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abstract

We have constructed a quasi-analytic model of the dynamic hohlraum. Solutions

only require a numerical root solve, which can be done very quickly. Results of the

model are compared to both experiments and full numerical simulations with good

agreement. The computational simplicity of the model allows one to find the behavior

of the hohlraum temperature as a function the various parameters of the system and

thus find optimum parameters as a function of the driving current. The model is used

to investigate the benefits of ablative standoff and axial convergence.
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I. Introduction

, I

Pulsed power is a robust and inexpensive technology for obtaining high electrical energy

densities, which can be efficiently converted into thermal radiation by z pinches. The use of

wire arrays, with a large number of wires, has resulted in remarkable improvements in radiated

power from z-pinches. Recently], 2 MJ of thermal x-rays have been generated by a z-pinch

with an efficiency greater than 15% and an x-ray power exceeding 200 TW. This thermal x-ray

power has been used to drive a hohh-aum2 to a temperature greater than 145 eV. A promising

inertial fusion scenario3 is to use two z-pinches to drive an external hohlraum containing a

fusion capsule as shown in Fig. 1. Calculations indicate that high yields (400-1200 MJ) can be

obtained with 16 MJ of x-ray energy provided by the two pinches. A large fraction of the x-ray

energy is absorbed by the hohlraum walls of the primary and secondary hohlraums, which have,. -.“
... ‘. W’area of approximately 30 cm2.

.:- 6:1<,-
-. .. The dynamic hohlraum4 is an alternative approach to generating thermal radiation to drive.’

,-
a capsule, which should require less total energy. In this approach, a z-pinch plasma is

imploded onto a “convertor”, which surrounds the capsule as depicted schematically in Fig 2.

In this figure, the z-pinch plasma is initially formed at rzo and is imploded onto the convertor,

which initially occupies the region rci < r < rco. The z-pinch plasma can be generated from a

wire array or a solid liner. At the low mass (few m:) of the present z pinches, wires have been

the most successful. This is because such low mass liners cannot be constructed without wrin-

kles, which seed the Rayleigh-Taylor (RT) instability. To maintain a constant implosion time,

the mass of the z-pinch increases with driving current, so liners may become practical at the

~gher currents needed to ~ve fusion capsules. When the z-pinch plasma first strikes the con-

vertor it is in the region rco < r < rzmThe radius of interface between the z-pinch plasma and

the convertor, rzi, is initially at rcoand decreases with time. T’WOshock waves me formed at rcoj

one propagates into the z-pinch plasma and the other propagates inward into the convertor.

These shock waves heat both regions, which then emit thermal radiation. A material of low

opacity (typically a plastic foam) is chosen for the convertor so that radiation can easily flow

inward to heat an ICF capsule. The z-pinch plasma is composed of a material with high opacity

(tungsten is commonly used) to minimize the outward flow of radiation and thus achieve ma..-
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imal radiation temperatures. The z-pinch plasma forms the walls of a hohlraum with much

smaller dimensions (several mm) than the walls of the double-ended z-pinch driven hohh-aum

(-2 cm). Thus we expect the dynamic hohh-aum to have less radiation loss and to generate

higher radiation temperatures than would be obtained using the double-ended z-pinch driven

hohlraum with the same total energy. Indeed numerical simulations indicate that a dynamic

hohlraum could drive a high yield capsule (500 MJ) with approximately 12 MJ of kinetic

energy delivered to the z-pinch. Furthermore, the performance of the dynamic hohlraum

depends on the trade-off between a number of factors, with the likelihood that this design has

not been fully optimized. Therefore it is valuable to have a model to determine the perfor-

mance of the dynamic hohlraum as a function of the many parameters that can be varied. A

simple analytic estimatec of the peak radiation temperature based on shock heating has been

made. We present a more complete model that includes the effects of radiation loss, the spe-

cific heat of the components, and the radiation absorbed by the capsule. We use our model to

find optimum parameters as a function of the driving current.

The model also includes the effects of ablative standoff, where incoming shock waves can

be isolated from the capsule by the outgoing ram pressure of the ablated material. This “abla-

tive standoff” has been seen in numerical simulations of high yield dynamic hohlraum driven

capsules. We find that ablative standoff is more effective at larger drive currents.

Axial convergence of an initially cylindrical z-pinch will occur if the z-pinch material has

an appropriate axial mass profile, i.e. heavier at the midplane and lighter at the ends. We have

performed both simplified and detailed numerical simulations of an initially cylindrical z-pinch

with a 2 cm initial radius and 1 cm initial axial length, that had a massflength, A, given by the

expression

(1)

where a- = -0.06, ~J = ().()24, and ~ = 3.75 m@cm. The results from the simplified model at

various times during the implosion are shown in Fig. 3. As can be seen the final shape is nearly

7 This quasi-spherical z-pinch implo-spherical. Similar results have been obtained by others .
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sion should provide better coupling to the spherical inertial fusion capsule. Indeed, our model

predicts significantly higher hohlraum temperatures for quasi-spherical z-pinch implosions

than purely cylindrical z-pinch implosions. However, as we shall show both analytically and

with detailed numerical simulations, the mass profile needed to produce axial convergence also

seeds the Rayleigh-Taylor instability. Experiments will be needed to determine the viability of

quasi-spherical z-pinch implosions.

This paper is organized as follows. The model of the dynamic hohlraum is presented in the

next section. Results are compared to experiments in section III. In section IV, model results

are compared to full radiation hydrodynamic simulations to further benchmark the model. In

section V, the model is then used to optimize and predict the scaling of dynamic hohh-sums.

The model predicts that ablative standoff is more effective at high drive currents. The scaling

of the hohlraum temperature with the degree of radiation trapping is found to be fairly weak.

The model also predicts an increased peak hohlraum temperature of approximately 20 eV for

quasi-spherical pinches. However, the mass profiling that produces the quasi-spherical z-pinch

is shown to seed the RT instability. Conclusions are given in section VI. The analytic z-pinch

model is described in append~ I. The radiation transport through the z-pinch plasma is

described in appendix II. Analytic estimates of the seeding and growth of the RT instability by

mass profiling to produce a quasi-spherical z-pinch are presented in appendix III. A glossary of

symbol definitions is provided in appendix IV.

II. Dynamic hohlraum model

A. Analytic z-pinch solutions

We are interested in modelling both purely cylindrical and axially convergent z-pinch

implosions. Analytic solutions for pureIy cylindrical and axially convergent z-pinches are

developed in Appendix I. The normalized radius and current for a cylindrical pinch are plotted

as a function of time in Fig. 4. The initial mass of the z-pinch is found to be

4



~ .= (3 -2u)2-a Lo IPtr 2
z (-)(-) ‘z12(2–2u)l-a 4~ r..

(2)

where 10is the peak driving current, ~ is the risetime, LP is the initial length of the pinch, rzo is

the initial radius of the pinch, and u is a parameter which determines the degree

vergence. Cylindrical pinches correspond to u = O, while the axially converging

in Fig 3 corresponds to cx= 1/3.

The kinetic energy of the pinch is found to be

EK =
3 ‘&)10:)”2

2(3-2 @-d

3(2–2ct)l-a

where r is the radius of the pinch. A comparison between eq. (3) (tx=O) with

of axial con-

pinch shown

(3)

a cylindrical

numerical solution, which includes inductive feed back on the current is shown in Fig. 5. The

agreement is excellent for convergence ratios expected in dynamic hohlraums, i.e. less than 5.

The analytic solution facilitates optimization, which involves finding many solutions.

B. Capsule implosion times

The collision between the z-pinch plasma and the convertor generates shocks which propa-

gate through both the z-pinch plasma and the convertor. During the propagation of these

shocks, heat is produced with a subsequent rise in the hohlraum temperature. For thin conver-

tors the shock will pass completely through the convertor before the fusion capsule fully

implodes. This will also be true for the relatively thin z-pinch plasma. The convertor and the z-

pinch plasma will then be at high pressure and thus difficult to compress futher, so no signifi-

cant heating will occur after these initial shocks have passed through the convertor and the z-

pinch plasma. Thus the hohlraum temperature will reach its peak when the shock has just

passed through the convertor and then the hohlraum temperature will decrease slowly as the

convertor continues to collapse inward. We shall approximate this behavior by assuming the

hohlmum temperature rises linearly with time up to its peak value, THB in a risetime, ~p equal

to the time it takes for the stagnation shock to ptiss through the convertor and then stays con-

stant until the capsule implodes. The initial radius of the convertor is chosen so that the

5
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imploding material will not directly interact with the fusion capsule for the time it takes the

capsule to implode, ~CaP.

The high yield design5 uses a foam convertor that extends to the axis, i.e. the capsule is

imbedded in the foam. This design results in rising hohlraum temperature during the capsule

implosion. Such convertors also couple more of the stagnation energy into the convertor and

the relatively slow rise of the hohlraum temperature yields a reasonably isentropic implosion of

the fusion capsule. For simplicity, we assume that the rise is linear with time, i.e. ~H(t) =

tTH#~CaP.Again the initial outer radius of the foam must be chosen so that the z-Pinch materi~

does not stagnate on the capsule before it implodes, since this would destroy the capsule sym-

metry.

