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Abstract

Since the invention of quantum mechanics, even the simplest example of collisional

breakup in a system of charged particles, e– + H ~ H+ + e– + e-, has stood as one

of the last unsolved fundamental problems in atomic physics. A complete solution

requires calculating the energies and directions for a final state in which three charged

particles are moving apart. Advances in the formal description of three-body breakup

have yet to lead to a viable computational method. ‘I!caditional approaches, based

on two-body formalisms, have been unable to produce differential cross sections for

the three-body final state. Now, by using a mathematical transformation of the

Schrodinger equation that makes the final state tractable, a complete solution has

finally been achieved. Under this transformation, the scattering wave function can be

calculated without imposing explicit scattering boundary conditions. This approach

has produced the first triple differential cross sections that agree on an absolute scale

with experiment as well as the first ab hzitio calculations of the single differential

cross section [29].
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Chapter 1

The Three-Body
Electron-Impact

Nature of
Ionization

Electron-impact ionization is the process in which a target atom or molecule is ion-

ized by a collision with an electron. Scattering theory calculations have progressed to

the point of being able to accurately treat non-breakup processes for an electron scat-
tering from relatively complicated target molecules. However, ionization represents a
fundamentally different class of problems characterized by a final state in which three
particles that interact via long-range Coulomb potentials are moving apart. Even the
simplest example of this process, the electron-impact ionization of atomic hydrogen,
has resisted numerical solution until now. This dissertation presents the first calcu-
lations to produce detailed information about electron-impact ionization that agrees,

on an absolute scale, with experimentally measured values over a range of energies
and final directions.

1.1 A three-body process in electron scattering

Collisions between electrons and atoms or molecules are governed by none of the
selection rules that limit optical interactions with matter, primarily because the in-

cident electron is indistinguishable from those of the target. Thus, electron impact is
an efficient means of exciting or ionizing atoms and molecules. The relative probabil-
ities of the elastic and various inelastic scattering processes following electron impact
affect the energy distributions of atoms and molecules that determine the chemical
dynamics of macroscopic systems. Furthermore, electron-impact ionization affects the
populations of ions and free electrons and is the fundamental mechanism responsible
for forming and sustaining low temperature plasmas. Detailed information about the

energy and angular distributions of this process is important for understanding the
dynamics of plasmas in a wide range of applications.

In a time-independent formalism the wave function simultaneously contains all
the information for a scattering event initiated by a collision, at a particular energy,
between an electron and the target in some specified initial state. Both the initial
and final states are manifested in the asymptotic boundary conditions on the wave
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2

function for large inter-particle separations. The objective of any scattering calcula-
tion is to obtain information about the final state following the collision. For electron

scattering theory, this means determining the asymptotic boundary conditions of the
wave function describing the motion of all electrons.

The final scattering state is typically analyzed in terms of individual “channel”
components; each corresponding to a particular scattering process usually defined by
the final state of the target. Scattering theory calculations and experimental mea-

surements attempt to determine probabilities (expressed as scattering cross-sections)
of the final state being in a particular channel. In calculations, we identify the chan-
nels by separating the asymptotic wave function into individual channel components

each corresponding to a particular target state. Experimentally these channels are
identified by the energy of the scattered electron and/or the state of the target.

Channels not corresponding to ionization are characterized by a single electron
moving away from the target left behind in either the ground state or some excited

state. Treatment of these “discrete” channels by various “two-body” formalisms, that
specify the asymptotic form for each channel as two separate, non-interacting entities

(the target atom or molecule and a free electron), has been possible for many years.
Electron-impact ionization, on the other hand, is a three-body process characterized
by two electrons separating from an ionized target.

The past 35 years have seen significant progress toward formulating an asymptotic
form for this process, ranging from the early work of Rudge [34] and Peterkop [25] to

the very cumbersome, but more complete, form derived by Alt et al. [I]. Despite this

progress in the formal theory, efforts to explicitly use these asymptotic forms have
not been successful. Consequently, complete numerical treatment of this process has

continued to stand as an unsolved problem in electron-scattering theory.

1.2 Existing methods in scattering theory are
designed for two-body processes

Scattering calculations are inherently more difficult than those for bound states
with the same number of electrons because the wave functions that describe scatter-
ing extend over all space whereas the bound state wave functions are localized near
the nucleus. Theoretical treatment of systems with two bound electrons began with

the work of Hylleraas in the 1930s on the bound states of helium which were deter-
mined accurately by Pekeris in the late 1950s. Not until the 1961 work by Schwartz
would even a rudimentary solution to the simplest two-electron scattering problem,

an electron scattering from atomic hydrogen, be achieved.

For scattering of an electron from a target atom or molecule below the ionization

threshold only two-body channels, characterized by one outgoing electron moving
away from a neutral target, exist in the final state. In the elastic channel the outgoing
electron has the same energy as the incident electron and the target is left behind in
its original state. With the discrete excitation channels the outgoing electron has less
energy than the incident electron and the target is left in some excited state. The



energy of the outgoing electron is limited to a set of discrete values that differ from
the incident energy by the amount needed to raise the target to one of its excited

states.

Below the ionization threshold the asymptotic wave function consists entirely of a

finite set of discrete channels, corresponding to elastic scattering and electron-impact
excitation, whose number is limited according to which target states are accessible

with the energy available from the incident electron. These are referred to as the

“open channels”.

Calculations on electron-hydrogen scattering for the case where only a few chan-
nels are energetically allowed were carried out by Burke et al. [13] using the “close-

coupling” method. This method uses a physically motivated expansion of the scat-
tered wave function in terms of products of bound states and free-particle functions.

If the expansion contains terms corresponding to every open channel then it can rep-
resent, exactly, the asymptotic wave function. By including additional short-range

terms (corresponding to the closed channels) to form a more complete basis in the
interaction region, accurate discrete channel cross sections could be calculated for

scattering below the ionization threshold [17].

The expansion functions in close-coupling methods are obtained by diagonalizing
the target Hamiltonian in some suitable numerical basis. As the numerical basis ap-
proaches completeness the negative eigenvalues converge to the physical bound state

energies of the target and the corresponding eigenstates converge to the bound state
wave functions. Diagonalization also produces eigenvalues not related to bound state

energies. The corresponding eigenstates, known as “pseudostates”, were thought to
have no physical meaning themselves, but were included in close-coupling expansions

to make the basis more complete. Pseudostates corresponding to positive eigenvalues
are a discretization of what would be the continuum of free-particle states. How-
ever, since they come from representing the Hamiltonian in a set of finite-range basis
functions they do not have infinite extent like true free-particle states.

In the early 1970’s Burke and Mitchell [15, 14] showed that cross sections for the

elastic and excitation channels could be calculated at energies above the ionization
threshold by including positive-energy pseudostates in the expansion. This work was

extended in the 1980’s by Oza and Callaway [23, 22]. However, these calculations were
marred by the presence of “pseudo-resonances” that prevented accurate calculations
at certain energies. It was still broadly assumed that the positive-energy pseudostates

did not give a meaningful representation of ionization. Therefore, they were used
solely for improving the convergence of discrete channel cross sections and not for
calculating information specific to electron-impact ionization.

In the early 1990’s Bray and Stelbovics [10, 11] showed that by including increas-
ing numbers of positive-energy pseudostates a “convergent” close-coupling (CCC)
method, that eliminated the pseudo-resonances, could be developed for calculating
not only discrete channel cross sections but total ionization cross sections as well. This
method represented a significant step forward in treating electron scattering above
the ionization threshold and has been applied successfully to atoms with several elec-
trons. However, the CCC method has fallen short in its ability to provide details
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about ionization such as how energy is shared between the two scattered electrons.

1.3 An entirely new approach designed to
correctly treat ionization

In a sense, the ionization component of electron-hydrogen scattering contains
a continuously infinite number of “channels” because the total available energy is
shared continuously between the two free electrons. Consequently, ionization cannot
be satisfactorily represented by a discrete sum of products of one-electron functions.
In particular, two-body formalisms, such as CCC which attempts to attach physi-
cal meaning to positive-energy pseudostates, fail to accurately calculate information

about how energy is shared between the two electrons. The difficulty lies in the in-
tractable nature of the scattering boundary conditions for ionization. We will look
more closely at the difficulties of representing ionization boundary conditions with
the convergent close-coupling method in Chapter 2.

The failure of CCC, and other methods based on specifying the asymptotic form
of the wave function, to accurately calculate detailed information about ionization

points to the need for an entirely new formalism that does not require knowledge
of the wave function’s asymptotic form. The method of exterior complex scaling
completely avoids the difficulties associated with the asymptotic form for ionization
by using a mathematical transformation of the Schrodinger equation that simplifies
the scattering boundary conditions so that the wave function can be calculated using

standard numerical methods. Exterior complex scaling is introduced, in Chapter 3,
within the context of a two-dimensional model of electron-hydrogen scattering that
retains many of the numerical pathologies associated with ionization.

A method for calculating detailed ionization information for the model problem
by analyzing the wave functions from Chapter 3 is introduced in Chapter 4. It is
shown that wave functions calculated with exterior complex scaling produce energy-
sharing differential cross sections that do not have the unphysical characteristics of
the corresponding CCC results. Extension of the methods introduced in Chapter 3

to the full electron-hydrogen scattering problem is described in Chapter 5. By using
exterior complex scaling, six-dimensional wave functions that include an ionization
component are produced. Differential ionization cross sections, extracted from these
wave functions by a procedure similar to the one described in Chapter 4, are presented
in Chapter 6. These results are the first-ever differential cross sections for electron-

impact ionization that agree, on an absolute scale, with experimentally determined
values over a range of energies and directions.



Chapter 2

Barriers to Two-Body Reductions
of Three-Body Breakup

Components of the wave function corresponding to elastic and excitation chan-
nels for scattering of an electron from a hydrogen atom have the asymptotic form of

products of one-electron functions. This fact led to the development of several “two-

body” formalisms for treating electron scattering from atoms and molecules. These
methods have been able to calculate cross sections for discrete channels at collision en-

ergies both above and below the ionization threshold. The convergent close-coupling
method, which is limited to atoms, also has succeeded in calculating total, but not
di~erential cross sections for ionization. This inability to correctly describe the de-
tails of electron-impact ionization, such as the distribution of energy between the two
outgoing electrons, indicates a fundamental problem with using two-body formalisms
to describe a three-body final state.

2.1 Electronic collisions with hydrogen in a
time-independent formalism

Although scattering is an intrinsically time dependent process, the interactions,
themselves, depend only on distances and not explicitly on time. So, we can cal-
culate complete scattering information using time-independent methods. The wave
function IU+that describes the electron-hydrogen collision is the solution to the time-
independent Schrodinger equation with appropriate boundary conditions.

HQ+ = EW+

We will be considering an electron with momentum lilq colliding with a

(2.1)

hydrogen

atom in its
the ground

ground state so the total energy E is the sum of the incident energy and

state energy .sl of hydrogen.

E&k2+q ‘i (2.2)
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By approximating the nucleus as infinitely massive, the Hamiltonian H describes
the motion of only the two electrons. Their positions, relative to the nucleus, are

denoted by two three-dimensional vectors PI and 72. The wave function W+(71, 72) is
a six dimensional function and the Hamiltonian, defined below, is a six dimensional
differential operator.

(2.3)

The symbols V? and V; are the three-dimensional Laplacians for the coordinates 71

and F2 and represent the kinetic energies of the two electrons. The three particles
interact via an attractive Coulomb potential between the nucleus and each electron
and a repulsive Coulomb potential between the two electrons.

Electrons are indistinguishable, spin-~ particles so the overall wave function of
both space and spin coordinates must be anti-symmetric with respect to interchange

of the two electrons. Total spin S of the system can be either zero or one. The
“singlet” S = O spin eigenfunction is anti-symmetric while the three “triplet” S = 1
spin eigenfunctions are symmetric. Thus, the proper symmetry for the spatial wave
function under interchange of electron coordinates is II!+(F2,71) = (-lJSW+(F1, 72).

Since the Hamiltonian in Equation 2.3 does not depend on spin we can perform
independent calculations for the singlet and the triplet cases. The S index is usually
suppressed, so it is to be understood that separate calculations are always performed
for both spin symmetries. Ultimately, we will sum the results for the two values of S

with statistical weights of ~ for singlets and ~ for triplets.
Both the initial and final states are described in the asymptotic region of the wave

function. The first step in simplifying the asymptotic boundary conditions for V+

is to remove a term II$i, representing the initial state, from the total wave function
leaving a function U~ that is identified, asymptotically, as the scattered wave.

(2.4)

We specify the initial state to be one electron in the hydrogen ground state @l~(F)
and the other to be a plane wave ei~iz with momentum liki in the 2 direction.

Vii(?’~,72) = ; (@ls(@’ikiz2 +W@ls(72)eikiz9 (2.5)

To preserve the indistinguishability of the electrons, the initial state Ill:i is anti-
symmetrized according to the total spin S.

We derive an inhomogeneous differential equation for V:(FI, 72) in terms of the
known function Wg, (Fl, 72) by rearranging the Schrodinger equation (Equation 2.1).

Since lli~(?’l, 72) represents the scattered part of the wave function at large distances it
must be an outgoing wave in rl and r2. Thus, we define W; (71, 72) to be the outgoing
solution to Equation 2.6.



2.2 Analyzing the asymptotic form of the
scattered wave

We can separate the scattered wave into individual “channel” components that

are identified according to the final state of the hydrogen atom. Hydrogen states can

be written as @.l~(F) = ~~.l (r) Y1,~(?) where the Y1,~ is a spherical harmonic and 1
and m are the usual angular momentum quantum numbers. The ~unctions &l satis~

the radial Schrodinger equation for hydrogen with Hamiltonian H1 and energy en.

( li2 8
.&(r) = –j----~ +

1(1+ l)7i2 e2.—
2mr2 r )

Bound states of hydrogen are those @.z~ that are finite-range

(2.7)

and have an energy

13-6V The ground state, previously denotedthat is one of the discrete values En = –We .

by @l.; is @loo in this notation.
In the elastic scattering channel one electron is left bound in the hydrogen ground

state while the other scatters away. Since no energy was exchanged in the collision

the scattered electron will have the same energy as the incident electron. In the
excitation channels one electron is left bound to the proton in some excited hydrogen
state. The momentum M. of the outgoing electron is reduced according to the

amount of energy required to raise the atom to its excited state. Since the bound
state energies are quantized, the scattered momenta hkn in the elastic and excitation
channels are limited to a discrete set of values.

(2.8)

For scattering below the ionization threshold i.e. , ~k~ < ]Ell, the number of

discrete channels that are “open” are limited to those for which the quantity ~k~,
defined in Equation 2.8, is positive. In this case, the asymptotic form of the scattered

wave is completely described by an expansion in terms of two-body functions, each
corresponding to an energetically open channel.

(@~m(~l) .f’’17?Z(;2)eikir~ + ~_l)~ f“lm(F1)~’ikiT~@n1m(~2)W:(FI,72)+ ~ —
r,w+m nylm;n ‘2 7-1 )

(2.9)

In every term the scattered electron is represented by a radially outgoing wave with

angular dependence determined by the channel scattering amplitude ~nl~(?).
Equation 2.9 does not completely describe the asymptotic form of IJ?z for scatter-

ing above the ionization threshold. In this case, all excitation channels are open so

the asymptotic form is an infinite sum over all n. More importantly, ionization is now

possible so an additional term, W~~(FI, ?2), must be included to describe ionization.

‘,

1
.7,,....-,-—-m.- . .. . . . . . .. . . .. . . . . . . >. . . ...- ,. ..= ,J..-,,<. ~, -..’-,. .-,.~.-.~. -. .-:

.— - _ -.
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The ionization “channel” is really a continuum of final states that cannot be satisfac-
torily represented by a discrete sum of products of one-electron functions.

Many efforts have been made to derive the asymptotic form of ill~~, with the
work of Alt et al. [I] being the most complete to date. We will, instead, look at the

relatively simple form derived by Rudge [34] that is valid when all three particles are
widely separated. This form is expressed in terms of hyperspherical coordinates where

the two radial coordinates rl and r2 are replaced by a hyperradius p = rl + rz andP
a corresponding hyperangle a = tan–l (r2/rl ).

In Equation 2.11, the angular function multiplying the logarithmic phase is de-

fined as f(tl, ?2, a) = (sin a)-l + (COSa)-l – (1 – ?I .+2 sin 2Q)-li2. The scattering

amplitude for ionization ~i(;l, f2, Q) contains all of the angular distribution (the 71, ?2
dependence) and energy sharing (related to the a dependence) information about the
ionization final state. Equation 2.11 describes the asymptotic form of ill~~ as an out-
going wave in the hyperradius p rather than in the two radial coordinates. This very
fact indicates that il~~ cannot be adequately represented by a finite sum of two-body

terms i.e., products of a function of 71 and a function of 72.

2.3 Two-body approach to calculating integral
cross sections for ionization

The convergent close-coupling (CCC) method is a particular implementation of

close-coupling that has been successfully applied to calculating discrete channel cross
sections for electron-atom scattering over a wide range of energies. CCC does not cor-
rectly treat the details of ionization [30] but still has remarkable success at calculating
total ionization cross sections, as well as cross sections for discrete channels, in atoms
of several electrons [2]. In order to understand the shortcomings of CCC at calculat-
ing detailed ionization information we will look briefly at a simplified application of

CCC specific to hydrogen [9].
Like all close-coupling formalisms, the CCC method is based upon a physically

motivated expansion of the wave function. This expansion is in terms of products
of one-electron functions similar to Equation 2.9, but the actual hydrogen states are

replaced by functions Tnln (F), called pseudostates. The ‘Ynln are generated by diago-
nalizing the hydrogen Hamiltonian represented in a set of square-integrable numerical

basis functions.

(2.12)

As the size of the numerical basis is increased the negative eigenvalues and corre-
sponding pseudostates in Equation 2.12 converge to the bound state energies and
eigenfunctions of hydrogen i.e., Ant ~ en and Tnl~ (r~ x @nl~ (T7.



Within the CCC formalism, the wave function U&C is expanded, analogously
to Equation 2.9, in terms of the ‘T.l~ rather than exact hydrogenic functions. The

number of terms that are included in the expansion is increased until convergence of

the cross-sections is observed.

WX(F1, 7?2) = ~ (hn(mLJ72) + (-1)’f;m(71)Tnlm(F2)) (2.13)
n,l,m

The CCC expansion coefficients ~~m(~ for all energetically open (Anz < E) pseu-
dostate channels have the asymptotic form of an outgoing wave similar to the indi-

vidual terms in Equation 2.9. In the actual implementation, I@cc approximates the
total wave function ~+ rather than the scattered wave W$. This has little conse-

quence on the discussion here since both the total and scattered wave functions can

be expanded similarly with only the elastic channel terms being different.

Pseudostates with positive eigenvalues are a sort of discretization of the continuum

of Coulomb waves representing the ionized hydrogen states. These positive-energy

pseudostates, unlike true continuum functions, are finite-range because the underlying
numerical basis is square-integrable. Although they do not, themselves, have physical
meaning, the positive-energy pseudostates do “overlap” with true Coulomb waves.

From a numerical point of view, all pseudostates, including those corresponding to
closed channels and those with positive eigenvaluesj must be included in the CCC
expansion to form a complete set of basis functions.

Like other close-coupling formalisms, CCC is essentially exact below the ionization

threshold. It can also produce accurate discrete channel cross sections for scatter-
ing at higher energies. The advantage of CCC over earlier close-coupling methods is

that it has been shown to also produce convergent total ionization cross sections [10].
Convergence of the total ionization cross sections was considered by some to be a sur-

prising result since ionization must be represented by the positive-energy terms in the
pseudostate expansion and those were believed to have no physical meaning. How-
ever, success at calculating total ionization cross sections does not necessarily require
that the the CCC basis accurately describe the details of the ionization component
of the scattered wave.

The success of CCC in calculating total ionization cross sections is a consequence
of the ability of the expansion to both represent, exactly, each of the discrete channel
components of the wave function in the asymptotic region and to accurately describe
the entire wave function within a finite interaction region. With an expansion basis
that is effectively complete over the interaction region, we can assume that the CCC
formalism is properly representing all of the collision dynamics. Since each energet-
ically open term in the expansion is constructed to be an outgoing wave we know
that any outgoing flux generated in the interaction region will successfully escape to
infinity. Therefore, it is not as surprising as originally believed that the CCC method
can calculate accurate totai cross sections. Since we already know that the CCC
method can accurately calculate discrete channel cross sections it is clear that by
simply subtracting all discrete channel cross sections from the total cross section we
can obtain a reasonably accurate estimate of the total ionization cross section.
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Figure 2.1: SDCS for e-H calculated by CCC at 20eV incident energy, so that the

total energy is E=6.4eV. The actual calculated cross sections, which are not symmetric
about E/2, are shown on the left. The total “raw” cross section is the sum of the
singlet and triplet “raw” cross sections. A symmetrized SDCS is formed by adding the
raw total to its mirror image. The CCC method removes the unphysical oscillations

in the calculated cross sections by replacing the symmetrized SDCS with a smooth,
integral-preserving guess.

2.4 Two-body approaches fail to provide detailed
ionization information

Shortcomings of the CCC method in treating ionization are most evident
energy-sharing or single differential cross section (SDCS) for ionization. The

in the

SDCS
is a differential cross section with respect to the energy of one of the electrons Cl and

describes how energy is shared between the two outgoing electrons. The energy el can
range from zero to the total energy l?. Because the two electrons are indistinguishable

the SDCS should have the same value at E – El as at Cl. It is, therefore, symmetric
about c1 = _E/2. By convention, the SDCS is normalized so that it gives the total
ionization cross section when integrated from zero to 1.3/2. An example SDCS calcu-
lated by Igor Bray with the CCC method [12] is plotted in Figure 2.1. The actual

calculated cross sections are shown in the left panel. Two striking features of these
curves are (1) they are definitely not symmetric about l?/2 and (2) they contain large

amplitude oscillations.

The asymmetry of the calculated SDCS is a consequence of the way the wave
function is analyzed [30]. In the CCC method physical meaning is attached to the

terms in the expansion with pseudostates T.l~ for which O < A.l < E?. Each of these
terms is said to correspond to one electron being ejected from the target with energy
A.l and the other scattering away from the target with energy -E – A.l. The SDCS
is constructed over the continuous range of Cl by applying appropriate quadrature

weights to the discrete set of positive pseudostate energies [8]. Since the scattered

electron is actually represented in these terms by a plane wave, this assertion is based
on the rather gross assumption that the slower, ejected electron completely shields the



nucleus from the faster, scattered electron. There is some controversy in the literature

over whether the asymmetric method of extracting the SDCS in the CCC method

imposes distinguishability of the two electrons [5], but it is claimed by Bray [7] that
this issue is addressed by post-symmetrizing the result.

The more troubling aspect of the SDCS calculated by CCC is the oscillations.

Since the true SDCS is known to be a very smooth function, Bray constructs a

smooth curve, shown in the right panel of Figure 2.1, that is an integral-preserving

average of the symmetrized oscillatory curve. It is claimed that this curve approxi-
mates what the CCC calculated SDCS would converge to in the limit of an infinite

CCC basis [6]. Convergence of the calculated SDCS to a smooth function has never
been demonstrated and there is much uncertainty about whether the smooth curve

generated in this ad hoc fashion is correct. It is widely believed that the oscillations

in the SDCS calculated by CCC indicate a fundamental problem with the formalism.

Looking for the source of the unphysical oscillations requires scrutinizing the abil-

ity of the CCC basis to adequately describe the ionization component of the scattered

wave. The set of negative-energy pseudostates in the CCC expansion (Equation 2.13)

generate the discrete channel terms in the expansion of the asymptotic form (Equa-

tion 2.10). It is then up to the positive-energy pseudostate terms to construct the
ionization component in Equation 2.10. This is potentially a source of trouble in two
ways. First, and most obvious, is the possibility that the CCC basis cannot ade-
quately represent the ionization component of the scattered wave at large distances.

Second, and probably most significant, is the way that the CCC wave function is
analyzed by attaching physical meaning to the positive-energy pseudostates.

From the Rudge asymptotic form (Equation 2.11) it is clear that the ionization
component is an outgoing wave in the hyperradius p. The positive-energy terms in
Equation 2.13, on the other hand, are an outgoing wave for one electron (the required

asymptotic form of ~jl~) and a positive-energy pseudostate for the other. It is claimed
that in the limit of an infinite set of numerical basis functions we can think of the
positive-energy pseudostates as true Coulomb waves. Even in this idealized case we
have a task similar to trying to represent a spherical wave with a sum of products
of plane waves. As the number of plane wave products increases the spherical wave
will be represented fairly well over an increasingly large region of space. However,
forming a spherical wave, in this manner, that is accurate over all space is a hopeless
task. Knowing the asymptotic form of the wave function is effectively the ultimate

goal of scattering calculations, so there is legitimate concern about the ability of the
CCC basis to adequately represent the ionization component of the scattered wave.

The CCC method certainly has trouble correctly representing the ionization com-
ponent of the scattered wave. It is conceivable, although by no means certain, that
with a sufficiently large CCC basis the wave function may be adequately constructed

over a large enough region of space to produce meaningful ionization information.
However, there is still a problem with the analysis because the product of a plane

wave and a Coulomb wave is not a very good representation of a state with two elec-
trons in the continuum. Although the CCC basis could conceivably be used as an
adequate numerical basis it is incorrect to attach physical meaning to the individual



12

positive-energy pseudostate terms. Another problem is that this analysis implicitly
treats the electrons as distinguishable.

In a recent study [30] the effects of the CCC energy analysis for ionization were
examined in isolation from other potential sources of error. Accurate scattering wave
functions that contain an ionization component were constructed using the method
presented in Chapter 3, thus removing the uncertainties associated with construct-
ing a CCC wave function. These wave functions were constructed for several two-

dimensional model problems and smooth, accurate single differential cross sections
were extracted from them by using the method described in Chapter 4. However,
a CCC style analysis produced oscillatory cross sections similar to those in the left

panel of Figure 2.1. It was shown that, at least for examples with short range po-
tentials, the CCC calculated SDCS at Cl = E/2 converges to exactly one fourth of
the correct value. Although no formal proof has been given, it appears that this is at
least approximately the case for electron-hydrogen scattering. However, the relation-
ship between the CCC calculated SDCS and the correct SDCS for all other energy

distributions is completely unpredictable.
The two-body formalism of CCC is very well suited for discrete channels, but not

for ionization. Its shortcomings point to the need for an entirely new formalism to

calculate differential cross sections for ionization that is not tied to any particular
asymptotic form. The method of exterior complex scaling, introduced in the next
chapter, can produce scattering wave functions that are accurate over a finite region

of space and correctly describe the details of ionization without appeal to any asymp-
totic form. In Chapter 4, a procedure is introduced that extracts differential cross

sections for ionization from these wave functions, again, without explicitly invoking
any particular asymptotic form.



Chapter 3

Exterior Complex Scaling Avoids
the Three-Body Asymptotic Form

The fundamental difficulty that traditional, “two-body” methods have with electron-
impact ionization is in representing a wave function with two outgoing electrons.

These methods have the same difficulty even when applied to the two-dimensional

Temkin-Poet model of electron-hydrogen scattering that also supports an “ioniza-
tion” final state with two electrons in the continuum. This model presents difficulties

similar to those of the full problem of electron-hydrogen scattering. It is, therefore,
a useful test-bed for any method intended to be applied to a true electron-impact
ionization problem. Thus, the Temkin-Poet model is an ideal context for presenting
the method of exterior complex scaling as a means of generating wave functions for
electron-hydrogen scattering while avoiding, entirely, the difficulty in speci&ing the

Coulomb three-body asymptotic form.

3.1 Temkin-Poet Model Problem

The S-wave, or Temkln-Poet, model of electron-hydrogen scattering has been
used for many years to develop and test calculational methods intended for more
realistic electron-scattering problems. This two-dimensional problem, that supports
ionization, was first presented in 1962 by Aaron Temkin [38] in a variational study

of the S-wave component of electron-hydrogen scattering. In 1978, R. Poet [26]
produced the first accurate cross-sections for inelastic processes in the model. Just
like the complete electron-hydrogen system, this model contains an infinite number
of bound states as well as an ionization continuum, but without the complexities
of angular dependence. Therefore, it allows one to isolate and study the difficulties
arising from the radial dependence of three-body breakup.

