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Abstract

Previously, an effective index optical model was introduced for the analysis of
lateral waveguiding effects in vertical-cavity surface-emitting lasers. We show that
the resultant transverse equation is almost identical to the one typically obtained
in the analysis of dielectric waveguide problems, such as a step-index optical fiber.
The solution to the transverse equation yields the lateral dependence of the optical
field and, as we recognize in this paper, the discrete frequencies of the microcavity
modes. As an example, we apply this technique to the analysis of vertical-cavity lasers
that contain thin-oxide apertures. The model intuitively explains our experimental

data and makes quantitative predictions in good agreement with a highly accurate

numerical model.
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As vertical-cavity surface-emitting laser (VCSEL) technology matures, more complicated
optical microcavity structures are being designed. In order to aid the design process, various
predictive numerical models have been developed, ranging from beam propagation methods
to sophisticated finite difference models.!~7 The recently introduced effective index model*
is especially intuitive, because of its similarity to well-known dielectric waveguide problems,
and is computationally efficient, since it condenses the complicated vertical structure and
leaves only a transverse equation to be solved. Previously the effective index model was
shown to determine the electric field profile in a microcavity.*

In this paper, we demonstrate that the effective index model also predicts the allowed
modal frequencies of a microcavity. As an example, we analyze the case of VCSELs that
employ thin-oxide apertures.®® We find good agreement with the experimental data and
with the predictions of a more sophisticated finite-difference model.” Exploiting the close
analogy between oxide-aper-ture VCSELs and step-index optical fibers, we determine the
maximum aperture size for which the VCSEL will support only a single transverse mode.

We start by comparing the effective index model of Ref. 4 with the conventional solution
technique for optical waveguide problems. In both cases, we seek solutions of the scalar

wave equation which have the separable form
E(x,2,1) = Ej(x)¢i(z) exp(—iwt), (1)

where x = (z,y) denotes the transverse coordinates, and the subscripts 7 denote different
lateral regions, such as the core and cladding, within which the permittivity ¢;(z) is laterally

invariant.

For waveguides that are uniform in z, it is conventional to take ¢;(z) = exp(+i6z), which

leads to the waveguide equation
ViEi(x) + (ks — B°)Ei(x) = 0, (2)

where we introduced the transverse Laplacian V? = §%/8z® + 6%/0y? and the vacuum
wavevector kg = w/c. This is equivalent to the Schrédinger equation, and has been solved,

with relevant continuity conditions on F;(x), for many waveguides of interest.0
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We now turn to the effective index model of a microcavity. A key assumption is that,

within each region, ¢;(z) is the solution to the 1-dimensional wave equation
S %1(2) +ei(2)kigi(2) = 0, (3)

that describes an infinitely wide Fabry-Perot cavity with vertical structure determined by
€i(z). Ignoring the imaginary part of k;, that accounts for loss, we recognize that k,, = w,/c
is the vacuum wavevector corresponding to the Fabry-Perot resonance frequency w;. We
note that the 1-dimensional wave equation (3) is routinely solved in the VCSEL community
(often by means of a transmission matrix approach)!!, so we regard k;, and ¢;(z) as known
properties of each region .

The effective index derivation follows Ref. 4 and the details will be discussed elsewhere.
In short, we insert the solution (1) into the scalar wave equation and use the constraint (3)

to obtain the effective index equation
VEIEi(x) + (&) (kg — k3)Ei(x) = 0, (4)

where we assume the normalization [|@;(z)]?dz = 1 and define (¢;) = [e;(2)|d:(2)|%dz,
which represents the dielectric constant weighted by the longitudinal standing wave in each
region 1.

The effective index equation (4) is nearly identical to the waveguide equation (2). Both

have the form
V2E;(x) + h2E;(x) = 0, )

where h; is regarded as a transverse wavevector (in the medium) in region ¢, and the fields
are oscillatory or decaying according to whether h? is positive or negative, respectively. The
boundary conditions for the various regions constrain h? to assume only discrete values.
For waveguides, any frequency w may be chosen and the corresponding discrete values of
the propagation constant § are determined by 5% = €;k2 — h?. In the case of the effective

index model of a microcavity, the longitudinal component of the free-space wavevector is
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prescribed in each region 1 by the local Fabry-Perot resonance wavevector k;, = w;/c. Hence,

for each discrete value of hZ, the corresponding modal frequency w is determined by

2 2
w 9 h; 5
jady & SSRLL A
02 kO (62') 1z (6)

and is independent of the particular region ¢ considered in evaluating Eq. (6). The recog-
nition that the effective index model precisely determines the allowed modal frequencies
according to Eq. (6) is a key result of this paper.