We shall now estimate the capsule implosion

capsule during implosion can be written

d2r-

time. Newton’s equation for the radius of a

(4)

where rc is the radius of the capsule as a function of time, %ap(rc) is the unablated caPsule

mass and the ablation pressure depends on the hohlraum temperature. The ablation pressure at

the surface of an inertial fusion capsule is approximately

Pabl = 3.3x 104T~5 , (5)

where TH is the radiation temperature in units of eV and the ablation pressure is in Pascals. For

thin convertors, we shall assume constant hohlraum temperature during the capsule implosion.

Since the mass of the capsule decreases due to ablation, we assume the convenient form

%p(d = Mcaprlrcap> where Mcap is the initial capsule mass ~d reap is the initial caPsule

radius. Using this form eq. (4) can be solved analytically. The result is

nxcap
Tcap = ‘.2vf

(6)



The final implosion velocity, vf, of an inertial fusion capsule must be approximately 35 c~Ps

g For solid low density convertors, we assume a linear rise in the hohlraumto obtain ignition .

temperature up until the capsule implosion time, which we shall also refer to as “bang time”.

Equation (4) can be solved assuming a linear rise in the hohlraum temperature. The result is

5.5rC.P
Tcap=—” Vf

(7)

C. Geometric considerations: radiation symmetry and standoff

Numerical simulations indicate that inertial fusion capsules require a radiation asymmetry

of 1% or lessg. Thus there must be sufficient space between the z-pinch plasma and the capsule

so that the radiation can transport freely around the capsule to provide a symmetric radiation

drive. This condition is satisfied if the z-pinch/convertor interface radius is larger than some

minimum radius during the capsule implosion. We define a symmetry parameter

F, = >,
cap

(8)

where rfib is the inner radius of the z-pinch plasma at capsule bang time. Large values of F~

will allow a high degree of radiation smoothing, but will also result in relatively low hohlraum

temperatures. Thus it is important to have at least an estimate of the value of F~.Note that F~

can be less than unity because the capsule is imploding as the

decreases.

Lasnexg simulations show that the Rayleigh-Taylor (RT)

inner radius of the z-plasma

instability modulates the z-

plasma thickness with a wavelength of approximately 1 rnrn, see Fig. 6. This simulation indi-

cates that the radiation source has a vmiation, b~~ 4- 30% for a wavelength of 1 mm. Note

however, that the amplitude is not the same for each bubble and spike. This indicates the pres-

ence of longer wavelengths.

The radiation flux incident on the capsule surface can be much more uniform than the radi-

ation source at the z-pinch plasma, which acts as the hohlraum wall. This is because radiation

incident on each point of the capsule is a solid angle weighted integral over the visible hohl-

7

.. .. . ... - -,-,. . r , .7-. . . . . . ,,. -+-...-.,-, ., ,? ...



‘

raum wall. We have performed these integrals in a “view factor” code. The hohlraum wall and

the radiation source were assumed to be a cylinder with a radius of Rhohland length Lhohl,with

a constant ratio LhOh&Oh#. The capsule was assumed to have a constant radius equal to the

initial capsule radius, rC.P.The radiation flux emitted from the hohlraum wall was given a sinu-

soidal axial variation with a fixed wavelength to simulate the effect of the RT instability. The

albedo of the walls was set to zero (due to present limitations of the view factor code), which

results in an underestimate of the effect of radiation smoothing. Calculations were performed

for several values of the ratio RhO#C, and the source wavelength, k, for fixed relative variation

of the source amplitude, 6F/Fo, where F. is the source amplitude without any variations due to

RT and rc is the capsule radius at the time of interest during its implosion. Calculations with

5F/Fo=0, result in an 34% variation of the radiation flux at the capsule from equator to pole.

This unperturbed equator to pole variation results from the end walls (the electrodes), which

are not radiation sources. This variation is reduced as the electrode albedo is increased to rea-

sonable values for gold (cz= 0.8 gives a 6% variation). The remaining variation, which should

be the same on each shot, can be compensated for by design, e.g. varying the thickness and/or

radius of the convertor as a function of axial position. In contrast, the variation caused by the

RT instability will be different on each shot. To assess the effect of the RT instability, we sub-

tracted this unperturbed variation from calculations with the sinusoidal perturbations and

expanded the results into Legendre modes. Since fusion capsules require a time averaged radi-

ation asymmetry of 170or better (summed over all modes), we inverted our results to find the

required source amplitude to obtain 1% variation on tie capsule, ~F1 t as a finction Ofthe ratio
R
&. The results are plotted in Fig. 7 for three different wavelengths, k=l, 2, and 4 mm. As

R
Cmcbe seen from the figure, 6FI is a strong fgnction of both-~_ and the wavel:ngti. The

results indicate that the ~ = 1 m.rn source variations of 30% see; in the Lasnex simulations

should be smoothed to approximately 1% at the capstie for tie ratio RhOhl/rC= 2.0. Adequate

radiation symmetry will be achieved if the ratio of the inner radius of the z-plasma over the

capsule radius is never smaller than approximately 2. We have solved eq. (4) to determine the

capsule radius as a function of time. Comparing this to the radius of the z-pinch as a function

of time we find that a ratio F~>0.5 is usually large enough to insure this condition is satisfied.

8



Note that the Lasnex simulations show that the RT introduces some

longer than 1 mm. If such longer wavelength modes have sufficient

structure at wavelengths

amplitude in the experi-

ments, larger values of F~may be needed to obtain adequate radiation symmetry.

We wish to calculate the initial radius of the convertor needed to isolate the capsule from

the imploding plasmas. The velocity will be affected by the collision between the z-pinch and

the convertor and also the magnetic acceleration. Using conservation of momentum the aver-

age velocity of the inner radius of the z-plasma for a thin convertor is found to be approxi-

mately

Mz (vZ(rZi~)+ vZ(rCO))
Vz =

(Mz + Mc) 2’
(9)

where the velocity, VZof the imploding z-pinch plasma without a convertor is found from eq.

A 1.8. The situation is different for a solid low density convertor, where the collision occurs

during the entire implosion. Assuming that shock has propagated

by the time the z-pinch/convertor radius reaches rfib we obtain the

average velocity,

( vz(rzib)Mz )1 VZ(rCO)+ Mz + Mc “vz=-
2

through all of the convertor

approximate express for the

(lo)

The initial outer radius of the convertor, rco, can be chosen so that the inner radius of the z-

plasma just equals rzib at the bang time of the capsule. We then find the initial outer radius of

the convertor to be

rco= rZi~+ VZTCaP. (11)

For solid low density convertors, rci = O, therefore a shock wave can arrive at the capsule

before the interface reaches rzibThis is a potential problem, because the shock wave could dis-

rupt the spherical symmetry of the fusion capsule. However. under appropriate conditions, the

ablation pressure is larger than the shock pressure and the shock will remain isolated from the

capsule. We call this ablative standoff. The pressure of the shock wave is given by the

expression 10
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2pcv;
P—Sh = y+l

where pc is the initial convertor density. The z-pinch

(12)

plasma acts as a piston driving a shock

wave into the convertor. The shock wave will move ahead of the interface. Assuming an ideal

gas with y= 5/3, the shock will move at 4/3 times the velocity of the interface. In addition the

shock will be accelerated by cylindrical or spherical convergence. Analytic solutions* 1 show

that the shock velocity is proportional to r-~ where p,= 0.226 for cylindrical and p= 0.45 for

spherical convergence. Thus the velocity of the shock, when it arrives at the capsule, is approx-

imately

4TZ rco P

()
v~=— —

3 rCaP “
(13)

The ablation pressure generates an outward flow of material which has a ram pressure given by

()
r 2

P
cap

ram = ~ Pabl’ (14)

where rCaPis the initial capsule radius and pabl is found from eq. (5). Note that the capsule will

not have imploded much at the time that the first shock arrives at the capsule. Setting pm =

P~h,we can solve for, ra&aP, the ablative standoff radius normalized to the capsule radius” The

result is

‘ab—= ~T//5(+),

‘cap %fic

where

‘lTHP ‘H
TH(tl) = ~=~>

cap s

(15)

(16)

is the hohlraum temperature when the shock arrives at the capsule, since the average shock

velocity is approximately

(17)

10
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where ~ = 1.63 for a cylindrical pinch and ~ = 1.93 for a quasi-spherical pinch.

If ra~ > rCaPthe incoming shock will be reflected outward. This reflected shock will typi-

cally reach the intefidce before&P, and S1OWincofing z-pinch plasma. Similarly a shock will

be reflected from the axis for Izl> rCaP.This reflected shock will also propagate outward and

slow the incoming z-pinch plasma, but because of the time delay the z-pinch plasma will be

distorted into a non-cylindrical shape. For simplicity we assume the z-pinch remains cylindri-

cal for our model calculations.

On the other hand, if the shock pressure is larger than the ablation pressure of the capsule,

the spherical symmetry of the capsule will be destroyed, unless the initial outer radius of the

convertor is large enough so that the capsule is isolated from the shock. This will be true if the

initial outer radius of the convertor is approximately

rco = ‘cap + ijqap . (18)

Note that this is considerably larger than the value given by eq. (1 1). The implies that the final

radius of the interface will be larger by the approximate factor 3/F~.Therefore, a solid conver-

tor will not work as well as a thin hollow convertor if ablative standoff is not operative.

