a nonlinear layered system between different transmission state by pulse injections. We find
that such switching is possible only under certain conditions. In Chapter 5 we develop an
approximate structure model to explain recent experimental results that showed that colloidal
crystals have a multistable response to intense radiation. Our first approximation consists of

a one-dimensional simplification of the three-dimensional lattice. Incorporating an effective
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Kerr-type interaction fails to reproduce the experimental results (which is expected since the
colloidal materials do not exhibit any intrinsic nonlinearity), so we developed a more realistic
lattice-light coupling model. Polarizable material feels a force from the inhomogeneous electric
field, and so there is a dynamic coupling between the light and the colloidal lattice. The actual
steady state corresponding to each incident power is found self-consistently. The experimental
results are very well reproduced . This light-lattice interaction can be thought of as the classical
analog of the electron-phonon interaction. In Chapter 6 we move into the two dimensions where
we unfold the mechanism responsible for the formation of the gaps in one particular case: high
dielectric cylinders in a low dielectric background with the electric field polarized parallel to
the cylinders. The wave equation describing this polarization is a scalar one. Adopting the
“strongly-localized” photon picture we develop a linear combination of Mie resonances model,
following the ideas of it’s electronic counterpart, the linear combination of atomic orbitals
model. The model’s parameters are fitted to ab initio results. Through various testings, it’s
performance is found to be excellent, justifying the picture we adopted for the photonic states.
In Chapter 7 we use two different numerical techniques to study four different cases under
disorder: high dielectric cylinders in air and vise versa, for both polarizations (E or H parallel
to the cylinders). The different responses we find in each case are grouped into two categories,
and it is shown that they can be attributed to the two different gap forming mechanisms. This
way we can deduce which gap forming mechanism is the dominant one in each case. Finally,
in the general conclusions in Chapter 8, we discuss what we have learned and what we have
accomplished through this effort, as well as directions for future work.

Chapter 2 has been published as a brief report in Physical Review B 54, 10249 (1996);
chapter 3 has been published as a regular article in Physical Review B 56, 15090 (1997);
chapter 4 will be submitted for publication as a regular article in Physical Review E; chapter
5 has been published as a regular article in Physical Review E 55, 3613 (1997); chapter 6 has
been published in Physical Review Letters 81, 1405 (1998); chapter 7 will be submitted for

publication as a regular article in Physical Review B.
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CHAPTER 2. WAVE PROPAGATION IN NONLINEAR MULTILAYER
STRUCTURES

A paper published in the journal of Physical Review B!

E. Lidorikis, Qiming Li, and C. M. Soukoulis

Abstract

We investigate the adequacy of the Kronig-Penney §-function model in describing the elec-
tromagnetic wave propagation in periodic structures consistent of thin layers of materials with
an intensity-dependent dielectric constant. We find the model captures the most essential
features of nonlinear response to radiation. Excellent agreement is found between the results
from the §-function model and the exact solutions of nonlinear wave equations. However, dis-
crepancies do exist below the bottom of transmission bands due to the rigidness of the band
edge in the é-function model. Consequently, gap solitons cannot form in the é-function model

when the nonlinear Kerr coefficient is positive.

Introduction

The presence of nonlinearity is known to lead to much richer and more complex optical re-
sponse to radiation. One such phenomenon known as bistability, in which two possible output
states exist for a single input, promises important potential applications in ultrafast optical
switches[1]. Bistable response can be observed in simple structures such as the traditional non-

linear Fabry-Perot etlons[2] or in distributed feedback structures such as multilayered systems

'PRB 54, 10249 (1996)
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consisting of alternating nonlinear dielectric materials[3]. In essence, the bistable response
results from the modulation of transmission by an intensity-dependent phase shift. The multi-
layer structure can also act as a Bragg reflector and offers additional transmission modes known
as 'gap solitons’ within the stop band[4]. The optimal coupling of these localized modes to
radiation may lead to switching thresholds orders of magnitude smaller than achievable in the
transmission band[15].

Recently, the global transmission diagrams of multilayer structures with a Kerr nonlin-
earity were investigated within a Kronig-Penney dé-function model[6]. It was found that the
effectiveness of the nonlinearity is strongly modified by the frequency. In addition the nonlin-
ear responses of the positive and the negative nonlinear media are distinctly different due to
the modulation of the dispersion relation by the superlattice. Many dominant features were
understood through the analysis of stable periodic orbits of the corresponding nonlinear map-
ping as well as the analysis of various spectrum and stability bounds of the nonlinear difference
and the corresponding differential equations. A simple and intuitive picture of the formation
of gap solitons and soliton trains, based on a mechanical analogy, was also presented. These
understanding may prove useful for incorporating nonlinearity in systems of higher dimensions,
for example, in photonic band gap structures[7].

All these results were based on the Kronig-Penney §-function model. Such a model offers
the advantage of being amenable for some analytical treatment and is expected to work well
when the nonlinear layer is thin compared with the wavelength of the incident wave. How-
ever, to our knowledge, its general adequacy as well as its limitations has not been previously
investigated. In this brief report, we compare the results derived from the Kronig-Penney
d—function model with direct numerical solutions of wave propagation in nonlinear superlat-
tices of finite thickness. We find the Kronig-Penney d-function model captures most of the
essential features of the nonlinear response in superlattice structures. The global transmission
diagrams from the two methods are in excellent agreement with each other. However, some
disagreement does exist, most significantly below the bottom of the transmission band. This

difference is entirely due to the rigidness of the band edge in the Kronig-Penney é-function
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model, an unphysical feature that affects the conclusion regarding the existence of gap solitons

when the Kerr nonlinearity is positive.

Formalism

The formulation of the steady state plane wave transmission problem in nonlinear su-
perlattices has been described in detail elsewhere[6]. The structure consists of alternating
layers of two dielectric materials, one of which has an intensity-dependent Kerr nonlinearity,
€ = €g+a»]E|%. For normal incidence of a plane wave, the electric field amplitude E(x) satisfies
the equation

@ + w—2€(:1,)E(:B) =0, (1)

dz? c?
where w is the optical frequency, and c¢ is the vacuum speed of the light. ¢(z) is the dielectric
constant which varies along the structure and depends on the local field intensity at nonlinear
layers. The transmission characteristics are obtained by solving Eq. (1) under the boundary

condition,
Egeilbz—wt) 4 B e—ilkztwt) for o < 0
E(z,t) = , (2)
E,etlhz—wt) forz > L
where Ey,F;, and E, are the amplitude of the incident, transmitted, and reflected wave, re-
spectively. Wave vector & = w/¢, and L is the total length of the structure. The transmission
coefficient T is defined as T = | E;|?/| Eol?.

Eq. (1) can be solved[4] by matching at the layer interfaces analytical solutions in each
nonlinear layer, which may be expressed in terms of the Jacobi elliptic functions[4]. A much
simpler numerical approach, however, is to first discretize the structure and then iterate the
difference equation numerically across the sample, starting from the output field F;. Our
numerical results are obtained this way.

The Kronig-Penney §-function model, on the other hand, describes an system with in-

finitesimally thin nonlinear layers[6]. In this model, the electric field obeys,

2B(z)  aw? X
THa) o L+ AEEIE(E)8( —n)

+k?E(z) = 0. (3)
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This can be easily rewritten[6] as a difference equation in terms of the field at the nonlinear
layers, E,,
Ept1+ Eno; = (2c0sk — aksin k(1 + A\ Eq|))E,, (4)

where o = ¢ga and A = a3 /. ais the thickness of the nonlinear layers. We have assumed the
linear medium is a vacuum (e = 1), and the distance between the neighboring nonlinear layers,
d=a+Db, is taken as one unit length. The d-function model can be viewed as an approximation

when the nonlinear layer is thin compared with the effective wavelength within it.

Results and discussion

In order to compare the results obtained for the é-function model with the results obtained
for the finite width nonlinear layers, we have solved numerically the wave equation Eq. (1) for a
system with nonlinear layers of width 0.1 unit length and linear layers (¢ = 1) of width 0.9 unit
length. The global transmission diagrams in the & — E; plane for the positive Kerr coefficient is
shown in Fig. 1(b) as a grey scale plot, along with the results from the é-function model (Fig.
1(a)). The general features are remarkably similar. Good agreement is also obtained when
the Kerr nonlinear coefficient is negative (Fig. 2). These transmission diagrams show features
that have been understood through analysis of stable periodic orbits and various spectrum and
stability bounds[6].

A remarkable phenomenon occurred in the nonlinear response of superlattice structures is
the existence of localized gap soliton solutions in the stop band of the linear regime[4]. In the
previous study[6] with the é-function model, only in the negative Kerr media did we find gap
soliton solutions. This is in disagreement with the conclusion of Chen and Mills that soliton
solutions exist regardless of the sign of the nonlinearity[4]. In Figure 3, we show the transmis-
sion diagram within the stop band for superlattice of finite widths with a positive nonlinear
coefficient. Clearly, resonant trajectories exists. Examination of the solutions show well local-
ized waves symmetrically distributed at the center of the structure. Different resonance bands
correspond to solutions containing different number of solitons, analogous to the situation with

negative nonlinearity. Here, the inadequacy of the é-function model shows up, by not giving
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soliton solutions in the gap. For negative nonlinear coefficient, the transmission diagram of
the superlattice structure again is in good agreement with that of the é-function model (see
Fig. 4).

To understand why the é-function model fails to describe the formation of gap soliton in
superlattices with positive nonlinear coefficient, we have to examine the physical mechanism in
which gap solitons form when nonlinearity is incorporated in the model. This was elucidated
with a mechanical analogy in the previous work[6]. The soliton forms only when the frequency
is in the forbidden region of the spectrum in a linear system, i.e., in the gap. As the wave
intensity varies along the structure, the dielectric constant of the nonlinear layers changes
accordingly. Consequently the location of the effective transmission bands moves. For the
soliton to form, the linearized transmission band has to shift in the right direction such that
the incident frequency merges into it. This is illustrated in Fig. 5 in which we show a single
soliton profile (Fig. 5(a)) in the stop band. The corresponding effective transmission band
edges are shown in Fig. 5(b), calculated from the linear dispersion relation using the local
dielectric constant. Clearly, as the soliton intensity increases, the effective transmission band
shifts towards the incident frequency and eventually takes it completely in the vicinity of the
center of the soliton.

Examination of the effective transmission bands as a function of the effective dielectric
constant in the nonlinear layers shows clearly the difference between the d-function model and
the more realistic multilayer system (Fig. 6). For the negative nonlinearity ( the portion below
the dotted line), the collapse of the gap is described well with the é-function (Fig. 6(a)). But
for positive nonlinearity (the portion above the dotted line), the shift of bottom of the bands
towards lower frequency in the real system is completely missed in the §-function. This is not
surprising, since the bottom of the band in the é-function model is always located at k& = mm.
Thus, the rigidness of the band edge in the é-function model prevents the frequency below the
bottom of the band from merging into the effective transmission band when the field intensity
increases and therefore hinders the formation of gap solitons.

In Fig. 7, we compare the transmission coefficient as a function of the transmitted ampli-
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tude obtained from the exact solution (Fig. 7(b)) and from the é-function model (Fig. 7(a)),
for a negative nonlinearity with frequency below the bottom of the second band. Again, qual-
itative features are the same. Notice the total transmission peaks at the resonance of gap
soliton solutions(8].

We have also investigated systems with thicker nonlinear layers and found qualitatively
similar behavior. Qualitative agreement of course worsens as the nonlinear layer thickness
increases. However, the essential features remain the same. Thus the d-function model seems

to be sufficiently adequate for a qualitative study of nonlinear response to radiation.

Conclusions and acknowledgments

In conclusion, we have examined many aspects of the nonlinear response in multilayer
structures and found the é-function model quite adequate, aside from the obvious deficiency
of processing a rigid bottom band edge. The model captures the most essential features in the
transmission characteristics and therefore should be widely used due to its simplicity.
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bands (not shown) show similar behavior.



34

s
o

.
> .
ot
v
i

o

oy

0 0.5 1 15 2 2.5 3 3.5

2 25 3 3.5

0 05 1 15
Wave Vector k

The transmission diagram for a nonlinear superlattice of L=80
units with a negative Kerr coefficient. a) d-function model with
o = 1. b) linear layers of thickness 0.9, ¢ = 1, and nonlinear

layers of thickness 0.1 and ¢ = 10.

Figure 2



0.05p

0.045

0.041}

0.035

0.03

i

0.025

IE

0.02H

0.015

0.01

0.005

35

71 7.2 73 74 75
Wave Vector k

Figure 3 The resonant transmission trajectories of single and multiple soli-
tons in the third stop-band of a nonlinear finite thickness super-
lattice of L=80 units with a positive Kerr coefficient. Linear
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Illustration of gap soliton formation in a system with L=80 layers
with positive nonlinearity. Linear layers of thickness 0.9, ¢ = 1,
and nonlinear layers of thickness 0.1 and ¢; = 16. k=7.07369
and E;=0.01. a) profile of a gap soliton, and b) the local effec-
tive stop-band edges as determined from the soliton profile. The
stop-band extends from the dashed line (low frequency stop-band
edge) to the solid line (high frequency stop-band edge). The thin
line is the incident frequency. Clearly, the incident frequency
merges inside the effective transmission band around the center
of the soliton.



Dielectric Constant

38

)\A
S

Dielectric Constant

S O A O oo

100

Figure 6

Wave vector k

The transmission band as a function of the effective dielectric
constant at the nonlinear layers. L=80 a) é-function model with
o = 1. b) linear layers of thickness 0.9, ¢ = 1, and nonlinear
layers of thickness 0.1 and €y = 10. The horizontal line indicates
the bands in the linear regime.




39

10
S 05
3
S
§
2 0
S 10
2]
2
N
9
3
2 o5t
00
00

0.5 1.0 1.5 2.0
Transmitted Amplitude £

Figure 7 Transmission coefficient as a function of the transmitted ampli-

tude FE;, for L=80 layer system with a negative nonlinearity.
k=3.0. a) é-function model with @ = 0.35. b) linear layers of
thickness 0.9, ¢ = 1, and nonlinear layers of thickness 0.1 and
€ = 3.5.



40

CHAPTER 3. OPTICAL NONLINEAR RESPONSE OF A SINGLE
NONLINEAR DIELECTRIC LAYER SANDWICHED BETWEEN TWO
LINEAR DIELECTRIC STRUCTURES

A paper published in the journal of Physical Review B !

E. Lidorikis, K. Busch 2, Qiming Li, C. T. Chan 3, and C. M. Soukoulis

Abstract

We consider the general problem of electromagnetic wave propagation through a one di-
mensional system consisting of a nonlinear medium sandwiched between two linear structures.
Special emphasis is given to systems where the latter comprise Bragg-reflectors. We obtain an
exact expression for the nonlinear response of such dielectric superlattices when the nonlinear
impurity is very thin, or in the d-function limit. We find that both the switching-up and
switching-down intensities of the bistable response can be made very low, when the frequency
of the incident wave matches that of the impurity mode of the structure. Numerical results
for a nonlinear layer of finite width display qualitatively similar behavior, thus confirming the
usefulness of the simpler é-function model. In addition, an analytical solution for the resonance
states of an infinitely extended finite width superlattice with a finite width nonlinear impurity

is presented.

'PRB 56, 15090 (1997)
2Universitat Karlsruhe, Germany. Also carried out most of the work in the second part.
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Introduction

Dielectric materials with an intensity-dependent dielectric constant are well known for
their complex response to radiation. Exciting features such as bistability, multistability, opti-
cal limiting etc. have been predicted theoretically [1, 2] and observed experimentally (3, 4, 5].
Promising future applications include optical switches and transistors, pulse shapers as well
as memory elements. Already quite simple structures like the traditional Fabry-Perot etalons
[3] or multilayered structures of alternating nonlinear dielectric materials [3] exhibit such a
behavior. The common characteristic of all nonlinear optical devices is the feedback mecha-
nism, necessary to enhance the nonlinear effects. Crudely speaking, there exist two types of
realizations: In the case of a “localized” feedback structure a homogeneous nonlinear medium
is placed between two reflectors (mirrors [3, 4] or Bragg- reflectors [5]), while “distributed”
feedback mechanisms are realized through a periodic modulation of the linear part of the non-
linear materials’ refractive index [1]. Similar studies have been done for the electronic response
in a one-dimensional nonlinear lattice [9, 10, 11], as well as for a linear lattice with nonlinear
impurities[12].

The linear (or low intensity) properties of the feedback mechanism are important for the
nonlinear response of the device. For instance, a distributed feedback structure brings about a
photonic band gap [9, 14], where certain modes are forbidden while others propagate freely. For
frequencies inside the transmission band, bistability results from a modulation of transmission
by an intensity dependent phase shift. For frequencies inside the stop gap of the linear system,
bistability and resonance transmission is achieved via gap soliton formation [10, 16]. However,
nonlinear media are usually quite lossy and, thus, it is important to find ways of keeping the
amount of nonlinear material small while still retaining sizable nonlinear effects. Furthermore,
the successful use of optical switches depends crucially on a low threshold, i.e. low “switching”
intensities. The above considerations lead to the question whether a single nonlinear layer,
suitably supplied with a feedback mechanism, may be sufficient for optical switching devices.
In this paper we present the results of our investigation of this and several related problems.

