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Abstract

Previously, an effective index optical model was introduced for the analysis of

lateral waveguiding effects in vertical-cavity surface-emitting lasers. We show that

the resultant transverse equation is almost identical to the one typically obtained

in the analysis of dielectric waveguide problems, such as a step-index optical fiber.

The solution to the transverse equation yields the lateral dependence of the optical

field and, as we recognize in this paper, the discrete frequencies of the microcavity

modes. As an example, we apply this technique to the analysis of vertical-cavity lasers

that contain thin-oxide apertures. The model intuitively explains our experimental

data and makes quantitative predictions in good agreement with a highly accurate

numerical model.

(Draft 3/3/00. For submission to APL.)
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As vertical-cavity surface-emitting laser (VCSEL) technology matures, more complicated

optical microcavity structures are being designed. In order to aid the design process, various

predictive numerical models have been developed, ranging from beam propagation methods

to sophisticated finite difference models. 1-7 The recently introduced effective index mode14

is especially intuitive, because of its similarity to well-known dielectric waveguide problems,

and is computationally efficient, since it condenses the complicated vertical structure and

leaves only a transverse equation to be solved. Previously the effective index model was

shown to determine the electric field profile in a microcavity.4

In this paper, we demonstrate that the effective index model also predicts the allowed

modal frequencies of a microcavity. As an example, we analyze the case of VCSELS that

employ thin-oxide apertures. 8’9 We find good agreement with the experimental data and

with the predictions of a more sophisticated finite-difference model.7 Exploiting the close

analogy between oxide-aperture VCSELS and step-index optical fibers, we determine the

maximum aperture size for which the VCSEL will support only a single transverse mode.

We start by comparing the effective index model of Ref. 4 with the conventional solution

technique for optical waveguide problems. In both cases, we seek solutions of the scalar

wave equation which have the separable form

E(x, z, t) = Ei(x)&(z) exp(–iot), (1)

where x = (z, y) denotes the transverse coordinates, and the subscripts i denote different

lateral regions, such as the core and cladding, within which the permittivity Ci(z) is laterally

invariant.

For waveguides that are uniform in z, it is conventional to take #i(z) = exp(+i~z), which

leads to the waveguide equation

V;Ei(x) + (eik: – @2)Ei(x) = 0, (2)

where we introduced the transverse Laplacian V? = d2/6%2 + 82/8y2 and the vacuum

wavevector k. = w/c. This is equivalent to the Schrodinger equation, and has been solved,

with relevant continuity conditions on Ei (x), for many waveguides of interest. 10
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We now turn to the effective index model of a microcavity. A key assumption is that,

within each region, ~i (z) is the solution to the l-dimensional wave equation

(3)

that describes an infinitely wide Fabry-Perot cavity with vertical structure determined by

q(z). Ignoring the imaginary part of kiz that accounts for loss, we recognize that k,= = w,/c

is the vacuum wavevector corresponding to the Fabry-Perot resonance frequency Ui. We

note that the l-dimensional wave equation (3) is routinely solved in the VCSEL community

(often by means of a transmission matrix approach) ’1, so we regard ki= and @i(z) as known

properties of each region i.

In

to

The effective index derivation follows Ref. 4 and the details will be discussed elsewhere.

short, we insert the solution (1) into the scalar wave equation and use the constraint (3)

obtain the effective index equation

V~Ei(X) + (~i) (k;

where we assume

— k~=).lli(x) = 0,

the normalization

(4)

J l~i(z)12d~ = 1 and define (~i) ~ f~i(z)l~i(z)l’dz ,

which represents the dielectric constant weighted by the longitudinal standing wave in each

region 2.

The effective index equation (4) is nearly identical to the waveguide equation (2). Both

have the form

v~~i(x) + ~~-Ei(x) = 0, (5)

where hi is regarded as a transverse wavevector (in the medium) in region i, and the fields

are oscillatory or decaying according to whether h: is positive or negative, respectively. The

boundary conditions for the various regions constrain h: to assume only discrete values.