There is some pinch length for a given capsule and accelerator that will generate the high-

est hohlraum temperature. However, our model is not able to find this optimum since the ana-

lytic solution for the pinch dynamics does not include the feed back between pinch length and

driving current. Therefore, we have simply fixed the length of the pinch at roughly 5 times the

5 Lasnex calculations indicatecapsule radius, which is the ratio chosen in the high yield design .

that the hohlraum temperature is a weak function of this ratio near this value.

D. Energy balance and radiation transport

The z-pinch plasma of mass Mz collides with the convertor of mass Mc. For thin conver-

tors, shock waves will travel completely through both of these regions, bringing them at rest

with respect to each other. This is essentially a simple inelastic collision so the energy available

to heat the materials and generate radiation is approximately

11
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‘A=‘k(Mc~Mj-
One might at first think that we should also use rzib

(19)

to compute the kinetic energy, since

work is being done by the magnetic field on the z-pinch plasma after first strike. However, once

the initial shock waves have propagated through both the z-pinch plasma and the convertor the

materials are at high pressure and will be difficult to compress further. Thus most of this work

will go into kinetic energy, which can not be converted into radiation until these plasmas stag-

nate on axis. Thus for thin convertors we shall use rco to calculate the available kinetic energy

from eq. (3).

The situation is more complicated for solid low density convertors, since the shock can

transit the convertor several times. This is because the shock can be reflected from either the

capsule ablation surface or the axis. For simplicity we will ignore the presence of the capsule.

The shock will reflect off the axis and return to the inner radius of the z-pinch plasma, when it

is at the position

p,-1
r2=—p,+~%o”

At this time the convertor material has been shocked

(20)

twice. The inward propagating shock

drove the convertor material inward at approximately 3VZ/4.Using the shock relations one can

show that the outward shock will bring the velocity of the convertor material back to zero and

(Mz:M~

2
the the energy that remains in the z-pinch plasma is approximately

z E~. When the

inner radius of the z-pinch plasma reaches rfib the available enere~ is then given by the expres-

sion .- -, .—.

E.= [P(Mz~MjNs]EK, (21)

where the shocks have crossed the convertor N~times with



()‘zib
21n ~

N~ =
p, :1 “

()ln p,+l

(22)

This expression yields an available energy significantly larger than is obtained for the annular

convertors. As an example, assuming Mc = Mz, EA~K = 1/2 for a thin convertor, but EA/EK

can be greater than 0.8 for a solid convertor.

A portion of the available energy is deposited in the convertor with the rest going into the

z-pinch plasma. We estimate these fractions from the following argument. In the center of mass

frame for the collision, two stagnation shocks will propagate away from the initial point of

contact. The material between these shocks will have little relative motion, so the pressure

must be nearly constant in these regions. Since pressure has units of energy density, the frac-

tion of the energy that goes into the z-pinch plasma will be approximately

dz
f-
Z dc+dz’

(23)

where ~, is the thickness of the convertor and dz is the thickness of the z-pinch plasma at first

contact. A portion of this ener=q will go to internal energy, while the rest will go into radiation,
i.e.

EA=E INT + ‘RAD- (24)

At any point in time, the radiation temperature will be nearly spatially constant within the con-

vertor and the hohlraum, since we have chosen a low opacity material for the convertor. We

define the hohlraum temperature, TH(t), to be the radiation temperature within this region. In

contrast, the radiation temperature will have significant spatial variation within the z-pinch

plasma due to the high opacity of this material. Let Rm be the ratio of the spatial average of

the radiation temperature in the z-pinch plasma as compared to TH, the ho~raum temperature.

To find Rm we need to solve the radiation transport to obtain the radiation temperature profile.

Then the total internal energy is given by ‘

E – Ez(Rz~T~)Mz + Ec(T~)MC,lNT –

13
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where EZ and EC are the internal energy functions for the z-pinch plasma material and the

convertor material. We approximate these functions with power law fits to data in the Sesame

*2 Assuming tungsten for the z-pinch material we obtainEquation of State package .

EZ(T) = 7.OX106T:$5pa15 J/kg, (26)

where Tevis the temperature in units of eV, and p is in g/cm3. Assuming CH2 for the convertor

the energy function is

EC(T) = 2.4x 108T::8 J/kg (27)

The energy that goes into radiation is composed of three parts

ERAD = Ecap+Ew+E5, (28)

where ECaPis the ener=~ absorbed by the capsule, EWis the energy absorbed by the electrode

walls, and Es is the energy radiated from the outer surface of the z-pinch plasma. The radiation

absorbed by the ICF capsule is given by the expression

Ecap = (1 - @4ncr~r~(t)Tfi(t )dt = (1 - czC)4ncr~apT&z,C, (29)

o

where ~b is the capsule bang time, ac is the effective albedo of the capsule, rc(t) is the capstde

radius as a function of time, TH(t) is the hohlraum temperature as a function of time, rCaPis the

initial capsule radius, and Zmis the effective capsule radiation absorption time as defined by

second equality. For solid convertors, ~b = ~cap,but for a.nnulm convefio~, ~b = ~cap+~rSince

the outer material of the capsule is chosen to effectively absorb radiation the albedo is low. We

use the value of 0.3, which is consistent with typical plastic ablator materials. A portion of the

electrode walls will be exposed to the hohlraum radiation (r< rti) as shown in Fig. 2. The radi-

ation lost to the electrodes is given by

where ~v=0.8, is the albedo of the wall, rzi(t) is the ra~us of the inner sufiace of the z-Pinch

plasma and the convertor as a function of time, and rco is the initial outer radius of the COnVer-

14



tor. Time dependent dynamic hohlraum radiation temperatures have been measured on the Z

accclcmtor. To compare our model with these experiments we parametrize the model calcula-

tions with respect to ~ to yield a crude time dependence. Note that this time dependence is not

fully self consistent since we assumed the form of TH(t) within the integral. For the rest of our

results we shall set ‘c= ~b and only ca~culate the peak hohlraum temperature, THP= TH(’rb).

The radiation lost from the outer surface of the z-pinch plasma, Es, is given by the expres-

sion

(31)

o

where rzo(t) is the outer radius of the z-pinch plasma from the time of first strike and To(t) is

the outer radiation temperature of the z-pinch plasma. Note the solution for the flux from a

plane photospherel” is F = 2aT~~, where TOb = TO(~b). The factor of two is due to the

increase in temperature going inward from the outer boundary. This factor of two is included

in eq. (31). The radiation temperature at the outer boundary of the z-pinch plasma can be deter-

mined as a function of the radiation temperature within the hohlraum by solving the radiation

transport through the z-pinch material (rti < r < rzo). Since the z-pinch material is highly

opaque we use the radiation diffusion approximation. The details are given in Appendix II.

E. The Rayleigh-Taylor instability

The z-pinch plasma will suffer disruption from the Rayleigh-Taylor (RT) instability as the

plasma is imploded. This will decrease the effective opacity of this region, since there will be

13 of Desjarlais andregions that are much thinner than the average, see Fig. 6a. The model

Marder indicates that approximately 90% of the z-pinch plasma materiaI will be in the Taylor

spikes. We shall use the shape shown in Fig. 8 where the curve is assumed to be quadratic.

Thus the overall thickness is 17 = r~in + az2 where the constant can be determined from the
2Z

ratio of the spike/bubble mass, R. The result is 17 = r~in( 1 + 3Rx2), where x = —. Since
ART

radiation transport depends on the Rosseland opacity we want to find the mean

Is
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(32)
Ross ~jn O 1 +3Rx2 = rmin&R”

For R=9 we obtain rRO~~=3.76rmin.Since 90% of the mass is in the spikes for R=9, the thick-

ness would be 10rmin without instabilities. Thus we shall multiply the opacity of the z-pinch

plasma by the factor, F~T = 0.376, to take into account the reduced radiation trapping that

results from the RT instability. As we show in section V, this leads to a reduction in the peak

hohlraum temperature by approximately 20 eV.

F. Numerical procedure ‘
I

The numerical procedure for using the model equations presented in this section to obtain

the peak hohlraum temperature is outlined in this subsection. The first step is to define various

physical quantities that define a specific dynamic hohlraum setup. These parameters include;

lP, the peak current (typically 20-60 MA); ~ the rise time to peak current (typically 100 ns); ac

and ~ the capsule and electrode wall albedos; F~, symmetry factor (r#CaP); rCaP,the initial

capsule radius; rzo, the initial radius of the z-pinch; LZ,the length of the pinch (typic~ly 5rcap);

vf, the final capsule implosion velocity (typically 35 cm/ps); dz, the thickness of the z-pinch

plasma when it first strikes the convertor (-2 mm); Mc/Mz, the ratio of the convertor over the

z-pinch masses. The capsule implosion time is determined by eq (6) for a thin annular conver-

tor or eq. (7) for a solid convertor. The radius of the inner surface of the z-pinch plasma, at cap-

sule bang time, is determined from F~ and the capsule radius. The outer radius of the z-pinch

plasma at capsule bang time, rZ&,is given by the expression rzob = rzib + dZ/4 where we have

assumed the z-pinch plasma has been compressed by a factor of four due to the strong shock

produced by the collision with the convertor. The mass of the z-pinch plasma is determined

from eq A1.6, where ct = Ofor a cylindrical pinch and et = 1/3 for a quasi-spherical pinch. The

convertor mass is then determined by the ratio Mc/Mz The average velocity of the inner sur-

face of the z-pinch plasma, 7Z, can be calculated from eqs. (9)-( 11), and Al .8. This also yields

a value for the initial outer radius of the convertor, rco. The average shock velocity is then

found from eq. (17).