The Temkin-Poet model can be thought of as a spherical average of the full

electron-hydrogen problem. It is defined by a two-dimensional, radial Schrodinger
equation.

fi(?l, ?-2)++(TI,?-~)= E++(?-l, r~) (3.1)

The total energy -?.3is the sum of the kinetic energy of the incident electron and the
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ground state energy of hydrogen i.e., -E = ~k~ + Cl. With no angular dependence,

the Laplacians from the Hamiltonian in Equation 2.3 reduce to second derivatives
with respect to the two radial coordinates.

fiz dz
Il(rl,rz) = –——

h2 @ e2 e2 e2

2m dr~
–——– —–~+~

2m dr~ rl
(3.2)

The quantity r> is defined below.

The attractive potentials between

the model Hamiltonian as they are in

rl, rl >7-2

rz, rl <7-2
(3.3)

the nucleus and each electron are the same in
Equation 2.3. The ~epulsive potential between

the two electrons is replaced by a non-analytic potential ~ which is the zero angular

momentum term in the multipole expansion of - (see Equation F. 13). Just as in

Equation 2.4 we separate the wave function @+ in to two terms: @ji representing the
initial state and @~P having outgoing wave boundary conditions.

++(rl, T2) = d& (Tl, r2) + *TP(T1, r2) (3.4)

The Temkin-Poet scattered wave, ~~p, is the outgoing wave solution to a scattered

wave equation similar to Equation 2.6.

(~-fi(T~,r2))&p(T~,T2) = (fi(T~,T2) -~)@~i(T~,T2) (3.5)

We want ~+ to represent an electron scattering from a hydrogen atom in the ground
(1s) state. The bound electron is represented by the ground state radial function @l.

41(T) = -##””” (3.6)

An incident electron with momentum Iiki is represented by sin(kir) which comes from
the zero angular momentum term of the multipole expansion of ei~;’ (see Equation

F.17). The initial state @~iis an anti-symmetrized product of these two functions.

V!i (rlj r2) = * (sMfkn)dh(r2) + I--VA(TJ sXIkr2)) (3.7)

Singlet (S = O) wave functions are symmetric with respect to interchange of the
coordinates rl and r2 while triplet (S = 1) wave functions are anti-symmetric. As
mentioned in Chapter 2, we perform separate calculations for the two spin symmetries.

3.2 Asymptotic Form

We can write the asymptotic form of the Temkin-Poet scattered wave by direct

analogy with Equation 2.10. It contains a sum of “two-body” terms corresponding
to the discrete channels as well as an additional term for ionization.
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Since the Temkin-Poet model supports only the zero angular momentum states of

hydrogen the discrete channels are restricted to elastic scattering and excitations into

other s-states of hydrogen. The s-state radial functions @n satisfy the 1 = O radial

equation for hydrogen bound states.

( ii2CF e2.——
2m dr2 )–yh(~)=%(%(T) (3.9)

The energies e. are the bound state energies of hydrogen, S. = – ~eV. Energy
conservation determines the momentum likn of the scattered electron~-

;h2k; + En = ji2k; + @ = E (3.10)

The ionization term ~iO~ accounts for all of the “three-body” nature of the scat-

tered wave. By analogy with the Rudge asymptotic form of the ionization wave
function in Equation 2.11 we can write an asymptotic form in hyperspherical coordi-

nates p and a (TI = p sin a, r2 = p cos Q) for @iO~,keeping in mind that the scattered

wave radial function used here includes a factor of r1r2.

‘Vion(~ll~2) + – j~(~)&~i[KP+(</K) ln(2Kp)] (3.11)
p-xa

The ionization scattering amplitude ~i and the phase factor ~ are both functions of
only the hyperangle m

While the discrete channel components are outgoing waves in one of the radial
coordinates, the ionization component is an outgoing wave in the hyperradius p that
cannot be written as a sum of products of one-dimensional functions of rl and r2. The
presence of both of these two very different types of outgoing waves in ~io~ provides

the motivation for a calculational method that is applicable to any outgoing wave
without regard to any specific asymptotic form.

3.3 Exterior Complex Scaling

The method of exterior complex scaling (ECS) uses a mathematical transformation
of the scattered wave equation to simpli~ the outgoing wave boundary conditions.
Here we will introduce ECS in the context of the Temkin-Poet model. In Appendix
A, it is applied to the simpler problem of one-dimensional potential scattering. Under
ECS, the scattered wave equation (Equation 3.5) is solved with the radial coordinates
mapped on to a complex contour that is real for small values but, beyond a certain

distance, is bent into the upper-half of the complex plane.
The simplest such contour is one where the coordinates are defined to be real

out to some finite radius li$ and beyond that are rotated into the upper-half of the
complex plane at a scaling angle q from the real axis. Let & >0 and O < q <90°
define a complex contour Z(T) parametrized by the real coordinate r.

z(r) =
{

r<.&
& + (rn fi)ei~ r>&

(3.12)
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Figure 3.1: On the left is an illustration of the contour z(r) rotated into the upper-
half of the complex plane beyond ~. On the right is a depiction of exterior complex
scaling for two radial coordinates.

In the Temkin-Poet model this transformation is applied to both rl and r2 as il-
lustrated in Figure 3.1. Both coordinates are real on an interior box of length RO.

Outside that box there are three distinct regions where one or both of the coordinates
is complex.

3.3.1 Outgoing waves become finite-range functions

We can most easily see the effect of ECS on an outgoing wave by considering an

outgoing spherical wave eikT evaluated on the contour z(r) defined in Equation 3.12.

ikz(~) _ ek~ sinqeikfi(l-cos q)eik~cosqe—k~sinq
‘kr~e —e (for r > Ro) (3.13)

The infinite-range outgoing wave is transformed into a function that decays exponen-

tially beyond ~, provided that q >0. Exterior complex scaling has the same effect
on any outgoing wave (other one-dimensional examples are shown in Appendices A
and C), including those with logarithmic phase terms, although the exact analytic
expression is more complicated. As a result, every outgoing wave (including the two-

dimensional scattered wave @&) is transformed into a function that goes to zero at
large distances.

In Figure 3.2 we see the effect of ECS on the eigenvalue spectrum of the Hamil-
tonian for a hydrogen atom. The characteristics of eigenvalue spectra under ECS
were originally described by Barry Simon [36]. Bound state energies of hydrogen are
unaffected by ECS because the bound state eigenfunctions remain bound under ECS.

The positive eigenvalues, which correspond to the continuum of ionized states of hy-
drogen, have been rotated into the lower-half of the complex plane. This is directly

linked to the transformation of the infinite-range continuum states to finite-range
functions under ECS. The eigenvalue spectrum for the two-electron Hamiltonian is
more complicated but, has these same general features.
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Figure 3.2: Theeigenvalue spectrum ofanexterior complex scaled radial Hmiltonian
for hydrogen. All of the eigenvalues with positive real parts lie below the real axis.

Numerical values for the bound state eigenvalues are compared with the exact hydro-
genbound state energies. Thegrid spacings used inthisexample arealso given. The

Coulomb potential wastruncated at50a0. Beyond 50aOthe coordinates are complex
with a scaling angle of 30° and extend another 30ao.

3.3.2 Application to long-range potentials

The presence of Coulomb, or any other long-range potentials, in the Hamiltonian

precludes straight-forward application of ECS to the scattered wave equation. Under
ECS, outgoing waves become finite-range functions and bound states remain bound.
However, incoming waves become exponentially increasing functions as can be easily
seen by changing the sign of k in Equation 3.13. This is a problem because the

definition of the initial state ~~, contains sin(kir) which can be written as the sum of
an incoming and an outgoing wave. Thus, ~~i, which appears in the driving term of
the scattered wave equation, is an exponentially increasing function under ECS.

Since @~i is acted on by the operator (fi – .?3)in the scattered wave equation we
need to consider the entire right-hand side of Equation 3.5.

(3.14)
The unscaled right-hand side decays like ~ due to the Coulomb potentials left over

after (R – @ acts on ~~,. The damping from the Coulomb potentials is not enough
to counteract the exponential increase in ~~i after the ECS transformation. Thus,

under ECS the driving term in Equation 3.5 diverges for large rl or 72.
The prescription for getting around this limitation is demonstrated in Appendices

A and B. Long-range potentials are truncated at G, effectively replacing them by

17



artificially short-range potentials and making the driving term in Equation 3.5 vanish
where the coordinates are complex. Obviously, in order for the calculated results to

be meaningful& must be large enough that truncating the potentials has little effect
on the collision dynamics. The purely outgoing nature of ~~P minimizes the error in
the calculated wave function due to truncating the potentials.

3.3.3 Wave function unaffected where coordinates are real

In the region where the coordinates are real the scattered wave equation is unaf-
fected by the ECS transformation. Assuming the numerical methods used are accu-
rate, we expect the scaled wave function to be the same as the unscaled (physical)
wave function in the region where both coordinates are real.

However, we cannot claim true equality in Equation 3.15 because the Coulomb
potentials are truncated at r = ~. Since @jhp is an outgoing wave, we can expect
that truncating the potentials at fi has little effect on ~~p for r < I?.. Truncating

the potential does affect the higher-energy hydrogen bound states so & needs to be
large enough that all bound states that contribute significantly to @~p are essentially
confined to the region where the coordinates are real. For now, we will assume that
the scaled wave function is physically meaningful on the real coordinates, provided
that & is sufficiently large, and that we may extract various physical quantities by

analyzing the numerically generated wave function on the region inside &.

3.4 Finite Difference Implementation

Exterior complex scaling makes the scattered wave equation solvable. We now
need a numerical implementation for accurately calculating the scaled wave function.

The simple ECS contour described in Equation 3.12 has a discontinuous derivative

at &. Consider what this means for an outgoing spherical wave. For r < R. the
outgoing wave is ei~r and the second derivative as r ~ ~ from smaller r is –k2eik~.
However, for r > li$ we must use the functional form given in Equation 3.13. The

second derivative as r ~ & from larger r is —k2ei2~eik~. Thus, the second derivative
is discontinuous at r = ~ by a factor of ei2~. Consequently, standard basis set
methods that expand the wave function in some set of analytic functions cannot be
used with this contour. As described in Appendix B, analytic basis set methods can

be made to work if a “smooth” contour is used instead. However, using a smooth
contour rather than the “sharp” contour from Equation 3.12 adds significantly to the
cost of solving the scattered wave equation.

Two types of methods that can correctly represent a function under ECS with
the sharp contour are finite difference and finite elements. Finite element methods

divide space into finite regions and expand the wave function in each region with
a set of basis functions that are defined to be zero outside their particular region.
If & lies on the boundary between two regions then finite element methods can



be designed to produce wave functions with exactly the right discontinuity in their

first derivatives. Finite elements have been successfully applied tothe Temkin-Poet

model [20]. However, producing the matrices for this method is expensive, making it

less suitable for the full electron-hydrogen problem.

Finite difference methods map the wave functions directly onto a numerical grid
and can produce wave functions with the correctly discontinuous first derivatives. The

matrices involved are much simpler to construct than those for finite elements. For

this and other reasons, finite difference is more easily extended to the full electron-

hydrogen problem and will be the method of choice throughout this dissertation.

3.4.1 ECS on a grid

Under ECS, the scattered wave @& (z(rI), Z(T2)) is a continuous function but has
discontinuous first derivatives along the lines rl or r2 equal to&. There is no problem

representing the wave function on a two-dimensional grid in rl and r2, but in order

to correctly approximate its derivatives on each grid point we will require that ~ be

one of the grid points. The scattered wave will be calculated directly on to the ECS

contour by solving Equation 3.5 on the two-dimensional, complex-scaled grid.
Functions whose analytic forms are known, such as the right-hand side of Equation

3.5 and the potentials in the Hamiltonian, are mapped on to the ECS contour by
simply evaluating them on the contour z(r) for both rl and r2. The non-analytic
two-electron potential $ is scaled in this way by noting that it is piece-wise analytic
and scaling the rl < r2 and rl > r2 regions separately. The potential is unchanged
on the real part of the grid and, as will be demonstrated later in this chapter, the
potentials beyond ~ have very little effect on the wave function in the interior region.

3.4.2 Finite difference approximations to derivatives

We replace the kinetic energy term in Equation 3.2 by finite difference formulas
given in Appendix C. The second derivative with respect to rl or r2 at some grid
point is represented by a formula involving the value of the wave function at that
point and at three points on either side. For a uniform grid, the seven-point finite
difference formula is accurate to sixth order in the grid spacing. The sum of the two
second derivatives forms the cross-shaped, 13-point “stencil” shown in Figure 3.3.

At one or two grid points away from rl = O or r2 = O the seven-point formulas
cannot be used because they would require terms for grid points at negative r. Less
accurate five-point formulas are used at these points instead. A very small grid

spacing near r = Ois required because the Coulomb potentials are singular at zero, so
five-point finite difference near r = O still provides good accuracy. There is no such
issue at the large r boundary, r = ~=. If (l&= – ~) is large enough that ~~p
is effectively zero at l?~= then we can define the wave function to be zero at l?~=
and beyond and thus implicitly include the value of the wave function at any point
beyond the extent of the grid.

Application of exterior complex scaling to finite difference is very straight forward.
To understand how ECS is applied to the kinetic energy term, let us consider what
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Figure 3.3: The sixth order finite difference representation of the two-dimensional
Laplacian uses a 13-point stencil based on the 7-point formulas for the second deriva-
tive in one dimension as illustrated on the left. Along the grid boundaries the func-
tion’s value is fixed to be zero and the edge points are included in the finite difference
formulas implicitly. If the center of the stencil is two grid points from an edge then
the 5-point formula replaces the 7-point formula in one dimension. If the center is

one grid point from an edge then a special, asymmetric 5-point formula is used.

scaling the derivatives means.

@#——
dr2 + dz(r)2 ()-=dz(r) ‘2 & —i2q@

dr dr2 = e dr2
(3.16)

If all points included in the finite difference formula lie on the complex part of the grid
then we simply multiply the formula by e–i2n. By examining the formulas in Appendix

C we see that this is equivalent to multiplying the grid spacings by ei~. This view
is consistent with the fundamental concept expressed in Equation 3.16 that after the

ECS transformation the derivatives with respect to r become derivatives with respect
to the complex contour z(r).

In general, we apply ECS to finite difference by multiplying all grid spacings for
r > ~ by ei~. The finite difference formulas for r < & and r > fi differ by a factor
of ei2~, exactly the discontinuity factor that we found when considering the outgoing
spherical wave. This is why finite difference is well-suited for a sharp ECS contour

provided that ~ is one of the grid points. Finite difference formulas for grid points
at or near & will straddle ~ so that some of the grid “spacings” in these formulas
are real and some are complex. Therefore, we cannot assume a uniformly spaced
grid when using ECS. Specialized finite difference formulas designed for
between two regions of different grid spacings are given in Appendix C.

3.4.3 System of linear equations

the interface

We will solve for && (rl, r2) directly on to a two-dimensional Cartesian grid of
discretized radial coordinates that is defined in terms of a one-dimensional grid of n~

grid points spanning the space between zero and some radius Rm= > I&. 11~= must
be large enough that the exterior complex scaled scattered wave can be assumed to be
zero for rl, r2 ~ l?~=. Referring to Equation 3.13, we see that an outgoing wave with



momentum M decays like e–~ ‘in~fr–~) for r > G. That means we should choose q

and Rm= so that e–~ ‘in~(~m~–fi) is effectively zero.

The total number of grid points, and thus the number of values calculated for

~~P, is N = n ~. We calculate the scattered wave by casting Equation 3.5 as a matrix
equation of the form Ax = b where x is a vector of the N unknown values of ~~P on

the grid, b is a vector of N values obtained by evaluating Equation 3.14 on the grid,
and A is the N x N matrix representation of the operator (1?– @. The vectors x and

b are ordered so that the values of #~P(rl, r2) for the same r2 are stored contiguously.

To form the matrix we add together the matrix representations of each individual
term from the Hamiltonian definition in Equation 3.2. One consequence of using

exterior complex scaling, or using any grid with multiple grid spacings, is that the
Hamiltonian matrix will not be Hermitian or even complex-symmetric.

Potentials are simply evaluated on the grid and those N values, along with the

constant term l?, are added to the diagonal. The finite difference formulas provide all

of the non-zero off-diagonal matrix elements. As shown in Figure 3.3, the Laplacian
at each grid point is determined by function values from no more than 13 grid points.

This means that each row of the matrix will have at most 13 nonzero matrix elements,
so the matrix is very sparse. The sparsity structure of the finite difference matrix
representation of (-E – E) is shown in Figure D.1.

3.4.4 Dimension of the problem

The size of the calculation needed to obtain @~P is governed by the total number

of grid points. Deciding how to distribute a iixed number of grid points requires
striking a balance between the higher accuracy of closely spaced grid points and the
greater information content of a grid covering a larger region. An advantage of using
the sixth order finite difference formulas is that we get a large payoff in accuracy from
small increases in grid density. In general, we can represent @~P accurately if there

are several grid points per oscillation. Most of the calculations presented here used
five grid points per atomic unit, sufficient for incident energies less than 50 eV.

However, the Coulomb potentials are singular at T = O so a spacing of 0.2a. is

inadequate for representing the potentials at small r. We can evaluate how well a
particular grid represents the Coulomb potential by diagonalizing the finite difference
approximation to the one-dimensional radial hydrogenic Hamiltonian of Equation 3.9
and comparing the negative real eigenvalues with the known bound state energies of
hydrogen. A spectrum from a complex scaled Hamiltonian is shown in Figure 3.2.
In this example a spacing of O.Olao near r = O and 0.05a. out to r = 2a. gives the

ground state energy and excited state energies up to n = 4 correct to better than
0.05% and we can assume that the corresponding eigenstates are good approximations
to the true hydrogen states. Note that the calculated ground state energy is below
the exact value. With finite difference there is no variational principle that forces the
calculated ground state energy to be larger than the exact value.

Beyond r = I& the wave function is particularly insensitive to grid spacing and we

can use very large (but still less than lao) grid spacings near T = Rm=. Specialized
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finite difference formulas valid for “stencils” that span regions of two different grid
spacings are listed in Appendix C. These formulas allow us to use grid spacings of

0.2a0 over most of the grid, a tight grid spacing for small r, and a very large grid
spacing for large r with only a moderate cost in accuracy. These specialized formulas
also make application of ECS possible.

A typical grid that spans 100aO in real coordinates and an additional 25a0 in
complex coordinates requires 458 grid points in one dimension. The total number
of grid points in two dimensions, and the dimension of the matrix equation, is then
209,764. The largest calculation presented here was for a grid that is real out to 450a0
with 1,339 grid points giving a system of 1,792,921 equations.

3.4.5 Solving linear equations

We have cast Equation 3.5 into a linear matrix equation that must be solved in
order to generate the scattered wave. The size of the matrix for the Temkin-Poet
model is large enough to warrant developing an efficient algorithm for solving the
system of linear equations, especially since we ultimately want to solve the much
larger six-dimensional problem of electron-hydrogen scattering.

Most of the matrix elements are zero and there is a huge savings in computer
memory if the matrix representation of (17-@ is stored in the sparse format described
in Appendix D. In a sparse matrix storage scheme only the nonzero matrix elements

are stored. Sparse matrix algorithms are more difficult to write and almost never

generate impressive MFLOPS ratings. However, if the matrix is truly sparse then the
reduction in the number of required arithmetical operations more than makes up for

this and the sparse matrix algorithms typically take significantly less time than their
dense matrix counterparts. Setting up the finite difference matrix equations is trivial

so most of the computational time is used for solving the large matrix equations.

The canonical “direct method” for solving a system of linear equations is Gaussian
elimination. Solving systems of equations of the size needed here requires highly
optimized software running on modern, high-performance computers. At present, the
only numerical software capable of directly solving matrix equations this large is a

package of LU-factorization routines, called SuperLU [19], that is designed for sparse
matrices. Time and memory costs of using SuperLU to solve linear equations with

two-dimensional finite difference matrices are discussed in Appendix D.

The time and memory requirements for LU-factorization of the low-order finite

difference matrix are much less than those for the high-order matrix. An iterative
algorithm which arrives at the solution to the high-order equations by repeatedly
using SuperLU to directly solve the low-order equations is described in Appendix E.
This iterative algorithm gives substantial savings in memory and time compared with

directly solving the high-order finite difference matrix equations.
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Figure 3.4: Sample scattered waves for the Temkin-Poet model with singlet spin

symmetry at an incident energy of 20.4 eV. Real parts of the wave functions are
shown. Upper picture shows a wave function calculated on a grid that was real to
40a0. Lower picture shows a wave function calculated on a grid that was real to 100aO.
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Figure 3.5: Sample scattered wave for the Temkin-Poet model with triplet spin sym-
metry at an incident energy of 20.4 eV. Real parts of the wave functions are shown.

Upper picture shows wave function calculated on a grid that was real to 60a0. Lower
picture shows the same wave function after projecting out the elastic channel.



3.5 Properties of the Calculated Wave Functions

Figures 3.4 on page 23 and 3.5 on page 24 show examples of the real part of

the Temkin-Poet scattered wave for an incident energy 6.8 eV above the ionization

threshold. The singlet wave function is symmetric while the triplet wave function

is anti-symmetric with a characteristic “trough” down the ray rl = r2. Different

asymptotic components of the scattered wave, as identified in Equation 3.8, are visible.

Discrete channel components are products of outgoing waves, which span the length
of the grid, and bound states, which extend over small distances. These components

appear as oscillations localized along the rl and r2 axes. The ionization component has

both electrons in the continuum and appears as circularly outgoing waves spanning

the space between the two axes. It is this part of the wave function that is difficult to

represent in traditional, “two-body” formalisms. The exponentially. damped “fringe”

where the coordinates are complex is visible in each picture.
Figure 3.4 shows the singlet wave function calculated on two different sized grids.

Two distinct components of the singlet wave function are visible on the smaller grid.

Peaks along the edges are due to elastic scattering. The wavelength of those oscilla-
tions is equal to the wavelength of the incident wave, and the shape of the peaks is

proportional to the ground state radial function for hydrogen. Circular waves corre-
sponding to ionization span the space between the two coordinate axes. These have
a longer wavelength because ionization requires a loss of kinetic energy equal to the
ionization potential of hydrogen (13.6 eV). More components of the wave function are

visible on the larger grid. At larger distances, excitation channel components emerge.
These look like products of excited states of hydrogen, which extend further from the

axes, and plane waves with longer wavelengths. The presence of different wavelengths
causes a “beat” pattern in the wave function along the edges of the grid.

The upper picture in Figure 3.5 shows the triplet wave function calculated on
a grid that is real out to 60ao. Elastic scattering dominates this wave function so
much that almost nothing else is visible. The lower picture in Figure 3.5 shows the
same wave function but with the elastic scattering component projected out using
the projection operators defined in Equations 4.10 and 4.11. With the elastic channel
removed the wave function on the edges of the grid is dominated by excitation of the
n = 2 state. By comparing the upper and lower pictures we can see the difference in
the wavelengths of the elastic (n = 1) and the n = 2 components. Also, the shape

of the peaks in the lower picture is proportional to the n = 2 radial function for
hydrogen. Because the triplet wave function is anti-symmetric, the ionization waves

have a “trough” along the ray rl = r2.
In the examples shown in Figures 3.4 and 3.5 the ionization component forms well-

defined outgoing waves in the hyperradius p within about 20ao. As the scattered wave

propagates away from the origin the discrete channel components remain confined to
a certain distance from each edge so they occupy a continuously decreasing range of

the hyperangle a. The ionization wave, however, continues to span the full range of
cu. Thus, as the scattered wave propagates outward the discrete channel components
spatially separate from the ionization wave so that an increasingly larger fraction of
the ionization wave is “uncovered” by the discrete channel components.
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Figure 3.6: The absolute value of the scattered wave radial functions along arcs of
a constant hyperradius. At each hyperradius two wave functions corresponding to
incident energies -Ei = 14. leV and 54.4eV are shown. For each energy the vertical
scale is the same at every hyperradius.

This uncovering of the ionization wave is visible in Figure 3.6 which shows cross-

sections of the scattered wave for two incident energies along six different arcs of
constant hyperradius. Looking at either wave function, we can see initially that for
a hyperradius of 20a. there are two well-defined peaks corresponding to elastic scat-
tering with a smooth curve between them. As the hyperradius increases the elastic
scattering peak becomes confined to a smaller region of the hyperangle. Also, peaks
corresponding to the excitation components begin to emerge as they, too, become con-
fined to smaller regions of the hyperangle. The heights of the discrete channel peaks
remain essentially constant, aside from small fluctuations due to the beat pattern
mentioned previously, while the height of the ionization curve decreases monotoni-

cally with increasing hyperradius.

Although, formally, there are an infinite number of excitation channels present,

their importance relative to ionization decreases for increasing energy quantum num-
ber. For a given incident energy there are a finite number of discrete channel com-

ponents that need to be removed from the scattered wave to isolate the majority of
the ionization wave to acceptable accuracy. The number of these components that
cannot be ignored determines how far from the origin we must look in order to see the

uncovered ionization wave. As can be seen in Figure 3.6, for incident energies near
the ionization threshold the uncovering of the ionization wave happens much more
slowly. This is because the ionization wave is much smaller relative to the discrete



channel components at scattering energies slightly above the ionization threshold.

3.6 Accuracy of the Calculated Wave Functions

Accuracy of the calculated wave functions can be affected by numerical error in

the calculations as well as systematic error due to the formalism. Numerical error

can come from round-off errors in solving the large systems of linear equations but is
mainly due to error in the finite difference representation. The primary grid spacing

is typically 0.2ao, so by using sixth order finite difference formulas the error should

be no more than 10-4. Thus, we expect the numerical error in the wave functions to
be better than a tenth of a percent.

In terms of systematic error, the main concern is the effect from truncating the

Coulomb potentials. We are trying to use artificially short-range potentials to calcu-
late information for systems with long-range potentials. In order for these calculations

to be meaningful, it is necessary that on the interior region the wave function be un-
affected by truncating the potentials. We can check this by comparing two wave
functions calculated on different grids, with the size of the grid determining where

the potentials are truncated.

Figure 3.7 shows several comparisons performed along arcs of constant hyperradius
p, similar to Figure 3.6. For the most part, the relative differences in the wave

functions are no more than 0.0170 which is less than the estimated numerical error for a
primary grid spacing of 0.35ao. The differences are somewhat greater for comparisons

done at larger p but are still acceptable, especially considering that the grid spacing
used for these comparisons was wider than what would normally be used.

Plots in Figure 3.7 compare results from potentials truncated at different distances.
Ideally, we would compare to results for truly infinite range Coulomb potentials.

Of course, this is impossible. Instead, we can see if the calculated wave functions
are approaching the asymptotic form for ionization given in Equation 3.11. This

two-dimensional form was presented by analogy with the Rudge asymptotic form in

~ comparison at p = 50 for RO= 100and450 comparison at p = 50 for Rn= 200 and 450 comparisonat p = 50 for Rn= 300 and 450

15 S0456075 SO

~ comparison at p = 50 for Rn= 50 and 450 comparison at p = 200 for R.=200 and 450. mmparison at p= 350 for R. = 350 and 450
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Figure 3.7: Comparison of 14.4eV incident energy, singlet, Temkin-Poet wave func-
tions along a constant hyperradius p for calculations using grids that were real out

to different values of ~. The primary grid spacing used in these calculations was
0.35ao. All distances are in units of ao.
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Figure 3.8: Demonstration of thelogarithmic ph~eterm inthesinglet Te"mkin-Poet
scattered wave for 54.4eV incident energy. All four figures show the real part of

~~p(~l,~z) (solid line) along therayrl =r2. The wave function is complex scaled
beyond 283ao. The upper figures show afunction (dashed line) with a logarithmic
phase fit to q!$p. The fit was done for large values of the hyperradius p and the

two curves are distinguishable only for p > 283a. where ~~p is complex scaled. The
upper right compares the same functions for a region of smaller p where there are
slight differences in the amplitudes between the two. The lower figures make the same
comparison, but fit to a functional form without a logarithmic phase. The fit is again

done at large p, but this time there is a noticeable difference in phase at smaller p.

Equation 2.11 which is valid only when the two electrons are well separated from

each other. It is unclear exactly what this means in the Temkin-Poet model so we
certainly cannot use the form in Equation 3.11 to match to the entire wave function.
However, if we look only along the ray rl = r2 then we can expect @~p to have the

essential features of Equation 3.11: a logarithmic term in the phase and a ~ decay

in the amplitude.