The paper is divided into two parts: The first part deals with the general case of a “local-
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ized” feedback structure when the nonlinear layer is very thin, or in the d-function approxima-
tion. We will give arguments why a system consisting of a nonlinear layer sandwiched between
Bragg-reflectors may be considered the most efficient “localized” feedback structure, as well as
which parameters of the system determine the bistability threshold. We also demonstrate the
usefulness of the d-function approximation by comparing with numerical results for a nonlinear
layer of finite width. However, a finite nonlinear layer always exhibits multistability. This is
illustrated in the second part of this paper, where we present an analytical solution for the
resonance states of an infinite superlattice with a finite width nonlinear impurity layer. These
are modulated band gap impurity modes and correspond to the the transmission resonances
in the multistable input vs output diagram. Finally, a comparison between the analytical so-
lution for the infinite superlattice with numerical results for a finite superlattice shows very

good agreement.

Very thin nonlinear layer

Many features of wave propagation through one dimensional nonlinear structures can most
conveniently be investigated and understood within a nonlinear Kronig-Penney é-function
model [11]. Although discrepancies with the more realistic finite width models do exist, it
has been demonstrated that the §-function model captures most of the essential features of
nonlinear response to radiation [12]. In this section we will consider a very thin nonlinear layer
centered at the origin. The nonlinearity is expressed in first order by an intensity dependent

term in the dielectric function €(z):
€(z) = co(1+ A E(2)|?) 6(2) (1)

Here ¢ is defined as the limit n%d — ¢ for n = 00, d — 0, of a finite width layer of extent d
and index of refraction n, and €A is the corresponding nonlinear Kerr coefficient.

We will first discuss the problem of a single nonlinear §-function. More insight is obtained
from a general discussion of a §-function nonlinear layer sandwiched between two linear struc-
tures. It will be shown that the equation relating input and output intensities has the same

form as for a single nonlinear é-function except for a parameter renormalization. Also, a very
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useful phase diagram for the onset of bistability in terms of the linear properties of the system
will be derived. From this it follows that the most interesting physics appears when the linear
structures on the two sides of the nonlinear layer are identical Bragg- reflectors. Assuming the
latter to consist of very thin layers, we arrive at a remarkably simple but very rich result for

the input- output intensity relation.

Single nonlinear é-function

We first consider electromagnetic wave propagation through a single d-function with an
intensity dependent dielectric strength as given by Eq. (1). This is schematically depicted
in Fig. 1. Our interest lies in the steady state response of the system. Let a plane wave
Ege~*** with wave number k = w/c be incident from the right. This gives rise to a reflected
wave, E.e'**  as well as to a transmitted wave, E;e~*%. Solving the Maxwell equation with a
single nonlinear - function layer at # = 0 will yield a relationship between the incident and

transmitted intensity, Y = |Fp|? and X = |E;|?, respectively:

Y=X[1+7(01+AX)] , (2)

where 7 = ¢2k?/4 is related to the transmission coefficient |To|? of the corresponding linear
(A=0) system, 7 = (1 — |T5|?)/|To|?. The system will exhibit bistability if we can have more
than one output for a given input. This will be true if Y is a non-monotonic function of X.

We find a physical solution for dY/dX = 0 only for A < 0 and 7 > 3:

Xi _ 2+ \3/ i[/\l— 3/T (3)

The absence of bistability for a positive Kerr-coefficient is one of the artifacts of the &-
function approximation. We will see later that this restriction is lifted, once the nonlinear
6- function is placed between two linear systems with nonzero reflection coefficients. The
nonlinear response of such a system with negative A is shown in the input vs output diagram
in Fig. 2a for various values of 7 and A.

The switching-up and switching-down intensities are given by Yy = Y (Xy), respectively.

For 7 =3 and X < 0 we have the onset of bistability at Y, = Y_ = 8/(9]|)]). As 7 gets larger,

~ . Cee . - R e R A e PR
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Y_ — 1/|A| while Y} ~ 7/|A|. Note that for Y = X = 1/|)| we have resonance transmission.
Thus for large 7 (or equivalently for low linear transmission) the switching down intensity
and the resonance intensity are the same. Clearly, the larger |A| is, the smaller the switching
intensities are. Note further, that the resonance transmission intensities Y = X = 1/|)|
correspond to ¢(0) = 0, i.e. the index mismatch between the §-function and the background
effectively disappears, leading to total transmission. On the other hand, for a finite width linear
layer with dielectric constant ¢ = n?, the condition for resonance transmission is 2d = m\ i
where d is the width of the layer and mA is an integer multiple of the wavelength inside the
dielectric material (Ay = 2mw¢/nw) [3]. If we incorporate a nonlinear coefficient in the dielectric
constant (e(z) = n?(1+ A E(z)|?)), then for suitable choices of the parameters we can have
bistability (and even multistability) for both negative and positive Kerr medium. For example,
if 2d < Ay and X > 0, then effectively the dielectric constant will get larger, yielding a smaller
average effective wavelength (A). For some intensity we should expect the resonance condition
to be “effectively” satisfied, and, as a consequence, get a transmission resonance. Higher order
resonances are also expected giving rise to multistability. For a negative Kerr-coefficient and
2d < Ay we should not expect bistability, as correctly pointed out by Chen and Mills [2],
unless we allow the unphysical situation at which the intensities become large enough to make
(n%) < 1. Only then we would get bistability, and this would be the exact correspondence
to the d-function case. For a positive Kerr-coefficient, however, bistability should always be
expected (although some times only at unrealistically high intensities), a feature that is absent
in the é-function model.

In Fig. 2b we show the transmission diagram for a finite width dielectric slab for d = 0.6y
and various values of linear transmission coefficient and nonlinear Kerr coefficient. Although
this is not the exact analog of Fig. 2a, it is remarkable that both models show a similar
dependence on their linear transmission properties. We also find that for larger intensities the
negative nonlinear medium does not exhibit multistability, while a positive nonlinear medium
will always exhibit multistability, as can be seen in the inset graph in Fig. 2b.

The unphysical condition for resonance transmission in the single nonlinear é-function case
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can be lifted if we sandwich the é-function between two linear systems. Bistability will then
occur as a result of the intensity dependent phase shift that the §-function will introduce
between the two linear systems, which will alter their transmission characteristics. As we
will see in the next section, this arrangement is also optimal for obtaining lower switching

intensities.

Nonlinear é-function sandwiched between two linear systems

Let us now consider a more general geometry as shown in Fig. 3, where a nonlinear 4-
function is sandwiched between two linear systems, characterized by the reflection and trans-
mission amplitudes, r; and t; (i = 1,2), respectively. Generally, for a linear system, with
incident and reflected plane waves from it’s left Ae*** and Be~*% respectively, and incident
and reflected plane waves from it’s right De~**% and C'e’*® respectively, the relation between

the field amplitudes is described by the transmission matrix:

C _ 1/t —r/t A @
D —(r/t)y 1/t B
Just as before, we assume this composed object to be illuminated from the right by a plane
wave with amplitude Ey. The corresponding reflected and transmitted wave amplitudes are
denoted by E, and E}, respectively. Then, the relation between the output intensity X = |E;|?
and the input intensity Y = |Ep|? can be obtained straightforwardly by properly matching the

values of the fields at the origin:
Y=X[y+r1+)X)°] . (5)

Note that Eq. (5) has exactly the same structure as Eq. (2). Thus, we have shown that
the introduction of the linear structures leads to a renormalization of the quantities in Eq. (2):
1—4+9,7—= 7" and A — X. The quantities v, 7/ and )’ are given by the following expressions
1/ (1T 1To) ~ Re? [1/ (1" To)]

11/To — 1/T)?

(6)

(1/1Tof? = Re [1/(T* To))’
|1/To — 1/T
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X=Xty =i/ |1/ To - 1/T| VT, (8)

where T is the linear transmission amplitude for the system without the d-function at the

origin (eg = 0):
1 1 rira

Tty ity (9)

Similarly, T is the linear transmission amplitude for the case with the J-function at the origin

(A=0),
1 _ 1 ke (1 rf)(l 7'2)
To T '2 (tl t1) \ts + ty (10)

The conditions for bistability from Eq. (5) now read as:

04 1
= < 3 (11)
No< 0, (12)

thus, allowing bistability for positive Kerr-coefficients as well. We want to stress that the
conditions for bistability depend on the transmission amplitudes of the linear systems with

and without é-function only. They can conveniently be rewritten in terms of the quantities R

and 6 which are defined via 1/Ty = Re/T:

sin? @ 1
7 < =
(R—cos6)2 — 3° (13)
. cosd
sign(\) (1 -= ) 0 (14)

Fig. 4 shows the phase diagram for the onset of bistability derived from Eqgs. (13) and (14).
Obviously, the insertion of the linear part of the nonlinear é-function has to sufficiently alter
the total transmission amplitude 1/T in order for bistability to occur. This alteration may be
achieved by a change in the total transmission, i.e. by changing R, and/or by introducing a
phase shift 4.

One can get more explicit and transparent results when the linear systems each consist of
a periodic arrangement of N linear §- functions with a spacing a equal to the distance between
the nonlinear §-function and the two linear systems. We first consider the linear problem of

N equally spaced d-functions of dielectric strength ¢p. Between any two é-functions in the
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linear structure the solution consists of two plane waves traveling in opposite directions. Using
the boundary conditions we can eliminate the waves in the intermediate space and obtain a

difference equation in terms of the field at the é-function sites [11]
Epi1+ En—1 = (2cosk — egksin k) Ey,, (15)

where we have assumed the space between two d-functions to be vacuum and their separation
to be a=1. Upon expressing all lengths in units of the lattice period (¢ = 1) and using the
Bloch’s theorem E(z + 1) = €YE(z) we arrive at the band structure equation which defines
the Bloch wave vector ¢

1
cosq=cosk—§eok sin k (16)

The transmission bands are found by setting |cosgq| < 1.
We can easily generalize the above method to the present problem of 2N+1 §-functions

utilizing the transfer matrix of each layer

E_n_ 2cosg’ -1 En
Nt | = ml i MY (17)
E—-N ]. 0 EN+1
where
2cosqg —1
M= (18)
1 0

and 2cosq’ = 2cosk — €)(1 + A|E(0)|?)ksin k, comes from the nonlinear §-function at x=0.
0

E_n and E_(41) are given by the output field
E_ny=Ee ™ E_yuy=E e NTE, (19)
En and En.y; are related to the incoming and reflected fields by

Ey = Eye™ Nk | B, &Nk, (20)

Enii = Ege 'WN+Dk L V1) 01
-+

The intensity at the nonlinear site | F(0)|? can be expressed in terms of the transmitted intensity

|E_N|? = X as |E(0)|?=CX, where

sin Ng¢ sin(N + 1)q

C=1F¢ksink —
sin® g

(22)
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In Eq. (22) ¢ should be replaced by i|g| for |cosg| > 1, and the lower sign in C is used when

cosq < —1. After some algebra we arrive at the final result
Y=X[1+7(1+NX)7, (23)

where 7/ = 7 o? %@r:—l)ﬁ, A=A % a~! ﬁ‘;;}_:%ﬁ and @ = (1+(€Z‘I’ﬁ)—%ﬁ—i%). Of course, this
result can also be obtained from Eqs. (6) through (8) by specifying the respective expressions
for the reflection and transmission amplitudes, r; and ¢; (¢ = 1,2). Since Eq.(2) and Eq.
(23) have the same form, all the analysis done in section II. A applies. However, due to the
renormalization of the parameters 7 and A, interesting features arise: 7/ is related to the total
linear (A=0) transmission coefficient of the system 7/ = (1 — |Trorar|?)/|Trorac]?, and the
condition 7/ > 3 implies [Trorar|? < .25. Also, the constraint A < 0 is now relaxed since it
requires only \ < 0.

In Fig. 5a we plot the switching up and down intensities for the case ¢ = ¢ and for
frequencies close to the first band gap. We note that the sign of A required to obtain bistability,
between successive lobes of the linear (A=0) transmission curve, is alternating from A < 0 to
A > 0. We can understand this by means of the field configuration that characterize these
lobes for the linear lattice. Every lobe corresponds to a transmission resonance for which the
intensity envelope is |E(z)|? « sin?(mz/L) where L is the length of the structure, 0 < 2 < L,
and m=1,2,3,..2N + 1 starting from the upper band edge and moving to lower frequencies
[19]. When m is odd, the intensity at the middle of the structure will have a maximum, while
when m is even, it will have a minimum. If we now turn on the nonlinearity (A # 0) in the
é-function in the middle of the structure, it will introduce an appreciable phase shift only when
the incident wave is tuned close to an “odd” lobe’s frequency. This phase shift will change
the intensity envelope, and thus the resonance frequencies, resulting in an effective frequency
“shift” for the “odd” lobes. For some intensity, the incident wave’s frequency will match to
the “shifted” lobe’s frequency, and a transmission resonance will be obtained. This is where
the bistable behavior originates from. The condition on 7’ sets the allowed frequencies for
observing bistability in between the transmission lobes. Also, a negative nonlinearity (A < 0)

will cause the odd lobes to shift to higher frequencies, while a positive nonlinearity (A > 0) will
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cause them to shift to lower frequencies [19]. This is shown in Fig. 6 for both the §-function and
finite width models. Note that lobes closer to the gap shift at lower intensities, indicating that
for those frequencies smaller switching thresholds should be expected. With these features,
the bistability diagram in Fig. 5a is fully understood.

An important consequence of the introduction of the two linear systems is the presence
of resonances. The phase shift introduced by the nonlinear é-function must be enough to
tune the incident wave with the shifted lobe. The same transmission lobes are found in the
linear transmission diagram of a finite superlattice. Then, from the point of view of induced
phase shifts, there should be no real qualitative difference between the é-function model and
the finite layer superlattice, at least for the first bistable loop. The finite layer system differs
qualitatively from the nonlinear é-function model insofar as it always exhibits multistability
(the nonlinear é-function system is strictly bistable), a point which will be discussed in section
III. But when considering the first bistable loop only, the very thin layer approximation may be
viewed as a reliable guide to more realistic systems involving finite width nonlinear layers. This
is shown in Fig. 5b where we plot the switching up and down intensities of the first bistable
loop, for a finite width layered model with a finite width nonlinear impurity layer, having it’s
system parameters defined in correspondence with the §- function model by ¢g = dn?. In order
to stress the similarity, we have chosen the nonlinear layer to equal to half a lattice period.
We see that the é-function model indeed captures most of the essential features of the more
realistic finite width superlattice.

Similar behavior is obtained for the €, # ¢ impurity case for frequencies inside the trans-
mission band. In Fig. 7 we show the switching intensities of both the §-function layer and finite
width layer systems for a weak impurity ¢ < €p. For these values, the linear (A=0) impurity
mode, which is actually the m = 1 transmission lobe being shifted inside the band gap [19], is
very close to the transmission band. For €j > ¢g, no gap impurity mode exists in the é-function
model so the response of the two systems inside the gap is different. For €} < €g, both systems
exhibit an impurity mode inside every band gap [14]. When the fields are turned on, a positive

nonlinearity in the middle of the structure will shift the impurity mode to lower frequencies,
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while a negative nonlinearity will shift it to higher frequencies. As a consequence, when A > 0
bistability is observed at frequencies lower than that of the linear impurity mode, while for
A < 0 we must use higher frequencies.

The switching up and down intensities are generally Y_ ~ 1/|X| and Yy ~ 7//|V|, and
for band gap frequencies it is generally 7' > A\ > 1, yielding extremely low switching down
intensities and very high switching up intensities. Nevertheless, for frequencies relatively close
to the linear defect frequency, it is A’ > 7/ > 1, yielding extremely small switching up
intensities as well. As can be seen in Fig. 8, where we plot the switching intensities for a
large impurity (linear impurity mode deep inside the band gap), the order of magnitude for a
N = 20 system is well below 1072%, and becomes exponentially small as N gets larger. To get
a feeling for this number, assume that typical electronic nonlinearities are of the order of [A] ~
10~¥cm?/W. Then Yz ~ 10~°W /cm?. Furthermore, the intensity at the nonlinear defect layer
is small enough, to secure that the nonlinearity is well described as a Kerr nonlinearity: The
nonlinear effect does not saturate and the nonlinear layer will not get damaged from intense
fields. However, the price one has to pay to achieve low power thresholds, is to maintain
extreme accuracy in the incident frequency, due to the extremely high Q of the mode. For
the system described in Fig. 8 this accuracy is of the order of Ak/k ~ 10710, This is quite
unrealistic. In addition, this ratio gets exponentially small for increasing N. Thus, for a realistic
application it is the laser’s line-width which determines the power thresholds for bistability and

in general compromise has to be found.