16



At this point we make an initial guess at the peak hohlraum temperature, THP Using this

temperature wc will define a function, which will be zero only if the correct temperature was

chosen. The solution to our problem will then be to find the root of this function.

The kinetic energy of the pinch, EK, is found from eq. A 1.7. The energy available to heat

the materials, EA, is found from eq. (19) for thin annular convertors. Otherwise for solid con-

vertors, eqs. (21) and (22) must be used to find the available energy and we must solve for

ra@C,using eqs. (13) and (15). The available energy will be divided into the internal energy Of

the convertor and z-pinch materials and to radiation. The internal energy is determined by eq.

(25). This result depends on the ratio, Rz~, of the average radiation temperature within the z-

pinch plasma over the peak hohlraum temperature. The temperature profile within the z-pinch

plasma is determined from eq. A2.8 (for cylindrical pinches) or from eq. A2.9 (for quasi-spher-

ical pinches), where the opacity is determined by eq. A2.6 multiplied by FRTto account for the

decreased mean thickness of the z-pinch plasma which results from the RT instability. The

radiation absorbed by the capsule is determined by eq. (29) and the radiation absorbed by the

electrode wall is determined by eq. (30). The remaining energy must be radiated from the outer

surface of the z-pinch plasma. This energy, Es, defines the radiation temperature, TO,at the

outer surface of the z-pinch at bang time through eq. (31), and also the specific energy deposi-

tion rate through eqs. (23) and A2.3. Setting r = rti in eq. A2.8 (cylindrical) or eq A2.9 (quasi-

spherical) we can solve for the hohlraum temperature to obtain a new value, THP. Consistency

requires that we find the root of the equation

f(THp) = ~HP – THP, (33)

which we do numerically.

III. Model results compared to experiments

A number of experiments have been performed on the Z accelerator to study the behavior

14 In this section we shall compare our model calculations to some ofof the dynamic hohlraum .

these dynamic hohlraum experiments. These comparisons are made for the purpose of bench

17

.. . ... .....wm -m — .. -,-., .- ... ,,..-.



marking the model so that we can have some confidence in model calculations using drive cur-

rents that are not presently accessible to experiment.

A. Foam convertor experiments

Two experiments were performed on the Z accelerator using solid cylindrical convertors

composed of low density plastic foam. On shot 291, the outer foam radius was 4 mm with a

density of 6 mg/cc. On shot 297 the radius of the convertor was 2.5 mm and the foam density

was 14.3 mg/cc. The mass of the convertors were approximately equal in these two experi-

ments. The rest of the experimental set up-was the same for these two experiments. A current

pulse rising to approximately 20 MA in 100 ns was delivered to a 1 cm long array of 240 wires

at initial radius of 2 cm. An inner array of 120 wires was located at a radius of 1 cm. The pres-

ence of the inner “nested” array reduces the effect of the RT instability on the z-pinch

imp10sion15.The wires had a diameter of 7.5 pm and were composed of tungsten. The total

mass of the outer array was 2 mg, while the inner array had a mass of 1 mg. The radiation tem-

perature was measured by a set of x-ray diodes, bolometers, and time-resolved x-ray pinhole

cameraslb The hohlraum radiation for shot291 and 297 are plotted (symbols) as a fimction of.

time in Figs. 9. and 10. As can be seen the hohlraum radiation temperature is considerably

higher for the sm~ler radius convertor.

To model these experiments we assume that a single wire array of mass 3 mg at an initial

radius of 1.73 cm, which is the mass weighted mean of the’nested arrays. The incoming z-

pinch plasma was assumed to be 2 mm thick when it first makes contact with the convertor.

This thickness is roughly consistent with the radiation pulse widths that have been observed15

in nested wire array pinches that are allowed to stagnate on axis. The para&eter ‘cin eqs. (30)

and (31) was used to generate a rough time dependence to compare to the data. These results

are also plotted (solid line) in Figs. 9 and 10. As can been seen the agreement between the

model and the experiments is quite good. In fact the agreement may seem surprisingly good

given the number of approximations that have been made to construct the model. However, one

should keep in mind that the radiation temperature is determined by the fourth root of the radi-

ation flux, which is detemtined by energy balance, and is therefore not very sensitive to errors.

!
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There arc several reasons for the higher tempemture in the smaller convertor. At any time

after the collision between the z-pinch and the convertor, the outer radius of the z-pinch plasma

is larger for the larger convertor. Thus the outer surface area is larger. Initially the ratio is

4/2.5= 1.6, but the ratio increases with time. In addition, the electrode area within the pinch is

proportion to the square of the inner radius of the z-pinch plasma. The radiation losses are pro-

portion to these two areas. Furthermore, at any time after first strike, the fraction of the pinch

kinetic energy that has been thermalized is smaller for the large convertor than the smaller con-

vertor. As an example, at 6 ns approximately 1/2 of the kinetic energy of the z-pinch has been

thermalized for the small convertor, but only. about 1/4 of the kinetic energy has been thermal-

ized for the large convertor. This is because the shock velocity is about the same in both cases

but the convertor density is approximately 2.4 times higher for the small convertor.

B. Copper Mass Scan

An inertial fusion capsule could be imbedded in a solid foam convertor as was studied in

the last sub-section. However, the initial low temperature (Tmd - 100 eV) radiation wave

needed to set the capsule implosion on a proper adiabat can arrive at the capsule equator signif-

icantly before it arrives at the poles. This is because the radiation wave travels at much less

than the speed of light even in a low density plastic foam. This timing difference would result

in an asymmetric implosion, without some design mitigation such as a quasi-spherical pinch.

The arrival asynchrony could be substantially reduced by using hollow convertors, since the

radiation wave would then move at the speed of light. Such a hollow convertor must have an

initial radius large enough so that the capsule implodes before the convertor collapses on the

capsule. Initial model calculations and detailed numerical simulations suggest that the hohl-

raum temperature should be a weak function of the ratio of the convertor mass over the z-pinch

plasma mass and that increasing this ratio should delay stagnation on axis. This would allow a

smaller initial radius of the convertor and thus a higher hohlraum temperature.

A series of dynamic hohlraum experiments were performed on the Z accelerator to test this

hypothesis. Four shots were performed using the nested wire array configuration described in

the last sub-section. The convertor consisted of a 1 cm long copper tube with a 2.5 mm radius.
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The wall thickness was different for each shot to provide a scan in the ratio of the convertor to

z-pinch mass. The wall thicknesses were 1.8, 3.7, 9.2, and 9.4 ~m, with the corresponding

ratios Mc/Mz = 0.8, 1.6,4.0, and 4.1. The hohlraum temperature was determined by measuring

x-rays through a 2 mm radius aperture on one end of the dynamic hohlraums. The results are

shown in Fig. 11 as plots of hohlraum temperature as a function of Mc/Mz These data (sym-

bols) are compared to calculated temperatures using our model (solid line). The agreement is

pretty good for small mass ratios; however, the data exhibits a somewhat stronger dependence

on the mass ratio than predicted by the model. This maybe due to the opacity of copper, which

has not been included in the model. An optimum convefior should be of a low opacity material

such as pl@.iCfoam.

IV. Model results compared to detailed numerical simulations

The model equations described above are easy to solve numerically. An important benefit -

of such a computationally simple model is that it is easy to obtain many solutions and thus

uncover various trends. In the previous section we obtained the hohlraum temperature as a

function of the ratio of the convertor/z-pinch mass, M@4z for copper convertors, see Fig. 11.

Notice that the hohlraum temperature is a weak function of the mass ratio. This is because

increasing the convertor mass extracts more energy from the inelastic collision (see eq. (19)),

but more energy goes into internal energy.

We shall now look at the variations with respect to the initial radius of the z-pinch plasma.

The convertor is still assumed to be a thin (2 mm thick) annulus, but composed of a plastic

foam which has less opacity than copper. For each value of the initial radius of the z-pinch

plasma, the mass ratio MC/Mz is optimized to obtain the highest hohlraum temperature. The

resulting hohlraum temperature (normalized to TOPt= 134 eV) is plotted in Fig. 12 as a func-

tion of the initial radius of the z-pinch, ro. In this example the capsule radius is 1 mm, the drive

current rises to 20 MA in 100 ns, the z-pinch plasma is 2mm thick just prior to first strike, and

F~= rti@CaP= 2. The initial convertor radius determined by eq. (10) is found to be approxi-

mately 5 mm. Notice that the hohlraum temperature is a fairly strong function of the initial z-
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pinch plasma radius for values below optimum. This is because small initial radii require large

z-pinch plasma masses to maintain the correct implosion time and thus most of the kinetic

energy goes into internal energy rather than radiation. The function is weak for initial radii

greater than optimum because the reduction in mass is compensated by the increase in the radi-

ation lost, since the degree of radiation trapping is reduced. However, this we&”behavior prob-

ably does not continue for arbitrarily large initial wire radius, due to the RT instability. One

would expect that a RT bubble would break through the z-pinch plasma if the initial radius is

too large. Furthermore, the optical depth of the z-pinch plasma is less than unity for the large

initial radii so the diffusion approximation is no longer valid. Fofiunately, this is clearly not the

region of interest.