In Figure 3.8 the real part of the wave function along the ray T1 = r2 is compared

to a function of the form $ sin (~p + B in 2~p + C) where ~~2 = -?3,which in this

example is 54.4 eV. The wave function was calculated on a grid that was real on a box
of length 200a. so the coordinates are real out to p = 282.8a. along the ray rl = T2.

Coefficients A, B, and C’ were chosen to fit @~p locally over a range of p between
270a. and 280ao. This functional form fits ~~p in this region so well that it is visible

only beyond 283a. where ~~p is exponentially damped by the complex coordinates.
Even at smaller p it fits ~~p very well, with only a slight difference in amplitude but

still very good agreement in phase.

For comparison, the same type of fit was done without the logarithmic phase term
i.e., forcing the coefficient B to be zero. Coefficients A and C were chosen to match

@~P over the same range of p between 270a. and 280ao. Even without the logarithmic
phase we can match && well over a small region, but there is a significant difference
in phase when we examine a different range of p. Logarithmic phase terms are char-
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Figure 3.9: The figure on the left shows the absolute value of #~P (rl, Tz) along the ray

rl = r2 for incident energies of 54.4eV and 14.14eV. Several dashed lines proportional
to + are provided for reference. On the right is an attempt to fit @~P for 14.14eV

to the same functional form as in Figure 3.8, with a logarithmic phase term.

acteristic of Coulomb potentials and the fact that a logarithmic phase is present in

our calculated wave functions suggests that truncating the Coulomb potentials has
not caused fundamental damage.

The other feature we expect to see in the wave function is a ~ decay in the

amplitude. It is clear from Figure 3.8 that this is indeed the case, at least for 54.4 eV

incident energy. The -$ decay is a consequence of having both electrons in the con-

tinuum. Discrete channel components have just one electron in the continuum and do
not decay as the radial coordinate for the continuum electron increases. Thus, the ~

dependence requires the absence of discrete channel components. From Figure 3.6 we
know that for very low incident energies the discrete channels contribute significantly
to @~P over a much larger region.

The absolute value of @~P for incident energies of 54.4 eV and 14.14 eV is plotted

on a logarithmic scale in Figure 3.9. We can see that along the ray rl = r2 the 54.4
eV wave function decays like ~ beyond about 20a.. On the other hand, the 14.14

eV wave function does not exhibit this behavior even at 280ao. An attempt to fit the
14.14 eV wave function to the same functional form as in Figure 3.8 confirms that

this wave function still has not reached its asymptotic form.
So, exterior complex scaling provides ~ means for calculating the scattering wave

function to arbitrary accuracy, but only on a finite region. We can extract physical

quantities from the calculated wave functions if we are able to limit our analysis to
the region in which both coordinates are real. To get meaningful results for ionization
we need to make the complex scaling point large enough so that a significant portion
of the ionization wave has been “uncovered” before the coordinates become complex.
Incident energies very near the ionization threshold will require huge calculations

so there is an effective lower limit in energy for which this method works. In the
next chapter we will investigate the validity of extracting scattering information from
calculated wave functions that are known on only a finite region of space.
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Chapter 4

Calculating Cross Sections for
Electron-Impact Ionization

Having calculated wave functions that describe ionization, we need a procedure

for extracting from them differential cross sections for ionization. The total scatter-
ing cross section is the sum of discrete cross sections for elastic scattering, for each
excitation, and for ionization. In the elastic and excitation channels the energy of the
outgoing electron is quantized. However, when ionization occurs energy is shared con-
tinuously between two outgoing electrons. Single differential cross sections describe

this energy sharing. Although differential cross sections for ionization are intrinsically
tied to the asymptotic form for three-body breakup, they can be extracted from a
wave function known only over a finite region by directly calculating the scattered
flux and then using an extrapolation procedure. This method has produced accurate
single differential cross sections in the Temkin-Poet model [3].

4.1 Total Cross Section

Scattering cross sections are defined in
the scattered wave. For consistency with

terms of the probability current density for

the full electron-hydrogen problem we will
treat the Temkin-Poet wave @~P(TI, r2) as the radial function for a six-dimensional
scattered wave that happens to have no angular dependence. The six-dimensional

scattered wave IP: and the three-dimensional ground state function Qls are related,
in the Temkin-Poet model, to their radial function counterparts (defined in Equations

3.4 and 3.6) by multiplication by appropriate factor(s) of ~YO,O(?).

o~,(?) = ;@l(T)Y~,~(F) q(~l, ~2) = &@p(W ~2)yo,o(~l)yo,o(~2) (4.1)

Scattering processes are quantified by scattering cross sections defined as the scat-
tered flux divided by the incident flux density. The flux density of some wave function
W through a surface S is defined as the probability current density js along the surface

normal fis.

js “m{~’~~} “fis (4.2)



I

The gradient in Equation 4.2 is the one appropriate for the coordinate space in which
t
I

W is defined.

For a plane wave ei~’z the flux density is ki in the 2 direction. We need to relate

sin kir in the Temkin-Poet initial state (Equation 3.7) to the expansion of a plane

wave in terms of Ricatti-Bessel functions ~1(kir).

Since ~o(kir) = sin(kir) the initial state defined in Equation 3.7, after multiplication

by the $Yo,o(?) factors, is equal to the’1 = O term of the expansion in Equation

4.3 anti-symmetrized with the hydrogen ground state and multiplied by ~. Thus,

the incident flux density in the Temkin-Poet model, with the initial state defined in

Equation 3.7, should be ~.

Mea&ring the scattered flux requires a closed surface S in six-dimensional space

that surrounds the interaction region. The discrete channel flux is outgoing in T1 and

r2 while the ionization flux is outgoing in the hyperspherical radius p. Since discrete

channel flux remains localized near the ~1 and r2 axes in a two-dimensional radial

coordinate system (see Figure 3.6) we can say that, in the limit p + M, all scattered 1
flux is outgoing in p. Thus, the appropriate surface S is a hypersphere of radius p = p. I
in the limit p. + co.

We define the probability current density jPOthrough a hypersphere of radius p.
by Equation 4.2 with surface normal fis = j. In general, jPOis a function of the two

(

sets of angular coordinates ?1 and ?2 and the hyperspherical angle a.

(4.4)

The total cross section is obtained by integrating jp, (in the limit p. ~ co) over the
surface of the hypersphere and dividing by the incident flux.

47r
OtOtal= lim ~ /(sjpo ~1, ~2, ~)ds (4.5) :

PO+~ ki

I

The differential dS represents the surface differential of a hypersphere such that it is re-
lated to the full six-dimensional volume element by dSdp = dr~drj = r~r~d?1df2dr1dr2.

!

dS s rfr~d?ldfzpd~ (4.6) ;’
~,

We can now write an expression for the total cross section as a surface integral in
~,

i
terms of the scattered wave U:. For later convenience, the Jacobi~ factor (rl, r2)2 ;,

is associated with the scattered wave. We will take Equation 4.7 as our working

definition of the total cross section.

41r
/ {(‘tot” = ~ s }

Im rl, rzIU~(F-, 72))’ ~ (rl, r2W~(Fl, F2)) pd?ld?zda
dp

(4.7)
p+m

~,I—————— .—
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The normalization in Equation 4.7 is for the initial state defined in Equation 3.7.

A more numerically stable method for calculating the total cross section comes
from converting the surface integral in Equation 4.7 to a volume integral by applying

Green’s theorem.

~,~,~, = $fIm{(~~(P~,P~))* V2V~(F~,P’)}d~?d~~ (4.8)
z

The operator V’ is the 6-dimensional Laplacian and the integration is over all space
for both coordinates. For the case of the Temkin-Poet model, integration over the
angular coordinates merely removes the spherical harmonics contained in U: leaving
just the radial scattered wave @~P.

Equation 4.9 is the volume integral expression for the Temkin-Poet total cross section.
Integration is from zero to infinity in both radial coordinates.

4.2 Channel Cross Sections

Channel cross sections an correspond to elastic scattering or excitations with one
electron left behind in the ~n bound state. To define them we will use the two-

dimensional projection operator Pn(rl, T2).

Pn(r~, r’) = Pn(r~) + Pn(?-’) – Pn(?-~)Pn(?-’) (4.10)

Each one-dimensional projection operator P.(r) projects onto the bound state @n(r).

m

Pn(r)f(?-) = @n(r)/ (jn(?-’)f(?-’)czr’ (4.11)

o

As indicated in Equation 3.8, the scattered wave can be completely described asymp-

totically as components for ionization and each bound state. Thus, the ionization

component is the piece of the wave function that remains
ponents have been removed so we can in principle define
responding to ionization.

after all bound state com-
a projection operator cor-

(4.12)

In order to use the projection operators we need an alternate expression for the
total cross section. Any real potential can be added to the second derivatives inside
the integrand in Equation 4.9 without changing the value of the cross section. For



1s + 1s elastic cross section (units of a?)

incident energy (eV) 16.5 19.6 23.1 27.2 30.6

ECS (& = 100aO) 3.093 2.433 1.978 1.644 1.449

Poet [26] 3.103 2.443 1.987 1.651 1.456

Burke and Mitchell [14] 2.878 2.428 1.938 1.663 1.509

1s + 2s excitation cross section (units of a?)

incident energy (eV) 16.5 19.6 23.1 27.2 30.6

ECS (G= 100aO) 0.441 0.355 0.277 0.211 0.172

Poet [26] 0.444 0.356 0.276 0.211 0.172

Burke and Mitchell [14] 0.627 0.347 0.302 0.211 0.157

Table 4.1: Elastic and first excitation cross sections for the Temkin-Poet model with

singlet spin symmetry. Values calculated using exterior complex scaling (ECS) beyond

& = looao are given along with “exact” values calculated by Poet using a method
specialized for the Temkin-Poet model. Results from an early close-coupling calcula-

tion by Burke and Mitchell are also shown. These values have not been multiplied by
spin statistics factors.

instance, we can write an equivalent expression in terms of the S-wave hydrogen radial
Hamiltonian in Equation 3.9 which will be denoted hereby fio so that Ho@. = s.4..

To arrive at the channel cross sections, we insert the identity operator 1 as the
sum of all projection operators Pn including the ionization projection operator Pio~.

Since the projection operators all commute with the hydrogen Hamiltonian HJ and
Pn(rl, r2)Pn/ (rl, ~2) = 6n,n/Pn(T-1,r2) the total cross section is now a sum of individual

‘tchannel” cross sections. co

n=l

Each discrete channel cross section an can be calculated via an expression analogous
to Equation 4.9 but with the projection operator Pn acting on the scattered wave.

We can immediately identify al as the elastic scattering cross section and each cr. for
n >1 as the cross section for excitation into the @nbound state.

The channel cross sections provide our first opportunity to judge the accuracy
of the scattered wave calculated by exterior complex scaling. Accurate values for
the channel cross sections have been calculated by R. Poet [26, 27]. Table 4.1 lists

~
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singlet an (in units of a;) for 14. 14eV incident energy

ECS beyond & = 40a0 50a0 70a0 100aO 150a0

total : 4.53915 4.53914 4.53914 4.53913 4.53914
n=~: 3.88524 3.88523 3.88523 3.88522 3.88523
n=2: 0.50096 0.50096 0.50097 0.50096 0.50096
n=3: 0.09453 0.09453 0.09453 0.09453 0.09453
n=4: 0.02781 0.02839 0.02844 0.02844 0.02844
n=5: 0.00483 0.00963 0.01131 0.01134 0.01134
n=6: 0.00190 0.00152 0.00473 0.00544 0.00545

triplet an (in units of a;) for 14. 14eV incident energy

ECS beyond & = 40a0 50a0 70a0 100aO 150a.

total : 11.6240 11.6240 11.6241 11.6240 11.6241
n=~: 11.6142 11.6142 11.6143 11.6142 11.6143
n=2: 0.00938 0.00938 0.00939 0.00939 0.00939
n=3: 0.00027 0.00027 0.00027 0.00027 0.00027
n=4: 0.00003 0.00003 0.00003 0.00003 0.00003

Table 4.2: Total and several discrete channel cross sections for 14. 14eV incident
energy. Results are given for both singlet and triplet spin symmetries (spin statistics
factors not included) from calculations using different size grids.

some of these for the elastic channel and first excitation channel along with values
calculated using complex scaling beyond 100ao. Values are given for several energies
above the ionization threshold. In all cases, the difference between Poet’s values and

those calculated here is better than O.l!?10.This suggests that at least some scattering
information can be obtained from a finite range, ECS transformed scattered wave.

The only systematic error in the ECS formalism comes from truncating the Coulomb
potentials where the coordinates become complex. We expect that truncating the po-
tentials might affect only those channels corresponding to bound states that extend
beyond the range of the real coordinates. Total and several channel cross sections for
an incident energy just 0.5 eV above the ionization threshold are listed in Table 4.2.

Results from calculations using several values of the complex scaling point R. are

given. The total and elastic scattering (n = 1) cross sections as well as the excitation
cross sections up to n = 3 are essentially identical for fi = 40a. and beyond. For

the singlet case the n = 4 cross section changes slightly for R. larger than 40a. while
the n = 5 and n = 6 cross sections change significantly.

Error in the wave function is mainly in the excitation channels for states that

extend beyond where the Coulomb potential is truncated. Looking at Table 4.2, we
see that if fi is 100a. or larger the discrete channels up to n = 5 are accurately
represented. The relative contributions of the excitation channels to the total wave
function decrease rapidly as n increases. Note that this decrease in the relative



contribution from the excitation channels is especially rapid in the triplet case. This is

a unique characteristic of the Temkin-Poet model and will not be a feature of electron-

hydrogen scattering. Channel cross sections converge rapidly as I& increases and we

can assume that for ~ of at least 100a. the error from truncating the potentials is
no worse than numerical error from using finite difference.

The rapid decrease in the channel cross sections as n increases suggests that we
might obtain accurate total ionization cross sections by subtracting the elastic and

excitation channel cross sections from the total cross section. As we will see later, the

ionization cross section is a small fraction of the total and, in some cases, subtracting
channel cross sections up to n = 6 may not be enough to produce an accurate ioniza-

tion cross section. If enough discrete channels can be accurately represented on the

grid then subtracting channel cross sections from the total is the most accurate way
to calculate a total ionization cross section. However, this does not lead to a method

for producing differential cross sections. For that we will need a different approach.

4.3 Differential Cross Section for Ionization

The surface integral expression for the total cross section in Equation 4.7 provides
a natural means for defining a differential cross section with respect to the four an-
gular coordinates and the hyperspherical angle a. We will soon see that the angle ~
parametrizes energy sharing between the two outgoing electrons. Consequently, the
integrand in Equation 4.7 will lead to a cross section that is differential with respect
to the energy of one electron as well as the directions of both electrons.

The greatest challenge in treating ionization is correctly describing energy shar-
ing between the two outgoing electrons. Since there is no directional dependence
in the Temkin-Poet model we can perform the trivial integration over the angular

coordinates in Equation 4.7 and look at just the Q dependence.

~tot~= ~ pm{(wr1,r2))*-$(Ww))}pda (4.16)
‘o p-ma

The integrand in Equation 4.16 defines a differential cross section with respect to a,
but only in the limit p ~ co. Under exterior complex scaling we know the wave
function only on a finite region, so we need a means of extracting the p + co limit
from a finite region of space. To this end, let us first define a generalized flux fp,(a)

evaluated at a finite hyperradius po.

(4.17)

The fpo(a) are always symmetric about a = 45° just like the absolute value of the

scattered wave plotted along arcs of constant p in Figure 3.6. Examples of fpo(a) cal-
culated from the same wave function, but at different values of p. are shown in Figure
4.1. The plots in Figure 4.1 show the behavior of the two distinctive components of
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p = 20a
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Figure 4.1: Flux, as a function of the hyperangle, calculated for various values of the
hyperradius p in the Temkin-Poet model with incident energy of 20.4 eV. The flux is
symmetric about 45°. The upper figures zoom in on the discrete channel contributions
near the edges while the lower figures show the smaller ionization component.

the flux (discrete channel peaks near the edges and the ionization component in the
middle) as the flux surface moves outward in the hyperradius.

As p. increases the width of the discrete channel peaks decrease and more of the
ionization component is uncovered. Unlike the peaks shown in Figure 3.6, the peaks
in the flux increase monotonically with p. due to the factor of p in Equation 4.17.

This must be so because conservation of flux in each channel requires that the areas
under the peaks remain constant. In the limit p. ~ co the discrete channel flux will
become delta functions in a at zero and 90° and fPOwill consist only of ionization flux

except for infinitesimally small regions near the edges. Thus, we can use fPO(a) to

define a differential cross section * for ionization that is valid everywhere except
very near a equals zero and 90°.

(4.18)

This differential cross section is supposed to give the total ionization cross section
when integrated over the full range of Q. The conditional equality in the definition
of ~~ion (~)

da reflects the fact that fPO(a) formally contains discrete” channel contributions

at @ equals zero and 90°. In principle, we could eliminate the discrete channel con-
tributions by forcing @&@ to be zero at a equal to zero and 90° ajter taking the
p~ ~ cm limit.

To obtain the differential cross section defined in Equation 4.18 we need to some-

how take the p. + CQ limit of the flux from a wave function known only on a finite
region of space. If we substitute the asymptotic form for the ionization part of the

scattered wave given in Equation 3.11 for @~P in Equation 4.17 we see that the ion-
ization part of the flux fPO(a) approaches its asymptotic limit like ~.

for large p :
A(a)

fp(a!) ~ fro(a)+ — (4.19)
P

Thus, if we calculate fPO(a) for two or more values of p. that are large enough for this
form to apply we can estimate the flux in the p. ~ m limit by fitting Equation 4.19

to the calculated fPO.
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Figure 4.2: Comparison of calculated flux to a ~ extrapolation curve in the Temkin-

Poet model with incident energy of 20.4 eV. The ~omparision is done for three different

values of the hyperangle. The solid line is the $ least-squares fit and the markers are

the values of the flux from the wave function. The values of the flux that were used
to produce the least-squares fit are circled.

Examples of fitting the functional form in Equation 4.19 to the fPOfrom a particular

scattered wave are shown in Figure 4.2. In this example the function A(cY) and the
p. ~ co limit of the flux were estimated by a least-squares fit using fPo calculated at
five evenly spaced values of p. ranging from 180a. to 200ao. The curves in Figure 4.2

are the resulting fits, as functions of p, plotted for three different values of a. For

comparison, fPOcalculated at several values of p. are also shown. Only the last five
directly calculated fPOshown in Figure 4.2 were used for the least-squares fit.

Other fPo (evaluated at smaller po) are plotted to show how well the fPOfit Equation
4.19 for different hyperangles. At hyperangles of 30° and 45° the flux fits the form
in Equation 4.19 very well beyond p x 100ao. However, at a hyperangle of 15° the
flux does not reach this form until somewhere beyond 150ao. In general, the form

in Equation 4.19 is reached more slowly for Q near zero and 90°. This is primarily
due to “contamination” from discrete channels, which do not extrapolate in this way,
near the edges of the grid.

In the true p + co limit, as p. increases the discrete channel peaks in the fPo
become confined to infinitesimal regions of a near the endpoints. This behavior

cannot be replicated by extrapolation. Consequently, the region over which * is
valid is restricted to the range of ~ over which the fPo used for the extrapolation do
not contain appreciable amounts of discrete channel contributions. In other words,

extrapolation does not provide a means for further “uncovering” the ionization flux.
Thus, we cannot calculate y in this manner over the full range of a. Figure 4.3

shows three different * obtained by extrapolation from fPOfrom three different,
disjoint ranges of po. They all have large oscillations near the edges that come from
trying to extrapolate the discrete channel components using Equation 4.19. Each
extrapolated curve is valid only over the region of a where it is smooth.

One might think that we could use the projection operators defined in Equation
4.10 to remove the discrete channel components from the scattered wave leaving
behind a pure ionization wave. However, if we were to actually try projecting out



. .

38

0.25

0.2

0.15

0.1

O.OE

c

.
,
1

I

I
I

1

*

:

I

i

i

1

1

#

I

1

i

I

1

I

20.4eV incident energy

m
15 30 45 60 75

hyperangle (degrees)

54.4eV incident energy
0.25

0.2

0.15

0.1

0.05

0
0 15 30 45 60 75 90

hyperangle (degrees)

Figure 4.3: Comparison of flux extrapolated from different ranges of the hyperradius
in the Temkln-Poet model at two different incident energies. Each extrapolation was
from flux calculated at three different values of the hyperradius over a 10a. range. The
curves are identified by the largest hyperradius that was used for the extrapolation.

all of the discrete channel components (or, at least all of those that fit on the grid)
we would find that the remaining wave function does not have the expected smooth

behavior over the full range of Q. This is because the discrete channel projection
operators project out states that are not eigenfunctions of the full Hamiltonian. They
are, instead, eigenfunctions of an “asymptotic” Hamiltonian describing a hydrogen
atom and a free electron. All of the dynamics of the true ionization wave are governed
by the full Hamiltonian and it cannot be assumed to be orthogonal to the asymptotic
forms for the discrete channels. For this reason, distinguishing between the ionization
wave and the discrete channels really does rely on spatial separation of the different

components. Because we know the wave function only over a finite region of space,
projecting out discrete channels from the scattered wave will not improve our ability

to calculate * near a equals zero and 90°.

Formally, there are an infinite number of discrete channels present in the scattered

wave. The larger the energy quantum number n the greater the extent of the bound

state. That means for any finite grid, no matter how large, we can always find a
maximum n for which the nt~ and higher bound states extend beyond the range

of the grid. These bound states cannot be correctly represented on the grid and the
corresponding discrete channel components of the scattered wave cannot be accurately
removed using projection operators.

Removing the first few discrete channel components would certainly make the os-
cillations in Figure 4.3 much less dramatic, but they would still exist over the same
range of Q because it is actually the higher excitation channels that are the limiting

factor. Furthermore, the rate at which the ionization component reaches the asymp-
totic form in Equation 3.11 is no faster than the rate at which the discrete channel

components “uncover” the ionization wave. This means that even after as many dis-
crete channels as possible are removed, the flux from the ‘“ncovered” ionization wave



may still not fit Equation 4.19.

We can see in Figure 4.3 that the size of the region over which * is valid

depends on the distance at which the fPOused in the extrapolation were calculated.

Forthelower energy example in Figure 4.3 the_ extrapolated from 100ao and

200a. are valid between Q = 15° and cz = 75°, while the w extrapolated from

50a. isvalid only between a=30° and a=60°. Inthehigher energy example the
regions of validity are somewhat larger. Over the range of a in which all of the -

are valid there is quite good agreement among the different extrapolated results. The
plots in Figure 4.3 suggest that, within the range of a that extrapolation

error due to extrapolation in p is about 5Y0.

is valid, the

4.4 Single Differential Cross Section

The hyperspherical angle a has no direct physical meaning so differential cross

sections with respect to a are of little practical use. Instead, we are interested in a

differential cross section that describes how energy is shared between the two outgoing

electrons. The single differential cross section (SDCS) is a differential cross section

with respect to the energy of one electron. It is directly related to - because a
parametrizes the energy distribution between the two electrons.

We associate two momenta kl and kz with the two outgoing electrons. The mo-
menta are constrained by conservation of energy so that ~ (k?+ k~) = E. Looking at
the final state semi-classically, we know that the electron with the larger momentum
is moving faster so, at some time following ionization, that electron will be further
from the nucleus than the “slow” electron will be. If we trace the trajectory at large

distances for this semi-classical picture in the two-dimensional radial plane it should
follow a fixed ray for some hyperspherical angle ~.

So, intuitively we expect that for large p the hyperspherical angle a parametrizes
the energy sharing between the two outgoing electrons.