For waveguides, any frequency w may be chosen and the corresponding discrete values of

the propagation constant ~ are determined by ~2 = qk~ – h:. In the case of the effective

index model of a microcavity, the longitudinal component of the free-space wavevector is
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prescribed in each region i by the local Fabry-Perot resonance wavevector ki= = tii/c. Hence,

for each discrete value of h:, the corresponding modal frequency w is determined by

(6)

and is independent of the particular region i considered in evaluating Eq. (6). The recog-

nition that the effective index model precisely determines the allowed modal frequencies

according to Eq. (6) is a key result of this paper.

Equation (6) motivates us to define for each region a vector ki, whose longitudinal

component is kiZ = ~i/c and whose transverse component kit is given by k~t = h~/(ti) =

k; – k~z. The vector ki has the virtue that its magnitude is fixed at k. in all regions; only

its angle changes from one region to another. If we define the angle Oi as the angle between

the z axis and the vector ki, then cos(Oi) = kiz/ko. Moreover, the invariance of k. leads to

2m/ko = AI COS(81) = & cOS(&) , (7)

where we have introduced the Fabry-Perot resonance wavelengths Ai = 2~/kiz. Equation

(7) is analogous to Snell’s law, and hence we interpret the effective index in each region as

being proportional to the resonance wavelength Ai. Thus, modifications of a layer thickness

that shift the Fabry-Perot resonance will effectively change the lateral index profile.

As a quantitative test of the effective index model, we consider a VCSEL microcavity that

contains thin-oxide apertures for optical and current confinement .9 Although the apertures

in our VCSELS are square, we will approximate them as being circular of diameter 2a equal

to the width of the square aperture. The VCSEL cross section is schematically depicted

on the right side of Fig. 1(a). In the core region 1 (r < a), the vertical layer structure is

that of a standard VCSEL at 850 nm. The A cavity is bounded by many DBR periods (36

below and 21 above), each composed of two A/4 AIGaAs layers containing 16% and 92%

A1:As ratios, respectively. The only exceptions are the DBR periods immediately above

and below the cavity, where the thickness of the high-index 16% layer is made 3A/4 so

that a thin 98% layer can be inserted in it at a null in the vertical standing wave (see the
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left side of Fig. 1(a)). The thin 98% layers are roughly A/8 thick. After etching mesas to

expose the edges of the layers, water vapor is used to laterally oxidize the thin 98?Z0layers

inward from the edge of the mesa to the radial position r = a. Oxidation reduces the index

of the 98?10layers from 3.0 to roughly 1.6. In addition to the core radius a, the only other

quantities required to fully specify the effective index problem are the Fabry-Perot resonance

wavelengths & and the field-weighted permittivities (q), which are readily obtained from

l-dimensional simulations. The resonance wavelengths are found to be Al =855.81 nm and

AZ= AI–1.54 nm, and the corresponding permittivities are (el)=10.98 and (62) = (cl) –0.06.

The longitudinal wavevector components kzz = 27r/Az that satisfy the local Fabry-Perot

resonance are plotted on the right side of Fig. 1(b).

The allowed frequencies w = CkO of guided modes are constrained by klz < ko < k~~

(w, < w < WZ) so that the field is oscillatory in the core region 1 and decays toward

infinity in the cladding region 2. At the interface between the two regions, continuity of the

tangential components of the electric and magnetic fields yields two equations that determine

two unknowns: (a) the ratio of the amplitude coefficients in the two regions and (b) the mode

frequency w = cko. Although in general this procedure could be followed exactly, we will

make another slight approximation. We note that the dominant behavior predicted by the

effective index equation (4) is due to the difference (k: – k~z), and hence we assume that

(t,) % (q).

The approximation that (q) = (e) is independent of the region i allows us to make an

exact correspondence with conventional step-index-fiber solutions, by assuring that

is a constant. Having identified the appropriate normalized frequency parameter V, we may

directly use the known solutions for step-index optical fibers which are commonly presented

as a function of V. 10’12

Figure 2(a) shows the wavelength of the fundamental transverse mode versus aperture

width for our thin-oxide VCSELS. The solid line corresponds to the effective index predic-
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tions, which are determined by Eq. (6) in conjunction with the known solutions12 for the

normalized propagation constant b s 1– (hla/V)2 versus V, and the relation V = a 1.46/pm

for our thin-oxide VCSELS. As expected, the mode frequency approaches the cladding reso-

nance as the aperture width shrinks to zero and the core resonance as the aperture increases