In our next example, the symmetry factor, F~,is varied, while the initial radius and the mass

ratio Mc/Mz are both optimized. The results are shown in Fig. 13. l’wo curves are plotted.

Parameters corresponding to the performance that can be expected from the existing Z-acceler-

ator were used for the dotted curve. Here the current rises to a peak value of 20 MA in 100 ns

and the capsule radius is 1 mm. The model indicates that r. = 2 cm, Mc/MZ = 2, and Mz~ =

3 mg/cm are near optimum. Parameters corresponding to the performance. that could be

expected from an advanced accelerator were used to generate the solid curve. Here the current

rises to 60 MA in 100 ns and the capsule radius is assumed to be 2 mm. Optimum parameters

are found to be; rzo= 3 cm, M@lz=3, Mz~ = 15 mg/cm. We have omitted-the correction for

the RT instability, FRT,so that these results could be directly compared to 1-D numerical simu-

lations using the detailed radiation hydrodynamics code LASNEX9. The optimized values of

the initial radius, z-pinch mass and the convertor mass were used to set up-~ese simulations.

The convertor was chosen to be CH plastic foam, with an initial inner rati-fislet to rfib, and an

initial outer radius determined by eq. (11). A thin layer of gold (0.4f.Lm)on he outside of the
..- . .

convertor was found to reduce the ablation in response to the mughiy 30 eV radiation gener-
. .

ated in the z-pinch plasma during the implosion phase. The z-pinch plasma (tungsten) was ini-

tiated with a thickness of 1 mm as an approximation to the conditions expected after the wire

array undergoes the initial ohmic heating. An external circuit was used to ~enerate the z-pinch

current with lumped circuit elements (R- 1/8 ohm, L= 12 nH) and a time-dependent voltage.
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The current rose to ape&-value of 20 MA for Z parameters (dotted curve) and 60 MA for a

hypothetical next generation X machine (solid curve) in approximately 100 ns. The implosions

occurred at about 135 ns. Absorption of radiation by the capsule was simulated by a radiation

leak of the same surface area as each respective capsule. The average hohlraum temperatures

over the capsule Implosion”time are plotted as diamonds for Z parameters and as squares for X

parameters. As can be see”n:ihereis good agreement between these simulations and the model
. .

calculations. This iIl&t~iites tle usefidness of such a computationally simple model, since per-

forming the double op~fi%ation with a detailed simulation code would take a long time. The
,-

results of Fig. 13 indicate that decreasing the value of F~substantially increases the hohlraum

temperatures. However, tl-ie=ifmulationsshow that the convertor will be driven into the capsule

before it is fully imploded if F~is too small. The numerical simulations indicate that F~must be
. . . . . .

greater than 1.5 to hydrodynamically isolate the capsule. This would limit the peak hohlraum
.

temperature to approximately” 230 eV, when the effect of the RT instability is included, even

with a 60 MA drive current. Smaller values of F~ and hence higher temperatures are possible

using solid foam convertors because of a phenomenon we call ablative standoff. This is

described in the next section.

V. Scaling Results

A. Ablative Standoff—

A low density solid foam convertor has two important advantages over thin annular conver-

tors. First, the fraction of the collision energy that goes into shock heating the z-pinch plasma..

decreases as the convertor-density is decreased, see eq. (23). This will decrease the outward

radiation losses and result in higher hohlraum temperatures. Second, the transit time of the

shock through the convedor can be as long as the implosion time of the capsule. This continu-

ous heating can result in a rising hohlraum temperature during the capsule implosion. Proper

density profiling of the..ccmvertor should result in “pulse shaping” which can drive an isen-

tropic implosion.. In fact, numerical simulations indicate that a nearly isentropic implosion

results without any density profiling. Furthermore, these simulations indicate that the z-pinch



pkusmticonvertor does not crush the capsule even though the radius of the interface is less than

the original capsule radius at the time of the capsule implosion, i.e. F~<1. This is in spite of

the fact that near the electrodes a shock wave has been driven all the way to the axis before the

capsule implosion. The shock wave does not destroy the symmetry of the capsule due to a phe-

nomenon that we shall call “ablative standoff’. The shock is isolated from the imploding

portion of the capsule by the outward moving material that has been ablated from the capsule

by the hohlraum radiation field. This shock isolation or “ablative standoff” only occurs if the

ablation ram pressure is larger than the shock pressure. The equations describing this process

are given in section II C. The general requi~ements are high radiation temperatures and low

convertor densities. Since the capsule symmetry is not adversely affected by the incoming

shock, ablative standoff allows small values of F~, which implies higher hohlraum radiation

temperatures. This is true for several reasons. More z-pinch kinetic energy is available when

the pinch is driven to a smaller final radius. Less radiation is lost because of the smaller final

radius. Furthermore, the incoming shock will be reflected from both the axis and the capsule

ablation material. This outward reflected shock will further slow down the incoming convertor

and z-pinch plasma turning this kinetic energy into heat. Since the shock reflection occurs ear-

lier at the capsule equator than elsewhere, the z-pinch

forming a somewhat spherical hohlraum. These effects

raum than would be produced by an annular convertor.

The results of a model calculation assuming a peak

plasma will wrap around the capsule

all conspire to produce a hotter hohl-

drive current of 55 MA, a risetime of

100 ns, and an initial z-pinch radius of 1.8 cm is shown in Fig. 14. These parameters are the

same as those used in the recent high yield design5. The results are plotted as a function of the

ratio M&z. The peak hohlraum temperature has a maximum of approximately 260 eV for

Mc/Mz -0.8. This is substantially below the value of about 300 eV that was observed in

detailed numerical simulations of the high yield capsule5. However, the numerical simulations

did not include the effect of the Rayleigh-Taylor instability and radiation loss to the electrode

surfaces. Indeed, removing these effects from our model increases the calculated peak temper-

ature to approximately 290 eV, which is close to the results of the simulations. Improvements

have been made to the simulation code that will allow the inclusion of these effects and one of
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us (J.S,L.) will revisit these design calculations. It will be interesting to see if the peak temper-

ature is reduced by a significant amount as our model predicts.

The ratio of ablation standoff radius to the capsule radius, ra@-CaP,is a decreasing function

of Mc/Mz, because the initial shock pressure depends on the convertor density. The number of

shock transit times, NS, is approximately three, whi,c~.means that a second shock will usually

reach the capsule before it is fully imploded. This shock will be stronger than the first shock

due to the higher convertor density and could possibly. damage the-symmetry of the capsule.

However, the hohlraum temperature will be roughly at its peak value when the second shock

arrives and the ablation pressure may still be able to standoff this second shock. We do not

think it is practical to include the standoff of the second shock in our simple model. However,

the ablation pressure was sufficient to provide standoff of the second shock in the detailed

numerical simulations. The ener=~ accounting is shown in Fig 14 c). The kinetic energy of the

z-pinch was approximately 7 MJ and is not a function of the ratio Mc/Mz. However, the

energy available for heating monotonically rises with Mc/Mz This is the reason for the initial

rise in the hohlraum temperature as Mc/Mz increases. The temperature reaches a maximum

and then starts to fall slowly because of the extra mass that must be heated. This can be seen

from the behavior of the curve labeled, EN

The behavior of the dynamic hohlraum as the initial radius of the z-pinch is varied is shown

in Fig. 15, where, 1P= 55 MA, rC-P= 2.75 mm, and F~= 0.6 The optimum convertor mass is

found for each value of the initial radius, rzo. For small initial radii, an increase in the initial

radii increases the hohlraum temperature because the energetic is dominated by the internal

energy, Em, which decreases due to the smaller z-pinch mass. Continuing to increase the ini-

tial radii results in too small a z-pinch mass to effectively trap the radiation. This effect is seen

in the functional behavior of the outer temperature of the z-pinch plasma at capsule bang time,

TOb,the optical depth, and the radiation energy lost from the outer surface of the z-pinch

plasrm, ES. The maximum hohlraum temperature occurs for an initial radius of approximately

1.9 cm, which happens to be very close to the value used for the high yield design.
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The hohlraum temperature as a function of the drive current for optimized values of the

convertor mass and the initial z-pinch radius is shown in Fig. 16. A capsule the size of the high

–2.75 mm has been assumed. The optimum ratio MC/Mz is found to beyield capsule, i.e. rCaP–

nearly constant at 0.8 so we have not plotted it. The available energy rises as the square of the

drive current, but due to the fourth power dependence of the radiation 10SSthe hohlraum tem-

perature rises approximately as the square root of the current. The degree of radiation trapping

increases with drive current as seen by the number of optical depths, ~, in the z-pinch plasma.