The relation in
phase argument.

~~~ tan-l
(:)+tan-l:)=a

(4.20)

Equation 4.20 was shown formally by Rudge [34] by a stationary

Using this relation, a differential cross section for electron-impact
ionization that is a function of a can be converted to a cross section that is differential
in the energy of one of the two electrons.

The individual electrons’ momenta are proportional to sin a and cos a for large

p and their kinetic energies are Cl = E COS2a and e2 = E sin2 ct. To convert from a

differential with respect to a to a differential with respect to the energy of the second
~ron(~) by the quantity ~ = 2_Esin a cos cz. Energy differentialelectron we divide &

cross sections * will be symmetric about e = ~ just as the - are symmetric

about a = 45°. By convention, the SDCS is the energy differential cross section



40

SDCS (units of a~/eV)
x 104

[w

.=2 ..,..,.:.........

X104

(=
05 10 15 20 25 30 35 40

energy E of one electron (eV)

ddda (units of a:)
x 10–2

?-

x 10-2

!=

1 ..... .............. .......... ........ .. .... ......... .............. ............

o 15 30 45 60 75 90
hyperangle & (degrees)-

Figure 4.4: Differential cross sections in the Temkin-Poet model for 54.4 eV incident
energy. The upper plots are the singlet cross section multiplied by a spin statistics
factor of ~, the lower are the triplet multiplied by ~. The “raw” ~ (dashed lines on

the right) come directly from extrapolating the flux in p and are converted to “raw”
$ (dashed lines on the left). The noise at the edges of the “raw” ~ is replaced by
a linear extrapolation in s to produce the final SDCS (solid lines on the left). The

final SDCS were transformed back to a final - (solid lines on the right).

defined for e between zero and ~.

“2dqon(&)
Olon=

/ dc “
o

(4.21)

The total ionization cross section is obtained by integrating the SDCS over half of

the energy range so there is an additional factor of two contained in the conversion

from ~%~(a) to the SDCS, w.

(4.22)

Equation 4.22 along with Equations 4.18 and 4.17 define the energy sharing SDCS in

terms of a flux calculated as a function of a.
We are still faced with the problem that extrapolation in p produces a differential

cross section that is invalid near ~ = O and a = 90°. This means that we cannot
calculate the SDCS for the case where one of the electrons carries most of the energy.
We know that the correct SDCS should be a very smooth function of e. In fact, the

SDCS can be assumed to be linear near E = O.
The two differential cross sections w and w for both singlet and triplet

spin symmetries at an incident energy of 54.4 eV are shown in Figure 4.4. The
dashed lines are the “raw” results obtained directly from extrapolation in p. These
lines contain large amplitude noise from the discrete channels near the edges. In both
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Figure 4.5: Examples of the singlet, triplet, andtotal SDCSat incident energies of

27.2 eVand81.6eV. The singlet andtriplet cross sections have been multiplied by

the appropriate spin statistics factors.

spin symmetries the SDCS is essentially linear near where the discrete channel noise

begins. This suggests that we can estimate the SDCS for small e by replacing the
discrete channel noise with a linear extrapolation in e. The solid lines in the left
panels of Figure 4.4 are the final SDCS obtained by replacing the “raw” SDCS for

small E with a linear fit in e that is matched to the “raw” SDCS at the lowest value
of e where the extrapolated results can be assumed to be reasonably accurate.

Choosing the value of E at which to perform the linear match is, admittedly, a
somewhat arbitrary process and there is really no way to quantify the accuracy of
the procedure. In practice, we choose the matching point by looking at plots similar
to Figure 4.4 and choosing a value of e just inside where the oscillations are visible.

In Figure 4.4 we see that the fraction of the energy range occupied by discrete

channel noise in the “raw” SDCS is much smaller than the fraction of the total a
“ w. This is because converting from arange occupied by the noise in the “raw

function of a to a function of e compresses the function near the ends. Consequently,
the fraction of the SDCS that comes from the linear fit is much smaller than might
be expected from looking at plots of the “raw” w. Converting the final SDCS

back to a differential with respect to a shows what the true w should look like
over the full range of ct.

4.5 Temkin-Poet Results

Examples of the final SDCS for both singlet and triplet spin symmetries are shown
in Figure 4.5. The total SDCS is the sum of the singlet and triplet SDCS with statis-

tical weights of ~ multiplying the singlet cross section and ~ multiplying the triplet
cross section. All of the SDCS are symmetric and very smooth with the minimum
value at ~ and the maximum value at zero and E. These general characteristics of
the SDCS will carry over to electron-hydrogen scattering. The SDCS for the triplet

E because the triplet radial wave functions are anti-symmetric.case are zero at e = T

i
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Figure 4.6: Comparison ofconvergent close-coupling [6]andexterior complex scaling
results for the singlet and triplet SDCS in the Temkin-Poet model at 40.8 eV incident
energy. The ECS results (solid lines) are shown over the full energy range (O to 27.2
eV) to illustrate the symmetry in the method. They are normalized so that the total
ionization cross section is the integral from O to 1.3/2 = 13.6 eV. The CCC data

(diamonds) are not symmetric about -?.3/2. In the singlet case the CCC data has large
oscillations so it is replaced by an integral preserving estimate (dashed line) which is
defined between O and 13/2.

Overall, the triplet SDCS is much smaller than the singlet SDCS. In fact, all inelas-
tic processes, including ionization, in the Temkin-Poet model are dominated by the
singlet spin symmetry. This characteristic is unique to two-dimensional models such

as Temkin-Poet and will not carry over to electron-hydrogen scattering.

Singlet and triplet SDCS for 40.8 eV incident energy are compared in Figure 4.6
with results calculated by Igor Bray [6] using the convergent close-coupling (CCC)

method. CCC is very good for calculating discrete channel cross sections for electron-
atom scattering. It also has shown promise for calculating total ionization cross
sections. However, it has, so far, been unable to produce correct differential ionization

cross sections, even in the Temkin-Poet model, for incident energies below 100 eV.
The SDCS produced by CCC are always asymmetric. If the method produced SDCS

that were correct only from zero to $ then the calculated cross section in the upper-
half of the energy range would be irrelevant. This is the case for the triplet spin
symmetry, but not for the singlet spin symmetry.

Bray claims that the calculated values in the singlet case oscillate about the correct

SDCS and he replaces them with a smooth estimate of the true SDCS between zero
and $. The properties of the singlet and triplet SDCS calculated in the CCC method

for two-dimensional models is discussed in reference [30]. The ability of the CCC
method to calculate the triplet SDCS is made possible only because the triplet SDCS

is zero at ~. This does not provide much hope for CCC being generally successful at
calculating differential ionization cross sections because no SDCS in a real system is
zero for equal energy sharing.



I En II 20.4eV I 27.2eV

LTtotal 2.9989 2.2373

01 2.3077 1.6437

02 0.3354 0.2113
03 0.0865 0.0565

04 0.0343 0.0223

Gs 0.0170 0.0116

OG 0.0097 0.0066

at~t~l –50. 0.2083 0.2846

40.8eV 54.4eV

1.4816 1.0842

3

1.0826 0.8106
0.1008 0.0580
0.0267 0.0151
0.0109 0.0061

0.0055 0.0031
0.0031 0.0018

0.2520 I 0.1896

0.2520 I 0.1899

68.OeV 81.6eV

0.8381 0.6713

%

0.6421 0.5256
0.0375 0.0263
0.0096 0.0067
0.0039 0.0027

0.0019 0.0013
0.0011 0.0008

0.1420 0.1080

0.1423 I 0.1077

Table 4.3: Integral cross sections for the Temkin-Poet model with singlet spin symme-

try, spin statistcs factors are not included. Total and discrete channel cross sections

are shown. Also listed are total ionization cross sections calculated both by subtract-

ing discrete channel cross sections from the total and by integrating the SDCS.

Having calculated the SDCS we can now integrate them to obtain total ionization

cross sections. First, it should be noted that volume integral formulations for calcu-
lating integral cross sections are much less susceptible to numerical error than first
producing, then integrating differential cross sections. Still, integrating the calculated

SDCS allows for interesting comparisons using the channel cross sections discussed
earlier in this chapter.

Total cross sections ot.t,l and channel cross sections an up to n = 6 for several
incident energies are listed in Table 4.3. As mentioned before, we can obtain the total

ionization cross section m,O~by subtracting all of the an from otOt4. The remainders
after subtracting the first six On from the otOtd are listed in Table 4.3. These provide
an upper bound for the ~O., assuming the an themselves are accurate. We can see
from Table 4.3 that in order to obtain the qO. to three or more significant figures
we will probably need an beyond n = 6. However, for n this high the accuracy of
the a. is in doubt. For comparison, the qO. obtained by integrating the SDCS are
also listed. The qO~ obtained in the two different ways compare quite well with most
differences being less than 0.3% and the largest difference being less than 3%.
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Chapter 5

Six-Dimensional Wave Function for
Electron-Hydrogen Scattering

Theoretical treatment of electron-hydrogen scattering requires computing a six-
dimensional scattered wave function with outgoing wave boundary conditions. As in
the two-dimensional Temkin-Poet model, the scattering boundary conditions can be
simplified by using exterior complex scaling of the radial coordinates. Methods used
to calculate the Temkin-Poet wave function are readily extended to a partial wave ex-
pansion of the six-dimensional scattered wave. Computing the scattered wave requires

calculating a large number of two-dimensional radial functions to form its partial wave
expansion. These are solutions to sets of coupled differential equations that are solved

using an iterative algorithm on a distributed memory parallel computer.

5.1 Coupled Equations for the Scattered Wave

Scattering of an electron from a hydrogen atom is described by the six-dimensional,
two-electron scattered wave W$ (Fl, 72) defined in Equation 2.6. Just as in the Temkin-
Poet model, the asymptotic boundary condition on Wx (Equation 2.10) can be sim-

plified by exterior complex scaling (ECS) of the radial coordinates. Extending the

methods from Chapter 3 to the six-dimensional scattered wave equation is straight-
forward after first expanding the wave functions in partial waves.

5.1.1 Partial wave expansion of the wave function

We expand the wave functions XI!!,and V: in terms of two-particle, coupled spher-
ical harmonics ~~~ which are functions of the four angular coordinates. The ~~~

are eigenfunctions of total angular momentum, L, of the system and its projection,
M, along the z axis as well as the individual electron angular momenta 11 and 12.

They are related to ordinary spherical harmonics by the Clebsch-Gordan coefficients
(t1~2m1m21~~). Clebsch-Gordan coefficients are discussed in Zare [39] and most quan-



turn mechanics text books. Some properties of the ~~fi useful for this particular

application are mentioned in Appendix F.

The term representing the initial state is Ug,, defined in Equation 2.5 as the
anti-symmetrized product of a plane wave and the ground state of hydrogen. Using

the expansion, in ordinary spherical harmonics, of a plane wave (Equation 4.3) we

immediately write an analytic expression for the partial wave expansion of IO&.

(m iL/-- @nl(rl);L(ki~2) Y&(~l, ~2) +
w~i(Fl, F2) = ~

(-l)sjL(kirl)#nl (T2)y:$(?1, ?2) )

(5.2)
L=O TlT2ki

Since the coordinate system is chosen so the z axis lies along the incident direction,

only m = O spherical harmonics are present in Equation 4.3. Also, the ground state

of hydrogen @l~ (see Equation 4.1) is spherically symmetric. So, the projections along
the z axis of both individual electron angular momenta 11 and 12 as well as the total
angular momentum L are zero and Equation 5.2 contains only terms with M = O.

This is a consequence of the cylindrical symmetry of the system for scattering from

a spherically symmetric target.

Solving the scattered wave equation means calculating the two-dimensional radial
functions +~1, in a partial wave expansion of Vi. This expansion also contains only
terms for which ikl = O because M is a conserved quantum number of the system.

.

(5.3)

Four continuous angular variables have been replaced by three discrete angular mo-

mentum quantum numbers 11, 12, and L. That leaves only two continuous variables,
rl and r2, the same as for the model problem in Chapter 3. Howeverj there are an in-
finite number of the radial functions @~12and they will be solutions to sets of coupled,
two-dimensional differential equations.

Since IU~(Fl, ?2) is an outgoing wave each individual, radial function ~~1, (rl, r2) in
its partial wave expansion has outgoing wave boundary conditions similar to those in
the Temkin-Poet model. Application of exterior complex scaling, as given in Equation

3.12 and illustrated in Figure 3.1, to the partial wave expansion simplifies the bound-
ary conditions on each individual radial function. Under ECS, every @~12(rl, r2) is
transformed in to a function that decays exponentially for either rl or r2 larger than
the complex scaling point ~.

5.1.2 Coupled differential equations

Total angular momentum of the system is a conserved quantity so there will be
no coupling between partial waves with different values of L. For each total angular
momentum L and spin S there is a separate, independent set of coupled equations.
In most of what follows the quantum numbers L and S are treated as parameters
that are frequently suppressed. Calculating physical quantities requires assembling
all of the separate L and S components of the wave functions and/or cross sections.
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To arrive at the coupled equations we substitute the partial wave expansions
for W: (Equation 5.3) and Il~i (Equation 5.2) into the scattered wave equation in

Equation 2.6. We then multiply both sides of the equation on the left by some
spherical harmonic yl~~j and integrate over the four angular variables. The attractive

potentials between the nucleus and each electron have no angular dependence and the

Y~~2 are eigenfunctions of the kinetic energy operators. SO, integration is trivial for

all terms of the operator (13 – @ except the repulsive, two-electron potential. Since
the ~~~z are orthonormal all of the one-electron terms are non-zero only when l; = 11
and 1! = 12. Together, when acting on a radial function, they can be expressed as a

l(l+l)FPpartial wave radial Hamiltonian for hydrogen, H1(r) = – ~ ~ + ~ – ~.

(111;LOIHIW2LO) = (Hll (~1) + fi12(r2)) 61,1;6121;+ (Z1Z211Z;Z;)L (5.4)

Dirac notation is used to represent integration over only the angles and not over
the radial coordinates. Shorthand notation (1112111~1~)~in the last term of Equation
5.4 represents the multipole expansion of the two-electron potential -. It is a
function of both TI and T2 and is discussed, in more detail, in Appendix F.

(5.5)

Here, r< refers to the smaller and r> to the larger of rl or r2. Formulas for calculating
the coefficients C~’~11121;~i are given by Percival and Seaton [24]. The index A ranges over

a finite subset of the non-negative integers. For the special case 11= l; = 12= 1! = O,

(001100)0 = ~ which is the two-electron potential in the Temkin-Poet model.

Two radial functions ~~~j and @~12are coupled only if (11Z2LOI- [l~ljL’O) is

nonzero. This term is nonzero only if L’ = L. When L’ = L it is always nonzero for
any (11,12) and (Z(, lj) pairs for which the sums 11+12 and i; + lj are either both even
or both odd integers. So, all partial waves for a particular L with the same parity
are coupled together. Using Equations 5.4 and 5.5 we write, for each L, the coupled
radial differential equations that come from the scattered wave equation.

We now define the radial functions @~12as the outgoing solutions to the coupled
equations in Equation 5.6. The functions X~12, defined in Equation 5.7, are radial

functions from the partial wave expansion of (H – E) V:,.

-L
L _%

X1,12 ,
{( )

;ciOhL h(rl)jL(&2) + (-l)s (1 =2)– ~- (1112110L)~-
}

(5.7)
Since only x~l, with even parity exist (see Appendix F), the (11,12) pairs that con-
tribute to the expansion of IJx are restricted to those for which 11+12 + L is an even
integer. The sum in Equation 5.6 involving the coupling potential (1112IIz~Z~)Lis over

all l;, l; pairs in the expansion, including the case l; = 11 and 14= 12.
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E
Ao,odo,l

dl,o Al,]

d2,0 d2,1

d3,0 d3,1

. .. .. .. .

do,2 do,3 ““””

d1,2 dl,3 ““””

A2,2d2,3 ““””

d3,2 A3,3 ““””

. . .. . .. .. .

X:,o

YO/ 1,1

X;,2

X:,3

.

.

Block-matrix structure of the

coupled equations (Equation

5.6) using L = O as an exam-

ple. The off-diagonal blocks

d~,,~, are diagonal matrices
representing the coupling po-

tential. The diagonal blocks
Al,l are sparse, not diagonal,

matrices similar to those in

the Temkin-Poet problem.

Figure 5.1: Block structure for the coupled equations

5.2 Iterative Solution of the Coupled Equations

There is an infinite number of sets of coupled equations for the different values of

L and each of these couples an infinite number of partial waves with different (Zl, 12)

pairs. In practice, of course, we solve the coupled equations for only as many L values
as needed for numerical convergence. Likewise, each individual L coupled equation is
limited to a finite number of (11,12) pairs. Coupling even a few partial waves produces

a very large system of linear equations that must be solved by an iterative algorithm.

5.2.1 Matrix equation

Just as was done for the Temkln-Poet wave function in Chapter 3, each complex
scaled radial function is calculated directly onto a two-dimensional radial grid using
finite difference approximations for the differential operators. The finite difference
representation of the coupled equations forms a matrix with the block structure illus-

trated in Figure 5.1. That example shows the case L = O where 11= 12for all partial
waves and there is an obvious ordering for the (11,12) pairs. Each block in the array
of radial functions corresponds to the values of @~lz on the two-dimensional radial
grid for a particular (11,12) pair. Likewise, the blocks in the array on the right-hand
side are the X~12, defined in Equation 5.7, evaluated on the grid.

The diagonal blocks are finite difference matrix representations of the operators
E – Hl, (rl) – Hl, (r2) – (1112]]11,12)~. These matrices have exactly the same sparsity

structure, shown in Figure D.1, as the Temkln-Poet matrix. In fact, the L = 11 =
12 = O diagonal block is the Temkln-Poet matrix. The off-diagonal blocks, on the
other hand, are just the coupling potentials evaluated on the grid so each of these is
a diagonal matrix.

If we remove the off-diagonal blocks i.e., set (1112111~1~)~= O for (ii,&) # (11,12),

then the matrix is block diagonal and we have a large set of uncoupled equations for
each ~~lz. Solving each of these uncoupled equations is comparable to solving the
Temkin-Poet model problem. In Chapter 4 we found that we need the radial functions
at distances of at least 100a. to get meaningful ionization information. Calculating
accurate radial functions that extend this far requires on the order of 240,000 grid
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points. Solving a Temkin-Poet problem of this size already uses substantial compu-
tational resources. Solving the entire set of uncoupled equations is merely a matter of
performing multiple calculations of that same size. However, keeping ten or so partial
waves in a set of coupled equations forms a linear system of two or three million.

5.2.2 Iterative algorithm with pre-conditioner

Linear systems this large must be solved using an iterative algorithm. Convergence

properties of iterative algorithms are governed largely by the eigenvalue spectrum of
the matrix. Since the six-dimensional Hamiltonian should have a spectrum similar to
that of the Temkin-Poet Hamiltonian we can apply the lessons learned in using an
iterative algorithm for solving the Temkin-Poet model toward developing a method

for iteratively solving the coupled equations. In particular, it is reasonable to expect
the conjugate gradient squared (CGS) algorithm to converge to the solution provided

an effective pre-conditioner is used.
The matrix structure shown in Figure 5.1 suggests using the uncoupled equations

as a block-diagonal pre-conditioner. That means that each pre-conditioning step in
the CGS algorithm, given in Figure E.2, requires solving the uncoupled equations, but
with different right-hand sides. The effectiveness of using the uncoupled equations

as a pre-conditioner depends upon the two-dimensional radial Hamiltonians in the
diagonal blocks having an eigenvalue spectrum similar to that of the six-dimensional
Hamiltonian. This is a reasonable expectation because the basic characteristics of

the eigenvalue spectrum is determined by the radial dependence of the Hamiltonian.
For instance, the bound state energies of hydrogen are determined solely by the one-
dimensional radial Hamiltonians for hydrogen. With exterior complex scaling, the
movement of the continuum spectrum into the lower-half of the complex plane is de-

termined by the scaling of the radial coordinates. Therefore, the uncoupled equations
should have the same inelastic thresholds as, and a similar eigenvalue spectra to, the

coupled equations.

5.2.3 Convergence of iterative algorithm

Indeed, the uncoupled equations are a sufficiently robust pre-conditioner to make

the CGS algorithm converge to solution to the coupled equations for any value of L

over the range of incident energies considered here. Convergence of the CGS algorithm
on the coupled equations for a few representative L at two different energies is shown
in Figure 5.2.

Error in the iterative solutions is measured by substituting the calculated radial
functions at each iteration into the left side of Equation 5.6. The difference between

the left and right sides of Equation 5.6 gives a two-dimensional “residual” function for
each partial wave. Integrating the modulus-square of each residual produces “partial
wave errors’). Total error for a set of coupled partial waves is defined to be the

sum of these partial wave errors. In all cases, convergence of the CGS algorithm is
well behaved with very little sign of instability and the solution can be improved to

arbitrary accuracy.
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Figure 5.2: Convergence of the CGS algorithm for the coupled equations with singlet

spin symmetry for various total angular momenta L. Error of the calculated scattered

wave is plotted for incident energies of 17.6 eV (asterisks) and 25 eV (diamonds).

In principle, the convergence rate depends on the number of partial waves kept in
the coupled equations. However, once the most important partial waves are included
adding a few more that are less important has little effect on convergence. All of the

coupling potentials are built from terms that look like -& and are peaked along the

ray rl = T2. Therefore, the strength of the coupling depends on the magnitudes of

the radial functions near rl = r2 as well as on the coupling potentials themselves.

Less important radial functions i.e. , ones with relatively small magnitudes near
rl = r2, add only a small amount of coupling to the other partial waves. Tkiplet
radial functions with 11 = 12 have significantly smaller ionization components than

do their singlet counterparts. For this reason, convergence of the coupled equations
is typically more rapid for the triplet spin symmetry. Convergence also tends to be

faster at higher energies.

Solution to the uncoupled equations with the original right-hand side is used as
the starting point for the iterative algorithm. Typically, the error actually increases

slightly for the first few iterations before reaching a point where it then decreases
fairly reliably. This is due to an initial redistribution of flux in the ionization region

of the radial functions. This can be seen in Figure 5.3 which shows solutions to the
uncoupled equations along with converged solutions to the coupled equations.

In the L = O uncoupled equations the (11,12) = (O,O) radial function (i. e., the
Temkin-Poet wave function) carries most of the ionization flux. Iterating to arrive

at a solution to the coupled equations removes flux from this partial wave’ and re-
distributes it to the higher angular momentum partial waves. Ultimately, the (1,1)
radial function has the largest ionization component of the singlet, L = O partial
waves. We see similar behavior for L = 2 where the (1, 1) radial function is largest
initially. The magnitude of the (1, 1) radial function decreases while the magnitudes
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of the others increase. Eventually the combination of (O,2) and its mirror image (2, O)
is the dominate L = 2 partial wave.

5.2.4 Parallel implementation

Each iteration of the CGS algorithm requires two applications of the pre-conditioner
and two matrix-vector multiplies with the full matrix representation of the coupled
equations. A key advantage of solving for the radial functions directly onto a grid
is that potentials are represented by diagonal matrices. This means that inclusion
of the coupling potentials in the full matrix-vector multiply is relatively inexpensive.
Each coupling term requires exactly iV (complex) multiplies and adds, where N is
the number of two-dimensional radial grid points.

Most of the time used for solving the coupled equations is spent on applying the
pre-conditioner. Each application of the pre-conditioner is equivalent work to solving
the Temkin-Poet model problem for each partial wave. As mentioned in Chapter 3
and Appendix E, the Temkin-Poet model was also solved using the CGS iterative
algorithm. Therefore, the method for solving the coupled equations actually uses the

CGS algorithm at two levels. The coupled equations are solved iteratively using the
CGS algorithm with the two pre-conditioning steps for each outer iteration requiring
solutions to two-dimensional radial equations. These are, themselves, solved using
low-order finite difference matrices as pre-conditioners to iteratively solve high-order

finite difference matrix equations.

Since the work needed to couple partial waves is a small fraction of the total work,
this method makes efficient use of distributed memory, massively parallel supercom-

.- —



puters. The block structure of the full matrix suggests a natural level of parallelism
for solving the coupled equations. Each partial wave is assigned to a separate group

of processors. Application of the pre-conditioner and the block-diagonal portion of

the matrix-vector multiply are then accomplished independently within each group

of processors. Significant communication between groups of processors is needed only

when adding the coupling terms in the full matrk-vector multiplies.
By solving the uncoupled equations in parallel, application of the pre-conditioner

takes the same amount of time required to solve just one uncoupled equation. Accord-
ing to the table in Figure E.1 the most time-consuming step in solving each uncoupled

equation is the LU factorization. The LU factors depend only on the matrix and not

on the right-hand side so they will be the same for each iteration. Saving the LU
factors after the first pre-conditioning step significantly reduces the work required for

each subsequent application of the pre-conditioner.

5.3 Partial Wave Radial Functions

Formally, calculating the complete wave function requires solving an infinite num-

ber of coupled equations, each of which couples an infinite number of partial waves.
In practice, of course, we must put a maximum on the values of L for which we solve
the coupled equations and we must limit the number of partial waves coupled for
each individual L. The number of partial waves coupled together determines the cost
of solving the coupled equations. It is, therefore, beneficial to make sure that the
most important partial waves are the ones included first in the calculation. For this
reason, we want to choose partial waves, at least roughly, in their order of relative
importance. To choose an ordering for the partial waves we should understand the

basic properties of the different radial functions.
In the Temkin-Poet model the scattered wave was either symmetric or anti-

symmetric with respect to interchange of the radial coordinates. The same symmetry
property for the six-dimensional scattered wave, V~(F2, Fl) = (-I) SIUJ(F1,72), leads

to more complicated symmetry rules for the radial functions (see Appendix F).

?%1, (~2, ~1) = (-W@:12(W 7-2) (5.8)

When 11 = Z2 the radial function ~~1, has the same symmetry property as the
Temkin-Poet wave function. A symmetric and an anti-symmetric example of L = 2
radial functions are shown in Figure 5.4. For both examples 11 = 12 = 2 so the
dominant discrete channel component that can be seen along the rl and r2 axes is

excitation of the 3d state of hydrogen. As in the Temkin-Poet model, any triplet

partial wave with 11 = 12 contributes negligibly to ionization because of a “trough”
that exists along the ray ~1 = r2. Since 11 = 12 for every L = O partial wave, the
entire set of L = O triplet partial waves plays an insignificant role in ionization.

Unlike the Temkin-Poet model, there exist radial functions in the partial wave

expansion of U: (F’l,F2) that have no symmetry themselves. Examples of these are
shown in Figure 5.5. In these examples the discrete channels are noticeably different
on the two axes. The dominant discrete channel component along the T2 axis is
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Figure 5.4: L = 2 and 11 = 12 = 2 radial functions for electron-hydrogen scattering

at 17.6 eV incident energy. The upper picture shows the symmetric singlet radial
function and the lower picture shows the anti-symmetric triplet radial function.
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Figure 5.5: Asymmetric radial functions for electron-hydrogen scattering at 17.6 eV
incident energy and singlet spin symmetry. The upper picture shows L = 1, 11= 1,
12= 2 and the lower picture shows L = 3, 11= O, 12= 3.
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Figure 5.6: L = 2 symmetric radial functions for electron-hydrogen scattering at 17.6

eV incident energy. The upper picture shows the 11= 12= 1 radial function and the
lower picture shows the 11 = 12 = 3 radial function.



Figure 5.7: L = 4 radial functions for electron-hydrogen scattering at 17.6 eV incident

energy and singlet spin symmetry. The upper picture shows the 11 = 12 = 5 radial
function and the lower picture shows the 11= 1, 12= 5 radial function.
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Figure 5.8: Magnitudes of several L = 2 radial functions along an arc of hyperradius
100ao. Examples shown are for singlet spin symmetry and 25 eV incident energy.

determined by the value of 11 and vice-versa. For instance, the upper picture in
Figure 5.5 corresponds to 11 = 1 and lZ = 2 so excitation of the 2p state is visible

along the r2 axis and excitation of the 3d state is visible along the rl axis. Similarly,
the lower picture with 11 = O and 12 = 3 has an elastic scattering component along
the T2 axis with an emerging 4f excitation component barely visible along the rl axis.

For any @Jfl, with 11# 12there is a complementary radial function ~~11 such that
the sum of the two is either symmetric or anti-symmetric. If we include some ~~lz for
11# 12 then we must be sure to also include @~l, in order to maintain the symmetry
of the entire partial wave expansion. However, the radial functions @~l, and o~l,

contain the same information so there is no need to explicitly store both.

When solving the coupled equations on a parallel computer each group of proces-
sors is assigned an (11,12) pair with 11 s 12. If 11 # 12 then that group is responsible
for adding the couplings from both @~l, and @&l Thus, except for L = O, the number

of partial wave terms coupled is actually larger than the number of processor groups