Equation (6) motivates us to define for each region a vector k;, whose longitudinal
component is k;; = w;/c and whose transverse component k; is given by k% = h?/(e;) =
k% — k2,. The vector k; has the virtue that its magnitude is fixed at ko in all regions; only
its angle changes from one region to another. If we define the angle 6; as the angle between

the z axis and the vector k;, then cos(6;) = k;,/ko. Moreover, the invariance of kg leads to
2’/T/ko = /\1 COS(91) = /\2 COS(HQ) , (7)

where we have introduced the Fabry-Perot resonance wavelengths \; = 27 /k;,. Equation
(7) is analogous to Snell’s law, and hence we interpret the effective index in each region as
being proportional to the resonance wavelength A;. Thus, modifications of a layer thickness
that shift the Fabry-Perot resonance will effectively change the lateral index profile.

As a quantitative test of the effective index model, we consider a VCSEL microcavity that
contains thin-oxide apertures for optical and current confinement.® Although the apertures
in our VCSELSs are square, we will approximate them as being circular of diameter 2a equal
to the width of the square aperture. The VCSEL cross section is schematically depicted
on the right side of Fig. 1(a). In the core region 1 (r < a), the vertical layer structure is
that of a standard VCSEL at 850 nm. The ) cavity is bounded by many DBR periods (36
below and 21 above), each composed of two A\/4 AlGaAs layers containing 16% and 92%
Al:As ratios, respectively. The only exceptions are the DBR periods immediately above
and below the cavity, where the thickness of the high-index 16% layer is made 3)\/4 so

that a thin 98% layer can be inserted in it at a null in the vertical standing wave (see the
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left side of Fig. 1(a)). The thin 98% layers are roughly A\/8 thick. After etching mesas to
expose the edges of the layers, water vapor is used to laterally oxidize the thin 98% layers
inward from the edge of the mesa to the radial position r = a. Oxidation reduces the index
of the 98% layers from 3.0 to roughly 1.6. In addition to the core radius a, the only other
quantities required to fully specify the effective index problem are the Fabry-Perot resonance
wavelengths ); and the field-weighted permittivities (¢;), which are readily obtained from
1-dimensional simulations. The resonance wavelengths are found to be A; =855.81 nm and
A = A\;—1.54nm, and the corresponding permittivities are (€;)=10.98 and (e;) = (e1)—0.06.
The longitudinal wavevector components k;, = 2m/A; that satisfy the local Fabry-Perot
resonance are plotted on the right side of Fig. 1(b).

The allowed frequencies w = ckq of guided modes are constrained by ki, < ko < k.
(w1 < w < wy) so that the field is oscillatory in the core region 1 and decays toward
infinity in the cladding region 2. At the interface between the two regions, continuity of the
tangential components of the electric and magnetic fields yields two equations that determine
two unknowns: (a) the ratio of the amplitude coefficients in the two regions and (b) the mode
frequency w = cko. Although in general this procedure could be followed exactly, we will
make another slight approximation. We note that the dominant behavior predicted by the
effective index equation (4) is due to the difference (k3 — k%), and hence we assume that
(€1) = (€2).

The approximation that (¢;) = (e) is independent of the region 7 allows us to make an

exact correspondence with conventional step-index-fiber solutions, by assuring that
V2 = (h’% - h%)az = <€>(k§z - k%z)a2 (8)

is a constant. Having identified the appropriate normalized frequency parameter V', we may
directly use the known solutions for step-index optical fibers which are commonly presented
as a function of V.10:12