Dielectric superlattice with nonlinear impurity: resonance states

In the previous section, we have investigated the response of a very thin layer of non-
linear material sandwiched between two linear Bragg reflector structures. We demonstrated
that such a structure can exhibit bistability with very low switching threshold as a result of
coupling to the impurity mode in the stop gap of the linear structure. In this section, we
consider the situation when the nonlinear layer is not thin. There are qualitative differences

between the response of a nonlinear finite width layer and a nonlinear é-function layer. We
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have seen that a single finite width dielectric layer exhibits bistability for both positive and
negative Kerr-coefficients (Fig. 2a), whereas the single nonlinear §-function exhibits bistability
for negative Kerr-coefficient only. Similarly and in contrast to the strictly bistable é-function
model, dielectric superlattices with a nonlinear impurity always exhibit multistability. This,
we will show, has to do with the fact that impurity modes exist for each value of Ae. We can
understand all these properties qualitatively if we view the finite nonlinear layer as consisting
of a sequence of of nonlinear é-functions. Then, resonance phenomena allow to bypass the
limited behavior of a single nonlinear é-function. However, multistability is much harder to
detect than bistability, because the field values at the nonlinear layer may be very large and
oscillating, thus requiring extremely high precision.

Let us first investigate the localized mode solution for a finite width nonlinear layer sand-
wiched between two Bragg-reflectors. The nonlinear wave equation inside the impurity layer
is given by

d 2 2 N ‘
TFE@) + K (1+MB@)) B2) =0 (24)
where kg = n?(w/c). This equation may be solved by means of the following ansatz [3]:
E(z) = Eog(a) ™ (25)

Inserting this ansatz into Eq. (24) leads to a separation of the amplitude and phase function,

g(z) and ¢(z), respectively:

d w .
ﬂgﬁ(@ = #@) (26)

2
(T2 + g + Mo + ' = 4 (2

where X = \|Ey|? is the effective nonlinearity and A and W are constants to be determined.

Upon introducing I(z) = g2(z), the solution may be cast in the deceptively simple form:

I(x)
/ I 3 = £2(z - z0) (28)
1) (AL - k212 - {3k215 — W2)

() = p(zo) + W / " ! (29)

1
I(z")
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The four unknowns A, W, ¢(z¢), I(zo) = g?(x0) have to be determined from the boundary
conditions at zg. In particular, W is related to the energy flux through the layer as can be seen
by evaluating the Poynting “vector” S = —c?/8rwRe[i E*(z)(d E(z)/dz)] = c*|Eo|*W/8nc.
In the case of A = 0 it is an easy exercise to obtain the linear solutions from Eq. (28). For
A # 0, despite the apparent simplicity of Eq. (28), a closed form solution cannot be obtained
in general. The reason for this difficulty is seen as follows: The solution of Eq. (28) comes
down to finding the roots of the denominator, where A and W depend on the boundary values
in a complicated way. This task can be accomplished in two special circumstances only: If
d¢(zo)/dz = 0, then, according to Eq. (27) we already have one root, leaving us with the
simple exercise of solving a quadratic equation. Similarly, if W = 0 we immediately have the
root I = 0, again reducing the problem to a quadratic equation. The first case was exploited by
Chen and Mills [3] in solving the transmission problem through a single finite width nonlinear
layer only, without the superlattices on both sides.

We, however, are interested in the second situation. Apparently, W = 0 implies S = 0.
This corresponds to a spatially symmetric situation, i.e., a situation where parity is a good
“quantum” number. Speaking in terms of the transmission experiment we have in mind,
this amounts for solving for the stationary or resonance states for which input equals output.
This distinction is of no importance in the linear problem, because there we can construct
any state by an appropriate superposition of stationary states. Obviously, this cannot be
done in a nonlinear problem. Consider now the case where the nonlinear layer, centered at
z = 0, is sandwiched between two infinitely extended linear superlattices of alternating layers
of dielectric constants ¢, and ¢, and widths a — d and d, respectively (cf. Fig. 9): Since the
stationary states have parity p = =1 we may impose the following values of the electrical field
E(0) and its derivative E’(0), i.e. the magnetic field, at the origin:

Even Solution (p=1):

E0)=E#0 = ¢0)=0, g(0)=1

E0)=0 = g0)=0
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Odd Solution (p = —1):

E(0)=0 = ¢(0)=0, g(0)=0
E'0)= Eoko\J1+3/2#£0 = ¢'(0)=ko\/1+1/2

Here, we have chosen the non-zero value of the field’s derivative for the odd solution in a
particular convenient form (compare with the later calculations for the constant A).

To compare with numerical studies, the above equations define the value of Ey and, thus,
the effective nonlinearity X Consequently, for a given frequency we need to search for the
symmetric states (resonant states) in the transmission problem and compute the field Ep at
the origin. For given A we then get the effective nonlinearity A=) | Eo|?.

The computation of the parameter A in (27) is now straightforward and due to the “tricky”

definitions is the same for both parities:
2 1<
A=ky1+ 5/\ (30)

In addition, we can compute the missing roots of the cubic expression in (28):

Il =0

L = _2—{:)\
A

Is =1

In order to finally solve Eq.(28), we have to distinguish four cases: The solution to depends on
parity and the sign of one root , namely I, depends on the sign of A (cf. [16)).
We begin with A>0:

Define the quantities

b
T VR (1)
" = K(k)y p=1 (32)
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where K denotes the Complete Elliptic Integral of the first kind. Then, the solution to Eq.

n? <ilsox\/ 1+ A+ l-£>
1 + mcn2 (:}:kol‘\/ 1 + 5\ + (6 ii)

Here, sn and cn are the Jacobian Elliptic Functions. These results may be simplified by the

(28) reads as:

I(z) =

use of the addition theorems of the Jacobian Elliptic Functions.

I(z) =cn <k0$\/75\, ) (33)

I(:v)—(l‘*'l/\) o (ko1 +3i5)
1+ dn2<k0az\/1—-}j;fg)7

where dn = /1 — k2sn?. Similar solutions emerge in the case of a negative Kerr-coefficient,

(34)

/~\<0:

Define the quantities

n = |\ (35)

. 1

5 = K(k) p=1 (37)
0 p=-1

Then the solution to (28) reads as:

I(z) =sn? (:l:kosvﬂl - %17 + 6; n)

These results may, again, be simplified by the use of the addition theorems of the Jacobian

Elliptic Functions:

p=1
(ko.’l,\/l - 5 N )
I(z) = (38)
(kox\/l 277, )
p=-1

I(z) = sn® (koa;\/l - %n; Ii) . (39)
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Outside the nonlinear layer the waves obeys the Bloch-Floquet theorem. We employ the
“traveling wave” description [17], which decomposes the field F(z) and (implicitly) its deriva-

tive E’(z) into left and right moving waves:

. Ar eikz
E(z) = _ (40)
AI e—zkx
Within this formalism, the Bloch-Floquet condition for a defect state inside the photonic band

gap, created by the linear superlattice, may be written as (connecting the fields in the middle

of one linear A-layer at ¢ = s to the fields at ¢ = a + s, where a is a lattice constant):
(M £e 7€) E(s) =0 (41)

where the matrix elements of M are well-known:

My = etkale=d) (cos(kbd) + = (kb + ko )sm (kbd)>
2 \k ky

ik ke
My = 5 (ka kb) sin(kspd) .

were k, = %./¢,, ky = 2,/ and My, = M3y, M = M3,. Inside the nonlinear layer we
know the field and its derivative at the origin. Using the solutions Eqgs. (33) through (39), we
can now calculate the field and its derivative at the interface to the A-material, translate the
results into the traveling wave formalism (field and derivative are continuous at the boundary!)

and propagate them to the middle of the A-layer, i.e. we obtain E(s):

(i) = e[172) - ey [T072) (42)

(Ba(s) = ((Bn®) , (43)

1

where s = (a — 1)/2 and [ is the thickness of the nonlinear layer. Thus, (41) constitutes two
linear equations, the second being the complex conjugate of the first. Upon separating this
complex equation into real and imaginary part, we observe that the real part does not contain

v and may thus be used to determine w:

sin(kq(a — d)) cos(kpd)+
) d)) sin(kyd)+
1

: (k—_lz—b) sin(byd)p(w) = 0 (44)

t\:>|r—l
/\
Ip

+?’?‘
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Here, 1(w) contains the information about the nonlinear layer. If we define

V@ 4 (VIR)

ke dz

(e

WO (z) =
XHN2) = I=2)£ 3

Then % (w) is given as:

_cos(kqes) X\ (1/2) 4 2sin(kqs) X (1/2)
- XH(1/2)

$(w) (45)

where s = a — d + [ (e = lattice constant; d = thickness of the B layers; [ = thickness of the
nonlinear layer). /7(1/2) and d( 1(1/2)) /dz have to be evaluated according to the sign of
X and parity.

Eq. (44) defines the solution for the impurity modes for our structure. These impurity
modes manifest themselves as resonances in the nonlinear multistable response, for frequen-
cies inside the gap of the linear superlattice. In the é-function model we had only one such
resonance, as required from it’s strictly bistable character. As discussed above, for a nonlinear
impurity of finite width in an infinitely extended linear superlattice we now expect multistable
behavior. For practical applications, the linear superlattices cannot be infinitely extended.
However, as long as the number of the layers is large enough to have a well defined localized
solution, the resonant frequencies should be given exactly by Eq. (44).

Fig. 10 shows the resonance state frequencies as a function of X for a linear superlattice
consisting of equally wide layers of alternating dielectric constant ¢, = 1 and ¢ = 5. The
nonlinear layer is described by n? =8, I = d and A = 1. Solid lines represent the analytical
solution according to Eq. (44), while the circles correspond to the results of a numerical
simulation using 20 bilayers on each side of the nonlinear layer. In addition, the parity of the
resonance states is indicated. Evidently, the agreement between the two methods is excellent,
thus illustrating the multistable behavior. This feature (multistability) is explicitly shown
in Fig. 11, where we show the input-output diagram for the same configuration. Finally, in

Fig. 12 we show the intensity configuration for two resonance states with different parities.
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Each resonance state is characterized by the intensity configuration inside the nonlinear layer.
The first has one lobe, the second two, the third three e.t.c. In the é-function case, the
possibility of different intensity configurations inside the nonlinear medium is absent. Thus,
only one resonance state would be allowed, which is the analogue of the first resonance state

of the finite width case shown in Fig. 12a.

Conclusions

We have investigated the general problem of electromagnetic wave propagation through
a one dimensional system consisting of a nonlinear layer sandwiched between any two linear
systems. Our studies provide a general frame within which calculations can be done, based
on the transmission characteristics of the linear systems. In the case of a very thin layer, we
have shown that a é-function approximation is adequate. It follows from our analysis that a
nonlinear layer sandwiched between two identical Bragg-reflectors can be regarded as the most
efficient “localized” feedback structure. For this system, a cubic equation has been derived,
describing the nonlinear bistable response, with normalized parameters that characterize the
experimental situation. We obtain bistability in the gap of the linear system, via the impurity
mode, and find that the switching thresholds can be made very small by enlarging the structure
and/or widening the gap. In addition, we have obtained an analytic solution for the localized
resonance modes in the band gap for a nonlinear impurity of finite extent in an otherwise linear
dielectric superlattice. The solution shows multistable behavior, the basic feature absent in

the é- function model. Our numerical studies agree extremely well with these solutions.

Acknowledgments

Ames Laboratory is operated for the U.S. Department of Energy by lowa State University
under Contract No. W-7405-Eng-82. This work was supported by the Director for Energy
Research office of Basic Energy Sciences and Advanced Energy Projects and by NATO Grant
No. 940647. K. Busch acknowledges financial support from the German-Israeli Foundation
(GIF).




58
Bibliography
[1] H. G. Winfull, J. H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).
[2] W. Chen and D. L. Mills, Phys. Rev. B 35, 524 (1987).
[3] H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).
[4] B. Xu and N. B. Ming, Phys. Rev. Lett. 71, 3959 (1993).
[5] C. J. Herbert, W. S. Capinski, and M. S. Malcuit, Opt. Lett. 17, 1037 (1992).
[6] W. Chen and D. L. Mills, Phys. Rev. B 36, 6269 (1987).
[7] F. S. Felber and J. H. Marburger, Appl. Phys. Lett. 28, 731 (1976).
(8] M. Okuda and K. Onaka, Jpn. J. Appl. Phys. 16, 769 (1977).
[9] F. Deylon, Y. Levy, and B. Souillard, Phys. Rev. Lett. 57, 2010 (1986).
[10] Yi Wan and C. M. Soukoulis, Phys. Rev. B 41, 800 (1990).
[11] D. Henning, H. Gabriel, G. P. Tsironis, and M. Molina, Appl. Phys. Lett. 64, 2934 (1994).
[12] M. I. Molina and G. P. Tsironis, Int. J. Mod. Phys. B 9, 1899 (1995).

[13] For a recent review, see C. M. Soukoulis, ed., “Photonic Band Gap Materials,” (Kluwer,

Dordrecht, 1996).
[14] D. R. Smith et al., J. Opt. Soc. Am. B 10, 314 (1993).
[15] W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).

[16] C. Martine De Sterke and J. Sipe, in Progress in Optics, Vol. 33, edited by E. Wolf,

(Elsevier, Amsterdam, 1994).
[17] Qiming Li, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Phys. Rev. B 53, 15577 (1996).

[18] E. Lidorikis, Qiming Li, and C. M. Soukoulis, Phys. Rev. B 54, 10249 (1996).

s v g,y gy e - Lo - Ry e T o) L epm
> R - T e M P o iy



59

[19] R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems and C. Weisbuch, Phys. Rev. A 48,
2246 (1993).

(20] P. F. Byrd and M. D. Friedman: “Handbook of Elliptic Integrals for Engineers and Sci-

entists”, Springer 1971

[21] K. Busch, C. T. Chan and C. M. Soukoulis, NATO ASI, Series E 315, 465 (1996)




60

e=¢,(1+ME(0)1")3(x)
A

iky
Ere
_—
ikx -tkx
Ee Ee
— —
x=0 X

Figure 1 Geometry considered in this section. A plane wave of amplitude
Ey strikes a nonlinear é-function, giving rise to a reflected and a
transmitted wave.
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Figure 2 Transmitted intensity versus incident intensity for a) a nonlinear
d-function and b) a nonlinear dielectric slab of width d = 0.6A;.
In both cases, the dashed line corresponds to A = —1 and linear
transmission |Tp|> = 0.25, the solid line to A = —1 and linear
transmission |[Tp|? = 0.125, and the dot-dashed line to A = +1
and linear transmission [Tp|2 = 0.125. Note that the bistability
onset happens for the same system parameters. However, for
large intensities the finite layer system with A > 0 will always
display multistable behavior (inset graph in (b), for the same
parameters: A = +1, |Tp|?> = 0.125). The dotted line is the total
transmission relation ¥ = X.
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Figure 3 The general geometry considered in this section. A nonlinear
d-function is sandwiched between two general linear systems char-
acterized by the reflection and transmission amplitudes r; and ¢;,
i = 1,2. A plane wave of amplitude Ejy incident upon the sys-
tem from the right, results in a transmission amplitude F; and a
reflection amplitude F, .
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Figure 4

0.5 1.0 L5 2.0

The phase diagram for the onset of bistability for a d-function
sandwiched between two linear systems, as derived from Egs. (13)
and (14). 6 and R are defined through 1/Tp = Re® /T where Tp
is the total linear transmission amplitude of the two linear struc-
tures with the §-function in the middle (A = 0) and T is the total
transmission amplitude without the é-function (¢o = 0). Eq. (13)
sets the values of R and 6 for which we can observe bistability,
outside the gray areas, while Eq. (14) (dashed line) sets the sign
of the nonlinear coefficient A for which we will observe bistability.
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1.50 151
Wave Vector k

148 149

Switching up (solid line) and switching down (dot-dashed line) in-
tensities for a nonlinear impurity system sandwiched between two
linear structures. The linear structures consist of a) é-functions
with N=20, ¢, = ¢ = 2.5 and spacing a = 1, and as a compar-
ison, b) a system of 41 dielectric bilayers with d, = dp = 0.5

and n2 = 1,n2 = 5 in analogy with the §-function system:

&vaw = ¢o. The b layer in the middle of the structure is nonlinear
with € (z) = n2(1+ A|E(2)|?). In both cases we used A = %1.
The dotted line in both graphs is the linear transmission coeffi-
cient of the structure. The band gap starts around £=1.186 for
the d-function model and k=1.51 for the finite width model, as
can be seen from the large transmission drop. The exact value of

the band edge can be found by using Eq. (16).
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Figure 6 Gray scale plots of the transmission coefficient versus the wave
vector k and the transmitted amplitude |E}| for frequencies in-
side the transmission band. Dark areas indicate low transmis-
sion. The two upper graphs correspond to the é-function model
described in Fig. 5a, for A = 1 (left) and A = —1 (right). The
two lower graphs correspond to the finite width model described
in Fig. 5b, for A = 1 (left) and A = —1 (right). The transmis-
sion lobes and their frequency shift are clearly shown, except for
the first one right on the band edge, which can barely be distin-
guished for the A = 1 case, while for A = —1 it shifts inside the

band gap.
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Wave Vector k

The switching intensities for the same systems as described in
Fig. 5, but now the nonlinear impurity is a) a nonlinear é-function
with ¢) = 2.2 and b) a nonlinear layer €(z) = n3(1+ A|E(z)]?)
with n2 = 4.4. We again used A = 1. The first lobe, that shifted
in the gap and is now the linear (A=0) impurity mode, is clearly
seen in both cases. Note how the switching intensities dropped
about three orders of magnitude around this mode.
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Figure 8 The switching intensities (solid and dot-dashed lines for switching
up and down respectively) for the same system of Fig. 5a for the
§ model but now for the large impurity case €5 = 1. The linear
impurity mode is now deep in the gap (dotted line corresponds
to the linear transmission coefficient). Note that for frequencies
very close to this mode the switching intensities become extremely
small.
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Figure 9