used for the calculation. Also, when gauging the importance of an (11,12) partial wave
with 11 # 12 it is best to consider the combined contribution from @~12and ~~11.

The relative importance of different partial waves for L = 2 is illustrated in Figure

5.8. A “rule-of-thumb” for ordering partial waves is that those corresponding to larger
angular momentum have less importance, this does not necessarily hold for very small

angular momenta. This “rule” applies similarly to both the total and the individual
angular momenta. For the energies considered here, the L = 2 sets of partial waves

contribute most for the singlet spin symmetry and the L = 3 sets contribute most for
triplet spin symmetry. As L increases beyond these maxima the relative importance
of the corresponding sets of partial waves decreases monotonically. This suggests that
ordering sets of partial waves for each L by increasing L is reasonable assuming that
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more than the first four values of L will be used.

Obtaining each set of L partial waves is an independent calculation so, deciding

,where to truncate the expansion in L is a matter of adding calculations for increasingly

large L until sufficient convergence is achieved. Deciding which (Zl, 12) pairs to keep

in the coupled equations for each L requires more thought. All partial waves for a

particular L are coupled so one cannot easily add another term to the expansion to

see if the results change. If more partial waves are added to an already converged set

then the iterative algorithm must be re-applied to the full, larger set of partial waves.

If an individual angular momentum for a partial wave is large then the dominant
discrete channel component along the appropriate axis is excitation to a high-energy
state. These components have much smaller magnitudes than those for elastic scat-

tering and excitation of low-energy states. Examples of symmetric radial functions for

two different individual angular momenta are pictured in Figure 5.6. The 11= 12= 1

case has excitation of the 2p state clearly visible along both axes while the 11= 12= 3

case does not appear to have any discrete channel components. In actuality, excita-
tion of the 4f state is present, but is not strong enough to have “emerged” from the

ionization component before 120ao. Examples with individual angular momenta of
five are shown in Figure 5.7. In the symmetric case (11=12 = 5) no discrete channels

are visible and the radial function appears to be purely ionization. The asymmetric
example has 11= 1 so excitation of the 2s state is visible along the r2 axis.

The ordering used for L = 2,3 and 4 is indicated in Figure 5.9. Two selection
rules, that govern which (11,12) partial waves exist for a particular L, determine the

patterns formed on the 11,12 matrices. First, the sum of 11and 12must have the same
even/odd parity as L (see Appendix F). Second, the difference between 11 and 12
must not exceed L i e., [12— 11I s L. The parity rule means there are never pairs

with 11 = 12 for any odd value of L, while the second rule requires that only 11 = 12
pairs exist for L = O. For even values of L greater than zero the coupled equations will
contain some partial waves with 11= 12and some with 11# 12. For L = O the pattern
in the 11,12 matrix is particularly simple, only the “diagonal’) (11 = 12) partial waves

exist. In this case, as well as for L = 1, there is an ob~ious ordering for the partial

L=l L=2 L=3 L=4
01234
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112

223

3 34

4 4

01234
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4 67

01234
0
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Figure 5.9: Illustration of how partial waves were chosen for L = 1,2,3 and 4. The
rows and columns of each matrix correspond to the values of 11 and 12. Empty
matrix cells indicate (/1, 12) pairs that do not exist for that value of L. Non-empty

cells indicate (11,12) pairs that are included and the numbers in those cells give the
orderining in which the pairs were chosen.
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L= o 1 2 3 4 5 6 7 8 9

1 0,0 0,1 1,1 1,2 2,2 2,3 0,6 0,7 0,8 0,9

2 1,1 1,2 0,2 0,3 1,3 1,4 1,5 1,6 1,7 1,8

3 2,2 2,3 2,2 2,3 3,3 3,4 2,4 2,5 2,6 2,7

4 3,3 3,4 1,3 1,4 0,4 0,5 3,3 3,4 3,5 3,6

5 4;4 4;5 3;3 3,4 2,4 2,5 1,7 1,8 4,4 4,5

6 5,5 5,6 2,4 2,5 4,4 4,5 2,6 2,7 1,9 1,10

7 6,6 6,7 4,4 4,5 1,5 1,6 3,5 3,6 2,8 2,9

8 7;7 7;8 3;5 3,6 3;5 3,6 4,4 4,5 3,7 3,8

9 8,8 8,9 5,5 5,6 5,5 5,6 2,8 2,9 4,6 4,7

10 9,9 9,10 4,6 4,7 2,6 2,7 3,7 3,8 5,5 5,6

11 10,10 10,11 6,6 6,7 4,6 4,7 4,6 4,7 2,10 2,11

12 11;11 11;12 5;7 5:8 6,6 6,7 5,5 5,6 3,9 3,10

13 12,12 12,13 7,7 7,8 3,7 3,8 3,9 3,10 4,8 4,9

14 13,13 13,14 6,8 6,9 5,7 5,8 4,8 4,9 5,7 5,8

15 14,14 14,15 8,8 8,9 7,7 7,8 5,7 5,8 6,6 6,7

16 15,15 15,16 7,9 7,10 4,8 4,9 6,6 6,7 3,11 3,12

Table 5.1: The order in which partial waves were chosen for each value of L.

waves. Since including (11,12) implicitly means also including (/2, 11), complementary
matrix cells are assigned the same number.

In deciding which (11,12) partial waves to keep in the coupled equations we need

to order them according to their relative importance. This can be done precisely only
after actually calculating the radial functions. Relative magnitudes of several radial
functions for L = 2 are compared in Figure 5.8. Of course, we need to choose the

ordering before calculating the radial functions. The basic algorithm, which should
be reasonable if enough partial waves are coupled, is to select partial waves in the

order of increasing individual angular momenta. This ordering is complicated when
highly asymmetric radial functions with a large 12 and small 11 are involved.

The orders in which the (11,12) pairs were chosen for calculations at particular
values of L are listed in Table 5.1. In general, the pairs are ordered so that smaller
angular momentum terms are included first. The ordering in Table 5.1 was computer

generated by an algorithm that sometimes chooses the pairs in the order of increas-
ing min(ll, i2) and sometimes in order of increasing max(ll, 12) and is probably not

total angular momentum o 1 2 3 4 5 6 7 8 9

number of (11,12) pairs 6 6 10 10 16 16 14 13 10 10

Table 5.2: The number of (11,12) pairs that were included for each value of L using
the ordering in Table 5.1. Each pair with 11# 12 actually adds two partial waves.



I

59 :

optimal. Handpicking which terms to include, or perhaps using a different algorithm,

might provide a better ordering. Usually, the number of different pairs to include is

chosen so that all pairs with either 11 or 12 below some minimum are included.

The number of partial waves that need to be kept depends upon the physical

quantity being calculated. The more detailed the scattering information, the more
partial waves that must be included to converge the results. In the next chapter we will

extract differential cross sections for ionization from the radial functions calculated
here. It was found that generating radial functions up through L = 9 was sufficient.
The numbers of partial waves (with 11s 12) that needed to be included for each L in

order to converge the most detailed cross sections are listed in Table 5.2.

I

I
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Chapter 6

Differential Cross Sections for
Electron-Impact Ionization

A complete theoretical treatment of electron-impact ionization means obtaining
differential cross sections that give detailed information about the two outgoing elec-
trons. The triple differential cross section gives angular distributions for both elec-
trons and describes how energy is shared between them. Results presented in this
chapter represent the first calculated triple differential cross sections that agree, on

an absolute scale, with experiment [29]. The single differential cross section provides
information only about how energy is shared between the two electrons. Both types

of differential cross sections are obtained from the outgoing flux of the scattered wave.

Since the wave function is known only on a finite region, an extrapolation procedure
is used to calculate the asymptotic limit of the flux.

6.1 Scattered Flux

Differential cross sections for electron-impact ionization of hydrogen can be calcu-
lated from the scattered flux by a straightforward extension of the procedure devel-
oped for the Temkin-Poet model problem. The same characteristics and limitations
encountered in Chapter 4 will apply here. In addition, there are further complications
due to the directional dependence of the flux.

6.1.1 Flux at finite distances

The total cross section is related to the integral of the probability current density

jPOthrough a hypersphere of radius p. in the limit p. + co. For electron-hydrogen
scattering, jPOis a function of the scattering directions TI and 72 for both electrons as

well as the hyperspherical angle a.

Equation 4.5 gives the total cross section in terms of an integral
current density in the Temkin-Poet model. A similar expression

P=PO
(6.1)

over the probability
gives the total cross
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section for electron-hydrogen scattering.

Equation 6.2 differs from Equation 4.5 in that it is an integral over the hyperangle

and both directions. Also, the normalization factor is different because the initial

state Ill&, defined in Equation 2.5, is normalized differently from the one used for the
Temkin-Poet model. In Equation 2.5 the incident electron is represented by ei~~zso

the incident flux density consistent with Equation 6.1 is simply ki.

We will work with a generalized, dimensionless flux fpo(a, tl, t2) that includes a
factor of iii and the Jacobian factor rfr~p from the volume element in Equation 6.2.

Total scattered flux is related to fpo in the limit pO + co by integration over the

hyperspherical angle and both directions.

(6:4)

Just as in the two-dimensional model problem, the flux is directly related to differen-
tial cross sections for ionization, except in the cases where one of the electrons carries
nearly all of the energy (see Section 4.4).

Equation 6.4 shows that, in the limit p. + m, fpo(~, ;I, ?2) gives the distribution
of the scattering probability over the directions fl and T2 and the hyperangle a. We

will need the asymptotic limit of the flux to calculate differential cross sections for
ionization. With exterior complex scaling we know the wave function only on a finite
region so we can directly calculate fpo only for finite po. That means we will need

to employ an extrapolation procedure similar to the one used in Chapter 4 to obtain
the p. + co limit. Unlike in Chapter 4, the scattered wave is a function of the
hyperradius and five angles and it must be constructed from as many of the partial

wave terms from Equation 5.3 as necessary to converge the final results.

6.1.2 Coplanar geometry

The flux is a function of five variables: the hyperangle a and the four spherical

polar angles 01, @l, 192,and @2. In examining properties of the calculated flux we
will restrict the two final directions so that they and the incident direction all lie
within a plane. This “coplanar” geometry is illustrated in Figure 6.1. All available
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Figure 6.1: Diagram of coplanar geometry. Two electron detectors and the incident

electron beam all lie within a plane.

experimental data is for these types of geometries. In an experiment, the two electron
detectors and the incident electron beam all lie in a single plane. The angle between

one of the detectors and the incident beam is denoted by 01 and the angle between
the two detectors by 012.

6.1.3 Adding partial waves

Computing the flux requires constructing the complete scattered wave from its
partial wave terms as shown in Equation 6.5. That means we need to be concerned
about the convergence of the calculated flux with respect to the number of partial
waves kept in the expansion of IP:. This is an issue at two levels: the number of

(11,12) pairs kept for each total angular momentum L and the maximum value of L
kept in the expansion. The minimum number of (11,12) pairs kept for each particular

L is shown in Table 5.2. These numbers were chosen mainly by determining at what

point adding more partial waves to a pre-existing solution to the coupled equations
stopped affecting the previously computed radial functions.

Examples of the flux at pO= 120a0, shown in Figure 6.2, illustrate the effect that
including partial waves with increasingly large values of L in the expansion of V:

has on the calculated flux. Flux in Figure 6.2 were calculated for a hyperangle of
45° with the two scattering directions chosen so that the incident direction always
bisects the angle between them. The solid line in the upper part of each panel is the
flux constructed by keeping partial waves only up to the particular value of L <9

indicated. The dashed line in every panel is the flux calculated when keeping partial
waves up to L = 9.

Comparing flux calculated using different numbers of partial waves is a good
method for measuring the convergence of the flux with respect to adding more partial
waves. For each panel the relative difference between the solid and dashed lines in
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Figure 6.2: Convergence of flwwhen including partial waves uptoincre~ingly large
L. Flux atpO=120a0 isshown forcoplanar geometries with @2=-Ol. The dashed
line in each panel shows the flux when partial waves up to L = 9 are included.

the upper part is plotted on a log scale in the lower part. This gives an indication of
the error due to prematurely truncating the expansion in L. Convergence in L is very
slow when the scattering directions are close together and much more rapid when the
electrons are moving directly apart from each other.

6.2 Differential Cross Sections for Ionization

The cross section definition in Equation 6.4 requires the p. + cm limit of fpo.

Since the wave function calculated under exterior complex scaling is equivalent to the
unscaled wave function only on a finite region we can calculate fPo only for finite p..
Thus, in order to obtain differential cross sections for ionization from flux calculations

we must use an extrapolation in p. similar to the procedure described in Chapter 4
for calculating single differential cross sections in the Temkin-Poet model.

6.2.1 Extrapolating ionization flux

According to the asymptotic form for ionization in Equation 2.11, the ionization
flux is expected to approach its asymptotic limit like ~.

large po:
()

fp(a,?l,t2) = fc@(%~l,~2)+ ~ ; “ (6.6)
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and 120a. are shown along with the extrapolated flux. The line for the extrapolated
flux always lies below the others.

Fitting Equation 6.6 to several fPOcalculated directly from the wave function gives
the p. ~ co limit of the flux provided that the calculated fPo are in the region where
the flux behaves according to Equation 6.6.

The flux can, of course, be calculated only in the region where both coordinates
are not complex-scaled i.e., for rl, T2 < I&. That restricts the fPo used for the ex-

trapolation to those for which p. ~ l& if the fPo are needed over the full range of
the hyperangle Q. However, if the cross section is only needed for values of a near
45° then we can also calculate fPOfor hyperradii in the range ~ < p. < @~. In

Chapter 4 we found that the quality of the extrapolated results depended on the
hyperangle a because of contamination from bound states. With a flux that is also

a function of the two directions we can expect that the extrapolation behavior will
depend upon the four angular coordinates as well.

Three examples of calculated and extrapolated flux for both singlet and triplet spin
symmetries with a = 45°, where contamination from bound states has the least effect,

are shown in Figure 6.3. These examples are restricted to coplanar geometries (see
Figure 6.1) with a fixed angle 012 between the two scattering directions. In all cases,

the line for the extrapolated flux lies below the lines for the flux calculated at finite

po. Relative differences between the calculated and extrapolated flux are largest when
the angle between the two directions is smallest. This is sensible because a particular
hyperradius p. corresponds to a distance of 2p. between the two electrons when they
are moving directly away from each other whereas the actual distance between the

two electrons is smaller when the angle between their directions is less than 180°.

A general property of the flux shown in Figure 6.3 is that there are always local
minima at 01 = ~012 and tll = ~&2 + 180°. Both of these correspond to cases where

the incident direction bisects the angle between the two detectors. In fact, in these
cases the Pauli exclusion principle requires that the triplet contribution be identically
zero because of the cylindrical symmetry of the system.



6.2.2 Triple differential cross section

For large p the hyperangle a parametrizes energy sharing between the two elec-

trons as El = -E COS2a and e2 = 13sin2 a. It is simple to convert a quantity that is

differential in a to one that is differential in the energy of one electron.

For ionization, the most detailed quantity of interest is the so-called triple differen-
tial cross section (TDCS) defined in Equation 6.7. It gives the distribution of the

ionization cross section over energy sharing between the two electrons and the two

directions TI and $2.

The conditional equality in Equation 6.7 was discussed in Chapter 4. We are
interested in only the flux due to ionization, but we are calculating flux from the full

scattered wave that contains discrete channel components as well as ionization. Thus,

the region of validity for the TDCS obtained by extrapolation is limited to the range

of c (or a) where the directly calculated flux fPOwere composed only of ionization.
This means that we cannot calculate the TDCS for single-electron energies smaller

than 2070, or so, of the total energy.
By convention, the TDCS is normalized so that the total ionization cross section

is related to it by integration over the one-electron energy e from zero to E/2 and
integration over the full range of both directions T1 and ~2.

(6.8)

Any energy sharing cross-section must be symmetric about E/2 because of the im-
possibility of distinguishing which electron has energy S1 and which has energy .s2 =
E – S1. Since the differential cross section is defined for only half the energy range

there is a factor of two included in Equation 6.7.

6.3 Comparison With Experiment

Measuring the TDCS requires two electron detectors. One is tuned to detect
electrons of some energy el and the other is tuned to detect electrons of energy

&2 = E – El. Although the basic experimental apparatus is simple to envisage,
accurate and detailed measurements are apparently quite difficult and, unfortunately,

there is very little absolute experimental data available.
The best collection of TDCS data for electron-impact ionization of hydrogen at

low energies comes from “symmetric, coplanar” measurements performed by Roder et
al. and published in 1996 [33]. For these measurements both detectors were tuned to
detect electrons with energy E/2 and arranged in the coplanar geometry depicted in
Figure 6.1. In this geometry the electron source, the two detectors, and the interaction
region all lie on the same plane. For most of the comparisons presented here the angle
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012 between the two detectors is held iixed while the angles between the detectors and
the incident direction are varied. Unfortunately, this data was originally presented in

,unknown units and must be multiplied by an overall scaling factor to compare with

calculated cross sections. This scaling factor is dependent on energy, but supposedly
not on the geometry, and is expected to be the same for all data sets of different

geometries but the same energy.

6.3.1 TDCS for 17.6 eV

Roder et al. presented a small set of measurements in 1997 [32] that attempted

to put the previously measured TDCS data on an absolute scale. They gave experi-
mentally normalized data for incident energies of 15.6 eV and 17.6 eV, but only for

the case where 012 = 180°. We have calculated wave functions for 17.6 eV incident

energy so we can compare with absolute experimental data at this one energy [29].

We normalized the set of 17.6 eV measurements by comparing the 1312= 180° data
from 1996 to the corresponding data from 1997 and choosing a normalization factor

that scales the 1996 data to coincide with the 1997 data.

Absolute data from 1997 and normalized 1996 data with 012 = 180° are shown

together, along with the TDCS calculated with exterior complex scaling, in the top
panel of Figure 6.4. The cross section in this case is strongly peaked at angles of

0° and 180°, where one electron is scattered forward and the other “recoils” in the
backward direction. Unfortunately, experimental measurements were not possible
near these points. A normalization factor of 0.23 scales the 1996 data to coincide

with the 1997 data in units of 10–18cm2eV–1.

The remaining four panels in Figure 6.5 show the calculated TDCS at different 1912
compared with 1996 data using the same normalization factor. Agreement between
the calculated TDCS and experimental data is excellent, particularly for 012 of 120°,
100°, and 90° where measured values exist for the cross section peaks. The largest
discrepancy is at the minimum for 012 = 90°. Since this is the smallest value of all
the data sets we expect the measurement to be less accurate there. Also, converging

“O 60 120 180 ~40 300 360

e, (degrees) e, (degrees)

Figure 6.5: Symmetric coplanar TDCS for 17.6 eV incident energy with 192fixed.
Measurements [33] scaled to fit calculated cross section. Normalization factor= 1.15.
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calculated TDCS in terms of partial waves was more difficult for 1912= 90 than for

the other geometries.

Additionally, there are two sets of 1996 measurements at 17.6 eV where the posi-

tion of one detector was held fixed while the other was rotated independently. This
data is normalized differently than the fixed 012 measurements. A single normaliza-

tion factor for these two sets of data was chosen to give the best fit to the calculated
cross section. Normalized experimental data and the calculated TDCS for these two

cases are shown in Figure 6.5.

6.3.2 TDCS for 20, 25, and 30 eV

Comparisons between the calculated TDCS and measured values for incident en-

ergies of 20, 25, and 30 eV are shown in Figures 6.6, 6.7 and 6.8. Experimental

values were presented by Roder et al. [33]. As with the 17.6 eV measurements, the
data is presented in arbitrary units and must be normalized. However, for these

energies there are no absolute measurements available with which to normalize the

data. Therefore, we normalized the experimental values by choosing a scaling factor

for each energy that best fits the experimental data to the calculated cross section.

With these results, experimental data at these energies has been put, for the first
time, on an absolute scale. It is important to emphasize that a single scaling factor
was used for all data at a particular energy. Overall, the agreement between the
present calculations and measured values is excellent. The largest discrepancy is for
012= 80° at 20 eV incident energy. We should expect larger disagreement for the
smallest value of 1912because converging the calculated cross section in terms of partial
waves is more difficult when the two scattering directions are closer together.

6.4 Single Differential Cross Sections

The single differential cross section (SDCS) gives only the energy distribution

between the two electrons and is related to the TDCS by integration over the two
scattering directions ?1 and ?2.

(6.9)

Constructing the TDCS from a partial wave expansion requires a double sum over all
angular momentum quantum numbers as in Equation 6.5. Because of the orthonor-
mality of the spherical harmonics, Yf112(?l, ?2), integration over F1 and ?2 collapses
this into a single sum over each angular momentum quantum number.

Consequently, the SDCS is a simple sum of partial wave terms for each set of
~, 11,12 quantum numbers. Each individual term is calculated from a single partial



.—.—— —.. -. —

72

.7 0.2 -.. ~~~-:.. ---:....... .......................<....-
L=z; ; ~

~j
EO.15 . .... . ......... .: . . ...... .............. .... ..........~v

‘i
o

0

8 Lo
~ 0.05 -.......;. ......L.4................. ..-
mc.-In L=5~ ~ :

0; ; ~ I
6 8 10

energy of one electron (eV)

Figure 6.9: Components of the SDCS

energy of one electron (eV)

hydrogen scattering at 25 eV incident energy

and angular momentum quantum numbers.

(with spin factors included) for electron-

corresponding to particular total spin

wave component of the scattered wave.

dqO.(e)

dc EzESin2e

Calculating each
the Temkin-Poet

(6.10)

term in Equation 6.10 is equivalent to calculating the SDCS in
model. So, calculating the SDCS for electron-impact ionization of

hydrogen is a trivial extension of the procedure described in Chapter 4.

In general, significantly fewer partial wave terms are needed to converge the SDCS
than are needed to converge the TDCS. For the incident energies treated here there
is never a need to include contributions for L >6. Also, the number of partial waves
needed for any particular L component is generally smaller than the number needed

to converge the TDCS. Individual total angular momentum components of the SDCS
at 25 eV incident energy are shown in Figure 6.9 for both singlet and triplet spin
symmetries. For the singlet case the L = 2 component is the most important with

the relative importance of each component decreasing with increasing L for L >2.
For the triplet case it is the L = 3 component that is most important. The L = O
radial functions must all have the same symmetry properties as in the Temkin-Poet

model. That means the L = O component of the triplet SDCS is insignificant because
those radial functions must vanish in the middle of the ionization region.

6.4.1 Contamination from bound states

At finite pO the discrete channel components of !VJ extend over a nonzero range

of the hyperangle a. The discrete channel components of the flux do not behave
like Equation 6.6 so the extrapolated flux is not valid over the full range of a. For
the Temkin-Poet model we found that the asymptotic flux extrapolated from p. near
100a. was valid for a between 15° and 75°. We expect the same qualitative behavior
here. The range of a over which we may extrapolate the ionization flux is limited



according to which discrete channel components have non-negligible magnitudes. This

will be slightly different for each partial wave as can be seen in Figure 5.8.

For the most significant partial waves the discrete channels are still confined within

15° of the edges. Partial waves with larger angular momenta have longer-range dis-

crete channels that are visible. In the cases with the largest angular momenta it
is really not even possible to distinguish between ionization and higher excitations.

However, the partial waves for which the discrete channels obscure a larger portion

of the ionization wave are less significant so we can still assume that the sum of the

extrapolated flux for all partial waves is reasonable over the same range of a as was
found in the Temkin-Poet model.

We estimate the SDCS over the full range ofs by using the same extrapolation
in energy introduced in Chapter 4 for the Temkin-Poet model. We assume that the

SDCS behaves linearly near the edges and replace the calculated values in a small
region near e = O (and s = E) with a linear extrapolation. There is some ambiguity

about whether this should be done to each partial wave term individually or whether

it should be applied to the sum, but in practice this makes little difference. For the

results presented here the extrapolation in energy was applied to ~components of

the singlet and triplet SDCS. These were formed by adding together all partial wave
terms from Equation 6.10 with the same values of ~ and S. End-regions of the ~
components were then replaced by linear extrapolations in energy, producing SDCS
components such as those shown in Figure 6.9.

6.4.2 SDCS for 17.6, 20, 25, and 30 eV

Results for the calculated SDCS at all four energies treated here are shown in
Figures 6.10 and 6.11. In each case, the singlet and triplet components of the SDCS

are shown along with the total SDCS. Spin factors are included in the spin components
so the total SDCS is simply the sum of the singlet and triplet SDCS. All of the curves
are very smooth and symmetric about -?3/2. Unlike in the Temkln-Poet model, the
triplet SDCS is not zero in the middle. The only experimentally determined values

‘~ 1~ ; ““””””’~ow”-! ;-.................... ....................
>

No0.8 -.......................................................................................E .:

;0 0.6 -"""""""""""";""""""""""""";"""""""""s!"ng:"et"""""""";""""""""""""";""""""""""`"""
o

:0.4 .: :;::...................................................
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“o 0.5 1 1.5 2 2.5 3 3.5
energy of one electron (eV)

“012345
energy of one electron (eV)

Figure 6.10: Single differential cross sections for electron-hydrogen scattering at 17.6

eV (left) and 20 eV (right) incident energies. The cross sections for singlet and triplet
spin symmetries (with spin factors included) are shown along with the total.
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17.6eV 20 eV 25 eV 30 eV
&/E S=o S=l S=o S=l S=o S=l S=() S’=1
0.0 2.97 0.58 2.70 0.55 2.15 0.63 1.68 0.61
0.1 2.90 0.57 2.64 0.53 2.02 0.54 1.53 0.49
0.2 2.84 0.55 2.58 0.51 1.88 0.45 1.39 0.37
0.3 2.80 0.54 2.53 0.49 1.79 0.38 1.31 0.29
0.4 2.78 0.53 2.49 0.48 1.74 0.34 1.25 0.24
0.5 2.77 0.53 2.48 0.47 1.72 0.33 1.24 0.23

Table 6.1: Numerical values for the singlet and triplet components of the SDCS, spin
factors are not included, in units of 10–17cm2eV–l. Values are given at different one-
electron energies E for incident energies of 17.6, 20, 25, and 30 eV. Total energy E is
equal to the incident energy minus 13.6 eV.

for the SDCS are those obtained by Shyn [35] at 25 eV incident energy. They are

compared with the calculated SDCS in Figure 6.11. These values were determined by
integrating measurements of the double differential cross section that depends upon
the polar angle as well as the energy of one electron. Numerical values for the SDCS

at all four energies are listed in Table 6.1 for six different ratios of the one-electron
energy to the total energy.

6.5 Integral Ionization Cross Sections

As a final means of measuring the ionization component present in the wave
functions calculated using exterior complex scaling, we will consider spin asymmetries

and integral cross sections for ionization. The integral ionization cross section qO~
is obtained by integrating the SDCS. Spin asymmetry is a measure of the relative

contributions of the singlet and triplet spin components to ~,0~. Both are given in
terms of the individual ionization cross sections for singlet, as, and triplet, @“, spin

01 I
0246810

energy of one electron (eV)

. .z triplet ; j : j;:

o~’~;~~~ ~
02468 10 12 14 16

energy of one electron (eV)

Figure 6.11: Same as Figure 6.10, but for 25 eV (left) and 30 eV (right) incident

energies. Experimentally determined values due to Shyn [35] are shown for 25 eV
incident energy.



incident energy 117.6 eV120eV125eV130eV

~

Table 6.2: Singlet, triplet and total ionization cross sections and the spin asymmetry.

Cross sections are in units of a~, asymmetry is dimensionless. Spin factors are not
included in the singlet and triplet cross sections.

symmetries that are defined without including spin statistical factors.

Spin Asymmetry - ‘s – ‘T (6.11)
OS + 3~T

Values for OS, ~T, ~iO~, and the spin asymmetry are listed in Table 6.2. The
comparisons between measured and calculated TDCS earlier in this chapter indicate

that exterior complex scaling is successful in correctly describing the details of at
least part of the ionization final state. The values in Table 6.2 provide the coarsest
measure of the ionization final state and may be useful for future comparisons with

experiment or other theoretical methods.
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Chapter 7

The Quest for a General Solution
to Electron-Impact Ionization

7’.1 Significance of this work

Electron-impact ionization is the aspect of electron-hydrogen collisions most diffi-