to infinity. Uniform vertical expansion of the structure, obtained by increasing the epitaxial

growth rate or heating the device, would yield a uniform offset of the wavelengths but leave

the variation versus aperture width virtually unchanged. The effective index predictions

agree almost exactly with those of an accurate 2-dimensional finite difference model,7 shown

by the circles in Fig. 2(a). The solid triangles in Fig. 2(a) indicate the actual VCSEL wave-

lengths, measured by driving the lasers 10% above threshold with 100-ns current pulses. The

small discrepancy between the shape of the experimental and theoretical plots in Fig. 2(a)

is most likely due to modeling the square apertures as circular and slightly underestimating

the actual thickness of the oxide layers. Finally, we note that step-index optical fibers are

known to support only a single mode when the normalized frequency satisfies V <2.405,

which is equivalent to 2a < 3.3pm for our thin-oxide VCSELS. Experimentally, we find that

the thin-oxide VCSELS operate in a single mode for square-aperture widths less than 2.5pm.

Figure 2(b) shows the fundamental-mode full width at half-maximum (FWHIM) intensity

as a function of aperture size. Again, the effective index prediction (solid line) closely tracks

the finite-difference calculations (circles). Moreover, the experimental measurements (solid

triangles) validate the numerical predictions. In contrast with thick oxide VCSELS, we

see that the mode is not always confined within the aperture. In particular, as the core

diameter is reduced below 1.5pm we observe that the mode size actually increases and the

mode spreads significantly into the cladding region.

A surprising feature of Fig. 2 is the continuous blue-shift of the mode wavelength as

the aperture width decreases below 1.5 pm, in spite of the fact that the mode width in-

creases. Conventional wisdom says that the transverse wavevector varies inversely with the

mode width. Therefore, assuming a fixed longitudinal wavevector, it could be expected that

the mode wavelength will vary monotonically with the mode width. Indeed, in the case of
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thick-oxide VCSELS, where the mode remains almost entirely within the aperture, these ex-

pectations are confirmed by experiments. 13In the case of small-aperture thin-oxide VCSELS,

the paradox is resolved by noting that as the mode spreads into the oxidized region, the

mode frequency must approach the resonance in the oxidized region. In fact, the effective

index model predicts that as the aperture size is reduced, the transverse wavevector in the

core region continues to increase, even as the mode width increases.

In summary, we have used the effective index model to obtain a simplified wave equation,

whose solutions determine both the discrete modal frequencies and the transverse depen-

dence of the optical field. Because the simplified wave equation is almost identical to the one

obtained with the conventional approach to solving dielectric waveguide problems, known

techniques and solutions can be applied directly to vertical-cavity lasers. .4s an example, we

have analyzed the case of VCSELS incorporating thin-oxide apertures and we demonstrated

close agreement with experimental data and with the predictions of a more sophisticated

numerical model. The simplicity and intuitive aspects of the effective index model make it

appropriate for the analysis of vertical-cavities with complicated lateral modulation of the

layer thicknesses and/or indices.

Sandia is a multiprogram laboratory operated by Sandia Corporation for the U.S. De-

partment of Energy under Contract No. DE-AC04-94.AL85000.
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FIGURES

Fig. 1. The right side of part (a) shows a schematic cross section of the thin-oxide VCSEL layers,

starting at the center of the A cavity and continuing upward through the first (P 1) and second

(P2) mirror periods. The hatched region indicates where the 98% layer has been oxidized. The left

side of part (a) shows the vertical standing wave \~1(z) I* in region 1. In part (b), the fundamental

transverse mode frequency w = Cko is indicated on the right, and the corresponding electric field

profile is shown on the left. On the right, we indicate how to graphically determine the transverse

wavevector in region 1. For clarity, the separation between the Fabry-Perot resonance wavevectors

kl. and k2Z is exaggerated.

Fig. 2. The wavelength (a) and full width at half maximum (b) of the fundamental mode as a

function of the oxide-aperture width. The solid triangles are the experimental data points and the

solid line shows the predictions of the effective index model. For comparison, the circles show the

predictions of accurate 2-dimensional finite-difference calculations .7 The lower solid line in part (a)

shows the wavelength predict ion for the first higher-order transverse mode.
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