The model superlattice used in this section. A nonlinear layer
of dielectric constant €4(1 + A|E(z)|?) and thickness ¢ centered
at z = 0 is sandwiched between two infinitely extended superlat-
tices of alternating layers with dielectric constants ¢, and ¢, and
widths @ and a — d respectively.
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The resonance state frequencies as a function of the effective
nonlinearity X inside the third band gap . The linear super-
lattice consists of equal thickness layers of alternating dielectric
constants €, = 1 and ¢, = 5, while the nonlinear layer has ¢ = 8,
¢ =d and X = 1. Solid lines correspond to the analytical results
while circles correspond to the results of a numerical simula-
tion using 20 bilayers on each side of the nonlinear layer. Filled
circles correspond to states with even parity, while open circles
correspond to states with odd parity. The gray areas correspond
to parts of the third and fourth transmission bands.
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Figure 11 Transmitted intensity versus incident intensity for the same sys-

tem described in Fig. 10. We used a model of 20 bilayers on
each side of the nonlinear layer with A = 1 and frequency
wa/2mc = 0.93. Every resonance point in this diagram (out-
put=input) will yield a point in the resonance frequency diagram
in Fig. 10, with alternating parity. The very first resonance (not
distinguishable in this picture) corresponds to an open circle in
Fig. 10 for wa/27c = 0.93 and will have an odd parity.
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Figure 12 We plot the intensity configuration for the same model described

in Fig. 10, for wa/27c = 0.93. a) Even parity state with A = —1,
corresponding to the branch on the left (filled circles) in Fig. 10.
b) Odd parity state with A = 1, corresponding to the branch
in the middle of Fig. 10. The later is actually the very first
resonance state described in Fig. 11.
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CHAPTER 4. PULSE DRIVEN SWITCHING IN ONE-DIMENSIONAL
NONLINEAR PHOTONIC BAND GAP MATERIALS: A NUMERICAL
STUDY

A paper to be submitted for publication in the journal of Physical Review E

E. Lidorikis and C. M. Soukoulis

Abstract

We examine numerically the time-dependent properties of nonlinear bistable multilayer
structures for constant wave illumination. We find that our system exhibits both steady-state
and self-pulsing solutions. In the steady state regime, we examine the dynamics of driving
the system between different transmission states by injecting pulses, and we find the optimal
pulse parameters. We repeat this work for the case of a linear periodic system with a nonlinear

impurity layer.

Introduction

Nonlinear dielectric materials [1] exhibiting a bistable response to intense radiation are
key elements for an all-optical digital technology. For certain input optical powers there may
exist two distinct transmission branches forming a hysteresis loop, which incorporates a history
dependence in the system’s response. Exciting applications involve optical switches, logic gates,
set-reset fast memory elements etc [2]. Much interest has been given lately to periodic nonlinear
structures [14], in which because of the distributed feedback mechanism, the nonlinear effect

is greatly enhanced. In the low intensity limit, these structures are just Bragg reflectors




73

characterized by high transmission bands separated by photonic band gaps [1]. For high
intensities and frequencies inside the transmission band, bistability results from the modulation
of transmission by an intensity-dependent phase shift. For frequencies inside the gap bistability
originates from gap soliton formation [5], which can lead to much lower switching thresholds
[6].

The response of nonlinear periodic structures illuminated by a constant wave (CW) with
a frequency inside the photonic gap is generally separated into three regimes: i) steady state
response via stationary gap soliton formation, ii) self-pulsing via excitation of solitary waves,
and iii) chaotic. Much theoretical work has been done for systems with a weak sinusoidal
refractive index modulation and uniform nonlinearity [14, 7, 15, 9, 10], or deep modulation
multilayered systems [5, 11, 12], as well as experimental [13, 14]. One case of interest is
when the system is illuminated by a CW bias and switching between different transmission
states is achieved by means of external pulses. Such switching has already been demonstrated
experimentally for various kinds of nonlinearities [13, 15, 16], but to our knowledge, a detailed
study of the dynamics, the optimal pulse parameters and the stability under phase variations
during injection, has yet to be performed.

In this paper we use the Finite-Difference-Time-Domain (FDTD) [10] method to study
the time-dependent properties of CW propagation in multilayer structures with a Kerr type
nonlinearity. We find our results generally in accord to those obtained for systems with weak
linear index modulation [15], which were solved with approximate methods. We next examine
the dynamics of driving the system from one transmission state to the other by injecting a
pulse, and try to find the optimal pulse parameters for this switching. We also test how these
parameters change for a different initial phase or frequency of the pulse. Finally, we will repeat

all work for the case of a linear multilayer structure with a nonlinear impurity layer.

Formulation

Electromagnetic wave propagation in dielectric media is governed by Maxwell’s equations
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Assuming here a Kerr type saturable nonlinearity and an isotropic medium, the electric flux
density D is related to the electric field E by

D= B+ Byt Pus = o (+:ﬂ)E o)

1+v|E|?

where v > 0. Pp, and Py, are the induced linear and nonlinear electric polarizations respec-
tively. Here we will assume zero linear dispersion and so a frequency independent ¢,. Inverting
this to obtain E from D involves the solution of a cubic equation in |E]. For a > 0 there is
always only one real root, so there is no ambiguity. For oo < 0 this is true only for v > 0. In
our study we will use & = —1 and v = (&, — 1)1 so that for |E] = o0, D — k.

The structure we are considering consists of a periodic array of 21 nonlinear dielectric
layers in vacuum, each 20 nm wide with ¢, = 3.5, separated by a lattice constant ¢ =200 nm.
The linear, or low intensity, transmission coefficient as a function of frequency is shown in
Fig. 1a. In the numerical setting each unit cell is divided into 256 grids, half of them defining
the highly refractive nonlinear layer. For the midgap frequency, this corresponds to about
316 grids per wavelength in the vacuum area and 1520 grids per effective wavelength in the
nonlinear dielectric, where of course the length scale is different in the two regions. Stability
considerations only require more than 20 grids per wavelength [10]. Varying the number of the
grids used we found our results to be completely converged. On the two sides of the system
we apply absorbing boundary conditions. Between the left “absorbing wall” and the beginning
of the structure there is an artificial “source” surface separating space into two regions; the
“total fields” region on its right and the “reflected fields” region on its left. The incident wave
is incorporated as a boundary condition on that surface and it travels to the right, leaving only
the reflected fields on the far left side of the system.

We first study the structure’s response to an incoming constant plane wave of frequency
close to the gap edge wa/2mc = 0.407. For each value of the amplitude, we wait until the
system reaches a steady state and then calculate the corresponding transmission and reflection
coefficients. If no steady state is achievable, we approximate them by averaging the energy
transmitted and reflected over a certain period of time, always checking that energy conser-

vation is satisfied. Then the incident amplitude is increased to its next value, which is done
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adiabatically over a time period of 20 wave cycles, and measurements are repeated. This
procedure continues until a desired maximum value is reached, and then start decreasing the
amplitude, repeating backwards the same routine. The form of the incident CW defined only

on the “source” surface is

min{(t — tg), 20T iw
Ecw(o,t) = <ACW 4+ dAcw {( 20;) }> et (3)

where tg is the time when the amplitude change started, Acw is the last amplitude value
considered and dAcw the amplitude increment. One wave cycle T involves about 2000 time

steps.

Response to a CW bias

The amplitude of the CW is varied from zero to a maximum of 0.7 with about 40 mea-
surements in between. Results are shown in Fig. 1b, along with the corresponding one from a
time-independent approximation. The agreement between the two methods is exact for small
intensities, however, after a certain input the output waves are not constant any more but
pulsative. This is in accord with the results obtained with the slowly varying envelope approx-
imation for systems with a weak refractive index modulation [15]. It is interesting that the
averaged output power is still in agreement with the time-independent results, something not
mentioned in earlier work. For higher input values, the solution will again reach a steady state
just before going to the second nonlinear jump, after which it will again become pulsative. This
time though, the averaged transmitted power is quantitatively different from the one predicted
from time-independent calculations.

The nonlinear transmission jump originates from the excitation of a stationary gap soliton
when the incident intensity exceeds a certain threshold value. Due to the nonlinear change of
the dielectric constant, the photonic gap is shifted locally in the area underneath the soliton,
which becomes effectively transparent, resembling a quantum well with the soliton being its
bound state solution [18]. This effectively transparent area and the output fields are shown
as a function of time during switching in Fig. 2. We obtain a maximum switching time of the

order of 100 T, or a frequency of 360 GHz, where T, = 2L/c is roundtrip time in vacuum (the
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large response time during switch-up is because the input intensity at the jump was very close
to the switching threshold).

The incident radiation coupled to that soliton tunnels through the structure and large
transmission is achieved. Increasing further the intensity makes the soliton narrower and so
the required tunneling length larger. At some point the incident radiation cannot tunnel any
more, an instability occurs, and the soliton becomes unstable, ie. it becomes a solitary wave,
and it propagates down the structure. Upon hitting the right end of the structure it is destroyed
and its light energy leaves in the form of a pulse, while a new soliton is excited in the structure,
etc. This is an alternative way of propagation and is something that time-independent theory
can not account for. Repeating the calculations for various structure sizes and frequencies we
verified [15] that changing the structural parameters so that the ratio of the soliton’s width
over the structure’s length decreases, eg. using more layers or a higher frequency, decreases
the threshold intensity for which the solution first becomes pulsative.

The small stable area before the second jump approximately corresponds to the lower
transmission branch of the second bistable loop. Here, the intensity at the left front of the
structure has become large enough to make it an effectively transparent area decreasing the
required tunneling length, so that the wave can once more couple to the soliton and tunnel
through the structure. However, for larger systems or frequencies deeper in the gap it may not
be observed. The second transmission jump is related to the excitation of two gap solitons,
which however, are not stable and so transmission is pulsative. The Fourier transform of
the output shows that, after the second transmission jump, the system pulsates at a frequency
wa/2me = 0.407£n x0.024, exactly three times the one of the first pulsating solution wa/2mc =
0.4074nx0.008, where n is an integer. The system’s response in these two areas is summarized

in Fig. 3. For much higher input values the response eventually becomes chaotic.

Pulse driven switching

We next turn to the basic objective of this work. We assume a specific constant input

amplitude |Acw| = 0.185 corresponding to the middle of the first bistable loop. Depending
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on the system’s history, it can be either in the low transmission state I, shown in Fig. lc, or
in the high transmission state II, shown in Fig. 1d, which are both steady states. We want
to study the dynamics of a pulse injected into a system like that. More specifically, if it will
drive the system to switch from one state to the other, how the fields change in the structure
during switching, for which pulse parameters this will happen and if these parameters change

for small phase and frequency fluctuations. We assume Gaussian envelope pulses
Ep(0,t) = APe—(t—to—Stw)z/tfueiwt (4)

where Ap is the pulse amplitude, ¢y the time when injection starts, and W = 2t,c is the
pulse’s full width at 1/e of maximum amplitude. The beginning of time ¢ is the same as for
the CW, so there is no phase difference between them. After injection we wait until the system
reaches a steady state again and then measure the transmission and reflection coefficients to
determine the final state. During this time we save the field values inside the structure every
few time steps, as well as the transmitted and reflected waves. This procedure is repeated for
various values of Ap and t,,, for both possible initial states. Our results are summarized in
Fig. 4. White areas indicate the pulse parameters for which the intended switch was successful
while black are for which it failed. In Fig. 4a, or the “Switch” graph, the intended switching
scheme is for the same pulse to be able to drive the system from state I to state II and wvise
versa. Fig. 4b, or “Switch All Up”, is for a pulse able to drive the system from I to II, but fails
to do the opposite, ie. the final state is always II independently from which the initial state
was. Similarly, Fig. 4c or “Switch All Down”, is for the pulse whose final state is always I, and
Fig. 4d or ”No Switch”, for the pulse that does not induce any switch for any initial state.
We find a rich structure on these parameter planes. Note also that there is a specific cyclic
order as one crosses the curves moving to higher pulse energies: -+ d =+ b — a — ¢ — etc.
This indicates that there must be some kind of energy requirements for each desired switching
scheme. After analyzing the curves it was found that only the first one in the “Switch” graph
could be assigned to a simple constant energy curve £~ W|A,|?. Since any switching involves
the creation or destruction of a stationary soliton, then this should be its energy. In order to

put some numbers, if we would assume a nonlinearity |a| = 10~® cm?/W, then we would need
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a CW of energy ~ 34 MW /cm? and a pulse of width W/c of a few tenths of femtoseconds and
energy £~ 2.5u) /cm?. These energies may seem large, but they can be sufficiently lowered by
increasing the number of layers and using an incident frequency closer the the gap edge.

In order to find more about how the switching occurs, we plotted in Fig. 5 the effective
transparent areas and the output fields as a function of time, for the first three curves of
Fig. 4a. As expected, for the pulse from the first curve, the energy for the soliton excitation
is just right, and the output fields are small compared to the input. For the other curves
however, there is an excess of energy. The system has to radiate this energy away before a
stable gap soliton can be created. It is interesting to note that this energy goes only in the
transmitted wave, not the reflected, and it consists of a series of pulses [14]. For the second
curve in Fig. 4a there is one pulse, for the third there are two etc. The width and frequency
of the pulses are independent of the incident pulse, they are the known pulsating solutions we
found earlier. So the system temporally goes into a pulsating state to radiate away the energy
excess before settling down into a stable state. If this energy excess is approximately equal to
an integer number of pulses (the solitary waves from the unstable solutions), then we will have
a successful switch, otherwise it will fail. A similar picture is found in Fig. 6 when plotting
the system’s response during switch down for the first three curves in Fig. 4a. We note again
that we use here the exactly same pulses as before for the switch up. So the same pulse is
capable of switching the system up, and if reused, switching the system back down. Using the
numbers assumed before for «, the pulses used in Figs. 5 and 6 are (a) W/c = 14 fs, £=2.5
pdfem?, (b) W/e =28 fs, £=12 pJ/ecm?, (c) W/c = 42 fs, £=32 pJ/cm?.

Up to now, the injected pulse has been treated only as an amplitude modulation of the CW
source, ie. they had the same exactly frequency and there was no phase difference between
them. The naturally rising question is how an initial random phase between the CW and
the pulse, or a slightly different frequency affect our results. We repeated the simulations
for various values of an initial phase difference, first keeping them with the same frequency.
Results are shown in Fig. 7, where we plot only the “Switch” graph for four values of phase

difference. We see that although the graphs are qualitatively the same, they have quantitative
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differences. The result is that there is not a set of pulse parameters that would perform the
desired switching successfully for any initial phase difference. The same holds for the other
switching operations of Fig. 4 as well. Thus the pulse can not be incoherent with the CW, ie.
generated at different sources, if a controlled and reproducible switching mechanism is desired,
but rather it should be introduced as an amplitude modulation of the CW. However, if this
phase could be controlled, then the switching operation would be controlled, and a single pulse
would be able to perform all different operations.

The picture does not change if we use pulses of slightly different frequency from the source.
We used various pulses with frequencies both higher and lower than the CW, and we found a
sensitive, rather chaotic, dependence on the initial phase at injection time. The origin of this
complex response, if it is an artifact of the simple Kerr-type nonlinearity model that we used,
and if it should appear for other kinds of nonlinearities, is not yet clear to as. More work is
also needed on how these results would change if one used a different |Acw| not in the middle
of the bistable loop, a wider or narrower bistable loop etc., but these would go more into the

scope of engineering.

Linear lattice with a nonlinear impurity layer

Besides increasing the number of layers to achieve lower switching thresholds, one can
use a periodic array of linear layers € = ege, with a nonlinear impurity layer [19, 20, 21, 22]
¢ = eo(€. + o E|?) where ¢, # €. and we will use & = +1 and v = 0. This system is effectively
a Fabry-Perot cavity with the impurity (cavity) mode inside the photonic gap, as shown in
Fig. 8a. The bistable response originates from its nonlinear modulation with light intensity.
The deeper this mode is in the gap, the stronger the linear dispersion for frequencies close to it.
Because of the high @ of the mode, we can use frequencies extremely close to it achieving very
low switching thresholds [22]. Here however we only want to study the switching mechanism,
so we will use a shallow impurity mode.