The fraction of the available energy that is lost to radiation and that is absorbed by the capsule

is nearly independent of the drive current. The optimal initial radius of the convertor only

increases from 1.2 cm at 1P= 20 MA to 1.5 cm at 1P= 60 MA, but this results in a significant

change in the foam density. A foam density of 2 mg/cc is optimal at 20 MA, which is the cur-

rent that can be produced by the existing Z accelerator. However, the minimum foam density

the can be can be produced by the present state of the art is approximately 5 mg/cc, so the opti-

mum design may not be practical at low current drives. Notice also that the ablation standoff

radius is nearly the capsule radius at the lower current drives. Reducing the capsule radius to

1.5 mm results in higher radiation temperatures arid optimal foam densities (rCO-0.7 cm) as

seen in Fig. 17, but the ablative standoff is still marginal. Clearly detailed numerical simula-

tions and experiments will be needed to determine if ablative standoff can be used with current

drives less than about 40 MA.

B. Radiation Trapping

A significant uncertainty affecting the performance of the dynamic hohlraum is the degree

of radiation trapping that will be achieved by the z-pinch plasma once it implodes onto the con-

vertor. The computation of the opacity of high Z materials is extremely difficult and thus prone

to error. Furthermore, as discussed in section II E, the RT instability will reduce the effective

optical depth of the z-pinch phsma due to the bubbIe and spike structure. In this section, we

explore the sensitivity of the dynamic hohlraum performance to such uncertainties in the

degree of radiation tmpping. For this study, we have multiplied the opacity in our model calcu-

lations by the variable factor Fop rather than the fixed factor FRT-0.37. The results are plotted
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in Fig. 18. The solid lines are for advanced accelerator performance as would be expected on

the proposed X machine, i.e. a drive current of 55 MA and a capsule radius of 2.75 mm. The

dotted curves are performance that could be expected on the existing Z machine, i.e. a drive

current of 20 MA and a capsule radius of 1.5 mm. The results indicate that the hohh-aum tem-

perature is reduced by approximately 10-15 eV when FO~F~T-0.37, which corresponds to the

RT corrections that have been made in the previous section. As might be expected the perfor-

mance falls off faster as Fop decreases. As seen in Fig. 18b, the fraction of the available energy

for heating that is lost by radiation increases as Fop decreases. This fraction is larger for the Z

parameters because the mass of the z-pinch is much smaller. The ratio ra#CaP indicates

strength of the ablative standoff, which is considerably larger for X parameters. We assume

that ablative standoff will not be effective when ra&aP <1. It should be noted that stagnation

of the z-pinch plasma against the convertor may increase Fop above our estimated value of

0.37 with a significant benefit to the hohlraum performance. It may also be worth using opacity

cocktails to improve radiation trapping.

C. Axial Convergence

Axial convergence of an initially cylindrical z-pinch will occur if the z-pinch material has

an appropriate axial mass profile, i.e. heavier at the midplane lighter at the ends. The determi-

nation of the initial mass profile that will provide a quasi-spherical final configuration can most

readily be found by trial and error. Since this could require many iterations, we developed a

simple 2-D numerical model of an imploding z-pinch. We assume azimuthal symmetry and

represent the z-pinch as a number of particles (actually rings). We assume a fixed current wave

form typical of a z-pinch shot on the existing Z accelerator and calculate the I x B force on

each of these particles and then move them accordingly. The model ignores the effects of mate-

rial pressure. Furthermore, the evolution of the pinch can only be simulated until a pair of par-

ticles crosses. Thus a relatively small number (10-15) of particles can be used. Despite these

limitations, the model has proved to be very useful for finding mass distributions that result in

quasi-spherical finaI configurations. The results of such a simulation are shown in Fig. 3. The

position of particles, marked with the symbol+, are shown at various times during the implo-



sion. Initially pinch was cylindrical with a radius of 2 cm and axial length of 1 cm. The initial

mass/length, A, is given by eq. (l). As can be seen the final shape is nearly spherical, which

should provide better coupling to the spherical inertial fusion capsule. Similar results have

been obtained by others7. There are several potential advantages to using an axially convergent

or “quasi-spherical” z-pinch to drive a dynamic hohlraum. First, the outer surface area of a

quasi-spherical z-pinch is smaller than for a cylindrical pinch, which reduces radiation losses.

Second, the areal density of a quasi-spherical z-pinch is larger than a cylindrical z-pinch of the

same mass. This further reduces radiation losses. Third, the nearly spherical final configuration

should provide better macroscopic radiation uniformity (not referring to the RT effects dis-

cussed earlier).

Detailed numerical simulations will be needed to determine if an axial convergent z-pinch

can improve the radiation uniformity, but we have used our model to predict the improvement

in hohlraum temperature that results from the first two advantages. The results are shown in

Fig. 19. The results indicate an increase of approximately 20 eV nearly independent of the

drive current. Although this may not seem like a large improvement, one must remember that

the radiation intensity is proportional to the fourth power of the temperature, so this represents

an improvement in the radiation intensity of 35% at 60 MA and 75?Z0at 20 MA. Inspection of

Fig. 19b reveak that the foam density is substantially lower for the quasi-spherical z-pinches.

This is because the initial convertor radii are about the same in either the cylindrical or the

quasi-sphericaI pinches, but there is greater volume compression in the quasi-spherical

pinches. Presently the lowest foam densities that can be fabricated are approximately 5 mg/cc.

To determine the importance of this limitation on the fabrication of foam convertors: we have

calculated the hohlraum temperature with the convertor density fixed at 5 mg/cc. The results

are shown in Fig. 20. We have chosen a capsule radius of 1.25 mm for these calculations

because the model predicts that larger capsules will not exhibit ablative standoff at drive cur-

rents as low as 20 MA with this foam density. The results indicate that the temperature increase

in a quasi-spherical pinch is approximately the same even if the foam is higher than optimal,

i.e. 5 mg/cc. Of course, the temperatures for both cylindrical and quasi-spherical are somewhat

lower.
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There is another potential problem with the axially convergent z-pinches. The initial mass

profile used to shape the pinch as it implodes, also seeds the Rayleigh-Taylor instability. Some

numerical details of the seeding and the growth of the instability are worked out in Appendix

111.To investigate the stability behavior of mass profiled z-pinches we have performed 2-D

numerical simulations with the MHD code MACH217. This code calculates all three compo-

nents of the velocity and magnetic field vectors on a Arbitrary Lagrangian/Eulerian (ALE)

mesh. The electron, ion, and radiation temperatures are calculated. Generalized Ohm’s law and

tabular equations of state are used. An important feature of the code is that it can handle com-

plex shapes. Density contours at a time near final collapse for two simulations are shown in

Fig. 21. The initial mass/length profiles were calculated using eq. (l). The coefficient a2=-0.06

for both simulations. The coefficient a4=0.024 for the upper half of the density contour plot,

while a4–4.026 for the lower half. Note the clear development of the Rayleigh-Taylor instabil-

ity even though no random density seed was used in these calculations. In contrast, simulations

performed with uniform massllength and no random seed show no development of instability.

Furthermore, the two simulations show significant variation even though the mass/length var-

ied by only 0.2% between these two simulations. These simulations suggest that the z-pinch

mass profile must be achieved with considerable accuracy to obtain a desired configuration.

These simulations used a mesh size of 156 p. The effect of the RT instability is considerably

larger for simulations performed with half this cell size as seen in Fig. 22. These results clearly

demonstrate that obtaining a well behaved z-pinch implosion with axial convergence by tailor-

ing the mass profile may be very difficult. Since axially convergent pinches should increase the

peak hohlraum temperatures and may help improve radiation symmetry the approach should

be tested experimentally. However, considerable care will be needed to insure the mass profile

is created with sufficient accuracy.

VI. Conclusions

We have presented a quasi-analytic model of the dynamic hohlraum, which includes most

of the important physics for determining the hohlraum radiation temperature. The model

includes the z-pinch implosion dynamics, the conversion of the z-pinch energy into heat and
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radiation, the loss of radiation to the electrode walls and through the z-pinch plasma, and radi-

ation absorbed by the capsule. This model has been used to determine the expected perfor-

mance scaling (peak hohlraum temperature) of the dynamic hohlraum as a function of the

many parameters that determine this system. As an example, the model has been used to com-

pute hohlraum temperatures within dynamic hohlraum experiments using a solid foam conver-

tor. The results are in good agreement with the experimental data. Calculations of the peak

hohlraum temperature as a function the ratio of the convertor mass to the z-pinch mass have

also been compared to experimental data. The agreement with this data, which was obtained

using annular copper convertors, is not quite.as good as for the foam convertors, but still within

about 10 eV.