cult to treat theoretically and has stood as the last unsolved problem in the quantum
mechanics of two-electron systems. With the work reported here, a complete solu-

tion to electron-hydrogen scattering above the ionization threshold has finally been
realized nearly thirty years after the first meaningful calculations were performed on

the system. Triple differential cross sections for electron-impact ionization are now
known, for the first time, on an absolute scale. These detailed cross sections can be
calculated for a range of geometries and energy sharing ratios where no experimental

data is available and that is currently inaccessible to other theoretical methods.

The real impact of this work is that it signifies the first solution to a particular

class of fundamental problems in atomic physics. Never before has a detailed descrip-
tion of a quantum mechanical system of three charged particles moving apart been

possible. These results enable an understanding of the details of three-body breakup
processes that will carry forward to systems more complicated than electron-hydrogen
scattering. Combined with the existing formal theory of ionization, they provide a

solid basis for thoroughly understanding the dynamics of three-body breakup.

Also, this dissertation provides the first demonstration of exterior complex scal-

ing as a viable approach to electron collision theory. Currently, ECS stands alone
in its ability to produce wave functions describing two electrons in the continuum.
The spectacular agreement between experimental values and calculated cross sections
validates the correctness of these wave functions. This is strong evidence in support

of the claim that exterior complex scaling can represent any final scattering state, no
matter how complicated the boundary conditions. Unlike other methods proposed to

study ionization, this method involves no uncontrolled approximations. Accuracy of
the results is limited only by the finite size of the grid used and the number of terms
retained in the partial wave expansion.

The wave functions presented in Chapter 5 are the first verified to correctly de-
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scribe scattering with two electrons in the continuum. They stand as a benchmark

with which to test new methods designed to study breakup in more complicated sys-

tems. Developing a methodology suitable for calculating electron-impact ionization

cross sections for more complicated atoms and molecules is the real challenge to the

electron-scattering theory community. The present work is a significant step toward

being able to obtain detailed information for the ionization of multi-electron targets.

Other promising methods are currently under development, and the ultimate solution
will undoubtedly draw on methods and concepts from several of these efforts.

7.2 Shortcomings of this method

Although these calculations were remarkably successful, there is still room for

improvement. The most obvious shortcoming is their inability to calculate differential

cross sections over the range where one of the outgoing

the total energy. Linear extrapolation, in energy, of the
satisfactory, and, that procedure is useless for extending
over which we can calculate the TDCS.

electrons carries most of

SDCS is only marginally
the energy sharing range

The present method relies too heavily on being able to calculate the wave function
at large distances. Extending the energy sharing range over which cross sections can
be calculated, or simply improving the accuracy of the results, requires knowing the
wave function at even larger distances. This “brute force” approach is unsatisfactory
because perceptible improvements in the quality of the results require substantially
increasing the size of the calculations.

Knowing the wave function at large distances is necessary mainly because of the
extrapolation in the hyperradius used to obtain differential cross sections. Flux used
in the extrapolation must be calculated in the near-asymptotic region where the

aysmptotic form in Equation 2.11 holds. Furthermore, the procedure for extracting
differential ionization cross sections from the wave functions is unable to distinguish
between excitation of the atom into higher energy states and ionization with one
electron carrying most of the energy. Thus, it relies on a significant portion of the
ionization component being spatially separate from the discrete channels at the values

of the hyperradius where the flux is actually calculated. Finally, since the procedure is
based on direct calculations of the flux rather than integral expressions it is accurate
only to first-order in wave function error.

Also, there are limitations to the range of incident energies for which we can calcu-
late wave functions. Calculations for scattering very near the ionization threshold are
problematic because all of the difficulties mentioned previously are magnified at lower

energies. Numerical error in using finite difference over large distances for incident
energies above 50 eV creates an upper bound to the range of energies accessible by
the present implementation.
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7.3 Improving the Method

An integral expression for the ionization flux would significantly improve the
method. Some preliminary work toward developing such an expression [34] has al-

ready been done. An integral expression has the potential to be variational and, thus,
less sensitive to wave function error which might allow the use of numerical methods
that produce less accurate wave functions, but require fewer computational resources.

A key promise of this approach is the possibility of extracting information only about
ionization. Being able to better distinguish between ionization and discrete channels
might extend the energy sharing range over which we can calculate differential cross
sections. Also, we could expect the cross sections to converge much more rapidly as
a function of grid size.

Changing the formalism to reduce the distances over which the wave function
must be known is the best path to improving the method. We could also improve the
results by using more efficient numerical methods to increase the range over which

the wave function can be calculated. One promising approach is to replace finite
difference with a finite element method using a set of discrete variable representation

(DVR) basis functions. Finite elements have already been shown to work well with
exterior complex scaling [20]. A DVR basis will lead to matrices that are smaller than
those for finite difference, but with matrix elements that are just as easy to calculate.

Another possibility for increasing the distances at which the wave function can be
calculated comes from noting that obtaining ionization cross sections by calculating

flux requires the wave function only at large distances. ECS produces an arbitrarily

accurate wave function on a finite region. If we want the wave function at larger
distances we could employ a “marching” algorithm that uses the wave function already

calculated on an interior region as a boundary condition for calculating the wave
function on an exterior region. The outgoing nature of the scattered wave should
allow for propagating it outward in this manner without significant numerical error.

7.4 Going beyond hydrogen

The primary motivation for improving on the present formalism is not to obtain
better results for hydrogen but to move toward being able to calculate ionization cross

sections for multi-electron atoms and even molecules. Although, in principle, ECS
can be applied to arbitrarily complex systems, the present implementation is suitable
only for two electron systems. Applying it to the ionization of one-electron ionic
targets such as e– +He+ + 2e– +He++ requires only straight-forward modifications.
To extend it to multi-electron atoms one could treat the atom as having just one
“active” electron with the inner electrons accounted for by a pseudo-potential. This
approximation will work best for the alkalis, whose inner electrons form a closed shell.

The next great challenge to theoretical treatment of ionizing collisions is the com-
plete solution to a true three-electron system. Simple extension of the methods used
here is not feasible because of the increase in dimensionality that comes from adding
a third electron. The first step will be solving some three-dimensional radial model



problem analogous to the Temkin-Poet model. Using the methods described in Chap-
ter 3, this means directly solving for the scattered wave onto a three-dimensional grid.

With currently available computational hardware, we cannot expect to be able to cal~
culate a three-dimensional wave function, in this way, beyond about 25ao.

Another approach to the three-dimensional problem might be to reformulate it as

a set of coupled two-dimensional problems where a known square integrable function
represents one electron and a two-dimensional scattered wave describes the other two.

This requires that we are willing and/or able to ignore double-ionization. Care must

be taken to be sure that linear dependence is not introduced into the expansion of

the three-dimensional wave function.

Moving from a three-dimensional model problem to a nine-dimensional, three-

electron problem will be an imposing computational challenge. Converging the par-

tial wave expansion of a three-electron wave function will probably require retaining

many more terms than were necessary for the two-electron system. The barriers

to computing three-dimensional radial functions combined with the requirements for

converging a three-electron partial wave expansion ensure that calculation of an exact,
three-electron scattering wave function will not be possible in the immediate future.

The first useful results for electron-impact ionization in a three-electron system may

very well come from some sort of coupled-channel approach.
Ultimately, the scattering theory community will develop theoretical methods that

can calculate cross sections for electron-impact ionization of molecules. The imple-
mentation described here specifically assumes that the nucleus is located at the origin

of the coordinate system and it cannot be used for molecular targets. Any method
developed for molecules should be designed so that it can be interfaced with an exist-
ing quantum chemistry package. This suggests the need for a formalism that can be
implemented by a basis set expansion. Sharp exterior complex scaling is incompatible

with ordinary basis sets. One alternative is to use a smooth contour, another is to
devise a finite element scheme that can be interfaced with quantum chemistry codes
but still use a sharp exterior complex scaling contour.
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Appendix A

One Dimensional Potential
Scattering Examples

u *

Potential scattering provides an simple context for studying the method of exte-
rior complex scaling without the complications from inelastic processes and multiple

dimensions. The 1 = O components of partial wave expansions for scattering from

spherical potentials provide simple test problems for any method in quantum colli-
sion theory. There already exist a variety of ways to treat potential scattering that
can calculate scattering information to arbitrary accuracy. Thus, we can thoroughly
evaluate exterior complex scaling by comparing its results with calculations from
other methods. We will examine the effects of changing the complex scaling angle

and the complex scaling point for both a short-range and a long-range potential.

A.1 Potential scattering

One-dimensional potential scattering describes the scattering of two particles in-
teracting via a central potential V(r) that depends on only the inter-particle distance.
For incident momentum lilq we write the wave function V+ as the sum of an outgoing

wave IUz and a plane wave representing the initial state.

10+(T)= eikiz + l!~(~ (Al)

The scattered wave W: is obtained by calculating the radial functions ~~(r) for
each angular momentum quantum number 1 in a partial wave expansion.

(A.2)

With no angular dependence in V(T-), the ij~ are all independent of each other. They
are outgoing solutions to one-dimensional scattered wave equations with reduced mass

p and regular Riccati-Bessel functions ~1 from the expansion of eikiz.

[

~iiiw T121(1+1)
—— —

2p dr2 2p r2 1
– V(r) @~(r) = V(r)~l(kir) (A.3)

/
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Each ~~ is a radially outgoing wave that, asymptotically, is proportional to a

Hankel function ~~ s fit + i~~ where fil is an irregular Riccati-Bessel function. For

1 = O, fi~(z) = e;z.

@~(r) ~ ei~’sin (61)~~(k~r) (A.4)
r+ca

The proportionality factor in the asymptotic form of @~ has the form given in Equa-
tion A.4 where the phase shift 61 is a real number.

The total cross section is the sum of partial wave cross sections al, each of which
is directly related to the phaseshift 61.

co
o=~cq, al ~ 4m(2/+ l)+ sin2 (Jl) (A.5)

1=0 a

Thus, the dl provide a complete description of the final state. We can obtain them
from the amplitude jl defined below.

(A.6)

Since ~1 is proportional to eib’sin (Jz) (see, for example, Taylor [37]), the tangent of
the phase shift is equal to the imaginary part of fl divided by the real part.

Im (il)
tan (61) =

Re (~1)
(A.7)

The integral expression in Equation A.6 is less sensitive to wave function error than is

directly calculating scattered flux, but still provides complete scattering information.

A.2 Complex Kohn method

In this appendix we will examine the accuracy of results calculated using com-
plex scaling by comparing with results calculated using the more established com-
plex Kohn [31] variational method. Complex Kohn has been successfully applied
to electron-scattering from relatively large molecules [18]. However, like most other
methods in scattering theory, it is suited only for discrete scattering processes and

can not be applied to ionization.

The complex Kohn method expands the scattered wave in a set of basis functions
consisting of one function that has the exact asymptotic form of an outgoing wave
~~ (kir) and as many square-integrable functions as needed to converge the calculated
wave function. Thus, the complex Kohn method produces the correct scattered wave

over all space. We can gauge the accuracy of results in the complex Kohn method

by observing the convergence of calculated phase shifts as more square-integrable
functions are added to the expansion basis.

To devise one-dimensional scattering problems with which to study and test nu-
merical methods we need consider only the 1 = O partial wave. For this case the term
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5

10
15

20
25

k = 0.15 k = 0.35 k = 0.55

-1.2683674 0.3121880 -0.9936457

-1.2679899 0.3286518 -1.0021799
-1.2679887 0.3286586 -1.0021589
-1.2679887 0.3286588 -1.0021585
-1.2679887 0.3286588 -1.0021585

v(r)= (1+ ?-)-4

k = 0.15 k = 0.35 k = 0.55

-0.0611095 -0.1004421 -0.1187034

-0.0611092 -0.1004424 -0.1187109
-0.0611095 -0.1004425 -0.1187108
-0.0611095 -0.1004425 -0.1187109

-0.0611095 -0.1004425 -0.1187109

Table A.1: Convergence, in number ofsquare-integrable basis functions N,ofl=O
phase shifts calculated with the complex Kohn method.

from the plane wave initial state is ~O(kir) =sin(kir) and asymptotically the radial
function @~Oisan outgoingspherical wave proportionalto ei~~”.Forlater convenience

we will rewrite the expression for the amplitude~l as the sum of two integrals.

{

m

fo(ki)=–~ ~sin2(kjr)V(r)dr +~sin(k~r)V(r)@o(r)dr
i. o }

(A.8)

once~~o iscalculated bysolving Equation A.3forl =0 weuse Equation A.8to
compute $0 and then obtain the / = O phase shift.

In the remainder of this appendix we will examine the application of complex

scaling to potential scattering with a short-range potential, V(r) = ~r2e–”, and a
long-range potential, V(r) = (1 + T)-4. Values of the phase shifts calculated using
the complex Kohn method for both potentials at three different energies are listed
in Table A. 1. Convergence of the calculated phase shifts as more
functions are added to the basis is very rapid.

A.3 Uniform complex scaling

square-integrable

We will first consider the simplest complex contour, r +- rei~. Under this uniform
complex scaling transformation the wave function is complex-scaled everywhere so
there is no region where the calculated ~~ is equal to the “physical”, unscaled scat-
tered wave function. However, we can can still extract scattering information from
it. The first integral in Equation A.8 involves sin(kir) and the potential V. It exists
provided the potential decays to zero faster than ~ for large r. Since the integrand
in the first term is a known function, that term can simply be integrated numerically
along the real axis. So, no complex scaling should be used for the first term.

The second integral, on the other hand, involves the unknown scattered wave.
Again, this integral exists provided the potential goes to zero fast enough. However,
if we use complex scaling to evaluate the scattered wave then we know @~ only on
the complex contour and the integration must be done along that contour. Under
complex scaling, with a scaling angle q in the range O < q <90°, the scattered wave
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decays exponentially, but sin(kir) increases exponentially. The product of the two,
however, remains bounded.

.

sin(k~reiq)V(rei~)@~O (rein) ~ ~i‘eit” sin(~~) [e-2~’rsin(~)ei2~’’c0s(n)– 1] V(reiq)
r+co

(A.9)

Asymptotically, the second integrand from Equation A.8 decays exactly as the po-
tential V evaluated on the contour.

Thus, the second integral from Equation A.8 exists along any uniform complex

contour provided that V(rei~) decays sufficiently fast. Since the potential will force
the integrand to zero as r + m the integral along any complex contour is identical
to the integral along the real axis. Therefore, if we know the scattered wave function

along some contour z(r) then we can calculate the correct amplitude by evaluating
sin(lqz(r)) and V (z(r)) and then integrating along that contour.

Knowing that the integral involving the scattered wave exists along some complex

contour is not useful unless the scattered wave can be calculated on that contour. The
scattered wave is obtained by solving the scattered wave equation in Equation A.3
whose driving term, V(z(r)) sin (ki,z(r) ), is well behaved only if the potential decays

more rapidly than the exponential increase of sin (kiei~). This requires the potential
to be exponentially decreasing. Suppose the potential decays like e-a’, then the
requirement that V (rei’J) sin (kirei~) go to zero restricts the complex scaling angle to

O < tan(q) < ~. So, uniform complex scaling is more problematic at higher energies.

Phase shifts for scattering from a potential with decay constant Q = la~l that

are calculated using several scaling angles are listed in Table A.2. For energies with
ki of 0.15 and 0.35 a;l it is possible to use scaling angles as large as 60°. However,
when ki = .55a; l a scaling angle of 60° causes numerical instability that comes from

having to evaluate sin(z) for arguments with large imaginary parts. The results are
essentially independent of the complex scaling angle, and agree with the correct values

calculated using complex Kohn, provided that the angle lies within the allowed range.
One caveat is that with smaller scaling angles the scattered wave decays more slowly
which requires that it be calculated over a larger range of r.

scaling angle k = 0.15 k = 0.35 k = 0.55

20° -1.2679889 0.3286587 -1.0021581

40° -1.2679887 0.3286587 -1.0021584

60° -1.2679884 0.3286587 -1.4261539

complex Kohn -1.2679887 0.3286588 -1.0021585

Table A.2: Phase shifts for V(r) = yr2e-r calculated with uniform complex scaling
using different scaling angles.



scaling point k = 0.15 k = 0.35 k = 0.55

OaO -1.2679887 0.3286587 -1.0021585
20a0 -1.2679887 0.3286588 -1.0021585
40a0 -1.2679887 0.3286588 -1.0021585

II I I

complex Kohn II -1.2679887 I 0.3286588 I -1.0021585

Table A.3: Phase shifts for V(r) = ~r2e-r calculated using exterior complex scaling

with ascaling angle of 30° and three different complex scaling points.

A.4 Exterior complex scaling

For exterior complex scaling (ECS) we generalize the definition of the contour so

that the coordinates are complex only beyond some distance fi. Uniform complex

scaling is then the special case of ~ = O.

(A.1O)

The second integral in Equation A.8 is still well-defined on this contour for the same
reasons as for uniform complex scaling and it is possible to calculate the phase shift as
long as the scattered wave is known on the contour. Since the potential will decrease
more rapidly on the real axis than on a complex contour one advantage of using ECS
rather than uniform complex scaling is that fi can be chosen so the potential is
already close to zero before the complex scaling begins. Also, ECS allows the use of
potentials that are known only numerically for small r.

Values of the phase shift for a short-range potential calculated using ECS with

different complex scaling points ~ are listed in Table A.3. The accuracy of the results
is essentially independent of ~. However, the size of the required calculation does
depend on G. In a finite difference implementation, the extent of the grid needed
depends upon the length beyond ~ necessary for the ~~(z(r)) to decay effectively

to zero. This distance is independent of ~ so increasing fi increases the number of
real grid points while the required number of complex grid points remains the same.

One advantage of using ECS is that @(z(r)) is the same as ~~ (r) between zero
and the complex scaling point ~. So, with ECS we obtain the actual wave function,
but only on a finite region. Scattered waves calculated with ECS for different I?. are
compared, in Figure Al, with one calculated by the complex Kohn method. In the
region where the ECS contour is real the two wave functions are identical within the

accuracy of the numerical methods used. The accuracy of the wave function over the
region where the coordinates are real is independent of the complex scaling point Ro.

A.5 Long-range potentials

Implementing ECS for potentials that do not decay exponentially is more difficult.
The problem is not in calculating the phase shift (the second integral in Equation

1<,
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Figure Al: Scattered waves for V(r) = ~r2e-’ calculated using ECS for three

different a compared with one calculated using the complex Kohn method. The
incident momentum is ki = O.55a;l and the complex scaling angle is 30°. Differences

between ECS and complex Kohn wave functions are plotted on a log scale.

A.8 is still defined on the complex contour) instead the problem is in calculating
the scattered wave. With long-range potentials the driving term in Equation A.3
diverges on the contour and the scattered wave equation cannot be solved without
modification. In Appendix B it is shown that this limitation can be overcome by
truncating the potential at (or before) the complex scaling point ~.

Truncating the potential makes it possible to solve the scattered wave equation

on the complex contour, but the potential is now different. Changing the potential
will, of course, affect the solution so the calculated wave functions and phase shifts
will be less accurate. Accuracy of the calculated phase shifts depends on how close

to zero the potential is at Ro. As can be seen in Table A.4, the calculated phase
shifts for a long-range potential are more sensitive to ~ than they were for short-
range potentials. However, they do converge to the correct, ‘{physical” value as R.

increases. The effect of truncating the potential on the calculated wave function is
illustrated in Figure A.2 where wave functions calculated with ECS are compared to

those calculated by the complex Kohn method.

R.= 10ao
0.15, , I

R.= 30a.
0.15,

!
o 10 5JW

2? (unit”of a$”

RO= 50a.
0.15

01

. ~ o.C6
2-
_- o
g

a-0.05

:IzGzzm
o 10

2’?(unii%”ofa$’ w m

Figure A.2: Scattered waves for V(r) = (1 + T)-4 calculated using ECS for three

different m compared with one calculated using the complex Kohn method. The
incident momentum is ki = 0.55a~l and the complex scaling angle is 30°. Differences
between ECS and complex Kohn wave functions are plotted on a log scale.
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=
10aO

20a0

30ao

*

~

70ao

80a.

90ao

complex Kohn

k = 0.15

-0.0562652
-0.0607733
-0.0609288

-0.0610577

-0.0610715

-0.0610932

-0.0610959

-0.0611025

-0.0611033

-0.0611095

k = 0.35 k = 0.55

-0.0989343 -0.1179933

-0.1002030 -0.1185759

-0.1003711 -0.1186671

-0.1004141 -0.1186939

-0.1004289 -0.1187025

-0.1004349 -0.1187057

-0.1004378 -0.1187076

-0.1004393 -0.1187088

-0.1004402 -0.1187095

-0.1004425I -0.1187109

Table A.4: Phase shifts for V(r) = (1 +T)-4 calculated using exterior complex scaling
with ascaling angle of30’-’ and several different complex scaling points. In each case,
the potential is truncated at the complex scaling point. The complex Kohn values

were calculated with a potential truncated at250ao.

,
}
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Appendix B

ECS and Long-Range Potentials

“Making complex scaling work for long-range potentials”, originally published in

Physical Review A [28], shows that exterior complex scaling can be used to calculate
phase shifts for one-dimensional potential scattering with long-range potentials by

performing the calculations with the potential truncated at the complex scaling point.
The calculated results are meaningful if the complex scaling point is large enough so
that the truncated potential is physically indistinguishable from the original long-
range potential. Although the potential treated in this article is not as long-range

as a Coulomb potential, the ideas developed here laid the groundwork for applying
exterior complex scaling to electron-impact ionization. Also, this article demonstrates

how to implement exterior complex scaling with an analytic basis set. The “sharp”
contour of Equation A. 10 is replaced by a “smooth” contour that has continuous first

and second derivatives.
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I. INTRODUCTION

The method of complex coordinates or complex scalhg
(i.e., the idea of treating the Hamiltonian as a function of
complex position variables) is well known in physics. The
idea was first used over 30 years ago in the theory of poten-
tial scattering to extend the region of analyticity of the Jest
function into the lower hrdf k plane [1]. It also has a long
history in atomic and molecular physics as the basis for vari-
ous methods used in computational scattering theory dating
back to the early seventies [2,3]. Most of the applications
have centered on the calculation of resonances in atoms and
molecules whose energies and liietimes, under complex scal-
ing, are related to the real and irnagittaty parts of the discrete
eigenvalues of an analytically continued Harniltonian [4].
Nevertheless, as Reinhardt pointed out in his 1982 review
[5], it is important to bear in mind that the original motiva-
tion for interest in the method, and indeed the principal mo-
tivation for thk study, was the prospect of calculating scat-
tering cross sections without explicit enforcement of
asymptotic boundary conditions. In contrast to the develop-
ment of “direct” methods for evahtating resonances based
on complex scaling [6], thk other aspect has received far less
attention [7,8] and, apart from applications to photoioniza-
tion [9-12], has met with only partial success. The reason?
A solution of the full scattering problem requires matrix el-
ements of the resolvent between continuum functions. Un-
fortunately, the method of complex scaling as originally pre-
sented only provides convergent expressions for these
quantities in the case of interaction potentials that fall off
exponentially [2,13], which would appear to exclude most of
the problems encountered in atomic and molecular physics.
Although methods based on complex scaliig or, more accu-
rately, on the use of complex basis functions [8] have been
proposed to tackle this harder problem, it is probably fair to
say that, after many years, no definitive method for entirely

circumventing the specification of boundary conditions has
emerged.

One notable extension of the complex coordinate method
was Simon’s exterior complex scaliig procedure [14], in
which the coordinates are only scaled outside a (hypcr)-
spherc of radius ]r] =Ro. The motivation for tlds develop-
ment was the desire to treat Harniltonians that have nonana-
Iyticities in the interior region, such as the Bom-
Oppenheimer Harniltonian whose electron-nuclear attraction
terms are not ddatation analytic when viewed solely as a
function of the electronic coordinates [15]. In computational
applications, exterior complex scaling has been used mainly
in direct numerical integration methods [16-18], although
there have been a few attempts, in connection with resonance
evaluations, to implement the method in a basis [19-21].

The purpose of tits paper is to show that exterior scrding
can be used to formulate a procedure for solving the fidl
scattering problem using ordy square-integrable functions
and that, utdiie the original complex scaling method, the
method is not restricted to exponentially bounded potentials.
To be able to implement the method with arbitrary basis
fonctions, we have found it necessary to generake Simon’s
procedure to a broader class of transformations, where the
transition tlom real to scaled coordinates is smoothly carried
out over a firite range.

The method is outliied in the following sections, after a
brief review of the earlier techniques. We then make some
comments on the comection between complex scaling and
complex basis function methods. Section V presents some
numerical examples and Sec. VI has some concluding re-
marks.

IL COMPLEX SCALING

For notationrd simplicity, we will use the symbol r to
refer collectively to all the interparticle coordinates in an

,
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N-body system. The starting point for a definition of the
complex coordinate method is to introduce a scaling of r by
a real factor e eER under which the wave function is mapped
as

~(r)-+e ‘en~(eor), (1)

where the factor e~en must be included to preserve the nor-
malization of the wave function. Since L9is real, this corre-
sponds to a unitary transformation of the Hamiltonirm, Ho

= U( L9)HU-’( 8), and the spectrum of Ho is independent of
e.

The complex coordinate method analytically continues
Ho by considering a broader class of (nonunitary) scaling
transformations ee, 0 e C. In this paper, we use the terms
“uniform” or “ordinary” complex scalhrg to denote this
transformation which scales all interparticle coordinates by a
complex constant. There is a considerable literature on the
properties of the Harniltonian under this (nonunitary) trans-
formation for the class of dilatation analytic potentials
[5,22], the principal results of which can be summarized as
follows.

(1) The bound-state eigenvalues of Ho are the same as
those of H for Iarg r3@r/2.

(2) The segments of the continuous spectrum of Ho be-
ginning at each scattering threshold are rotated into the lower
half plane by an angle 2 Im8 (ImOO).

(3) Ho may have isolated complex eigenvahres (reso-
nances), and corresponding L* eigenfunctions, in the wedge
formed by the continuous spectra of H and Ho. They are
independent of 19as long as they are not covered by branches
of the continuous spectrum of Ho.

Property 3 has accounted for the attractiveness of uniform
complex scaling as a means for finding resonances. Con-
sider, for example, the case of s-wave scattering from a
spherically symmetric potential V(r). One simply chooses a
basis of L2 functions, forms a (complex symmetric) matrix
representation of the operator

1 2
Ho(r)=–ze ‘20$ +V(re*), (2)

dlagonalizes it and varies 0 to find those eigenvalues which
are roughly independent of the scalhg angle. In practice, the
eigenvalues may depend strongly on the rotation angle for
basis sets that are not carefully optimized and modifications
of the method, which need not concern us here, are needed to
make the method practical for marry-electron systems [23].
We refer the interested reader to several reviews for further
details [5,6,24].

It is properry 2 that has stimulated interest in complex
scaling as a way to implement scattering theories that do not
rely on explicit enforcement of asymptotic boundary condi-
tions. The idea is to express the quantity of interest, such as
a scattering amplitude, as a matrix element of tbe resolvent