The bistable input-output diagram, the output fields during switching and the field dis-

tributions in the two transmission branches are also shown in Fig. 8. We observe a smaller
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relaxation time and of course the absence of pulsating solutions. The parameters used are
¢, = 1 and wa/2nc = 0.407 which corresponds to a frequency between the mode and the gap
edge. We want to test if a pulse can drive this system in switching between the two different
transmission states, and again test our results against phase and frequency perturbations. The
two states shown in Fig. 8 are for an input CW amplitude of |Acw| = 0.16. The results for
coherent, pulse and CW, are shown in Fig.9. We see that any desired form of switching can still
be achieved, but the parameter plane graphs no more bare any simple explanations as the ones
obtained for the nonlinear superlattice. Repeating the simulations for incoherent beams and
different frequencies we obtain the same exactly results as before. Only phase-locked beams

can produce controlled and reproducible switching.

Conclusions

We have studied the time-dependent switching properties of nonlinear dielectric multilayer
systems for frequencies inside the photonic band gap of the corresponding linear structure.
The system’s response is characterized by both stable and self-pulsing solutions. We examined
the dynamics of driving the system between different transmission states by pulse injection,
and found correlations between the pulse, the stationary gap soliton and the unstable solitary
waves. A small dependence on the phase difference between the pulse and the CW is also found,
requiring coherent beams for fully controlled and reproducible switching. Similar results are

also found for the case of a linear periodic structure with a nonlinear impurity.
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Figure 1 (a) The linear transmission diagram. The small arrow indicates
the frequency we used in the nonlinear study. (b) The nonlinear
response: closed/(open) circles correspond to steady states when
increasing/(decreasing) the intensity and crosses/(open squares)
correspond to self-pulsing states when increasing/(decreasing) the
intensity. (c) Intensity configuration for low transmission state.
(d) Intensity configuration for high transmission state.
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CHAPTER 5. OPTICAL BISTABILITY IN COLLOIDAL CRYSTALS

A paper published in the journal of Physical Review E !

Elefterios Lidorikis, Qiming Li, and Costas M. Soukoulis

Abstract

We present a one dimensional model for the nonlinear response of a colloidal crystal to
intense light illumination along a high symmetry direction. The strong coupling between light
and the colloidal lattice, via the electric gradient force acting upon the particles, induces a
novel large optical nonlinearity. We obtain bistable behavior when the incident frequency
is inside the stopband of the periodic structure, with decreasing switching intensity as the
frequency increases. The transmission characteristics and the magnitude of the switching

threshold intensity are also in good agreement with a recent experiment.

Introduction

Photonic band gap (PBG) materials [1] do not allow propagation of electromagnetic waves
within a certain frequency range, thereby opening the possibility of studying new physics within
the gap. In addition, many novel applications of these PBG crystals have been proposed, with
operating frequencies ranging from microwaves to the optical regime[1, 2]. Structures exhibiting
full photonic band gaps in the microwave[3], millimeter[4] and submillimeter[5] regimes have
already been fabricated, but scaling these structures down to the optical regime has remained a

challenge. One way to construct PBG crystals in the optical regime is by growing polystyrene

'PRE 55, 3613 (1997)
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colloidal crystals[3, 4, 5, 9], which have lattice spacing comparable to the wavelength of light.
Such colloidal crystals do not exhibit a complete PBG, because the concentration and the index
of refraction of the polystyrene spheres relative to water are not yet sufficiently high. However,
they are very useful in studying PBG effects seen only in particular directions. In addition, they
can be used in nonlinear optical studies. It is expected that the PBG effects can be strongly
affected by nonlinear optical effects. In particular, it has been shown that intensity-dependent
index of refraction can cause a shift in the locations of the band gap[10]. That is, if the index
of refraction of either the suspended polystyrene spheres or water is intensity-dependent, then
the width and the position of the stopband (or gap) will change under intense illumination.
For example, a decrease of the index of refraction in water upon illumination will widen the
gap, and, therefore, inhibits the propagation of the probe beam. Such an optical switching for
light control is of great interest to the optics community.

In a recent experiment[4], optical switching and optical bistability were observed, when
intense light was transmitted through a colloidal crystal. Simple switching was observed near
the low-frequency end of the stopband, whereas bistability and multistability occurred at the
center or near the high frequency end. The switching threshold was found to decrease as the
incident frequency increased. These aspects are inconsistent with the response of a material
with the conventional intensity-dependent nonlinearity[4]. The measured nonlinear coefficient
n’ inside the transmission band, 4 x 10~1%m?2/W, is also several orders of magnitude larger
than the electronic nonlinearity of both materials.

In this paper, we present a one dimensional model for the nonlinear response of a colloidal
crystal to intense light incident along a high symmetry direction, based on the electrostriction
mechanism[4]. Light is strongly scattered by the periodic arrangement of the colloidal particles
inside the crystal, thus creating a spatially varying field. The polystyrene spheres, polarized
by the electric field, will move in response to the electric gradient force. Such a structure
change in turn will alter the propagation of light. The optical response is thus controlled
by the the stationary configuration that results from the balance between the elastic and the

electric gradient forces. We assume that the electric gradient forces are not strong enough
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to destroy the polystyrene spheres’ crystalline structure and furthermore, that the changes in
interparticle separation are small compared to the mean interparticle separation. Assuming
the incident wave can be approximated as plane waves due to the large beam spot size, the
structural change induced by light incident along a high symmetry direction will be primarily
in the propagating direction. We neglect possible transverse effects and describe the three
dimensional lattice by a one dimensional harmonic lattice model. Numerical calculations of
the transmission characteristics, based on known physical properties of the colloidal crystal and
a simplification to a layered structure, show good agreement with experiment. In particular, we
find bistable behavior inside the stopband at intensities comparable to the observed switching
threshold. The switching threshold is found to decrease as the incident frequency increases.
We need to emphasize that such a nonlinearity necessarily depends on the exact stationary
configuration of the lattice and therefore cannot be described with a simple effective intensity-
and /or frequency-dependent dielectric constant.

This paper is organized as follows. In section II, we introduce our one-dimensional lattice
model for the optical nonlinearity in colloidal crystal. In section III, we present results of
calculations on the optical bistability and compare them with experiments. Conclusions and

discussions are presented in section IV.

One dimensional model of optical nonlinearity

In general, wave propagation in periodic structures is a complex phenomenon. Three
dimensional scattering of light plays an important role in determining the nonlinear optical
response of a colloidal crystal to incident light. However, simplification is possible if, a) the
incident wave is plane-wave-like; b) the light is normally incident upon a high symmetry
plane of the crystal lattice, and ¢) no transverse instability exits. Under these conditions,
the structure can be viewed as a layered system. One dimensional modeling of the optical
response is expected to be appropriate with correctly calculated physical parameters. The
first condition ensures all spheres within one layer are equivalent, hence there should be no

lateral lattice displacement, as required by symmetry. The second condition makes the layered
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structure more distinct since the distance between the layers is large. The third condition
essentially requires that the structure is stable under illumination.

The colloidal crystal used in experiment[4] had a face-centered-cubic structure formed by
polystyrene spheres (n;=1.59) of approximately d;=120 nm in diameter, at concentration f
around 7%, dispersed in water (ne=1.33). Light was normally incident upon the [111] plane
which was parallel to the surfaces of the container. Due to the relatively large spot size, we
approximate the incident wave as plane-waves. To a low intensity incident wave from the [111]
direction, the fcc colloidal crystal acts essentially as a Bragg reflector (linear regime). The
system is naturally simplified as a one dimensional bilayer structure consistent of alternating
segments of polystyrene sphere layers ( a mixture of polystyrene spheres and water with total
thickness d;) and pure water layers. With sphere concentration of 6.9%, the distance between
the polystyrene sphere layers[11] is Rg=216 nm. The thickness of the water layer is then
d2=Rgo-d;=96 nm. The average index of refraction of the polystyrene layer is estimated[12]
to be 1.36. Since the sample thickness is L=100 pm, the total number of bilayer units is
N=L/Ry=463. The linear (zero intensity limit) transmission coefficient versus the wavelength
in the [111] direction is shown in Fig. 1, calculated with the parameters mentioned above.
Notice that there is excellent agreement[13] between our theoretical results of Fig. 1 and the
experimental results of Fig. 2 in Ref. 7. This shows our model parameters describe very well
the linear transmission of the colloidal crystal.

To illustrate that the nonlinear response of the colloidal crystal cannot be described by a one
dimensional layered model with the conventional Kerr type nonlinearity (intensity-dependent
dielectric constant), we show in Fig. 2 the nonlinear response of such a system, assuming that
the effective index of refraction ny of the “water” has the form, ny = ng + »'|E|%. n$=1.33
is the linear index of refraction of the medium and the nonlinear coefficient is taken to be
the experimentally measured nonlinearity, n’ = 4 x 107%m?/W. Taking the propagation
direction to be the z direction, we can solve the propagation of light governed by the following

wave equation
d’E = n%(2)w?
dz? c?

E=0, (1)
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where n(z) is the index of refraction of our model which consists of alternating layers of linear
and nonlinear medium, as specified above. Indeed, bistable behavior is obtained, as can be
clearly seen in Fig. 2. The existence of such bistability phenomena in distributed feedback
structures with intensity-dependent dielectric constants were predicted[14] theoretically and
their properties have been investigated intensively[15]. Similar bistable behavior has been
seen[16, 17, 18] in the discrete case of the electronic version of Eq. (2). However, the thresh-
old intensity for the onset of the bistable behavior is in the order of 10 MW /cm?, at least
three orders of magnitude larger than the experimentally measured value of about 5 kW /cm?.
We see that a simple solution of Eq. (1) with an effective intensity-dependent nonlinearity
indeed produces bistable behavior, but its predictions for the incident intensity threshold are
unrealistically high. Clearly, a novel form of nonlinearity must be in action.

An interesting mechanism due to electrostriction was proposed[4] to be responsible for the
nonlinear behavior in the colloidal crystal. In the absence of light illumination, the short-
range screened electrostatic repulsive forces[19] between the spheres balances the weak long-
range attractive force of Van der Waals type and produces an equilibrium configuration for the
polystyrene spheres, with nearest neighbor separation Sy = a/+/2 where « is the fcc lattice
constant. When intense electromagnetic (EM) wave is incident upon the crystal, the dielectric
spheres get polarized by the electric field and move in response to the gradient force [19] from
the spatially varying field. This in turn alters the propagation of EM wave. Consequently,
optical nonlinearity result. Ultimately, the optical response under a given illumination is
controlled by the steady state lattice configuration which has to be determined by the balance
of the elastic and electric gradient forces.

To determine whether the electrostriction mechanism is indeed responsible for the experi-
mental observations, we have to solve simultaneously wave propagation equations and lattice
dynamics incorporating both elastic and electric gradient forces. Here we propose a simple one
dimensional lattice model that can be solved straightforwardly but still contains the essential
physics to account for the optical bistability observed in experiment. We have argued that

under the experimental condition, a one dimensional layered model is appropriate to describe
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the transmission of wave along the propagation direction. The linear transmission property
of this one dimensional lattice, consisting of alternating layers of polystyrene and water, has
already been described (Fig. 1). To model the nonlinear response, we need knowledge of the
lattice dynamics which is governed by the elastic and electric gradient forces.

We assume that for small fluctuations around the equilibrium configuration, the harmonic
approximation is correct. We can then describe the motion of polystyrene spheres as if they
were connected with each other with ideal springs. The force constant k of the springs can be

roughly estimated by linearizing the screened electrostatic repulsive force[22],

_(Ze)’ 14+ kR i )

at the layer equilibrium position R = Ry. This leads to an expression F.; = Fherm = kAR,
where AR = R — Ry is the displacement from the equilibrium position. Z is the number of
charges on the particle, x is the inverse screening length, and a is the radius of the particle.
Using ¢ = 1.33¢p, ¢ = 60 nm, Ky = 216 nm, and assuming typical values[19] of Z=1000e~
and kK = 5 x 10’m~!, we obtain k = 1.8x10™*N/m. This corresponds to a bulk moduli B~
k/Ro ~1000 N/M2, a reasonable value for colloidal crystals{19]. As we will see later, the
electrostriction nonlinearity is inversely proportional to k. Only the order of the magnitude
of k is relevant for our purpose. For definiteness, we take k = 1.8x107*N/m in the following
calculations.

The gradient force on a sphere Fg,. along the propagation direction z, can be calculated
by taking the spatial derivative of it’s polarization energy, i. e., Fy, = —d(U,)/dz. A crude

estimate of this force is
m? — 15l A|E|?
m2+4+2 2 2a

Fyp ~ 47m%eo

(3)

where m? = (n;/ny)? is the dielectric contrast between polystyrene spheres and water, a is

L

7 comes from averaging over a time period. A|E|? is

the radius of the spheres, and the factor
the field intensity difference across a sphere’s diameter. For our model’s parameters this gives
F,. ~CA|E|?, C =22x%x 10"2Nm?/V2.

The optical response of the colloidal crystal is determined by the steady state configura-

tion. In our one dimensional model, this is reflected as the steady state lattice configuration
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representing the configuration of the layers. Taking nearest neighbor interactions only and
denoting by AR, the change from the equilibrium separation of particles n and n+1, we have

for the steady state that
Fgr = —Fhorm = "k(ARn - A-Rn—l)- (4)

The gradient force Fy, on each polystyrene layer has to be calculated from the electric field
distribution via Eq. (3) for the given lattice configuration {R,}.

The transmission characteristics are obtained by solving Egs. (1) and (4) self-consistently
through iteration, for a given input. In actual calculations, however, this is done for a given
output because the presence of bistable or multistable behavior. In a nonlinear one-dimensional
model, each output corresponds to exactly one solution, while a given input may correspond
to more than one output solutions (bistability). The input intensity can be reconstructed once
the transmission coefficient is calculated after solving Eq. (1). We start with the equilibrium
configuration in the absence of light in which all the layers is equally spaced with distance
Ro. The wave field E(z) is then calculated from Eq. (1), with n(z) given by the exact one-
dimensional lattice configuration {R,}. n(z) equals to 1.36 if z is in the polystyrene layer and
1.33 otherwise. The gradient force and the elastic force is then calculated and R, is increased
or decreased depending the direction of the total force. The wave field is then recalculated and
accordingly {R,} readjusted. This iteration procedure continues until the total force vanishes
on each polystyrene layer. The final configuration will be the steady state configuration, and
the corresponding field represents the actual optical response of the system. Twenty iterations
are usually required before a steady state self-consistent configuration is achieved.

We point out that the present situation is analogous to the problem of an electron moving
in a one-dimensional harmonic lattice with electron-lattice interactions. Such an analogy may
help to understand the nonlinear optical response when the frequency is inside the stopband.
We comment that neither in the polystyrene spheres nor in the water have we assumed any
intrinsic nonlinearity. The nonlinear response of the colloidal crystal is entirely due to the
coupling between the light and the lattice. In principle, such coupling exists in all materials.

But the extreme softness of colloidal lattices relative to conventional crystals, reflected in the
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small value of the effective spring constant k, makes the observation of nonlinear effects possible

in these materials.

Optical bistability

As a first check of our model, we have numerically calculated the sign and the strength
of the effective nonlinearity for a frequency (A=514 nm) inside the transmission band. We
found that the colloidal crystal linearly expands with the incident intensity of the EM wave,
with a slope of about 1nm per 30kW/cm?. This corresponds to a relative linear expansion of
the order AL/L ~ 1075, which is quite small as required by our harmonic assumption. The
resulted phase shift in the transmitted wave can be related to an effective positive nonlinear
index of refraction by

%(n2 )AL~ %n’[E0|2L (5)

where |Ey| is the incident intensity. For our system we estimate n’ ~ 107%m?/W. This is
in excellent agreement with the experimental value[4] of n' ~ 4 x 1071%m?2/W, considering
that the value of the force constant is only estimated with typical values of physical properties
for colloidal crystals. We find that within the transmission band, the nonlinearity n’ scales
almost linearly with 1/k, but with no appreciable frequency dependence. The experimentally
observed nonlinearity can be matched with the choice k~ 4.4 x 107> N/m and a corresponding
bulk moduli B~ 250N/m?. For definiteness we continue to use the initial estimated value of
k. Changing value of k amounts to rescale the light intensities, since the actual contraction
or expansion is controlled by the ratio of the elastic force and the gradient force, ie, only the
ratio of the k and light intensity matters.

Multistability and switching threshold intensities are also correctly predicted within our
model for frequencies inside the band gap. The local expansions and contractions of the
lattice under illumination are the origin of the bistable behavior. Normally, transmission is
forbidden in the gap of a periodic system. However, lattice distortion allows the existence
of localized modes in the gap. Under appropriate conditions, the coupling of these localized

modes with the radiation can produce resonant transmission. This is clearly seen in Fig. 3,
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where the local lattice expansion (a), the field intensity averaged in each sphere (b), and the
intensity gradient (c), are shown as a function of the lattice plane, exactly at a transmission
resonance for a frequency inside the stopband. Notice that there is a strong lattice deformation
(solid curve in Fig. 3a) at the middle of the crystal, sustained by the strong field intensities
(solid curve in Fig. 3b) and the intensity gradient. Similar behavior is seen for the case of
the second transmission resonance (dotted lines in Fig. 3). This work clearly shows that
there exists a strong light-lattice interaction, giving rise to lattice deformations which in turn
produces localized solutions as “soliton-like” objects[20, 21]. When these “soliton-like” objects
appear symmetrically in the crystal, a transmission resonance is expected. Also, the longer the
wavelength and the higher the multistability order are, the larger the maximum values of these
deformations become. The bistable behavior originates from these field-distribution-specific
structure changes. We point out that the total expansion of the lattice is still relatively small,
generally in the order of 80 to 200 nm for each ”soliton-like” object present in the structure.