The model has been used to find the optimum values of the ratio of the convertor mass to

the z-pinch mass and the initial z-pinch radius for annular convertors. Detailed 1-D Lasnex

simulations using these optimized values compared well to the results of our model. The

results show that the peak hohlraum temperature is a strong function of the ratio of the radius

of the interface between the z-pinch plasma and the convertor over the capsule radius. Smaller

values result in higher temperatures. We have presented Lasnex and view factor calculations

that indicate adequate radiation symmetry can be obtained if this ratio remains larger than two,

which corresponds to F~= rZi~rCaP>0.5. Note that since the capsule is imploding while the z-

pinch plasma is moving inward, the minimum radius of the interface, rfib, can be smaller than

the initial radius of the capsule, rCaP.Small values of F~leads to high peak hohlraum tempera-

tures, which are suitable for driving fusion capsules. If radiation temperature variations

induced by the RT instability are larger (>30%) or the wavelengths longer (-1 mm) than indi-

cated by the Lasnex simulations, the symmetry factor will need to be larger, with an associated

decrease in the peak hohlraum temperature. Therefore, the determination of the wavelength

and amplitude of the radiation source variations produced within the convertor by the RT insta-

bility is a critical importance toward determining if the dynamic hohlraum concept is a viable

approach to inertial confinement fusion. Experiments are planned to determine both the wave-

length and the radiation temperature variations induced by the RT instability.
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We have used the model to investigate dynamic hohlraum performance using a solid foam

convertor, which has been used in a recent high yield design5. The Lasnex calculations of the

high yield design show a phenomenon that we call “ablative standoff”. The inward shock wave

generated by the z-pinch plasma colliding with the foam convertor does not penetrate to the

inside of the capsule because of the o“utwardmotion of the radiatively ablated material. We

have calculated the radius of the standoff point as a function of drive current and capsule size.

We find that ablative standoff works well at the high current drives needed for a high yield cap-

sule, but not as well at the lower current drives that are presently available. Thus it maybe dif-

ficult to demonstrate this phenomenon without an upgrade to the existing accelerator.

Scaling of the hohlraum temperature with the degree of radiation trapping has been deter-

mined using the model. The results indicate that a decrease in the effective optical depth of the

z-pinch plasma by a factor of two results in a decrease of about 10 eV in the peak hohlraum

temperature. The degree of trapping might be improved by using a cocktail of materials to

increase &e opacity. This would be most beneficial for demonstrating ablative standoff with

relatively low current drives.

A z-pinch will undergo axial convergence if the initial z-pinch has an appropriate mass pro-

file. The final shape near stagnation can be nearly spherical (quasi-spherical). We have used the

model to estimate the performance advantage of quasi-spherical z-pinches over purely cylin-

drical pinches. The results indicate that the quasi-spherical dynamic hohlraum should reach a

temperature of roughly 20 eV higher than a purely cylindrical pinch. This result is nearly inde-

pendent of the drive current. Unfortunately, we also show that the mass profile needed to pro-

duce axial convergence provides a seed for the Rayleigh-Taylor instability. We demonstrate

this both analytically and numerically. Experiments should be performed to determine if this

approach can be made to work.
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Appendix I: Analytic z-pinch solution

Analytic solutions for cylindrical and axially convergent z-pinches are derived in this

appendix. The equation of motion for a cylindrical z-pinch is given by the expression

d2rZ BZ
M= = –~OAZ(rZ), All

where Mz is the total mass of the z-pinch plasma, rz is the radius of the pinch, B is the strength
I@

of the B-field produced by the z-current, B = —. To include z-pinch implosions with axial
2zr

convergence we use the expression for the area

()
a

AZ(rZ) = 2rcrZLz L
‘Zo

where ~ is the length of the pinch, ~ = Ocorresponds to cylindrical convergence, and u = 1/3

corresponds to the axial convergent pinch depicted in Fig. 3. A solution to Eq. A 1.1 is found by

using the trial solution

‘z=‘4-(:)’Y
where $ is the time to stagnation. Substitution into eq.

and~=l

observed in

A1.3

Al. 1, reveals that the choice ~ = 4,

yields a solution with a drive current that rises linearly

the experiments. The result is

12 =
l~h@@ll-(;Y)l-a

‘z= ‘ZO(l-(;Y)

with time as is typically

A1.4

A1.5

-.-,- ,. — ,7*. —..
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(3-2c$-awhere 1Pis the peak current, and h(~) =
(2-2ct)l -~”

The normalized drive current and z-pinch radius for a cylindrical pinch (cc==)are shown in Fig.
$

4. The rise time to peak current is t, = , the pinch massllength is
(3-2tx)1j4

(3 - 2a)2-a
where f(cx) = . The kinetic energy of the pinch is

12(2 –2ct)l-a .

EK =
(%) 2(’-:Y’2

.g(~)Lz An $

A1.6

A1.7

3

2(3- 2c@-a
where g(ct) = The velocity of the pinch can be found easily from eq. A1.5.

3(2–2u)] -a”
The result is

4rZ0 rZ 314
vZ(rZ) =

()
—1 ——.

‘P rzo
A1.8

We have compared the analytic solution for the kinetic energy of the pinch to a numerical solu-

tion with lumped circuit elements which approximates the current provided by the Z accelera-

()
tor. The voltage is assumed to be of the form V = 5.5 sin ~ MV, which drives current

through a series inductance of 11.4 nH and resistance of 0.12 oh&. The results of this compar-

ison is shown in Fig. 5 The agreement is very good up to a convergence ratio of approximately

10. Since the dynamic hohlraum stagnates on a convertor the convergence ratio (-4) is substan-

tially less than 10 and the analytic solution should not introduce significant emor.

Appendix II: radiation transport solution

The z-pinch plasma is of high opacity so that it can effectively trap the radiation. Therefore

the diffusion approximation is appropriate with the radiation flux given by the expression



46 d ~d
F = -——

3Kpdr “
A2. 1

where o is the Stefan-Boltzmann constant, K is the opacity, TR is the radiation temperature,

A2.2

and p is the density. In steady state energy conservation yields the expression

V.F=& .

The specific power, E, deposited in the z-pinch plasma is given by the expression

fzE~
&— A2.3

= vzTr~

where Vz is the volume of the z-pinch plasma, EA is given by eq. (19) or eq. (21) and EN is

given by eq. (25). For cylindrical geometry Vz = ~(r~,b – r~ib)Lz ~d for sPheric~ geometry

Vz = ~m(r~o~– r~ib). We shall assume that E is constant and thus Eq.

grated.

The radiation flux within the z-pinch plasma for cylindrical geometry is

A~.4

J2s
where the condition F(rZOb)2nrZObLz= ~ has been used to determine the constant of

rs

integration.

The radiation flux for spherical geometry is

A~.5

Es
where the condition F(rZOb)4nr~Ob= ~ has been used to determine the Constmt ‘f

rs

integration.

Lind18gives the power law fit to the opacity of gold
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K -p 0.3,
= ‘OTlwp A2.6

where ~ = 1.5 , K. = 6x103 cm2/g, and T~~vis the temperature in units of 100 eV. This

should be a reasonably good approximation for the opacity of tungsten. Using this relation eq.

A2. 1 can be put in the form

F d 4+= -~ZT~ ~ , A2.7

166where ~ = and i?= 1-3.Eqs. A2.4 and A2.7 can be combined and integrated.
3R(4+p) K(JP

The result for cylindrical geometry is

A2.8

where TOis the radiation temperature at the outer surface of the z-pinch plasma. The result for

spherical geometry is

A2.9

Appendix III: Axial Convergence and the Rayleigh-Taylor Instability

In this appendix we show that a nonuniform mass profile can seed the Rayleigh-Taylor

(RT) instability. The mass profile can be expanded in a Fourier series

A(z) = Ao( 1 + a2Z2) = ~ (Ancos(2mz) + Bnsin(2nnz)), A3.1
n=O

where we have only retained the dominant quadratic term in eq. (1). The Fourier coefficients

()

a2 Aoa2 Aoa2
are A. =Aol+7, An=— and Bn =-.

(rm)~’ nrc

The one dimensional equation of motion for a cylindrical pinch is

A3.2



Solutions to this equation for constant mass/length, A, are found in the Appendix I. The result

is rZ(~) = rZO(1 -74) where ~ = ~. We can find solutions for small variations in A by linear-
‘P .

ization. Let rZ(z, z) = rZ(~) + A(~)elkz and A(z) = AO(1 + ~eikz), where k=2tik. The first

order equation is then

6(1 -T4)- 125 = 1272(1 -7’$), A3.3

where the derivative is with respect to z and 6=A/rzo.The equation has the solution

( 2 6+O(d)bw-s~ ) A3.4

The spatial modes will grow exponentially when they reach sufficient amplitude. Using the 1-

r
D cylindrical solution for the acceleration, a, and the Takabe formula8 y = ~ }~L for the

s
RT growth rate we find

Jydt=m:” A3.5

where L~is the effective density scale length of the z-pinch plasma. Comparing this to the alge-

braic solution we find that exponential growth takes over at time

(
2(LZ + 4nnLs) 114

‘ce =
6znrzo )

