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Abstract

Since the invention of quantum mechanics, even the simplest example of collisional
breakup in a system of charged particles, e~ + H — H* + e~ + e, has stood as one
of the last unsolved fundamental problems in atomic physics. A complete solution
requires calculating the energies and directions for a final state in which three charged
particles are moving apart. Advances in the formal description of three-body breakup
have yet to lead to a viable computational method. Traditional approaches, based
on two-body formalisms, have been unable to produce differential cross sections for
the three-body final state. Now, by using a mathematical transformation of the
Schrédinger equation that makes the final state tractable, a complete solution has
finally been achieved. Under this transformation, the scattering wave function can be
calculated without imposing explicit scattering boundary conditions. This approach
has produced the first triple differential cross sections that agree on an absolute scale
with experiment as well as the first ab initio calculations of the single differential

cross section [29].
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Chapter 1

The Three-Body Nature of
Electron-Impact Ionization

Electron-impact ionization is the process in which a target atom or molecule is ion-
ized by a collision with an electron. Scattering theory calculations have progressed to
the point of being able to accurately treat non-breakup processes for an electron scat-
tering from relatively complicated target molecules. However, ionization represents a
fundamentally different class of problems characterized by a final state in which three
particles that interact via long-range Coulomb potentials are moving apart. Even the
simplest example of this process, the electron-impact ionization of atomic hydrogen,
has resisted numerical solution until now. This dissertation presents the first calcu-
lations to produce detailed information about electron-impact ionization that agrees,
on an absolute scale, with experimentally measured values over a range of energies
and final directions.

1.1 A three-body process in electron scattering

Collisions between electrons and atoms or molecules are governed by none of the
selection rules that limit optical interactions with matter, primarily because the in-
cident electron is indistinguishable from those of the target. Thus, electron impact is
an efficient means of exciting or ionizing atoms and molecules. The relative probabil-
ities of the elastic and various inelastic scattering processes following electron impact
affect the energy distributions of atoms and molecules that determine the chemical
dynamics of macroscopic systems. Furthermore, electron-impact ionization affects the
populations of ions and free electrons and is the fundamental mechanism responsible
for forming and sustaining low temperature plasmas. Detailed information about the
energy and angular distributions of this process is important for understanding the
dynamics of plasmas in a wide range of applications.

In a time-independent formalism the wave function simultaneously contains all
the information for a scattering event initiated by a collision, at a particular energy,
between an electron and the target in some specified initial state. Both the initial
and final states are manifested in the asymptotic boundary conditions on the wave




function for large inter-particle separations. The objective of any scattering calcula-
tion is to obtain information about the final state following the collision. For electron
scattering theory, this means determining the asymptotic boundary conditions of the
wave function describing the motion of all electrons.

The final scattering state is typically analyzed in terms of individual “channel”
components; each corresponding to a particular scattering process usually defined by
the final state of the target. Scattering theory calculations and experimental mea-
surements attempt to determine probabilities (expressed as scattering cross-sections)
of the final state being in a particular channel. In calculations, we identify the chan-
nels by separating the asymptotic wave function into individual channel components
each corresponding to a particular target state. Experimentally these channels are
identified by the energy of the scattered electron and/or the state of the target.

Channels not corresponding to ionization are characterized by a single electron
moving away from the target left behind in either the ground state or some excited
state. Treatment of these “discrete” channels by various “two-body” formalisms, that
specify the asymptotic form for each channel as two separate, non-interacting entities
(the target atom or molecule and a free electron), has been possible for many years.
Electron-impact ionization, on the other hand, is a three-body process characterized
by two electrons separating from an ionized target.

The past 35 years have seen significant progress toward formulating an asymptotic
form for this process, ranging from the early work of Rudge [34] and Peterkop [25] to
the very cumbersome, but more complete, form derived by Alt et al. [1]. Despite this
progress in the formal theory, efforts to explicitly use these asymptotic forms have
not been successful. Consequently, complete numerical treatment of this process has
continued to stand as an unsolved problem in electron-scattering theory.

1.2 Existing methods in scattering theory are
designed for two-body processes

Scattering calculations are inherently more difficult than those for bound states
with the same number of electrons because the wave functions that describe scatter-
ing extend over all space whereas the bound state wave functions are localized near
the nucleus. Theoretical treatment of systems with two bound electrons began with
the work of Hylleraas in the 1930s on the bound states of helium which were deter-
mined accurately by Pekeris in the late 1950s. Not until the 1961 work by Schwartz
would even a rudimentary solution to the simplest two-electron scattering problem,
an electron scattering from atomic hydrogen, be achieved.

For scattering of an electron from a target atom or molecule below the ionization
threshold only two-body channels, characterized by one outgoing electron moving
away from a neutral target, exist in the final state. In the elastic channel the outgoing
electron has the same energy as the incident electron and the target is left behind in
its original state. With the discrete excitation channels the outgoing electron has less
energy than the incident electron and the target is left in some excited state. The




energy of the outgoing electron is limited to a set of discrete values that differ from
the incident energy by the amount needed to raise the target to one of its excited
states.

Below the ionization threshold the asymptotic wave function consists entirely of a
finite set of discrete channels, corresponding to elastic scattering and electron-impact
excitation, whose number is limited according to which target states are accessible
with the energy available from the incident electron. These are referred to as the
“open channels”.

Calculations on electron-hydrogen scattering for the case where only a few chan-
nels are energetically allowed were carried out by Burke et al. [13] using the “close-
coupling” method. This method uses a physically motivated expansion of the scat-
tered wave function in terms of products of bound states and free-particle functions.
If the expansion contains terms corresponding to every open channel then it can rep-
resent, exactly, the asymptotic wave function. By including additional short-range
terms (corresponding to the closed channels) to form a more complete basis in the
interaction region, accurate discrete channel cross sections could be calculated for
scattering below the ionization threshold [17].