or full Green’s function lime-o(E–H+ is)-’ and to use the
fact that the latter can he approximated as the inverse of the. .
matrix representation of ./?– Ho in an L2 basis, i.e., as (~
–fiO) -* [2,8]. Because the continuous spectrum of Ho has
been rotated off the real axis, the matrix (~–fro) -1 is a
meaningful approximation to the resolvent for real values of

,!?.To evaluate the scattering amplitude or T matrix, we re-
quire matrix elements of the resolvent between continuum
functions. Specifically, what is required is lim=-O(@olV(E
–H + is) -1 V] @o), where @ois a continuum function. Un-
fortunately, with ordinary complex scaling, these so-called
“free-free” elements only converge for exponentially
bounded potentirds V [2,13]. Our main purpose here will be
to show how such a construction can be made to work even
in the case of a Harniltonian with long-range interactions.

The method of exterior complex scaling was proposed by
Simon [14] as a logical extension of uniform complex scal-
ing to deal with potentials that may have interior nonrmalyt-
icities, but are well behaved outside some (hyper)sphere of
finite volume [25]. Specifically, Simon suggested the map-
ping

The spectral properties of the Harniltonian under this more
generaI scaling transformation are the same as those listed
above for uniform complex scaling. The particular example
that prompted Sitnon’s work was the Born-Oppenheimer
Harniltoniarr with fixed, real nuclear coordinates. The
nonarralyticity of the electron-nuclear attraction terms spell
trouble for uniform scaling [15], but are readily accommo-
dated under exterior complex scaling.

The slope of the contour defined by Simon’s exterior
complex scrshng changes discontinuously at R., which can
complicate its implementation in certain applications [26].
We will therefore first consider a more general class of trans-
formations which pass smoothly from real to complex r and
then return to exterior complex scahmg as a limiting case. We
will use the term smooth exterior scaling to distinguish this
class of mappings from Simon’s original prescription, which
we call sharp exterior scaling, while the term “complex scal-
ing” without modifiers can refer to any method which allows
the position variables to take on complex values.

Consider some smooth complex contour R(r) which has
the properties

(4)

but is otherwise arbitrary. We first need to determine the
explicit form of the transformed Schrodinger equation as a
function of the real coordinate r.

The implementation of complex scrding requires that one
take into account the metric which accompanies tbe scaling
operator. In analogy with @. (1), we define the operator that
does the scaling as

U~(r)=J(r)V(R(r)), (5)

where the Jacobian is

()
dR 1/2

J(r)= ~

and the scaled Schrodinger equation is

UHU-’U*=EWP.

(6)

(7)



The inverse of U is given by

f
~mn= ~xJr)V(R(r))xn( r)q(r)dr, (19)

1
U-lq= ‘

J(R-l(r))
W(R-](r)), (8)

/[
fmn=–l “

1 q’(r)

where R-‘ (r) is the inverse of the firnction defining the ~ ~ xm(r) ~ x:(r) – r
1

q (r) xi(r) dr,
contour. (20a)

Nex~ we need on expression for the radial kinetic-energy
operator under this transformation. The algebra simplifies 1=

J

1
considerably if we represent the contour in the following ~ ~ xi(r). . ~ xi(r)dr, (20b)

form [2q

JR(r)= ~q(r’)dr’,

with

(9)

[

1, r40
q(r) = ~i~

, r-xo (lo)

so that .

J(r) =q]p(r) (11)

for functions q that arc continuous. Finally, if we define
q(r) as the original wave function on the contour, i.e.,

UW(r)=J(r)p(r)= q]n(r)q(r), (12)

then it can be shown that

d2 1 r
U ~ U-’(r) q’n(r)p(r)= ~ q]~q”- ~ q’~p’,

(13)

where the primes denote dfierentiation with respect to the
real coordinate r. The transformed radial Schrodlnger equa-
tion fiq(r) = Ecp(r) involves the Hamiltonian operator

where the last expression comes from integration by parts
and the assumption that the basis functions vanish at the
origin and infinity. Note that the kinetic-energy elements
given by Eq. (20b) obviously define a complex ~mmetric
matrix.

Equations (17)-(20) which, together with the transformed
Hamiltonian in Eq. (14), are the principal results of this sec-
tion, show how to represent the transformed radird Schr&
dmger equation in a basis. Jn the limiting case of sharp ex-
terior scaling, q(r) changes discontinuously from 1 to ei~ at
r =Ro and some care is needed to properly define the kinetk-
energy elements. It can be shown that Eq. (20b) still gives
the correct representation of the Krreticatergy operator in
thk instance. Note thaL unlike Kurasov, Scrinzi, and Ekmder
[26], we have not included the Jacobian factor@ in the
definition of the scaled wave function in Eq. (5) so that,
under sharp exterior scalhg, ~(R(r)) is not dkcontinuous at
R.. However, the derivatives of W(R (r)) (with respect to
r) arc dkcontinuous. The implication is that, even with the
kinetic-energy operator properly defined via Eq. (20b), an
analytic basis set cannot give uniform convergence with
sharp exterior scaliig because such an expansion cannot rep-
resent the cusp discontinuity in the wave function at R..

IILCOMPLEXSCALINGVSCOMPLEXBASIS

[

lld2q’d 1
FUNCTIONS

fi(r)= –~ ~~– ~~ +HR(r)). (14) At this point, it is possible to establish a connection be-
tween complex scaling and another class of tec~lques com-

‘1’hisrepresentation of the second derivative operator now mordy referred to as complex basis function me&ds. For

allows us to derive a symmetric matrix representation of the some implementations of complex scaling, it is possible to

scaled Schrbdinger equation in a basis. The idea is to expand reinterpret the prescription of using real L* functions in con-

just p(r) ~W(R(r)), and not UV(r) which contains the nection with a complex Har-niltonian as behg entirely

Jacobian factor, in a basis equivalent to using complex basis functions with a real
Hamiltonian. For example, with uniform scalhg, we have

dr) = 2 Cnxn(r).
n

q(r) = ei4Vr and thus have to construct matrix ;Iements of
(15) the form

Inserting thk expression into Eq. (14), multiplying horn the
left with q(r)xn(r) and integrating over r gives JI=eirj -

0 ,yJr)H(rei~),yn( r)dr. (21)

~ fimnCn=E~ gmnCn, (16)
It is e~y to see that if we make the change of variable

n
r+re-’~ in the above integral and use Cauchy’s theorem to
distort the integration contour back to the real axis, we get

with

f

.
%.= o xJr)x.(rMr)dr, (17) J~=“

o xm(re ‘i+) H(r)xn(re ,‘i@)dr (22)

so that we can view the case of uniform scdmg as being
fimn=?mni-timn , (18) equivalent to using a real Harniltonian and working with



.

94

complex basis functions Xn(re-i+) and a scalar product de-
fined without complex conjugation of the radial functions.
While complex scaling and complex basis functions are
equivalent in this simple case, the complex basis function
interpretation turned out to be more flexible, since it allowed
one to mix real and complex basis functions in many-body
problems where the wave functions arc represented as orbital
products. The inner-core orbitals in a heavy atom become
highly oscillatory under uniform complex scaling which
causes severe convergence problems. Whh complex basis
function methods, one can use real basis functions to expand
the core orbitals and complex functions ordy for the outer
orbitals [23]. The method is then no longer the same as uni-
form complex scrding and may well not correspond to an
easily derived variable scaling of the Harniltonian operator.
The “method of complex basis functions” [23,24] played an
important role in the evolution of numerical scattering meth-
ods, since it enabled practical calculations to be performed
on many-electron atoms as well as molecules. In fact, some
progress was made in establishing a relationship (but not an
identity) between computations carried out with complex ba-
sis fimctions and the exterior complex scaling concept [27].

The development of the preceding section enables us to
make a clearer connection between complex scaling and
complex basis functions. The matrix elements we have to
consider [E+. (17), (19), and (20)] have the form

J
.

17mn= ~Xm(~)~(~(~))Xn(r)9(r)~~

f

m
——

~ x~(~)ff(~(~))x.(r) ~ dr. (23)

~ we can construct R–*, the inverse of the function which
defines the contour, then we can make the change of variable
from r to I, where r= R-’ (x) and again use Cauchy’s theo-
rem to carry out the integration along the real x axis. The
result is

/

.imn= xm(R- l(x))~(x)x.(R “(x))dx, (24)
o

which establishes the desired connection between complex
scaling and an equivalent complex basis. For the case of
uniform complex scaling, as well as sharp exterior scaling,
the inverse map is simply R – 1(r) = r*. In fact, any smooth
mapping that satisfies

Ix, X+’(I
R-’(x)= Xc-i+

x-?’= (25)

and has a smooth inverse can be used to define a set of
complex basis functions to use in Eq. (24). Note that with
exterior scaling, there is no need for mixing real and com-
plex basis functions; the inner-core orbital problem in many-
electron systems is automatically handled in a natural way,
since tight functions that do not extend beyond R. are effec-
tively left real.

IV.SCATTERING

We will next investigate the question of applying the for-
malism outlined above to a collision problem. For simplicity,
we will consider the case of s-wave scattering from a spher-
icallysymmetric potential. The scattering cross section is pro-
portional to the squared modulus of the T matrix, which is
defined as

J
.

T(E) = o +o(r)V(r)@(r)dr

/

.

= o @o(r) Wr)(#o(r)+ W’(r))dr, (26)

where ~[(r) is the scattered wave part of the full scattering
wave function. The T matrix can also be expressed in terms
of the full Green’s function

T(E)= J~~o(r)(V(r)+V( r) G+(r,r’)V(r’))#o( r)dr dr’

=lim(@olV+V(E+i.9 -H)- lVltjo), (27)
e-O

with

#0= @ h(h), E=k2/2. (28)

Note that with these definitions, 7’= ei%in~, where 6 is the
phase shift. The scattered wave part of the T-matrix is now
approximated as

(@olV(E+i8-H)-’ Vl#o)=l.(Ef-fio)-1 i (29)

where the matrices ~ and E are defined in Eqs. (17)–(20)

and ~ is a vector with elements

J
.

~~= @ o XJr)V(R(r))sin(kR(r))q( r)dr, (30)

Since the continuous spectrum of Ho has been rotated into
the lower half plane, this representation should converge for
real E if V is sufficiently well bshaved. Unfortunately, as
Baumel, Crocker, and Nuttall [13] have pointed out, V(r)
must be exponentially bounded for Eq. (29) to converge
since sin(kr) diverges exponentially under coordinate rota-
tion. This will be formally true both for uniform scaling or
exterior scrding. With exterior complex scaling, however,
there is a way around this problem.

Although the development to this point allows any
switching function q(r) that satisfies Eq. (1O), we will see
that there are distinct advantages to having a contour that
coincides exuctly with the real axis over a finite range O< r
<f?.. We can then replace the original potential V(r) by a
finite range potential V~O(r) that vanishes beyond R. and is

identical to V(r) for r<Ro

[

V(r), rCRo
v~o(r)= 0, r>Ro “ (31)

We can use exterior scaling to calculate the T matrix corre-
sponding to this potential T~Orelying on @. (29) to approxi-



mate the scattered wave part in a basis set of N square-
integrable functions with E+. (17)-(20) defining the
required matrix elements. Since V~o(r) is a finite-range po-

tential, the method will converge for any value of I?. if N is
large enough. ‘His truncation of the potential allows us to
define a process that limits to the correct physical result as
RO+CCJ.Thus, by choosing the inferior region large enough,
we can insure that the truncated potential differs insignifi-
cantly from the physical potential under consideration [28].

We can contrast the above procedure to the situation that
pertains to uniform complex scaling with a tmncated long-
range potential. In the latter case, it is convenient to use the
“complex basis set” interpretation of uniform scaliig [i.e.,
Eq: (22)], so that we can continue to use the same real,
fimte-range potential V~O(r). The matrix elements of the po-

tential would then be of the form

J
R.

IRO= ~ xm(re ‘i4)V(r)Xn(re -W)dr. (32)

ht contrast to the case of exterior scaling with V~o(r), mti-

form scaling will not yield physically meaningful results as
R. is increased. ktdeed, in the limit Ro~co, the matrix ele-
ments defined in Eq. (32) become, after the change of vari-
able r~rei~

l~o Iim = ei~
J

~xm(r)v(reio)xn(r)ffr, (33)
Rod-

which is precisely the case that Baumel, Crocker, and NuttaU
[13] showed to be divergent.

We will now give the specific form of the transformation
we used to implement smooth exterior scaling. We chose

[

1, r<Ro—h

q(r) = $), Ro–h<r<Ro+h, (34)

, r>Ro+h

where f(r) is a smooth switching function defined on [R.

-h <r<Ro+ h]. To insure uniform convergence with an
analytic basis, we want f(r) to be continuously dfierentiable
at r= R. & h. We thus chose f(r) to be the lowest order
polynomial needed to make q(r) and q‘ (r) continuous at
Ro–h and Ro+h. If we define

()f(r)= 1+(ei4–l)P ~ , (35)

then the requirement is that F’(-1)=0, P(l)=l, F“(–l)
=0 and F“(1 ) =0. These conditions uniquely define F’(x)

P(x) =~(2+3x–x3). (36)

The truncated potential VRO is defined as

[

V(R(r))=V(r), r<Ro–h

‘Ro= O, r>Ro–h (37)

We reiterate that by zeroing the potential on the complex
portion of the contour, we elirnkate any numerical difticul-

TABLE I. Phase shift for s-wave scattering by an exponential
potential.N refersto the numberof Laguerre-typefunctionsused in
the calculation.Resultsare given for both uniformcomplexscaling
and smoothexteriorscathsg.See text for basis set and contourpa-
rameters.

N Uniform Smooth Exterior

5
10
15
20
25
30
35
40
45
50
55
60

5
10
15
20
25
30
35
40

45
50
55
60

5
10
15
20
25
30
35
40
45
50
55
60

k=O.15
–0.898 51172
– 1.04615320
– 1.05892849
– 1.04723252
– 1.05119581
– 1.05025694
– 1.05041702
– 1.05040338
– 1.05040037
– 1.05040226
– 1.05040168
– 1.05040180

k=0.35

L42393379
1.46033720
1.46122277
1.46124716
1.46124757
1.46124756
1.46124756
1.46124756

k= 0.35
1.46124756
1.46124756
1.46124756
1.46124756

k=O.55

1.15583718
1.14412789
1.14423525
1.14423435
1.14423436
1.14423436
1.14423436
1.14423436
1.14423436
1.14423436
1.14423436
1.14423436

–0.000 00317
0.54894806

–0.950 25263
– 1.02746588
– 1.06278368
– 1.04671628
– 1.05122459
– 1.05028154
– 1.05040485
– 1.05040659
– 1.05040028
– 1.05040273

0.00000838
0.21281371
1.43632377
1.45572439
1.46107610
1.46124573
1.46124805
1.46124837

1.46124845
1.46124759
1.46124764
1.46124759

– 0.00002724
0.22636078
0.92234522
1.14172379
1.14299929
1.14408607
1.14422653
1.14423262
1.14423218
1.14423434
1.14423416
1.14423422

ties associated with a less than exponential fall off of the
potential at large distances, but have no measurable effect on
the cross section.

We do not expect this remedy to come without a price.
It’s obvious that the basis set one chooses must have ele-
ments that extend beyond the complex turning point It.; if
not, the eigenvalues of fio would effectively be real and Eq.
(29) would not yield a sensible result. Even for a short-
ranged potentird then, we ex~ct that a larger number of

i
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number of bas”~functia+r.s

functions will be required to achieve a given level of accu-
racy with exterior scaling than with uniform scahng and that
the number of functions required will grow as R. increases.

We can recover Sirnon’s original exterior complex scaling
contour by letting h+ O in Eq. (34), in which case q changes
discontinuously at R.. Equation (20b) cart still be used to
define the kinetic-energy matrix, but analytic basis functions
will not give uniform convergence with this prescription
since the derivative of the wave function (with respect to
r) is discontinuous at R.. However, the cusp dkcontinuity in
the wave function at the point R. that occurs with sharp
exterior scaling can be accommodated by using a nonana-
lytic set of basis functions that are only defined on finite
intervals. The continuous variable r is replaced by a grid of
nodes O<rl<rz< .-. < rn<~. Finite element basis func-
tions ~i,m(r) are defined to be identically zero outside a
given interval

Lm(r)=o ~fE[ri,ri+ ~], i=l,...,n. (38)

We use the label m to indicate the boundary conditions im-
posed on the basis functions at the nodes, for example, zero
or unity at the right or left end of the interval. The finite
element functions are then combhed into a smaller set of
continuous basis functions on which the Hamiltonian is pro-
jected. To accommodate exterior scaling, we simply require
the point R. to coincide with one of the nodes. To construct
the required Harniltonian matrix elements, we have to con-
sider terms of the form

J
.~Ki.A~)~(R(r))l’j,ArMr)dr

f

r,+l

= 6i.j 4i,Jr)ff@(r))gj,. (r) ~ dr, (39)
r,

where, by construction, the point R. never lies within the
interval [ri ,ri+, ] and, hence, R(r) is always smooth over
the integration range. To underscore the fact that the finite

FIG. 1. Urritarityof the calculated S matrix
(S=ezia) for s-wave scatteringby an exponential
potential at k= 0.55. Upper curve is for smooth
scalhr~, lower curve is for exterior scaling.

element basis functions depend explicitly on the interval
boundaries, we write them as ~i,j(r) =fj(r,ri ,ri+ ,). In our
implementation of the method, we used Herrnite interpolat-
ing PolYnomid5 fj(r,ri ,ri+ 1), which are uniquely defined
on the interval [ri ,ri+ ~] from the conditions

dk
~fj(r,ri,ri+ l)= ‘j.k* r=riy

dk
~fj(r,ri,ri+l)=o, r=ri+l. (40)

For these functions, there is a simple proportionrdity between

fj(r,ri ,ri+ I) ad fj(R(r),R(ri),R( ri+ I)), where R(r) k

any linear function of r. Since the exterior scaling contour is
a linear transformation on r, we can thus write

f

.
~ 4i,Ar)~(R(r))4j, JrMr)dr~ Ji,j

J

R(ri+1)
x R(ri) fnt(R(r),R(ri),R( ri+l))

x~(R(r))fn((r), R(ri),R(ri+l))dR. (41)

Thk relation is remarkable for two reasons. Fkstly, it shows
that the finite elements naturally scale onto the rotated con-
tour and thus cart handle any step discontinuity in the wave
function at the point R.. Moreover, if analytic forms are
available for the matrix elements for real intervals, then the
right-hand side of Eq. (41) shows that those same formulas,
evaluated for complex nodal points, give the correct vahres
for the matrix elements of the Hamiltoniart on the complex
part of the contour. Thk would not be true if the turning
point R. fell between two nodes. It is important to bear in
mind that the identity expressed in Eq. (41) does not in any
sense represent a contour distortion of the integral defined in
Eq. (39).



V.EXAMPLES

In this section we will illustrate some of the ideas we have
outlined with several numerical examples. We will first re-
port the resuks of calculations using analytic basis functions
on a smoothly scaled contour. To examine questions of con-
vergence, it is convenient to work with a set of L2 functions
that can be systematically increased toward completeness
without running into problems of numerical Iiiear depen-
dence. We chose the set of functions

A3L?

Xn.i(r) =
[(n+ 1)(n+2)]’~ ‘e-i’nL;(Ar)> (42)

where L@r) is an associated Laguerre polynomial These
functions are orthonorrnal on [O,CO]and give simple analytic
expressions for matrix elements of the s-wave kinetic energy

[
=k2 - 8m,n/8-F

(2m3+9m2+13m+6) 112 J(n+l)(n+2)(m+ l)(m+2) .

(43)

These analytic formulas can even be used to simplify the
evaluation of matrix elements carried out on a complex con-
tour where numerical quadrature is required, i.e., where we
use

JX~,i(r)H(R(r))x~,i( r)q(r)dr

‘~ x~,A(ri)~(R(ri))xn,,( ri)q(ri)~i. (4

We can make use of the fact that q(r)=ei~ for r>l?o+h to
simplify evahtation of the overlap and kinetic-energy matrix
elements. In the case of the overlap matrix, for example, we
write

f ~x~,k(r)x.,i(r)q(r)dr

J
Ro+h

[J

.
=

Xmi(r)x.,i(r)q( r)dr+eio
o

0 Xm,k(r)

J

Ro+h

Xx.,i(r)dr– o Xm,i(r)x.,i(r)dr 1
-ei4c$m,n+ X Xm,h(rj)xn,h(rj) (q(rj) ‘ei%Vj,

J

(45)

where the quadrature points only cover the interval [OJ?O
+h].

We first considered s-wave scattering Ikom the short-
range potential

V(r) =–e-r (46)

TABLE IL Phase shift for s-wave scattering by truncatedlong
~ge potenti~. N refem to the nmnbcr of ~guerrc-type functions
used in a smooth exterior seating calculation.See text for basis set
and contour parameters.

N RO=25 RO=35

10

20
30
40
50
60
70
80
90

100

10
20
30
40
50
60
70
80
90

100

10

20
30
40
50
60
70
80
90

100

k=o.15
–0.010 80094

–0.069 56168

–0.060 82042

–0.060 91740

–0.060 94440

–0.060 94559
–0.060 94556

–0.060 94558

–0.060 94559

–0.060 94559

k=O.35
–0.000 38421
–0.099 65709
–0.100 31907
–0.10033619
–0.10033628
–0.10033639
–0.10033648
–0.10033648
–0.10033648
–0.10033649

k=O.55
–0.000 36134
–0.132 56305
–0.118 84509
–0.118 66569
–0.118 65889
–0.118 65868
–0.118 65854
–0.118 65859
–0.118 65857
–0.118 65856

–0.oco 00015

-0.16491753

–0.061 41067

–0.060 92653

–0.061 02523

-0.06103083

– 0.06103078

-0.06103078

– 0.06103079

–0.061 03078

–0.000 00001

-0.03766936

–0.100 17726

–0.10040443

-0.10041117

–0.10041098

-0.10041097

–0.10041097

–0.100411 06

-0.10041109

–0.000 00001

–0.043 01391

–0.114 73708

–0.11851186

–0.118 66929

–0.118 68969

–0.118 69113

–0.118 69133

-0.11869137

-0.11869129

and compared the results obtained horn uniform complex
scalhtg, i.e., Zf(r)~H(rei4), with smooth exterior scahg
H(r) ~H(R(r)). The contour used the polynomial switch-
ing function described in Sec. IV. For these calculations, we
chose Ro= 20.0 and h =4.0. The Laguerre scale factor k was
set to 2.0 and the rotation angle was 30° for both sets of
calculations. Table I shows the behavior of the s-wave phase
shift (defined here as the phase of the calculated T matrix)
for several values of k. The convergence is faster with uni-
form sc~tng than with smooth exterior scalkg, as we con-
jectured, because with smooth exterior scahng one first needs
to span the region from the origin to R. before one begins to
see convergence. This can be seen in Fig. 1, which compares
uniform and smooth exterior scaling for k= 0.55. The mea-
sure of convergence for this comparison is the unitarity of
the S matrix (,S=e2i~, which is computed from the T ma-
trix as S=l+2iT.

The next case we consider is s-wave scattering from the
long-range potential
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5 10152025 SJ335 40455055

number of basis funelions

1

‘(r)= (l+i-)”
(47)

for which uniform complex scalksg diverges. We again stud-
ied convergence with the smmth exterior scaling transforma-
tion, this time zeroing the potential beyond R. – Is, where the
contour begins to turn off the real axis. Results are shown in
Table If for several k values and two dfierent values of
R.. All other pamrneters of the contour and basis are the
same as in the preceding case. The rate of convergence is
similar to what was found with the exponentird potential, but
the converged phase shfi show a slight dependence on
R., reflecting their dependence on the point beyond which
the potential is truncated. For comparison, we also show, in
Fig. 2, the results of a calculation in which the long-range
potential is not truncated. It is noteworthy that calculations
using the untnmcated potential can provide useful results for
a range of basis set vahres, before they ultimately begin to
diverge.

We also implemented sharp exterior scafing in a finite
element basis of fifth-order Hermite interpolating polynomi-
als. fn each interval [ri ,ri+ ,], we can uniquely define six
independent polynomials P J,i(r) and Qj,i(r), j= 0,1,2 from
the conditions

dk
~ ~j.i(ri) = bj,k

dk j,k=0,1,2

~~j,i(ri+l)=o

FIG. 2. Unitarity of the calculated S matrix
(S=ezi$) for s-wave scattering by a long-range
potential at k= 0.55. The divergent upper curve is
for a potential which is not truncated on the com-
plex part of the integration contour.

“’,(+(-)3[’(-)2-+%)+4
~l(r)=(ri+-ri)(-)’[’(-)’

-7(-)+41
1

P2j(r) = ~ (ri
-+,)2(-)31(-’ 1–1 ,

(49)

for ri<r<ri+, and zero elsewhere. The functions Qj,i are
obtained by interchanging ri and ri~, in the formulas for
Pj,i .

We can use these polynomials to define three basis ftmc-
tions at each node r, which span the interval [ri _ 1,ri+, ],
and have vanishbrg vafue, first and second derivative at the
end points. The basis functions are defined as

~j,i(r)= (Pj,i(r) + Qj.i- l(r)) (50)

and are plotted in Fig. 3. It is obvious from Eq. (49) that the
basis functions defined in Eq. (50) scale onto the contour as
described in Sec. IV. In particular, at the point ri=Ro, we
see that

Iim &j,i(Ro+&) = (ei4)jXj,i(Ro– .s)). (51)
e-o

# Thus the function Xoj guarantees continuity of the wave
~ Qj,i(ri+ I ) = 8j.k function at ri= R., while x ,j and X2~ impose the proper

~k j,k=0,1,2 (48) discontinuity conditions on the first and second derivatives,

~ Qj,i(ri) = o
respective] y. To impose boundary condhions that the wave
function vanish at the origin and last grid point, we simply
omit the functions X. ~ and XONand remove Pj.l and Qj,N,

The explicit formulas for the Pj,i are j= 1,2 from the definkon of the bask functions.
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i-2 i-1 I 1+1 i+z
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i-2 i-l i i+l i+2

TABLE III. Phase shift for s-wave scattering by truncated long-

range potential. Results from exterior scaling eatculations using fi-
nite elements.

Nodat spacing k=o.35 k=O.55

12.5 –0.099 95982 –0.104 55462
5.0 -0.10040313 –0.118 68040
2.0 –0.100 39447 -0.11867591
1.0 –0.100 39189 –0.118 67324
0.5 –0.100 39682 –0.11867316
0.25 -0.10039682 –0.118673 16

i

I-2 i-1 i i+l i+2

FIG. 3. Basis functions for tinite element calculations. Upper
panel: ,yjo; center panek ,yj,l; lower panel: xj~. See text for
definitionof the functions.

The exterior scaled finite element method was also ap-
plied to the long-range potential problem previously consid-
ered. For these calculations, the grid points were evenly
spaced from O to rN = 100 with R. fixed at 25 and the rota-
tion angle was set at 20°. Once again, the potential was set
equal to zero along the complex pottion of the contour. Table
III shows the behavior of the computed phase shtfts at sev-
eral energies as a function of the grid spacing. Evidently, the
method converges very rapidly.

VII.DISCUSSION

We have shown that, with exterior complex scaliig, we
can answer the question posed by the title of tlds paper in the
affirmative. Exterior complex scaliig was originally intro-
duced as a generalization of uniform complex scaling to deal
with potentials that suffered interior nonanalyticities, but
were analytic outside a sphere of finite radius. What we have
shown is that by making this radius large enough so that the

potential can be truncated at this distance without physicrd
consequence, then exterior sc~mg can be implemented in an
L.Zbasis and provides a method for solving the full scattering
problem without explicitly enforcing asymptotic boundary
conditions, even in cases involving long-range potentials
where uniform scaling diverges. For analytic basis functions,
we use smooth exterior scaling to assure uniform conver-
gent, for sharp exterior scflmg, finite element basis sets can
be employed. These developments allow the method to be
applied to the kinds of nonresonant scattering problems en-
countered in atomic and molecular physics. The fact that the
interaction region is represented in real coordinates also ob-
viates the need for the mixtures of real and complex basis
functions that have previously been used to treat many-
electron systems. We can also show that the present devel-
opment allows us to make contact with other formulations of
scattering in which cross sections are evaluated by calculat-
ing the flux through a surface outside the interaction region.
This will be the subject of artother study.
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Appendix C

Finite Difference Formulas

Using finite difference approximations of derivatives has the advantage of produc-
ing very sparse matrices whose matrix elements are trivial to evaluate. Additionally,

finite difference is one of the few numerical methods than can handle a non-analytic
exterior complex scaling contour such as the one defined in Equation 3.12. Seven-

point finite difference approximations of the second derivative give significantly more

accurate solutions than the standard three-point formulas, particularly when multiple
grid spacings andlor exterior complex scaling are used. Formulas for three, five and
seven-point finite difference approximations are listed in this appendix. Derivations

of just the three-point formulas are presented to illustrate the general procedure for
generating finite difference formulas and applying them to exterior complex scaling.

C.1 Uniform grid spacing

Consider an evenly spaced grid with grid points x. a nh where h is the spacing
between grid points. Let ~. be the values of some function $(z) such that in = ~(z.).
Now suppose we wish to approximate j: - ~ j(z) lZ=Z~, the second derivative of

.f at the point x.. The values of f(z) at the grid points on either side of Xn can be

expressed with a Taylor series in terms of ~(z) and its

When the Taylor series expansions of fn+l and fn_l
derivative terms cancel.

.

derivatives evaluated at Zn,

(Cl)

are added together the first

f.-l + f.+1 = 2f. + h2f~ + ~h4f; + ... (C.2)

Equation C.2 can be rearranged to give a formula for f: that uses the function value

at three grid points (fn_l, fn and fn+l) as well as higher derivatives evaluated at Xn.

(C.3)
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I fn-1 – Zfn + fn+l

I ‘f‘E n–2 + ~fn–1 — ~.fn + $.fn+l — ~fn+2

I ~fn-1 - ~f. + +fn+l + ~fn+2 - &fn+3 I
~hs V
12 fn I

I &fn-3 -‘f 20 n–2 + ~fn–1 — ~fn + ~fn+l — $fn+2 + *fn+3 I
Q h6 viii
25200 fn I

Table Cl: Finite difference formulas for evenly spaced grids.

Equation C.3 is a three-point formula for the second derivative with a leading error
term that is second order in the grid spacing h. By following the same procedure, but

using more grid points on either side of x n, we can derive more accurate formulas for
the second derivative. A five-point formula with fourth order error and a seven-point
formula with sixth order error are listed in Table Cl. An “asymmetric” five-point
formula is also given in Table Cl. This formula is used for grid points adjacent to
the boundary i.e., n = 1, (see Figure 3.3) and approximates the second derivative to

third order in the grid spacing h.

C.2 Two different grid spacings

The formulas in Table C.1 require that the grid be evenly spaced. In practice, we
may wish to use different spacings in different regions of the grid. Suppose that a grid

consists of two different grid spacings g and h with a uniform spacing of g to the left
of the point XP and a uniform spacing of h to the right of the point XP. For any grid

point Zn where n # p we can use the formula in Equation C.3 with grid spacing g for
n < p and grid spacing h for n > p. However, we need a new formula to approximate
the second derivative at the interface point XP.

Consider the Taylor series expansions for fP+l and fP_l about the point XP.

fp+l = f,+ hfj + ;h2f; + jh3f: + ...

fP-1 = fp – 9f; + :92f: – ;93f~ + -.. (C.4)

We now add these two formulas together after multiplying each by the appropriate

grid spacing such that the first derivative terms cancel.

hfp-1 + gf,+l = (g+ h)f, + ~gh(g + h)f~ – ~gh(g2 – h2)f& + ... (C.5)

As before we rearrange to get a formula for f$. Now the first nonzero higher derivative



IIn=p–~ I n=p I n=p+l

E
flz-2

f.-l

f.

fn+l

fn+2

error

II I h(2h–3g)

I
–2h2

3g(;g;h) 2g2(2g+h)(g+h) g(g+h)(g+zh)(g+ah)

II 3g+h

I
4h(3g–h)

I
!@!z

g2(2g+h) g2(g+2h)(g+h) 3gh2

II = I 2h2+2.g2-9.qh

I
*zg2h2

& 4g(3h–g) 3h+g
3g2h h2(h+2g)(g+h) h2(2h+g)

–2g2 g(2g–3h) –1
h(g+h)(h+2g)(h+3g) 2h2(2h+g)(g+h) 3h(3h+g)

~g2hf;–1 figh(g – h)fg &h2 (9 – h)f;+l

Table C.2: Five-point finite difference formulas for the “interface” between two dif-
ferent grid spacings. Special formulas are needed for the second derivative at the

interface point ZP as well as the point on either side. The three columns of the table
give the coefficients needed to approximate f: for n = p – 1, n = p and n = p + 1.

term is .f-~ rather than j’$’ so the leading error term is first order in (g – h).

f:= gh(g2+h) (hfP-l-b+ ‘).fP+9f,+l) + ;(9 - h)f~+... (C.6)
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It is generally true that finite difference formulas that straddle two regions of
different grid spacings will be less accurate by one order than their uniform grid
counterparts. For the three-point approximations we need a special formula only for
the derivative at ZP. The five and seven-point approximations sample from a wider
area so they require special formulas for one and two points, respectively, on either