The transmission characteristics are shown in Fig. 4, for four different wavelengths as were
indicated in Fig. 1. We see that our model captures the most essential features of the nonlinear
response of the colloidal crystal, as compared with the experimental results presented in Fig. 3
of Ref. 7. Notice that this model correctly predicts the magnitude of the switching threshold
intensities, they are of the order of (20-40) kW /cm? and not of the order of 10* kW/cm? that
the simple model with an intensity-dependent dielectric constant predicts (see Fig. 2) . The
switching threshold intensities get smaller as we move from the long to the short wavelength
side of the stopband, in agreement with experiment[4]. Bistability is observed when the lattice
is distorted enough so to sustain a localized mode. This will happen if the local expansion is
large enough to locally shift the effective gap to longer wavelengths [22]. Thus, the closer the
incident frequency is to the small wavelength side of the gap, the smaller the lattice distortion
needed to onset bistability, and thus the smaller the switching powers are.

Discrepancy with the experimental data is found for large incident intensities and in the low
frequency side of the gap. Multistability was observed only in the high frequency side while for

midgap frequencies the crystal is bistable and for low frequencies it is non bistable [4]. Also, at
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high intensities only instabilities were observed experimentally, in contrast to our model that
predicts multistable behavior for all gap frequencies and all intensities. However, it is for the
long wavelengths and the high intensities that the required lattice expansions get unrealistically
large. The total lattice expansion versus the transmitted intensity are shown in Fig. 5, for the
four wavelengths indicated in Fig. 1. Every local maximum in these curves corresponds to
a transmission resonance. Since the crystal can not expand more than a certain maximum
limit, an external pressure must be inserted into our model to limit its expansion. Numerical
studies incorporating an external pressure show that while multistability is still predicted for
all frequencies, the required local expansions and contractions, (with total expansion being
constant and limited), and light intensities are much larger, making the starting assumption
of a slightly perturbed harmonic lattice invalid. With large lattice distortions, approximation
to a one dimensional structure also becomes questionable, and this may be the main reason
for the discrepancy. The neglect of light absorption in water may also be a contributed factor
to the discrepancy. Absorption reduces the light intensity nonuniformly, and thus may affect

the nonlinear response.

Discussions and Conclusions

We have shown that several essential features of the nonlinear response in colloidal crystals
can be accounted for by a simple one dimensional model that incorporates the lattice distor-
tions under intense light illumination. In this one dimensional model, the colloidal crystal is
simplified as a one-dimensional layered system consisting of alternating layers of polystyrene
spheres and water. The polystyrene layers represent high symmetry planes of the colloidal
crystal normal to the propagating direction and are modeled as elastic media deforming under
the act of the gradient force from the electric field. Based on physical properties of the colloidal
crystal, we are able to estimate the effective elastic spring constant. The wave equation of the
electric field and the lattice dynamics of this one dimensional systems is then solved simultane-
ously to obtain the steady state response. We are able to obtain the correct order of magnitude

of the effective nonlinearity within the transmission band and the switching intensity for op-

R R s 2t te s SR S e N L R .~ o




102

tical bistability within the stopband. The trend that this switching intensity decreases as the
frequency increases across the stopband is also reproduced. Although it seems surprising that
a simple one-dimensional model works when three-dimensional scattering of light plays an im-
portant rule, detail considerations suggest this simplification should be appropriate under the
experimental condition.

In conclusion, we have established with a simple one dimensional model that the light-
lattice coupling via electric gradient force underlies the large optical nonlinearity observed
recently in colloidal crystals. Such a coupling alone can produce bistability and multistability
with switching threshold intensities and transmission characteristics in good agreement with
experiment. Given the unique large nonlinear response, colloidal crystals may prove to be very

useful for future studies of nonlinear effects in PBG materials in the optical regime.
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CHAPTER 6. TIGHT-BINDING PARAMETERIZATION FOR
PHOTONIC BAND GAP MATERIALS

A paper published in the journal of Physical Review Letters !

E. Lidorikis, M. M. Sigalas, E. N. Economou 2, and C. M. Soukoulis

Abstract

The idea of the linear combination of atomic orbitals (LCAO) method, well known from the
study of electrons, is extended to the classical wave case. The Mie resonances of the isolated
scatterer in the classical wave case, are analogous to the atomic orbitals in the electronic case.
The matrix elements of the two-dimensional tight-binding (TB) Hamiltonian are obtained
by fitting to ab initio results. The transferability of the TB model is tested by reproducing
accurately the band structure of different 2D lattices, with and without defects, and at two

different dielectric contrasts.

Introduction

In recent years experimental and theoretical studies of artificially manufactured periodic
dielectric media called photonic band gap (PBG) materials or photonic crystals, have attracted
considerable attention [1, 2]. PBG materials can have a profound impact in many areas in
pure and applied physics. PBG materials are often considered as analogous to electronic

semiconductors. The existence of spectral gaps in periodic PBG materials or localized states in

'PRL 81, 1405 (1998)
2Research Center of Crete, Greece
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disordered systems, in analogy with what happens to the electronic materials, is of fundamental
importance. Two different mechanisms, single scatterer resonances and macroscopic Bragg-
like multiple scattering, contribute to the formation of gaps and localized states. Preliminary
results [3, 4] have shown that there is a direct correspondence between the gaps calculated by
plane wave expansion and the Mie resonances [5] of an isolated sphere. It is surprising that
the positions of the Mie resonances approximately coincide with the center of the bands. It is
tempting to suggest that the Mie resonances of an isolated scatterer play the role of the energy
levels of an isolated atom in a crystal. This opens up the possibility to formulate the problem
in a simpler way, similar to the tight-binding (TB) formulation of the electronic problem.

It is well known that the TB method has proven to be very useful in studying the elec-
tronic properties of solids [6, 7, 8, 9]. In an empirical TB approach, matrix elements of the
Hamiltonian between orbitals centered on different sites are treated as parameters which are
adjusted to obtain the band structure and the band gaps, which have been determined by
other more accurate methods. The parameters obtained in this way are then used to study
other properties of the systems, such as surface states, impurities and properties of disordered
systems. The success of the TB formulation has been tested in the studies of all kinds of
materials including Si, C and hydrogenated amorphous systems [7, 8, 9, 10].

In this paper, we show that it is possible to extend the ideas of the LCAO method to the
classical wave case. The Mie resonances of the isolated scatterer in the classical case play the
same role as the atomic orbitals in the electronic case. However, there exist two important
differences. First, Mie resonances’ states are not localized, in fact they decay too slowly, as
1/r as r — oo and this may lead to divergences in some matrix elements. However, in a lattice
environment they may be taken as localized, with a localization length comparable to the
interparticle dimension. Second, in the classical wave case, as opposed to the electronic case,
the host medium supports propagating solutions for every frequency. For large wavelengths,
this is the dominant propagation mode since no resonances have been excited yet, while for
wavelengths comparable to the particle dimension, transmission is achieved mainly through

transfer between neighboring localized resonances. Thus, we may assume that the lowest
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frequency band is plane wave-like, while the higher bands are TB-like. This picture is more
easily justified in the case of wide gaps and narrow bands, but its validity seems to be much
wider. Within the framework of the systems we studied, we verified this picture. Furthermore,
we were able to show that the TB matrix elements, after an appropriate rescaling, are functions

of the distance only.

Formalism

We will consider the scalar case of a 2-D periodic array of N infinitely long dielectric
cylinders in vacuum, with periodic boundary conditions and with the incident plane wave

E-polarized. We assume the normalized electric field for each band to be given by

!

(k)

n

VN

En(Fa ‘) = \/—

—

where n =0, 1,2, ...1is the band’s index and ¥, (#— R) with an angular symmetry ¥ ~ cos(nf)

e 2 - .78
ezkr + cn(Il\cf) Z\I}n(f'_ R)esz (1)
R

stands for the wavefunction of the n’th resonance localized at B. ¢l =0, ¢2 = 1 for n # 0,
and are functions of the frequency (k = |k|) only for n = 0 with |c}|? + |B|* = 1. 7, R, k are
2-D vectors, and we have assumed a unit area unit cell. In order to simplify the problem and
make a better correspondence with the electronic case, we take the ¥,,’s to be orthonormal to
each other and orthogonal to e so that [ EX Endf = 6. This will turn out to be a good
approximation for our case. For the lowest frequency band, we should expect ¢} — 1, ¢ — 0
for || — 0 and ¢} — 0, ¢2 — 1 for |k| — |G|/2.

The “Hamiltonian” for the scalar wave equation is H = —V2/¢(7) and the eigenfrequencies
w?/c? of the system can be found by diagonalizing the Hamiltonian matrix H,,,, = [ Ej H E,dr.

For a square lattice with lattice constant a, using the standard notation [6, 7, 8] and taking

up to second nearest neighbors into account, the Hgp matrix element will be:
Hoo = c|*EI*/(€) + |c}|*[es + 2V (cos ¢ + cos ) + 4V ) cos ¢, cos ] (2)

where ¢ = kza, ¢y, = kya, |k| = (/kZ+ k2, (€) is the average dielectric constant, &5 =
J U5 (7)H Yo (7)d and V@ = [ U3 (F) HUo(7— R(2))d7 the superscripts (1) and (2) stand
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for first and second neighbors. We argue that the functional form of jc3(k)|? is similar to the
form of the scattering cross section of a single cylinder [5] for the n = 0 (or s-wave) case, so
that |e}(k)|? ~ e~ *(Nr . Here w, = |k|e/(wo\/{€)), wo is the single cylinder Mie resonance
frequency, A(f) is a function of the filling ratio f of the form A(f) = h;/f??. The exponent
1t has to be larger than 2 in order to preserve the correct slope at |l;[ — 0. For simplicity, we
choose p = 4.

The second band (n = 1 or p-like) has a ¥ ~ cosf symmetry, and will consist of two

linearly independent polarizations, p, and p,. The Hamiltonian matrix elements are:

Hyp, = €p, + QVJI},), cos ¢y + 2Vp(1}3 cos ¢p + 2 (Vp(gg + Vp(,?,)r) COS ¢ COS Py (3)
Hppy, = 2 (V) = V) sin gy sin g, (4)

where all quantities are defined the same way as in Eq. (2). The matrix element H, ,, is
similar to Hp,,, with ¢ «— y; Hp p, = Hj_, . In this work we consider only these two bands.
We take also the dielectric constant of the cylinders to be ¢ = 100. This large value of € ensures

that the matrix element H, is negligible. However, even smaller values of ¢ (e.g. € = 13) seem

to give H,, ~ 0.

Results and discussion

We have fitted the V and € matrix elements, as well as the value of A, to the band structure
of five different rectangular lattices with large/small axis ratios: 1, 1.05, 1.1, 1.15, 1.2 as well
as to a hexagonal lattice, for six different filling ratios: f = .1 — .6. Taking into account up to
third nearest neighbors for the rectangular lattice involves 13 (9 Vs, 3 €’s and the value of A)
adjustable parameters, while for the hexagonal we considered only first nearest neighbors and
so used only 6 adjustable parameters. The quality of these fits can be seen in Fig. 1 where we
plot the bands as found numerically by the plane wave expansion (PWE) method along with
the TB fit, for a square and a hexagonal lattice for two filling ratios. The excellent fit is an
indication of the potential usefulness of the TB method.

We plot next some of the fitted matrix elements. The square root of the diagonal e,
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and g,, matrix elements are plotted (Fig. 2a) as a function of the filling ratio f, while the
off diagonal V,,, matrix elements are plotted (Fig. 2c) as a function of the dimensionless
separation distance d;; = r;;j /@, where r;; is the separation distance between cylinders 7 and j
and a is the cylinders’ radius. Obviously the matrix elements, especially Vppx, do not depend
on a single parameter (e.g. d;;). Apparently the lattice environment [10] has to be included,
hopefully through rescaling functions.

The proposed simple rescaling function (D2"); for the diagonal matrix elements of cylinder

1, that takes into account the filling ratio and the different symmetries is of the form:

1~ 7cos?(nb;) 5)
(D'rozn)i j#i dz]n

where 6;; is the angle between the symmetry axis of the p resonance on cylinder 7 and the #;;
direction, n=0,1,.. for the s,p,.. resonances, and the sum runs over the nearest neighbors of
cylinder <. The power on the angular function was chosen so that the p, and p, resonances in
the hexagonal lattice to be the same. The only choices were 2 and 4, and it was found that
2 gives better results. Eq. 5 is similar to what was used in Ref. [10] for the atomic orbitals,
except for two differences: (a) here we take into account the resonance’s angular symmetry,
and (b) the exponentially decaying part is missing, reflecting the non-localized character of
the EM resonances. Finally, 7 = [71'0:2/(c12f)]2 takes into account that different structures,
with the same @ and o, have different filling ratios. 7 = 1 for the rectangular structures and
T = 3/4 for the hexagonal. We will use this parameter only for the diagonal matrix elements.

For the periodic case, the function (D9"); is the same for every . We find that the diagonal
matrix element depends on (DZ*); as follows: /g, = aff + aF(D3*) ™% + aZ(D2")™% where
ag = woa/c is the corresponding dimensionless Mie resonance frequency and the a}’s (j =
1,...,4) are constants. In Fig. 2b we plot ,/g, vs the environment function (1/D3"). We can
see that /€, now scales very well, having a larger value for increasing lattice density. The
same dependence is found for all bands.

In order to rescale the off diagonal V matrix element between two neighboring resonances

i and j, we need contributions from the neighbors that are close to the line joining ¢ and j.

Contributions have to be projected on the 7;; direction for the s resonance, while for the p
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resonance we have to project on its symmetry axis. Only first nearest neighbors will contribute.
At the end, we have to normalize with the sum of all projection weights.
A simple formula that describes the environment of the n resonance on cylinder 7, along

the #;; direction is:

1 o 03/ o
(D%ff)ij 21cos?

where [ runs over ¢’s nearest neighbors (including j). i1; is the angle between the 7; and #;
directions for the s resonance (n = 0), and for the p resonance (n = 1), it is the angle between
the 2’th resonance’s symmetry axis and the #;; direction . Both angles are taken to have a range
from —x /2 to w/2 [11]. Finally, if we include screening in our considerations, then the actual
matrix element V to be used in a particular problem, can be obtained by the fully rescaled
one V, by V¥ = V(1 - ,S"'J')/[(D"ff);'j1 + (D"ff)j_il] where S% is the same screening function
used in Ref. [10]: S¥ = tanh <b1 Dolski g et [(d"+d1’)/d”]b3> , and is different for different matrix
elements. The fully rescaled matrix elements are found to scale with separation distance as
Vi = ¢ di_j” +C3dz-_j°“ where ¢y, ..., ¢4 are constants. In Fig. 2d we plot the rescaled V,,, matrix
element. We see now that it is a smooth function of separation distance, except for the second
nearest matrix elements which do not scale very well for large filling ratios (small distances).
Apparently an improved screening function that depends on the filling ratio as well is needed.

The constants in the expressions for the ¢’s and the V’s are given in tables I and II. We

have also found v, = 1.65 for all n, and h; = .068, hy = 1.23 for A(f).

TABLE 1. The parameters for the € elements.

ao aj a2 as ay

VEs 0.0804 0.0460 0.716 -0.0121 5.000
Ver 0.2371 0.0890 1.640 0.0020 0.320

e I A
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TABLE II. The parameters for the V elements.

by by b3 c 2 c3 C4

Visy  0.075 0.0008 10.0 -0.108 4.00 -0.00096 1.30
Voo  0.100 0.00008 13.5 0.425 6.14 0.0550 3.22

Vopr 0.700 0.0015 10.0 -0.076 5.40 -0.0044 2.32

To check the transferability of our results we study first the defect case shown in the insert
graph of Fig. 3a. There the central cylinder of a 3 X 3 supercell is displaced as shown. For
ka = (0,1/3) we plot in Fig. 3a the three edge eigenfrequencies of the first two bands, and
directly compare our results with the ones obtained numerically by the PWE method for
exactly the same system. The agreement is excellent. Thus our TB parameterization works
very well for the defect case too. It is worth noting that the PWE method takes a factor of
10* more CPU time than the TB method.

The second test checks the transferability of our parameters for different dielectric contrasts.
We fitted the TB parameters for a square lattice of ¢ = 13 for 5 different filling ratios. The
quality of the fit can be seen in Fig. 3b where we plot the PWE bands along with the TB fit for
the f = 20% case. We find that the matrix elements are rescaled by the same functions with
the same parameters except only for a different power v, and scale with distance with the same
¢ parameters as obtained from Table II, except for a multiplication constant. In the ¢ = 13
case, we find that v = 4.37 and the multiplicative constants are ¢ = 3.88 for V,,, and ¢ = 4.46
for Vppr. A larger rescaling power v can be easily understood since less contrast produces less
localized resonances and so the environmental effect will be larger. The rescaled V,,, and Vppr
are ploted in Fig.’s 3cl and 3c2. We see that our TB parameters are transferable to other,

more realistic dielectric contrasts, with minor changes.