Figure 2(a) shows the wavelength of the fundamental transverse mode versus aperture

width for our thin-oxide VCSELs. The solid line corresponds to the effective index predic-
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tions, which are determined by Eq. (6) in conjunction with the known solutions!? for the
normalized propagation constant b = 1—(hya/V)? versus V, and the relation V = a 1.46/um
for our thin-oxide VCSELSs. As expected, the mode frequency approaches the cladding reso-
nance as the aperture width shrinks to zero and the core resonance as the aperture increases
to infinity. Uniform vertical expansion of the structure, obtained by increasing the epitaxial
growth rate or heating the device, would yield a uniform offset of the wavelengths but leave
the variation versus aperture width virtually unchanged. The effective index predictions
agree almost exactly with those of an accurate 2-dimensional finite difference model,’ shown
by the circles in Fig. 2(a). The solid triangles in Fig. 2(a) indicate the actual VCSEL wave-
lengths, measured by driving the lasers 10% above threshold with 100-ns current pulses. The
small discrepancy between the shape of the experimental and theoretical plots in Fig. 2(a)
is most likely due to modeling the square apertures as circular and slightly underestimating
the actual thickness of the oxide layers. Finally, we note that step-index optical fibers are
known to support only a single mode when the normalized frequency satisfies V' < 2.405,
which is equivalent to 2a < 3.3um for our thin-oxide VCSELs. Experimentally, we find that
the thin-oxide VCSELSs operate in a single mode for square-aperture widths less than 2.5um.

Figure 2(b) shows the fundamental-mode full width at half-maximum (FWHM) intensity
as a function of aperture size. Again, the effective index prediction (solid line) closely tracks
the finite-difference calculations (circles). Moreover, the experimental measurements (solid
triangles) validate the numerical predictions. In contrast with thick oxide VCSELs, we
see that the mode is not always confined within the aperture. In particular, as the core
diameter is reduced below 1.5 ym we observe that the mode size actually increases and the
mode spreads significantly into the cladding region.

A surprising feature of Fig. 2 is the continuous blue-shift of the mode wavelength as
the aperture width decreases below 1.5 um, in spite of the fact that the mode width in-
creases. Conventional wisdom says that the transverse wavevector varies inversely with the
mode width. Therefore, assuming a fixed longitudinal wavevector, it could be expected that

the mode wavelength will vary monotonically with the mode width. Indeed, in the case of
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thick-oxide VCSELSs, where the mode remains almost entirely within the aperture, these ex-
pectations are confirmed by experiments.'® In the case of small-aperture thin-oxide VCSELs,
the paradox is resolved by noting that as the mode spreads into the oxidized region, the
mode frequency must approach the resonance in the oxidized region. In fact, the effective
index model predicts that as the aperture size is reduced, the transverse wavevector in the
core region continues to increase, even as the mode width increases.

In summary, we have used the effective index model to obtain a simplified wave equation,
whose solutions determine both the discrete modal frequencies and the transverse depen-
dence of the optical field. Because the simplified wave equation is almost identical to the one
obtained with the conventional approach to solving dielectric waveguide problems, known
techniques and solutions can be applied directly to vertical-cavity lasers. As an example, we
have analyzed the case of VCSELs incorporating thin-oxide apertures and we demonstrated
close agreement with experimental data and with the predictions of a more sophisticated
numerical model. The simplicity and intuitive aspects of the effective index model make it
appropriate for the analysis of vertical-cavities with complicated lateral modulation of the
layer thicknesses and/or indices.

Sandia is a multiprogram laboratory operated by Sandia Corporation for the U.S. De-

partment of Energy under Contract No. DE-AC04-94AL85000.
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FIGURES

Fig. 1. The right side of part (a) shows a schematic cross section of the thin-oxide VCSEL layers,
starting at the center of the A cavity and continuing upward through the first (P1) and second
(P2) mirror periods. The hatched region indicates where the 98% layer has been oxidized. The left
side of part (a) shows the vertical standing wave |¢;(2)|? in region 1. In part (b), the fundamental
transverse mode frequency w = cky is indicated on the right, and the corresponding electric field
profile is shown on the left. On the right, we indicate how to graphically determine the transverse
wavevector in region 1. For clarity, the separation between the Fabry-Perot resonance wavevectors

k1, and ko, is exaggerated.

Fig. 2. The wavelength (a) and full width at half maximum (b) of the fundamental mode as a
function of the oxide-aperture width. The solid triangles are the experimental data points and the
solid line shows the predictions of the effective index model. For comparison, the circles show the
predictions of accurate 2-dimensional finite-difference calculations.” The lower solid line in part (a)

shows the wavelength prediction for the first higher-order transverse mode.
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Fig. 1  D.K. Serkland et al.
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