side of the interface point XP. Special formulas for five-point approximations near an
interface are listed in Table C.2 and the seven-point formulas are listed in Table C.3.

C.3 Application to

Applying the finite difference

exterior complex scaling

formulas to exterior complex scaling is straight-
forward. The same formulas are used but grid spacings in the region where the
coordinates are complex are multiplied by ei~ where q is the complex scaling angle.
In the cases where the finite difference formulas straddle the complex scaling point R.
some of the grid “spacings” will be real and some will be complex. This means that

even for an evenly spaced grid the specialized finite difference formulas in Equation
C.6 or in Tables C.2 and C.3 are necessary for implementing exterior complex scaling.
Finite difference is well-suited to handle the non-analyticity of the exterior complex
scaling contour provided that ~ is one of the grid points. The transition from a real
to a complex grid at fi does mean that the error in the finite difference formulas

t
I

,
t



n=p–z nep–1 ncp n=p+l n=p+z

f’n-3 1 3g2+31Jh-2h2 2(119-WI)h2 /13(5!Hl) 8/14
15g(5g+h) 24g~(2g+h)(4g+h) 9gqg+h)(3g+/l)(3g+2h) 4g2(g+h)(2g+h)( g+2h)(3/I+2g) g(g+h)(2h+g)(3h+g) (4h+g)(5h+9)
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_2g3(,0h_g) -3g2(llh-8g) -(5h2+6gh–2g2)

h2(g+h)(2g+h)(3g+ h)(4g+h)
*

2h2(g+h)(g+2h)(3g+2h) 3h2(3h+g)(3h+2g)
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Seven-point finite difference formulas for the “interface” between two different grid spacings, Special formulas are needed
for the second derivative at the interface point ZP as well as two points on either
the coefficients needed to approximate f: for n = p +2, n = p + 1 and n = p.

side, The five columns of the table give



Solution to Analytic Test Problem
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Figure Cl: On the left is the analytic function given in Equation C.7 evaluated on a
grid that is complex beyond fi = 20a0 with a scaling angle of 30°. On the right is the

numerical error in wave functions calculated by solving Equation C.8 using 3-point,

5-point and 7-point finite difference formulas. In this example the grid spacing was

0.05a. between r = O and r = 5ao, 0.2a. between r = 5a. and T = 25ao, and 0.5a.

beyond r = 25ao.

will be larger than for a real, uniformly spaced grid. For this reason, the higher-order
seven-point finite difference formulas should be used.

C.4 Analytic example

We can test finite difference applied to exterior complex scaling by solving an
inhomogeneous differential equation that is similar to a one-dimensional scattered

wave equation but has a known analytic solution.

@(r)= (1 - e-a’) e’” (C.7)

The function defined in Equation C.7 is an outgoing radial wave similar to a scattered
wave for one-dimensional potential scattering such as the examples in Appendix A. It
is a solution to an inhomogeneous differential equation of the form (H – -E) @(r) =

X(T) with an attractive exponential potential.

(C.8)

The exact solution to Equation C.8, evaluated on a contour that is complex beyond
~ = 20ao, is shown in the left panel of Figure Cl. In this example k = Q = la;l
and the complex scaling angle is 30°. The grid extends to 40a. which is far enough

that @ is effectively zero at the end of the grid.
Most of the grid has a grid spacing of 0.2a. which is sufficient to describe an

oscillatory function with this wavelength. A much smaller grid spacing of 0.05a. is
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used for small r. The smaller grid spacing is unnecessary for this example but it is
needed when Coulomb potentials are involved. For large ~ at some distance beyond

the scaling point fi the wave function is sufficiently damped that representing it
accurately is unnecessary so we can use a larger grid spacing of 0.5a. at the large r
end of the grid. The numerical errors in the calculated solutions for three, five and
seven-point finite difference formulas are shown on the right in Figure C.1. The effect
of using higher-order finite difference formulas is clearly evident. In particular, using
a higher-order formula makes the calculated solution more accurate on the real part
of the grid even if there is little or no improvement in the solution on the complex
part of the grid.



Appendix D

LU Factorization of Sparse
Matrices Using SuperLU

The finite difference matrix representations of the Hamiltonian consist mostly of

matrix elements that are zero. We can greatly improve the computational efficiency

of the methods for solving the scattered wave equation by taking advantage of the

sparsity of the matrices. Packed array storage schemes for sparse matrices minimize
the amount of memory required to store a sparse matrix. Specialized routines for
matrix operations involving sparse matrices minimize the number of required floating

point operations. An essential component to the completion of the calculations for
this thesis was a software package called SuperLU which solves a matrix equation for
a sparse matrix very efficiently by LU factorization.

D.1 Two-dimensional finite difference matrices

Only a small fraction of the matrix elements in the finite different matrix represen-
tation of the Hamiltonian are nonzero. The sparsity structure for the two-dimensional
Temkin-Poet matrices are shown in Figure D.1. Each row or column corresponds to
a particular point on the grid. The same number of grid points is used for both radial

coordinates so the dimension of the matrix is N = n~ with the wave function rep-
resented by an array of N numbers corresponding to the value of the wave function
at each grid point. Potentials are represented by matrices whose diagonal matrix

elements are the values of the potential at each grid point and whose off-diagonal
matrix elements are zero. The finite difference formulas link each grid point to one
or more neighboring grid points on all sides.

All of the nonzero off-diagonal elements of the Hamiltonian matrix are due to
the finite difference formulas. The number of nonzero elements for any row of the

matrix is determined by the number of points used in the two-dimensional finite
difference stencil (see Figure 3.3) centered at the grid point corresponding to that
row. The low-order finite difference matrix, based on three-point formulas, has at
most five nonzero matrix elements on each row and the high-order matrix, based on
seven-point formulas, is limited to 13 nonzeros per row. Rows of the matrix that
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high–order finite difference matrix

4
1560 nonzero matrix elements

Figure D.1: Sparsity structure of the finite difference matrix representations of the
two-dimensional Hamiltonian in the Temkin-Poet model. On the left is the low-order
matrix which uses 3-point formulas for the second derivates. On the right is the

high-order matrix which uses 7-point formulas. These examples are very small (144
total gridpoints extending only to 2ao) so that the basic structure can be seen.

correspond to points near an edge of the grid will have fewer nonzero elemnts. The
total number of nonzero matrix elements is given in Equation D.1.

{

ng (ng + 2ng (2ng – 2)) 3-point formulasnumber of nonzeros = (D.1)
ng (ng + 6ng (2ng – 4)) 7-point formulas

Both matrices pictured in Figure D.1 have a very particular structure. The two-
dimensional grid points are ordered such that the grid points for a fixed Tz are con-
tiguous. Each of the ng groups of ng fixed T2 points is ordered from smallest rz to

largest r2. Within each group the points are ordered from smallest TI to largest TI.
Finite difference formulas in rl connect neighboring points in rl. These fill out the
seven inner-most diagonals for the high-order matrix and the three inner-most diag-

onals for the low-order matrix. Neighboring points in TZ are ng apart in the matrix
ordering so the T2 finite difference formulas form nonzero diagonals at ng intervals.

The low-order matrix has nonzeros on the three inner diagonals and on the n~h

super and sub-diagonals with an overall bandwidth of 2ng — 1. The high-order matrix
has nonzeros on the seven inner diagonals and at three super and sub-diagonals at
strides of ng with an overall bandwidth of 7ng – 1. The notch visible in the 3n~h

super-diagonal is due to using five-point finite difference formulas for grid points that
are two points from the edge. There are no “missing” super-diagonals for the grid
points right next to the edge because a “lop-sided” five-point formula was used. This

same feature exists on the inner diagonals which also have a segmented appearance
marking the separations between groups of fixed r2 points.



D.2 Storing sparse matrices

We substantially reduce the amount of computer memory used to store a sparse

matrix by storing only the nonzero matrix elements. A sparse matrix is stored in

an array of length nn.z where nnz is the number of nonzero matrix elements. The
number of nonzero elements scales linearly with the dimension of the matrix N (less

than 5N for the low-order and 131V for the high-order matrices) compared with N2

total matrix elements so the savings in memory increases rapidly with matrix size.

The cost of this savings is that row and column index information for each nonzero

matrix element must also be stored. The simplest way to do this would be to also
store two arrays of length nnz for the row and column indices of each nonzero ma-
trix element. We can achieve a further savings in memory by using a packed storage

scheme. Row indices are still stored in a length nnz array, but column index in-

formation is stored implicitly by requiring that all nonzero matrix elements from a

particular column be stored together. An array of length N+ 1 denotes the beginning
and end of each column’s group of matrix elements. A simplistic algorithm for stor-
ing a matrix in this way is provided on page 111. That algorithm is for illustrative

purposes only and should never be used in practice because it is extremely inefficient.

The sparse matrix storage scheme also provides for a significant savings in com-
puter time by reducing the number of floating point calculations required to perform
matrix operations. For instance, a matrix-vector multiply involving a dense matrix
of order N requires N2 individual multiplications. If the matrix is sparse then we
can eliminate all of the mulitplications for matrix elements that are zero so that only
nnz individual multiplications are required. In cases like the finite difference matri-
ces where the number of nonzero elements per row is fixed the cost of matrix-vector
multiplies is linear rather than quadratic in N. This fact is very important when
iterative methods are used for solving large matrix equations.

D.3 W factorization of sparse matrices

Gaussian elimination is the canonical method for solving a matrix equation of the
form Ax = b. The majority of the operations in Gaussian elimination depend only

on the matrix A and not on the righthand side b. These operations turn out to be
identical to factoring the matrix into the product of an upper-triangular matrix U

and a lower-triangular matrix L so that A = LU. LU factorization algorithms solve
linear matrix equations by first factoring the matrix into its L and U factors and
then solving two linear equations with the triangular matrices L and U.

The factorization step -accounts for the vast majority of the required calculations.

Assuming no sparsity in the matrix A, the number of operations in the factorization
step scales like N3 while those for the triangular solves scale like N2. The advantage
of LU factorization comes in to play when linear equations with the same matrix A
must be solved many times. The LU factors can be reused each time so that the cost
of solving linear equations with the same matrix multiple times is relatively low.

Writing LU factorization algorithms for sparse matrices is very difficult because
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Figure D.2: Sparsity structure of the LU factors of the matrices in Figure D.1. The

factors U and L are upper and lower-triangular matrices, respectively. The sparsity
of the sum L + U is shown here.

the L and U matrices will not have the same sparsity structure as A. In general, the

combination of L and U will have many more nonzero matrix elements than A. Figure
D.2 shows the sparsity structure of L + U for both matrices pictured in Figure D.1.

Basically, factorization has filled in all of the zeros between the outermost nonzero

diagonals. This is typical of the “fill” that occurs in LU factorization. Storing the
LU factors requires significantly more computer memory for the high-order than for

the low-order finite difference matrix.
Currently, the only available software package that can LU factor a sparse matrix

with complex matrix elements is SuperLU [19] written by Xiaoye “Sherri” Li. This

package takes a matrix stored in the packed array storage scheme described previously
and decomposes it into its L and U factors that are also stored as sparse matrices.
It then performs triangular solves with these factors to solve the original matrix

equation. SuperLU is parallelized so that it can simultaneously utilizes several CPUS
on a massively parallel computer. Also, SuperLU includes a re-ordering step which

permutes the matrix A in such way as to reduce the amount of storage required for
the LU factors. Some time and memory usage information with the two types of
finite difference matrices are listed in Figure El.



Simplistic Algorithm for Storing aSp*se Matrix

N =dimension of matrix

dimension of storage arrays:

(integer nnz is the number of nonzero matrix elements)

integer rowind(l:nnz)

integer colptr(O:N)

complex values(l:nnz)

nnz = O

{

1 one-based indexing
colptr(0) = o

zero-based indexing

forj=lto N

colptr(j) = O

fori=lto N

compute A(i, j)

if abs(A(i, j)) >0 then

nnz = nnz + 1

values(nnz) = A(i, j)

{“

one-based indexing
rowind(nnz) = !

t – 1 zero-based indexing

colptr(j) = colptr(j) + 1

endif

end

colptr(j) = colptr(j) + colptr(j – 1)

end

Figure D.3: SuperLU uses a packed storage scheme that stores only the nonzero
elements of a matrix. This simplistic algorithm will create the appropriate packed

storage structure for any matrix. It is extremely inefficient because it loops over every
matrix element (including those that are zero) and is provided for illustrative purposes
only. In practice, the loop structure should be designed so that the algorithm tests
only those matrix elements which are expected to be nonzero.
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Appendix E

Conjugate Gradient Squared
Iterative Algorithm

The conjugate gradient squared (CGS) iterative algorithm was used to solve the

linear equations arising from the scattered wave equation. Iterative algorithms at-
tempt to arrive at a solution to a linear system Ax = b using a series of matrix-vector
multiplies rather than by using a “direct” method such as Gaussian elimination. If an

iterative algorithm converges for some matrix A then it may require significantly less
computer time and memory than do direct methods. However, iterative algorithms

are guaranteed to converge to the solution only for certain special cases. For “ill-
conditioned” matrices, such as those produced by exterior complex scaling, another
matrix M is needed as a “pre-conditioner” to make iterative algorithms converge.

E.1 Convergence of iterative algorithms

The measure of an iterative algorithm’s effectiveness is the rate at which it con-
verges (assuming that it does converge) to the correct solution. Let x(i) be the ap-

.t~ iteration. TO measure how close x(i) isproximate solution vector computed in the z

to the exact solution we substitute it for x in the system of equations b – Ax = O.
The norm of the residual r(i) - b – Ax(i) will be zero if x(~) is the exact solution.

error = r(i) = b _ Ax(i) (El)

II II
The rate of convergence is then the rate at which r(i) approaches zero. Iterative
algorithms are preferable to Gaussian elimination If they converge and the rate of

convergence is reasonably fast.

For a system of iV linear equations the number of numerical operations required

for a matrix-vector multiply scales as N2 while Gaussian elimination scales as N3.
Thus, if the number of matrix-vector multiplies required for the iterative solution does
not increase significantly with increasing N then it is guaranteed that for sufficiently
large N an iterative algorithm will take less time than Gaussian elimination. The
time savings are even more significant if the matrix is sparse i.e., most of the matrix



elements are zero. Calculating the matrix-vector product Ax for a sparse matrix A
requires many fewer numerical operations. In the case of a finite difference matrix, the

number of nonzero matrix elements per row is fixed and the matrix-vector multiply

scales linearly with N.
Krylov subspace methods are a class of iterative algorithms designed to rapidly

converge to a solution. The most efficient and best understood of these algorithms is

the conjugate gradient (CG) method (see, for example, reference [16] section 6.6.3).

The CG method is guaranteed to converge only for symmetric, positive definite ma-

trices. The finite difference matrix representation of (1? – A) with exterior complex
scaling is complex non-symmetric and non-Hermitian. There are several Krylov sub-

space methods designed for this more general class of matrices. Whether or not

these methods work for a particular matrix and how fast they converge depends on

the eigenvalue spectrum of the matrix and cannot, in general, be. predicted. If the

spectrum covers a large region in the complex plane then an iterative algorithm will
converge slowly or possibly not at all. Such a matrix is said to be “ill-conditioned”.

E.2 Pre-conditioners

If a matrix A is ill-conditioned then an iterative algorithm might be made to
converge or to converge more rapidly by using a “pre-conditioner” matrix M chosen

so that the matrix product M–lA is better conditioned than the matrix A. The
solution to Ax = b is then obtained by instead solving the pre-conditioned equation
M-lAx = M-lb. Within the algorithms the pre-conditioner is actually applied
by solving linear equations with the matrix M rather than A. In order for a pre-

conditioned iterative algorithm to still be preferable to Gaussian elimination it is
necessary that solving linear systems with the matrix M require significantly fewer
computations than solving linear systems with A. We can see how this works by
looking at a very simple (not a Krylov subspace method) iterative algorithm.

In this simple example we start with an initial guess of zero i.e., x(o) = O. At each
iteration we update the approximate solution vector by adding the residual vector.

x(~+v = X(4 + # =b+(l– A)x@) (E.2)

In this case we can write down an exact algebraic expression for the ith solution vector

and the i?h residual vector.
=(i) = (1 – A)i b (E.3)

Clearly this algorithm will converge if and only if the eigenvalues of A lie inside a unit
circle centered at 1. To remove this restriction we instead solve the pre-conditioned
equation M–lAx = M-lb. By appropriate substitution into Equation E.3 we directly
write down an algebraic solution for the ith residual vector in this case.

( )# = 1 _ M-lA i M-lb (E.4)

Now the requirement for convergence is that the eigenvalues of the matrix product
M-lA lie within a unit circle centered at 1. In other words, we require that M % A.
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The degree to which M approximates A determines the rate of convergence of the
simple algorithm. If M were exactly equal to A then the algorithm would converge
in just one iteration, but it would reduce to a direct solution of the original matrix
equation so no savings in time or memory would have been achieved. The goal is to
find a pre-conditioner M that produces a reasonable rate of convergence but for which
solving linear systems with M is substantially easier than solving linear systems with
A. For Krylov subspace methods the effect of the pre-conditioner is more complicated,
but the basic ideas are the same. In general, choosing M to approximate A is one
way, but not the only way, to form a pre-conditioner.

E.3 Conjugate gradient squared for ECS

The eigenvalue spectrum of an exterior complex scaled Hamiltonian populates
much of the lower half of the complex plane. Thus, the matrix representation of

()E – H is very ill-conditioned and finding an iterative method that will solve the
scattered wave equation involves testing various algorithms and pre-conditioners to
see which converge. Various iterative algorithms were tested with one-dimensional
potential scattering problems such as those in Appendix A. Exterior complex scaled
finite difference matrices for a one-dimensional problem are relatively simple and
small but they are ill-conditioned in the same manner as the Temkin-Poet matrices

of Chapter 3 and the electron-Hydrogen matrices of Chapter 5.
Every known iterative algorithm failed to converge for these test problems without

pre-conditioning. Furthermore, all pre-conditioners created by standard methods in
numerical linear algebra failed to cause any of the iterative algorithms to converge.

The only successful pre-conditioner was the low-order finite difference matrix repre-
sentation of the same operator. Using the low-order matrix as a pre-conditioner for

solving the high-order matrix equation caused a few of the Krylov subspace methods

(CGS, Bi-CGStab, and GMRES) to converge.
All had about the same stability and convergence rate when using this pre-

conditioned. In fact, this pre-conditioner caused even the simple iterative algorithm
in the previous section to converge, although much more slowly than the Krylov sub-

space methods. The CGS algorithm, given in Figure E.2 on page 116, was chosen
because it required the least amount of computer memory to implement.

Solving the scattered wave equation (Equation 3.5) for the Temkin-Poet model
problem is a more concrete and pertinent example. Let the matrix A represent

‘1

the two-dimensional operator -E – H using “high-order”, 7-point finite difference
formulas for the second derivatives an let the matrix M be the “low-order”, 3-point
finite difference representation of the same operator. The driving vector b is the
function (H – E) IJ:i evaluated on the grid. The vector x will be the scattered wave

O:p on the grid, we’ll choose X(o) = O as the starting guess for the iterative algorithm.
As shown in Figure El, the rate of convergence for the algorithm in Figure E.2

applied to the Temkin-Poet mode is fairly rapid and well-behaved. Each CGS itera-
tion requires two matrix-vector multiplies with the matrix A and two applications of
the pre-conditioner M. The matrix-vector multiplies were performed without explic-



Converge of CGS Algorithm for Temkin-Poet

104
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Figure El: Convergence of the CGS algorithm for the Temkin-Poet model for three

grids which are real out to different values of ~ is shown on the left. The time
required for the ~ = 70a. calculation on a 332Mhz Power2 CPU is shown on the

top right. In this case, the grid extends to 95a. and the total number of grid points

(and matrix dimension) is 114,244. The pre-conditioner is applied by first factoring

the matrix M and then solving with the LU-factors twice in each CGS iteration. So,
the total number of solves is twice the number of iterations. The time required to
factor the matrix A and solve Ax= b directly is shown on the bottom right.

itly storing A. This provides a significant savings in memory compared to a direct

solution which requires enough memory to both store the matrix and perform Gaus-
sian elimination. Application of the pre-conditioner means solving linear equations
with the matrix M. Here we have no choice but to solve the system directly. This is

done via an LU-factorization (see Appendix D) of M. By saving the LU factors of
M repeated applications of the pre-conditioner are fairly inexpensive.

For comparison, the time required for a direct solution via an LU-factorization of

A is also shown. In this example the iterative solution took 31% of the time that the
direct solution did. This is because the factorization of M takes significantly less time
than does the factorization of A. A single solve using the LU factors takes much less
time for M than for A. However, the total time spent in the CGS algorithm ajter
the LU-factorization of M is larger than the solve time using the L’U factors of A.
This means that if many solutions to an equation of the form Ax = b are required
then the iterative algorithm is actually more time consuming than direct solution.
However, there is still a significant savings in memory using the iterative algorithm.
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Preconditioned Conjugate Gradient Squared Method

Start with initial guess x(o)

compute r(o) = b – Ax(o)

for 2= 1 to maxiterations

pi_l = b~r(~-l)

if Pi–l = Omethod fails

if z= 1 then
u(l)= r(o)
~(l) = =(0)

else

@i-l = ~i-ljPi-2

~(~) = ~(i–l) + ~i_lq(i–l)

P(i) n U(i) + ~i_~ (q(i-l) + ~i_~P(i-l))

endif
solve Mp = p(i)
~=Ap

~i = ~i–l/b~fi
q(i) = u(i) – ~i~

solve Mfi = u(i) + q(i)
x(i)=X(i–l)+~i~
r(i)=b_Ax(i)
error = Ilr(i) II

if error < tolerance exit

end

Figure E.2: The preconditioned conjugate gradient squared algorithm based on the
one given in Templates for the Solution of Linear S@erns [4], page 26. The arbitrary
vector i in [4] is defined here to be the driving term b. Also the full residual r(i) is
computed in each iteration rather than updating the previous residual.



Appendix F

Expansions in Spherical Harmonics

The calculations described in this dissertation all involved partial wave expansions
of wave functions in terms of spherical harmonics. Some properties of both the ordi-
nary and coupled spherical harmonics that are important to the derivations presented
in the preceding chapters are given in this appendix.

F.1 Spherical Harmonics

One-electron functions are expanded in terms of ordinary spherical harmonics Y1,~
defined in Equations F.1 and F.2 where the Plm are associated Legendre functions.

(F.1)

Y~,m((3,(/5)=(–l)mY;_m(e, ~) (F.2)

The Y1,m(13,#) are orthonormal functions of the usual spherical polar angles 0 and
# and are eigenfunctions of the total angular momentum quantum number 1 and its
projection m along the z axis.

V2 (~(’r)Y.J,rn(O,#)) =
(

1 az

)
Z(1; Qf(r) - ;= (rf(r)) Y,,m(e, #) (F.3)

Two-electron functions are expanded in terms of coupled spherical harmonics
Y~~(&, @I, 62,#2) that are functions of two spherical polar angles for each electron.

The ~~~ can be written as a finite sum of products of Yl,m, u shown in l@atiOn F.4,
where the (J112m1m21LM) are the well-known Clebsch-Gordan coefficients. Procedures
for calculating Clebsch-Gordan coefficients can be found in standard references such
as Messiah [21] and Zare [39].

From Equation F.4, it is obvious that the y~~ are eigenfunctions of the individual
angular momenta 11 and 12 for each electron. Clebsch-Gordan coefficients are real
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numbers chosen so the yl~~ are also orthonormal eigenfunctions of the total angular
momentum L of the two-electron system and its projection Al along the z axis.

(F.5)

The orthonormality of the y~~ is expressed in Equation F.5 using Dirac braket no-
tation with the scalar product denoting integration over all four angular coordinates.

Clebsch-Gordan coefficients are zero unless ml + mz = M. So, the double sum
over ml and m2 in Equation F.4 could be rewritten as a single sum over either ml
or m2. Also, only terms for which Iml I < 11 and lm2I < /2 are nonzero. These
restrictions can be used to specify the summation limits.

In this dissertation only M = O partial waves were necessary. For these coupled
spherical harmonics the expansion in Equation F.4 can be simplified.

The limits in the summation over m in Equation F.6 are +min(Jl, 12). We can see
the cylindrical symmetry in an M = O system (such as an electron scattering from a
spherically symmetric target) by using the explicit forms for the Y1,~ from Equations
F.1 and F.2 in Equation F.6. Dependence on the azimuthal angles ~1 and 42 in the
mth term simplifies to e‘m~@’where A@ s @l —42. The yl~lz are not functions of the
@l and @2 independently. Instead, they are functions of the relative angle A@.

Clebsch-Gordan coefficients obey the following symmetry relation with respect to
interchange of the single-particle quantum numbers.

An important symmetry relation for the y~~ follows immediately from Equation F.7
and the expansion in Equation F.4.

Y:jW2> @2,%, 41) = (–1)1’+12+LY:f(ol, 41, f92, 42) (F.8)

When the sum 11+ 12+ L is even the y~~ are said to have even parity and when
it is odd they are said to have odd parity. This property is important because only
partial waves with the same parity will be coupled by the two-electron potential.

F.2 Two-Electron Potential

Of particular relevence to the topic of this dissertation are matrix elements of the
two-electron potential - between two Yf112.

These form the two-dimensional potentials in the coupled equations (Equation 5.6)
and are functions of the radial coordinates rl and T-2.Formal expressions were worked
out by Percival and Seaton [24] and are also given in Application 4 of Zare [39].



119 i

~Deriving formulas for these matrix elements can be done using an expansion of
- that makes use of the spherical harmonic addition theorem,

(F.1O)

The radial dependence is then contained in the non-analytic factors $ where ~> is

the larger and r< is the smaller of rl and r2. From Equation F.1O it is clear that the
matrix elements have the following form, previously given in Equation 5.5.

I

I

I

(F.11)

The values of A over which the C’~’~~1121iliare nonzero range from max (Ill —1~I,11’—i;])

to min ((11+ 1{), (12+ l! J). Specifically, the C~’~~llzliliare equal to the following integral.
!

This integral can be expressed in terms of Clebesch-Gordan coefficients and the
so-called Racah coefficients [24]. These formulas will not be given here, but one
consequence of the Clebesch-Gordan factors involved is that matrix elements between
y~~ of different parity (see Equation F.8) are zero. For this reason, there is no
coupling between partial waves of different parity. One special case where we can
easily evaluate Equation F.11 is when all quantum numbers are zero. This gives the
two-electron potential used in the Temkin-Poet model.

‘2~10000)= ~‘0000’IF,-7-21 r>

F.3 Partial wave expansions

(F.13)

We use the various spherical harmonics for partial wave expansions of the wave
functions. The multipole expansion of a plane wave is expanded in terms of the
ordinary spherical harmonics.

(F.14)

The ~1are regular Rlccati-Bessel functions. By choosing the momentum vector to be
along the z axis, only terms for which m = Oare included in the expansion.

Next we will consider the type of partial wave expansion needed for the “initial
state” U/~i(F1,72) defined in Equation 2.5. This wave function is made of two terms
with the form ei~,zl~(r2) where j has no angular dependence. To expand a function

i
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like this, it is necessary to evaluate Clebsch-Gordan coefficients for the cases where
either 11or 12is equal to L and the other is zero.

(LOMOILM)= (OLOMILM)= 1 (F.15)

An immediate consequence of Equation F.15 is that the ~~~ with either 11or 12equal
to L have a very simple form.

Yi,y(fl> f2) = yLM(7$)yoo(~2)

Since Yo,o (0, ~) = * we can write

Y&f(il, ~2) = yoo(fl)yLA4(~2) (F.16)

~(~) = @~(T)Yo,o(O, #). Using Equations

F.16 and F.14 it is trivial to write down the partial wave expansion of ei~’z’~(rz) in
terms of coupled spherical harmonics.

L=O

(F.17)

Only M = O terms are included in Equation F.17 because only m = O terms exist
in the multipole expansion of the plane wave and in the function j(r). This basic
derivation leads directly from the definition of ~~i in Equation 2.5 to its partial wave
expansion in Equation 5.2.

One feature of Equation F.17 is that it contains only terms with even parity
(11+ 12+ L = L + O+ L = 2L). Since the two-electron potential only couples partial
waves with the same valuesof L and M“and the same parity the scattered wave Il& will
contain only terms with the parity and values of L and M that exist in the expansion
of I&g;. For this reason, the partial wave expansion of IJl$ in Equation 5.3 contains
only terms with M = O and for which 11+ 12+ L is an even integer. Consequently,
the symmetry relation given in Equation 5.8 for the partial wave radial functions in
the expansion of Q; follows directly from Equation F.8.