Conclusions and acknowledgments

In conclusion, we have obtained a successful TB formulation of light propagation in 2D

PBG structures with transferable matrix elements. Thus we provide an efficient scheme for
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handling not only periodic systems but defects and disordered cases as well. Hopefully this
scheme can be extended to 3D structures as well.

We would like to thank C. Z. Wang and K. M. Ho for useful discussions. Ames Laboratory
is operated for the U.S. Department of Energy by Iowa State University under Contract No.
W-7405-Eng-82. This work was supported by the Director for Energy Research office of Basic
Energy Sciences and Advanced Energy Projects, by NATO Grant No. 940647, by a IIENEA

grant and by an EU grant.
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the PWE method, while solid lines correspond to the TB fit.
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CHAPTER 7. GAP DEFORMATION AND CLASSICAL WAVE
LOCALIZATION IN DISORDERED TWO-DIMENSIONAL PHOTONIC
BAND GAP MATERIALS

A paper to be submitted for publication in the journal of Physical Review B

E. Lidorikis, M. M. Sigalas, E. N. Economou !, and C. M. Soukoulis

Abstract

By using two ab initio numerical methods we study the effects that disorder has on the
spectral gaps and on wave localization in two-dimensional photonic band gap materials. We
find that there are basically two different responses depending on the lattice realization (solid
dielectric cylinders in air or vise versa), the wave polarization, and the particular form under
which disorder is introduced. Two different pictures for the photonic states are employed,
the “nearly free” photon and the “strongly localized” photon. These originate from the two
different mechanisms responsible for the formation of the spectral gaps, ie. multiple scattering

and single scatterer resonances, and they qualitatively explain our results.

Introduction

Electromagnetic waves traveling in periodic dielectric structures will undergo multiple scat-
tering. For the proper structural parameters and wave frequencies, all waves may backscatter

coherently; the result is total inhibition of propagation inside the structure. Such structures

'Research Center of Crete, Greece
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are called photonic band gap (PBG) materials [1, 2] or photonic crystals, and the correspond-
ing frequency ranges, for which propagation is not allowed, photonic band gaps or stop bands.
PBG materials can be artificially made in one, two, or three dimensions. For example, a pe-
riodic lattice of dielectric spheres embedded in a different dielectric medium would work as a
three-dimensional PBG material, for the proper choice of lattice symmetry, dielectric contrast,
and sphere volume filling ratio. In two dimensions, a periodic array of parallel, infinitely long,
dielectric cylinders could work as a two-dimensional PBG material, prohibiting propagation
in a direction perpendicular to the cylinders’ axis for some frequency range(s). The absence
of optical modes in a photonic band gap is often considered as analogous to the absence of
electronic energy eigenstates in the semiconductor energy gap. The ability of PBG materials
to modulate electromagnetic wave propagation, in a similar way semiconductors modulate the
electric current flow, can have a profound impact in many areas in pure and applied physics.
It is then of fundamental importance to study the effects of disorder [3, 4] on the transmission
properties of such materials.

Besides the non-resonant, macroscopic Bragg-like multiple scattering, there is also a second,
resonant mechanism, that contributes to the formation of the spectral gaps. This is [5, 6, 7]
the excitation of single scatterer Mie resonances [8]. In a previous publication [7] it was shown
that for two-dimensional PBG materials, for the E polarization scalar wave case (electric field
parallel to the cylinders’ axis), these Mie resonances are analogous to the electronic orbitals
in semiconductors. The idea of the linear combination of atomic orbitals (LCAO) method
was extended to the classical wave case as a linear combination of Mie resonances (LCMR),
leading to a successful tight-binding (TB) parameterization for photonic band gap materials.
This moves the picture for the photon states, from a one analogous to the nearly free electron
model, to the one analogous to the strongly localized electron whose transport is achieved only
by hopping (tunneling) from atom to atom. Depending then on which mechanism is dominant
for the formation of the photonic gaps, we expect different changes to the system’s properties
when disorder is introduced. If the Bragg-like multiple scattering mechanism is the dominant

one, the photonic gaps should close quickly with increasing disorder, while if it is the excitation
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of Mie resonances, the photonic gaps should survive large amounts of disorder, in a similar
way the electronic energy gap survives in amorphous silicon.

In this paper we will use two ab initio numerical methods to study the effects of disorder
on photonic gap formation and wave localization in two-dimensional PBG materials. The first
is the finite difference time domain (FDTD) spectral method [9, 10], from which we obtain
the photonic density of states for an infinite, disordered PBG material, and the second is the
transfer matrix technique [11], from which we obtain the transmission coefficient for a wave
incident onto a finite slab of the disordered PBG material. From the transmission coefficient
we can obtain the localization length for the photonic states of the disordered material [4].
The study will be on both PBG material realizations (solid high dielectric cylinders in air and
cylindrical air holes in high dielectric), for both wave polarizations, and it will incorporate
three different disorder realizations: disorder in position, radius, and dielectric constant (these
systems, though, will still be periodic on the average). We will find that only the case of solid
dielectric cylinders in air with the wave E,-polarized exhibits the behavior expected from the
strongly localized photon picture, while for all other cases, the nearly free photon picture seems

to be the dominant one.

Numerical methods

Electromagnetic wave propagation in lossless composite dielectric media is described by

Maxwell’s equations

%gz—ﬁxéf, e(m%—f=”xﬁ, (1)
where the dielectric constant ¢(7) is a function of position. In two dimensions, the two inde-
pendent wave polarizations are decoupled. We assume the variation of the dielectric constant,
as well as the propagation direction, along the zy plane, and so, the cylinders along the 2
axis. One of the polarizations is with the electric field parallel to the z axis and the magnetic
field on the zy plane (F, or TM polarized) and obeys a scalar wave equation. The other one

with the magnetic field parallel to the z axis and the electric field on the zy plane (H, or TE

polarized) and obeys a vector wave equation.
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The first method we will use, to study disordered PBG materials, is the FDTD spectral
method [12, 13]. In our FDTD scheme, we first discretize the zy plane into a fine uniform grid.
Each grid point is centered in a unit cell which is further discretized into a 10x10 subgrid,
on which an arithmetic average of the dielectric constant is performed. In our problem we
will assume dispersionless and lossless materials. For the F, polarization case we define the
electric field on this grid and the magnetic field on two additional grids, one tilted by (d/2,0),
on which H, is defined, and one tilted by (0,d/2), on which we define H,. d is the side of
the grid cell. The corresponding finite-difference equations for the space derivatives that are
used in the curl operators are then central-difference in nature and second-order accurate. The
electric and magnetic fields are also displaced in time by a half time step At/2, resulting in
a “leapfrog” arrangement and central-difference equations for the time derivatives as well. If
one initialize the electric and magnetic fields at ¢ = ¢y and t = to + At/2 respectively, then

updating the values of the electric field for each grid point (¢,7) at ¢t = ¢o + At is done by

to+ At _ o ito At to+AL)2 to+At/2
Ezli,j “Ezli,j + deij(Hy|£+1/2,j _Hyli—-l/z,j -

to+AL/2 to+AL/2 ‘
He| e + Haliily /) (2)

where ¢; ; is the averaged dielectric constant for the grid point (3, 7). Similar equations follow
for updating the magnetic field components at t = ¢o + 3At/2, then again Eq. (2) for E, at
t = tg + 2At etc. This way the time evolution of the system can be recorded. For numerical
stability and good convergence the number of grid points per wavelength A/d must be at least
20, and also At < d/+/2¢, where c¢ the speed of light in vacuum. Similar equations, with the
roles of the electric and magnetic fields interchanged, apply for the H, polarization case.

In order to find the eigenmodes of a particular periodic (or disordered) system, we first
initialize the electric and magnetic fields in the unit cell (or a suitable supercell) using periodic
boundary conditions: E(F+@) = eiEEE(ﬂ and similarly for H (), where & is the corresponding
Bloch wave vector and @ the lattice vector. These fields must have nonzero projections with

the modes in search. We choose a superposition of Bloch waves for the magnetic field and set




126

zero the electric field:
H() = 3 ogeF+a7+i4s, E(7) =, (3)
g
where ¢; is just a random phase and the unit vector ¢ is perpendicular to both E and (E-{— 7),
ensuring that H is transverse and that VH = 0. Once the initial fields are defined, we can
evolve them in time using the “leapfrog” difference equations, while recording the field values
as a time series for some sampling points. As the electric fields “builds” up, some particular
modes dominate while most are depressed, reflecting the underline lattice symmetries. Here we
record only the F, field for the F, polarization case, and the H, field for the H, polarization.
At the end of the simulation, the time series are Fourier transformed back into frequency space,
and the eigenmodes w(k) of the system appear as sharp peaks. The length of the simulation
determines the frequency resolution while the time difference between successive recordings
determines the maximum frequency considered. This method scales linearly with size: a larger
system will still need the same number of time steps for the same frequency resolution, thus
sometimes referred to also as an “order-N” method [12].
Here we will use this method to obtain the system’s density of states (DOS). If one chooses
a large supercell instead of the unit cell, then for each k point inside it’s first Brillouin zone,
the Fourier transformed time series will consist of a number of peaks. Adding all contributions
from all k’s will result to a smooth function for the DOS. This is in contrast to older methods
that where using random fields as initial boundary conditions [4]. Random initial fields will
ensure the condition for nonzero projections to all of the system’s eigenmodes, but in order to
get coupled with them during “built” up, a large simulation time is required. Furthermore,
the produced DOS is not a smooth function of frequency, still consisting of a large collection
of peaks, and thus being useful only as an indication for the existence of spectral gaps. In our
method, the underline symmetries of the modes are already in the initial fields and so they
couple easier with them. Also, the larger the supercell, the smaller is its first Brillouin zone,
and so the smaller the frequencies we initialize through the various k. This is why we can get
smooth results even for very low frequencies. In Figs. 1 and 2, we show the calculated density

of states for the case of solid dielectric cylinders in air and cylindrical air holes in dielectric

N




127

respectively, both for a square lattice arrangement, and for both polarizations. Along with
them we also plot the corresponding band structure as obtained with the plane wave expansion
method. Our study is going to be based on these two photonic structures.

The second method we will use is the transfer matrix technique in order to obtain the
transmission coefficient for a wave incident along the 2y plane on a slab (or a slice) of the
photonic material. The slice is assumed uniform along the z axis, and periodic along the z
direction through application of periodic boundary conditions, while in the y direction it has
a finite width L. In this method one first constructs the transmitted waves at one side of the
slice and then integrates numerically the time-independent Maxwell’s equations to the other
side. There, the waves are projected into incident and reflected waves, and so a value for the
transmission coefficient T' can be obtained. Here, we are interested in the wave localization
in disordered photonic band gap materials, and in particularly in the localization length ¢ ~
—2L/InT.

A few remarks about the results of this method are in order. Waves with different incidence
directions will have different reflection and transmission coefficients, so if one is looking for an
average transmission, all directions should be included. It is shown, however, that there is also
a large dependence on the surface plane along which the structure is cut. More specifically, a
wave normally incident on a (1,0) surface will have different transmission characteristics than
a wave incident with 45° on a (1,1) surface. This is because certain modes can not always get
coupled with the incident wave. One should then also average for the two different surface
cuts, otherwise it will not be a true average. This is shown in Figs. 3 and 4 where we plot the
(1,0) and the (1,1) cuts, each with both incidence directions (normal and 45° with respect to
the surface) averaged. We see that taken individually, none of them corresponds to the true
gaps as shown in Figs. 1 and 2, but rather, to wider and generally displaced gaps. For example,
in the E, polarization case in the first spectral gap (Figs. 3a and 4a), with the (1,0) cut, the
incident waves fail to couple with the the M modes of the first band, while with the (1,1) cut,
the incident waves fail to couple with the X modes of the second band.

This is expected to be lifted once disorder is introduced into our system, since the sense
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of direction will be somehow lost. Disorder can be introduced as a random displacement, a
random change in the radius, or, a random change in the dielectric constant of the cylinders.
It is not clear however what amount of disorder would be needed for this. We repeated the
calculations for small enough amounts of disorder so that the spectral gaps, as found from
the FDTD method, remain almost unchanged, for all three different disorder mechanisms. As
seen in Figs. 3 and 4, indeed, in some cases the coupling is achieved. For example, for the
first gap in the E,-polarization case, with the (1,0) cut, the M modes of the first band are
now coupled with the incident waves and appear in the transmission diagram. These could be
easily mistaken for disorder-induced localized states entering the gap, but they are not, since
for the values of disorder used, the first gap is virtually unchanged. On the other hand, with
the (1,1) cut, the coupling to X modes of the second band is not yet achieved, still yielding a
wrong picture for the gap. Increasing the disorder further will eventually destroy any sense of
direction and there will be no distinction between the two cases. Figs. 3 and 4 will be useful
as a guide of which results can be trusted and which can not, if one uses only one surface cut
and small values of disorder. As a general rule, we can deduce that the (1,0) cut should be
used for the E, polarization case, while the (1,1) cut would be better for the H, polarization

case.

Results and discussion

We first looked into the spectral gaps’ dependence on disorder using the FDTD spectral
method. Qur system consisted of a 8x8 supercell, each cell discretized into a 32x32 grid. We
studied two systems: a square lattice array of solid cylinders, with dielectric constant ¢,=10,
in air (e=1) with a filling ratio f=0.28%, and a square lattice array of air cylinders (¢,=1)
in dielectric material ¢,=10, with air filling ratio f=0.71%, as described in Figs. 1 and 2.
We divided the supercell’s first Brillouin zone into 10x10 grid, which for the irreducible part
yields 66 different k points. For each particular disorder realization and disorder strength,
we run the simulation for all these 66 k’s. At each k however we use a different disordered

configuration, and so a large statistical sample is automatically included in our result. In each
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case the effective disorder is measured by the rms error of the dielectric constant < € >, which

is defined as [12, 4]
| N
2 _ d 2
€= N;:l:(fi - &) (4)

where the sum goes over all N = 8 x 8 x 32 x 32 = 65536 grid points, ¢ and €’ are the dielectric
constants at site ¢ in the disordered and periodic case respectively, and < ... > means the
average over different configurations (different B’s in our case). In both settings (dielectric
cylinders in air and vise versa) the filling ratio of the high dielectric material is similar, and so
< € > is expected to have the same meaning and weight.

Four different disorder realizations are studied: 1) disorder in position, without though
allowing any cylinders to overlap with each other, 2) disorder in position allowing cylinder
overlapping to occur, 3) disorder in radius, and 4) disorder in dielectric constant (the last one
only in the solid cylinder case). For each different realization we consider various disorder
strengths, and thus different effective disorders < € >, for which we record the upper and
lower gap edges for the first two photonic band gaps (if they exist). Results are summarized in
Figs. 5 and 6, for the solid and air cylinder cases respectively. We note that the £, polarization
case for the solid cylinders is very different from all other cases: the gaps survive very large
amounts of positional disorder, especially if no overlaps are allowed. In fact, once the disorder
becomes large enough for overlaps to be possible, the gap quickly closes, as shown in Fig. 5.
The actual DOS graphs for the two different realizations of the positional disorder are shown
in Fig. 7, for three different values of the effective disorder. On the other hand, if the disorder
is of the third or fourth kind, the gaps close very quickly, even for modest values of the effective
disorder.

The picture is very different in the other cases, as seen in Fig. 6. The effect of the positional
disorder is the same, independent of whether overlaps are allowed or not. This is most clearly
seen in Fig. 8, where the actual DOS graphs are plotted for the air cylinder case for both po-
larizations, and for both positional disorder realizations. Allowing the air cylinders to overlap,
though, means that the connectivity of the background material will break. Our results, thus,

indicate that there is no connection between the connectivity of the background material and
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the formation of the spectral gaps in this 2D case. Most importantly, however, we note that
the disorder in radius has a similar effect with that of the positional disorder in closing the
gaps. In fact, it is also similar to the effect of the disorder in radius for the E,-solid-cylinder
case. S0, in the case of air cylinders, the type of the disorder that is introduced into the system
does not play a significant role, but rather, it is only the effective disorder (measured through
the dielectric constant’s error function) that determines the effect on the spectral gaps. On
the other hand, for the F,-solid-cylinder case, the type of disorder plays a profound role: if
the “shape” of the individual scatterer is preserved, the gaps can sustain large amounts of
disorder, while if it is not preserved, the gaps collapse in a manner similar to the air cylinder
case.