A3.6

Since L~is small compared to rzo, and ~ is small comp~ed to 3rZo,exponenti~ growth OCCUrS

at times significantly smaller than the collapse time.
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Appendix IV symbol definitions

a = acceleration
a2 and a4= second and fourth order coefficients for mass/length of a z-pinch
(%=axial convergence parameter (u=O for cylindrical pinches)
Ucand ~ = capsule and electrode wall albedos
AZ= area of the z-pinch
An and Bn = Fourier coefficients to expand the masdlength of a z-pinch
~~= average shock velocity over the average velocity of z-pinch plasma
~ = coefficient for power law fit to the opacity of gold
dz and dc = thickness of the z-pinch plasma and the convertor at initial contact
E= specific power within the z-pinch plasma
EA = energy available for heating after the collision
E~aP= the energy absorbed by the capsule .
Eint= energy that goes into internal degrees of freedom
EK = kinetic energy of z-pinch plasma just before collision
Ed= energy that is radiated from the dynamic hohlraum before capsule bang time
Es= energy radiated from the outer surface of the z-pinch plasma
EW=radiation energy absorbed by the electrode wall
EZ(T)and EC(T)= internal energy functions for z-pinch plasma and the convertor
F = opacity multiplier
F~= symmetry factor= rZi#rCaP
F.= radiation source flux for view factor calculations without Rayleigh-Taylor
6F = radiation source flux for view factor calculations with Rayleigh-Taylor
iSFl= radiation source flux that produces 1% flux variation on the capsule
fz = fraction of the shock heating that goes into the z-pinch plasma
y= Gruneisen equation of state coefficient
17(z)= thickness of the z-pinch plasma with variations due to Rayleigh-Taylor
r min = minimum thickness of the z-pinch plasma
rRO~~= Rosseland mean of the z-pinch plasma over thickness variations due to RT
1P= peak dnive current
K= opacity
A(z) = massflength of a z-pinch
~ = zeroth order term in a Taylor expansion of the madlength of a z-pinch
Lhohl= length of hohlraum for view factor radiation symmetry calculations
L~= density scale length for RT growth rate
X= wave length of the Rayleigh-Taylor instability
Mcap= initial capsule mass
~aP(r) = unablated capsule mass as a function of radius as it implodes
MC= mass of the convertor
MZ= mass of the z-pinch plasma
N~= number of times a shock is driven through the convertor before capsule bang time
p = shock convergence coefficient
Pram= mm pressure generated by ablated material interacting with the convertor
o = Stefan-Boltzmann constant
rtlb= ablation stand off radius
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rCaP= initial capsule radius
rc(t) = capsule radius as a function of time
RZH= ratio of the avemge z-pinch plasma temperature over the hohlraum temperature
Rhohl= hohlraum radius for view factor radiation symmetry calculations
rzo= initial radius of.the z-pinch
rz(t) = radius of the z-pinch as a function of time
rzi(t) and rzo(t) = radius of the inner/outer surface of the z-pinch aS a function Oftime
rziband rzob=inner/outer radius of z-pinch plasma at capsule bang time
rco and rci = initial outer/inner radius of the convertor
pc = initial convertor mass density
To(t) = outer temperature of the z-pinch plasma as a function of time
TOb= outer temperature of the z-pinch plasma at capsule bang time
~b= capsule bang time

‘cap = capsule implosion time
$ = time to pinch to the axis
~ = rise time to peak current
Tr= rise time to peak peak hohiraum temperature for annular convertors
‘t~C= effective radiation absorption time for the capsule
Tw = effective radiation absorption time for the electrode wall
‘t~~= effective radiation emission time for loss from the outer surface of the z-pinch plasma
THP= peak hohlraum radiation temperature
TH(t) = hohlraum radiation temperature as a function of time
TR(r) = radiation temperature within the z-pinch pkisma
v~ Vs= shock velocity and average shock velocity
Vz and ~Z = z-pinch velocity and average z-pinch velocity
VZ= volume of the z-pinch plasma
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Figures .

A schematic of a double-ended z-pinch-driven hohlraum

A schematic of a dynamic hohlraum. The z-pinch plasma is shown at the time of

first impact with the convertor. The initial inner and outer radius of the convertor

are labeled rci and rco.

Numerical solution for axially convergent z-pinch at several times. The simplified

model is described in the text.

Normalized drive current and z-pinch radius for a cylindrical pinch

A comparison between the analytic solution (dotted) and a numerical solution

(solid) for the kinetic energy of a cylindrical z-pinch

Results of a Lasnex simulation of a z-pinch stagnating onto a plastic convertor, a)

radiation temperature contours, b) line out of the density as a function of axial dis-

tance z.

Source variation that yields a 1% variation at the capsule as calculated by view fac-

tor simulations.

Schematic of z-pinch plasma deformed by the RT instability just before striking

the convertor.

Hohlraum radiation as a function of time for shot 291 (symbols) compared to

model calculations (solid line). The foam convertor had an initial radius of 4 mm

with a density of 6 mg/cc.
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14

Hohlraum radiation as a function of time for shot 297 (symbols) compared to

model calculations (solid line). The foam convertor had an initial radius of 2.5mm

with a density of 14.3 mg/cc.

Hohlraum temperature as a function of the ratio Mc/Mz for annular copper conver-

tors. The results of the model calculations are labeled THP for the peak hohlraum

temperature and TOfor the temperature at the outside of the z-pinch plasma. The

diamonds are experimental measurements of the hohlraum temperature.

Normalized hohlraum temperatures (THfTom) as a function of the initial z-pinch

plasma radius for annular 2mrn thick plastic foam convertors. The mass ratio of

the Mc/Mz is optimized for each value of rzo. The available energy (EA), radiated

energy (Emd), and internal energy, (Eint) are also plotted

Hohlraum temperature as a function of F~= rti@CaPfor annular 2 mm thick foam

convertors. The dotted curve corresponds to performance of the existing Z-acceler-

ator (IP=20 MA, rCaP= 1 mm). The diamonds are the result of Lasnex simulations

for the optimized parameters obtained from the model. The solid curve corre-

sponds to an advanced accelerator (IP= 60 MA, rCaP= 2mm). The squares are the

results of Lasnex simulations for these optimized parameters.

Results from model calculations assuming a solid foam convertor with a peak

drive current of 55 MA, a z-pinch mass of 48 mg, an initial z-pinch radius of 1.8

cm, a z-pinch kinetic energy of 7 MJ, a capsule radius of 2.75 mm, and a symmetry

factor F~= 0.6. All parameters are plotted as a function of M@fr The peak hohl-

raum temperature, T= and outer surface temperature of the convertor, TO, are

plotted in a). The ratio of the ablation standoff radius, rab, to the initial capsule

radius, rCaP,and the number of shocks passing through the convertor, Ns, is plotted

in b). The ratios of the energy available for heating, EA, the energy lost from the

outer surface of the pinch as radiation, E~, the energy absorbed by the capsuIe,
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ECaP,and the internal energy, Eint, over the kinetic energy of the incoming z-pinch

plasma, E~, are plotted in c).

15 Results from model calculations assuming a solid foam convertor with a peak drive

current of 55 MA, a capsule radius of 2.75 mm, and a symmetry factor F~Ym= 0.6.

Parameters for optimal convertor mass are plotted as a function of the initial z-

pinch radius, rzo.The peak hohlraum temperature, Tm and outer surface tempera-

ture of the convertor, TO,are plotted in a). The optical depth with the Rayleigh-Tay-

Ior factor included is plotted in b). The energy available for heating, EA, the energy

lost from the outer surface of the pinch as radiation, Es, the energy absorbed by the

capsule, ECaP,and the internal energy, Eint are pIotted in c).

16 Optimized results (both convertor mass and initial z-pinch radius) from model cal-

culations assuming a solid foam convertor are plotted as a function of the peak

drive current, 1Passuming a capsule of 2.75 mm, and a symmetry factor F~ = 0.6.

The peak hohlraum temperature, Tw and outer surface temperature of the conver-

tor, TO, are plotted in a). The optical depth with the Rayleigh-Taylor factor

included and the optimum foam density are plotted in b). The energy available for

heating, EA, the energy lost from the outer surface of the pinch as radiation, Es,

and the energy absorbed by the capsule, ECaPare plotted in c). The optimrd initial

z-pinch radius, rzo and the ratio of the ablation standoff radius to the capsule

radius, ra@CaPis plotted in d).

17 Same parameters as Fig. 16 but assuming a capsule radius of 1.5 mm,

18 Optimized results as a function of the opacity multiplier F~P,see text for descrip-

tion. The solid curves labeled X are results assuming a peak drive current of 55

MA and a capsule radius of 2.75 mm. The dotted curves labeled Z are results

assuming a peak drive current of 20 MA and a capsule radius of 1.5 mm. The hohl-

raum temperature is plotted in a), the fraction of the available energy that goes into



radiation is plotted in b), and ratio of the ablative standoff radius to the initial cap-

sule mdius is plotted in c).

Comparison between cylindrical (Iabelled CYL) and quasi-spherical (Iabelled QS)

dynamic hohlraum model calculations. A capsule radius of 2.75 mm is assumed

and a= 1/3 for the quasi-spherical calculation. Hohlraum temperatures are plotted

in a) and convertor densities in b).

Comparison between cylindrical and quasi-spherical dynamic hohlraum tempera-

ture model calculations assuming a fixed convertor density of 5 mg/cc. A capsule

radius of 1.25 mm is assumed and cz=1/3 for the quasi-spherical calculation.

Contour plots of the z-pinch plasma density near final collapse as calculated in two

separate simulations using the 2-D MHD code, MACH2, with slightly different

initial mass profiles. The initial density profiles were determined by eq. (1) with

a2=-0.06 and a@.024 for the simulation displayed in the upper half and a4=0.026

for the simulation displayed in the lower half. Mirror symmetry about z=O has

been assumed for both simulations.

Contour plots of the z-pinch plasma density from two different MACH2 simula-

tions using different cell resolutions. The results using 156 w cells are displayed in

the upper half, while the results using 78 p cells is displayed in the lower half. The

initial density profile was the same for both simulations as determined by eq. (1)

with aV=-O.06and ad=0.024.
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