We next go over the localization length results, which were obtained with the transfer matrix
technique. Here, our system consisted of a 3x7 supercell (3 along the z axis), with each cell
discretized into a 18x18 grid (a small supercell was used in order to ease the computation
burden). In the  direction we applied periodic boundary conditions, while in the y direction
the supercell was repeated 4 times, to provide a total length L for the slab of L=28 unit cells.
The structures studied are exactly the same as described before. The lattice was cut along one
only symmetry direction, the (1,0), since for large disorders we expect all “hidden” modes to be
coupled with the incident wave (in any case, we know from Figs. 3 and 4 which results can be
completely trusted and which can not). For each disorder realization and strength, we used 11
different k values uniformly distributed between normal and 45° angle incidence, and for each
k we used a different disordered configuration, so these will constitute our statistical sample.
For each & we find the minimum transmission coefficient inside each gap, from which we find
the minimum localization length, and then average over all B’s, ie. £~ —2L/ <InT > (in the
periodic case we first averaged over T in order to correctly account for different propagation
directions, but in the highly disordered case it is not so much important any more, and so we
just average over the localization lengths).

Our results are shown in Figs. 9 and 10 (because of the small statistical sample and the

small supercell used, the data points appear very “noisy”, especially for large disorders). We
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note here, as well, the distinct difference between the FE,-solid-cylinder case for positional
disorder and all other cases. Especially for the first spectral gap, the localization length not
only remains unaffected by the disorder, but it even decreases (this is not an artifact of the
averaging procedure). The first conclusion from this, is that the mechanisms responsible for
the gap formation in this case are unaffected by the presence of positional disorder, and so they
are definitely not macroscopic (long-range) in nature. The fact that the localization length
decreases, is attributed to the coupling of more [1,1] symmetry modes with the incident wave as
the disorder increases (they provide a smaller £ to the average, as seen in Fig. 3a). This decrease
should not be mistaken for additional localization induced by the disorder (the classical analog
of Anderson localization in electrons), since the latter is macroscopic in nature, and does not
apply for strongly localized waves. The decrease in the localization length continues until a
fairly large disorder value, and then it increases to a saturation value (the dielectric error
function can reach only up to some value for positional disorder). This saturation value is
higher for the case where overlaps are allowed, but still is very small compared to other cases,
so waves remain strongly localized.

All other cases, on the other hand, show a common pattern of behavior: photon states
become quickly de-localized with increasing disorder. The localization length is increased,
until the point where the localization induced by the disorder becomes dominant. After this
it starts decreasing, until finally it reaches some saturation point. Note also that there is an
almost quantitative agreement between some cases that was not really expected, eg. for the
disorder in radius in the first gap with the wave E,-polarized, for both lattice settings, as seen
in Figs. 9a and 10a. Only the case of disorder in the dielectric constant seems to deviate,
having very quickly a very large effect, with the localization length directly saturating to some
constant value. So, for air cylinders in dielectric with any type of disorder, and for the E.-
solid-cylinder case with disorder that does not preserve the scatterer’s “shape”, the behavior
under disorder is similar.

All these results can be understood if we adopt two different “pictures” for the photon

states, depending on which is the dominant mechanism that is responsible for the formation
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of the spectral gaps in each case. The first is the “nearly free” photon picture, in which the
gap forming mechanism is the non-resonant macroscopic Bragg-like multiple scattering, while
the second is the “strongly localized” photon picture, in which the gap forming mechanism is
the microscopic (short-range) excitation of single scatterer Mie resonances.

Sharp Mie resonances appear only for the solid cylinder case, and they can be thought as
analogous to the atomic orbitals in semiconductors. Using this analogy, a tight-binding model,
based on a linear combination of Mie resonances, was recently developed for the photonic
states in the E,-solid-cylinder case [7]. But if a tight-binding model can give a satisfactory
description of the photonic states, then it is expected that certain behavioral patterns found in
semiconductors should apply in our case too. So, positional disorder should have a small effect
on the gaps, in a similar way the energy gap survives in amorphous silicon. Also, changing
the scatterer should have a similar effect as changing the atoms in the semiconductor, yielding
a large amount of impurity modes that quickly destroys the gap. This pattern is definitely
confirmed here for the F,-solid-cylinder case. In this case, multiple scattering and interference
can only help to make the gaps wider, but are definitely not decisive on the existence of a gap.

For the macroscopic Bragg-like multiple scattering mechanism, the lattice periodicity is a
very important factor for the existence of a spectral gap. If it is destroyed, then coherence in the
backscattered waves will be destroyed, and so will the spectral gaps. It is of small consequence
the exact way that the periodicity is destroyed, and so different disorder realizations will have
similar effects. Also, since the gaps close more easily, it will be easier to observe the localization
induced on the waves by the disorder itself, ie. the classical analog of Anderson localization in
electrons. All these are recognized in the case of air cylinders in dielectric.

Finally, in the H,-solid-cylinder case, there were no gaps to begin with, and so we can have
no results about it. However, sharp Mie resonances appear for this case as well, and if their
excitation was the dominant scattering mechanism, a gap would be expected here as well. The
difference with the E, is that the former is described by a vector wave equation, while the
latter by a scalar one (and thus closer to the electronic case). The form of the wave equation

must, then, be an important factor in determining the relative strength of the two gap forming
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mechanisms.

Conclusions

We have shown that several results in periodic and random photonic band gap materials
can be understood in terms of two distinct photonic states: (a) The “local” states, based
on a single scatterer Mie resonance, with the multiple scattering playing a minor role; these
states are more conveniently described in terms of an LCAO-type of approach and are the
analog of the d-states in transition metals. “Local” photonic states appear in the case of high
dielectric cylinders surrounded by a low-dielectric host and for E-polarized waves. (b) The
“nearly free” photonic states, where Bragg-like multiple scattering is the dominant mechanism
responsible for their appearance; these states are more conveniently described in terms of a
pseudopotential-type of approach and are the analog of s (or p) states in simple metals.

Each type of photonic states responds differently to the presence of disorder: For the “local”
states case, the gap is robust as the periodicity is destroyed, and it is hardly affected by the
disorder as long as the identity of each individual scatterer is preserved; however, if the shape,
or other characteristics influencing the scattering cross section of each individual scatterer, is
altered by disorder, the gap tends to disappear. On the other hand, for the “nearly free” states

case, the gap is very sensitive and tends to disappear easily as the periodicity is destroyed.
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Figure 1 Band structure (obtained with a plane wave method) and den-
sity of states (obtained with the FDTD spectral method) for a
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136

0.6 | =
ost
g 04 _ e
T S ——
3
g
Q03|
S
Y
S
N
N
=021 | AR cylinders
in DIELECTRIC
0.1}
----------- H -polarized — E -polarized
0.0
DOS DOS
(arbitrary units) r X M I (arbitrary units)
Figure 2 Band structure (obtained with a plane wave method) and den-

sity of states (obtained with the FDTD spectral method) for a
two-dimensional square lattice array of air cylinders ¢,=1 in di-
electric €,=10, with air filling ratio f ~ 71%.




20 ¢

40 t

60 |

-INn<7T>
()

20 ¢

40 ¢

137

5 by
&
g
(a)
& :
1 "

E -polarized Q@g""m

— periodic - average of both cuts
— periodic - cut along (1,0) plane
--------- periodic - cut along (1,1) plane
o— disorder in position - cut along (1,0) plane

H -polarized

0.2 0.3 04 0.5
frequency (wa/2mc)

Figure 3 Transmission coefficient for the periodic, and weakly disorder,
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the sample is cut. Effective disorders used: in position~0.35, in
radius~0.25
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system described in Fig. 1. Four different disorder realizations

are studied.




frequency (wa/27mc)

140

=TT

0.3 upper edge of 2nd E, gap AIR cylinders in DIELECTRIC

upper edge of H, gap

0.50

—— &
il JEe=p

045 |

040 |

0.35

%~ [ - disorder in radius
+—+ H_- disorder in position - no overlaps

0.30

025 }

<disorder>

Figure 6 The edges of the photonic band gaps as a function of the effective

disorder < disorder >=< € > (as was defined in Eq. (4)), for the
system described in Fig. 2. Three different disorder realizations
are studied.




Density of States (arbitrary units)

141

(a) """ <disorder>=4.073, <overlaps>=3 W V ]
— <disorder>=4.083, <overlaps>=0 ] 4]

80 |

20 | VAT

0 . : .
(b) ------ <disorder>=4.954, <overlaps>=23
80 | — <disorder>=5.040, <overlaps>=0

60 |
40 |

0 ) ; .
(C) ------ <disorder>=5.382, <overlaps>=32
80 | — <disorder>=5.488, <overlaps>=0

60
40
20

0.0 0.1 0.2 0.3 0.4 0.5 0.6
frequency (wa/21tc)

Figure 7 The density of states for the system of Fig. 1 with the E, polar-
ization, for three different positional disorder strengths. The solid
line is when no scatterer overlaps are allowed, while the dotted
line is when scatterer overlaps are allowed. < overlaps > is the
average number of overlapping cylinders.




Density of States (arbitrary units)

142

w0 | (@F, < Ilrimecomeste
0 : =S ———— = '
so | O H sl e Soenapea=o
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Sfrequency (®a/21tc)
Figure 8 The density of states for the system of Fig. 2 for both field polar-

izations, for two different positional disorder strengths. The solid
line is when no scatterer overlaps are allowed, while the dotted
line is when scatterer overlaps are allowed.




localization length (-2L/<INT>)

o

o

—

[N}

o

143

i ‘ ‘ . . .
(a) first gap | SOLID cylinders in AIR E -polarized
| |
- ® disorder in position - no overlaps s
O disorder in position - with overlaps en
" disorder in radius "
E D disorder in dielectric . 1 . o
> P> o o > %OO
> " > b s 0 0o
g 5 b 5 .
> . (] . i !s’ io‘
D [ |
[>l>i>[i IQI. | o '. 06 | ® . 0 I:) .. %
T Tr T T [ R T . L A R AL T O ™
(b) second gap .
> | |
- >
"N :)
Py
> © b 0
> ] n . . °
> R
i . A
l>[> » °
| Oe
g o
| |
_,mjz,_[LD., ,,,,,,,,, I WP .|Opeu. ....... I
0 | 2 3 4 5
<disorder>

Figure 9 The localization length as a function of the effective disorder for

o e AT PR SO .- » T

the system described in Fig. 1 with the E, polarization, for four
different disorder realizations.



localization length (-2L/<INT>)

144

......... LA
(a) E -polarized | AR cylinders in DIELECTRIC
o "
[ | . | - Tr " 0
o a
- u 0 ]
o0 g o A
g U %
g D o N E
f
fo ™o % @09 Ob ® Ist gap - disorder in position ]
a o0& % ° O Ist gap - disorder in radius
006000 0 ©O® W 2nd gap - disorder in position]
0 2nd gap - disorder in radius
(b) H -polarized . ]
0
0 [ ]
: 0 ]
]
o & ° ¢
o Ry
0
- oV ° ® disorder in position -
O.)O()
00 60 ¥ 0 disorder in radius
0 | 2 3 b 6
<disorder>

Figure 10 The localization length as a function of the effective disorder for
the system described in Fig. 2 for both field polarizations, for

two different disorder realizations.

PR e P - e e gmeme e e



145

CHAPTER 8. GENERAL CONCLUSIONS

Photonic band gap materials are artificial dielectric structures that give the promise of
molding and controlling the flow of optical light the same way semiconductors mold and con-
trol the electric current flow. In this dissertation we studied two areas of photonic band gap
materials. The first area is focused on the properties of one-dimensional PBG materials doped
with Kerr-type nonlinear material, while, the second area is focused on the mechanisms re-
sponsible for the gap formation as well as other properties of two-dimensional PBG materials.

We first studied, in Chapter 2, the general adequacy of an approximate structure model
in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers,
or §-functions, while the rest of the space is linear. This model had been used before, but
it’s range of validity and the physical reasons for it’s limitations were not quite clear yet. We
performed an extensive examination of many aspects of the model’s nonlinear response and
comparison against more realistic models with finite-width nonlinear layers, and we found that
the §-function model is quite adequate, capturing the essential features in the transmission
characteristics. We found though one exception, coming from the deficiency of processing a
rigid bottom band edge, ie. the upper edge of the gaps is always independent of the refraction
index contrast. This causes the model to miss-predict that there are no soliton solutions for a
positive Kerr-coeflicient, something we know that it is not true.

In Chapter 3 we continued testing the é-function model on an alternative arrangement
in which the nonlinear material is concentrated in one only layer, surrounded by a lattice of
linear layers. In this arrangement and for gap frequencies, bistability results not from gap
soliton formation but, rather, from the nonlinear modulation of an impurity mode. Because

of the very high-Q of the impurity mode, we can use frequencies very close to it, and so
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achieve switching with low input powers. For the é-function model, we obtained a strictly-
bistable cubic equation for the system’s nonlinear response at any frequency, with normalized
parameters that describe the experimental situation. Tested against realistic finite-width layer
models, it is proven excellent, except for high input intensities, where the second deficiency of
the §-function model, it’s strictly bistable nature, shows up. For higher input powers, a finite-
width nonlinear layer generally exhibits multistability. We have obtained an analytic solution
for the localized modes in the gap for a nonlinear impurity of finite extent in an otherwise
linear dielectric superlattice, which shows this multistable behavior. Generally, besides the
two exceptions found here and in Chapter 2, the §-function model has proven it’s usefulness
by capturing the most essential features in the transmission characteristics of both systems,
and should be widely used because of it’s simplicity.

Next, in Chapter 4, we move into the time-dependent properties of one-dimensional nonlin-
ear PBG materials for frequencies inside the gap of the corresponding linear structure. Here,
we found that besides the steady-state solutions already found by time-independent methods,
the system can go into self-pulsing and/or chaotic states as well. We studied the dynamics
of driving the systems from one transmission state to the other by means of pulse injection,
found relationships between the pulse, the stationary gap soliton, and the unstable solitary
waves, and found the optimal pulse parameters for the switch to occur. A dependence on
the initial phase difference between pulse and CW at injection time, sets a requirement for
coherent beams if a fully controlled and reproducible switch is desired. Then we repeated all
this work for the case of a nonlinear impurity inside a linear lattice, and found that the pulse
can interact with the impurity mode as well and drive the system from one transmission state
to the other. All restrictions found in the previous case, however, still apply in this one.

Finally, in Chapter 5, we studied a colloidal crystal that has a bistable response to intense
radiation without, though, having any intrinsic type of nonlinearity. In order to explain the
experimental results, we developed an one-dimensional approximate structure model, as well
as an approximate model for the basic light-particle and particle-particle interactions, without

any adjustable parameters. We ended up with a dynamical lattice-light coupling model, a
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classical analog of the electron-phonon coupling in semiconductors. This model successfully
reproduced the experimental results, and thus has captured the nature of the nonlinear response
of colloidal crystals.

Next, we go over to two-dimensional PBG materials. In Chapter 6, our goal was to stress
the analogy between photons in a PBG structure and electrons in a semiconductor, and to show
that in one particular case (solid dielectric cylinders in a low dielectric background and the
wave polarized with it’s electric field parallel to the cylinder’s axis), the mechanism responsible
for the gap formation is the excitation of single scatterer resonances and not macroscopic
Bragg-like multiple scattering. Therefore, we developed a tight-binding model based on a
linear combination of Mie resonances, and fitted it’s parameters to ab initio results. With
the incorporation of a free plane wave to account for the allowed small-frequency background
propagation modes, and parameter rescaling to account for the large environment effect on the
nearest neighbor matrix elements, the model could successfully reproduce the band structure
for any lattice arrangement, with and without defects, and for two different dielectric constants,
proving it’s validity. Thus, the “strongly localized” photon picture, the analog of the atomic
orbitals in semiconductors, has to be incorporated in the photonic band gap materials theory.

In Chapter 7 we studied the two photon pictures, the “nearly free” photon for which the
gap forming mechanism is Bragg-like multiple scattering, and the “strongly localized” photon
for which the gap forming mechanism is the excitation of single scatterer resonances. Using
two ab initio numerical techniques, we studied the changes developed under disorder in the
gap formation and wave localization, for four different settings (solid cylinders in air and wvise
versa for both wave polarizations). Results were generally classified into two groups attributed
to the two photon pictures. Only the solid cylinder E,-polarized case exhibited the behavior
expected from the ‘strongly localized” photon picture, while for all other cases, the “nearly
free” photon picture seems to be the proper one.

To summarize, this dissertation has contributed the following in the study of photonic
band gap materials: in one-dimensional nonlinear structures it showed, the adequacy of the

§-function model, the single nonlinear impurity layer in a linear superlattice as an optimal
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structure for low switching thresholds, the advantages and limitations of switching by means
of externally injected pulses, and the nature and the dynamics of the nonlinear response of
colloidal crystals; in two-dimensional photonic band gap materials it showed the existence of
two different pictures for the photonic states, and their properties under disorder. One of the
two pictures is in very close analogy with it’s electronic counterpart, and a theoretical model,
inspired from the ones used in electronic band theory, was developed for it. Possible directions
for future work are, the study of the nonlinear switching dynamics in two-dimensional nonlinear
photonic band gap materials and how the two different photon pictures would enter, extensive
study of disorder, impurity states, surface states etc. using the newly developed model in
two-dimensional photonic band gap materials, and the development of a similar model (if

applicable) for three-dimensional photonic band gap materials.
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