The expansion functions in close-coupling methods are obtained by diagonalizing
the target Hamiltonian in some suitable numerical basis. As the numerical basis ap-
proaches completeness the negative eigenvalues converge to the physical bound state
energies of the target and the corresponding eigenstates converge to the bound state
wave functions. Diagonalization also produces eigenvalues not related to bound state
energies. The corresponding eigenstates, known as “pseudostates”, were thought to
have no physical meaning themselves, but were included in close-coupling expansions
to make the basis more complete. Pseudostates corresponding to positive eigenvalues
are a discretization of what would be the continuum of free-particle states. How-
ever, since they come from representing the Hamiltonian in a set of finite-range basis
functions they do not have infinite extent like true free-particle states.

In the early 1970’s Burke and Mitchell [15, 14] showed that cross sections for the
elastic and excitation channels could be calculated at energies above the ionization
threshold by including positive-energy pseudostates in the expansion. This work was
extended in the 1980’s by Oza and Callaway [23, 22]. However, these calculations were
marred by the presence of “pseudo-resonances” that prevented accurate calculations
at certain energies. It was still broadly assumed that the positive-energy pseudostates
did not give a meaningful representation of ionization. Therefore, they were used
solely for improving the convergence of discrete channel cross sections and not for
calculating information specific to electron-impact ionization.

In the early 1990’s Bray and Stelbovics [10,11] showed that by including increas-
ing numbers of positive-energy pseudostates a “convergent” close-coupling (CCC)
method, that eliminated the pseudo-resonances, could be developed for calculating
not only discrete channel cross sections but total ionization cross sections as well. This
method represented a significant step forward in treating electron scattering above
the ionization threshold and has been applied successfully to atoms with several elec-
trons. However, the CCC method has fallen short in its ability to provide details
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about ionization such as how energy is shared between the two scattered electrons.

1.3 An entirely new approach designed to
correctly treat ionization

In a sense, the ionization component of electron-hydrogen scattering contains
a continuously infinite number of “channels” because the total available energy is
shared continuously between the two free electrons. Consequently, ionization cannot
be satisfactorily represented by a discrete sum of products of one-electron functions.
In particular, two-body formalisms, such as CCC which attempts to attach physi-
cal meaning to positive-energy pseudostates, fail to accurately calculate information
about how energy is shared between the two electrons. The difficulty lies in the in-
tractable nature of the scattering boundary conditions for ionization. We will look
more closely at the difficulties of representing ionization boundary conditions with
the convergent close-coupling method in Chapter 2.

The failure of CCC, and other methods based on specifying the asymptotic form
of the wave function, to accurately calculate detailed information about ionization
points to the need for an entirely new formalism that does not require knowledge
of the wave function’s asymptotic form. The method of exterior complex scaling
completely avoids the difficulties associated with the asymptotic form for ionization
by using a mathematical transformation of the Schrédinger equation that simplifies
the scattering boundary conditions so that the wave function can be calculated using
standard numerical methods. Exterior complex scaling is introduced, in Chapter 3,
within the context of a two-dimensional model of electron-hydrogen scattering that
retains many of the numerical pathologies associated with ionization.

A method for calculating detailed ionization information for the model problem
by analyzing the wave functions from Chapter 3 is introduced in Chapter 4. It is
shown that wave functions calculated with exterior complex scaling produce energy-
sharing differential cross sections that do not have the unphysical characteristics of
the corresponding CCC results. Extension of the methods introduced in Chapter 3
to the full electron-hydrogen scattering problem is described in Chapter 5. By using
exterior complex scaling, six-dimensional wave functions that include an ionization
component are produced. Differential ionization cross sections, extracted from these
wave functions by a procedure similar to the one described in Chapter 4, are presented
in Chapter 6. These results are the first-ever differential cross sections for electron-
impact ionization that agree, on an absolute scale, with experimentally determined
values over a range of energies and directions.



Chapter 2

Barriers to Two-Body Reductions
of Three-Body Breakup

Components of the wave function corresponding to elastic and excitation chan-
nels for scattering of an electron from a hydrogen atom have the asymptotic form of
products of one-electron functions. This fact led to the development of several “two-
body” formalisms for treating electron scattering from atoms and molecules. These
methods have been able to calculate cross sections for discrete channels at collision en-
ergies both above and below the ionization threshold. The convergent close-coupling
method, which is limited to atoms, also has succeeded in calculating total, but not
differential cross sections for ionization. This inability to correctly describe the de-
tails of electron-impact ionization, such as the distribution of energy between the two
outgoing electrons, indicates a fundamental problem with using two-body formalisms
to describe a three-body final state.

2.1 Electronic collisions with hydrogen in a
time-independent formalism

Although scattering is an intrinsically time dependent process, the interactions,
themselves, depend only on distances and not explicitly on time. So, we can cal-
culate complete scattering information using time-independent methods. The wave
function ¥+ that describes the electron-hydrogen collision is the solution to the time-
independent Schrédinger equation with appropriate boundary conditions.

AU = EOt (2.1)

We will be considering an electron with momentum #k; colliding with a hydrogen
atom in its ground state so the total energy F is the sum of the incident energy and
the ground state energy &; of hydrogen.

EEh
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By approximating the nucleus as infinitely massive, the Hamiltonian H describes
the motion of only the two electrons. Their positions, relative to the nucleus, are
denoted by two three-dimensional vectors 7; and 7. The wave function ¥+ (7, 75) is
a six dimensional function and the Hamiltonian, defined below, is a six dimensional
differential operator.

o o R _, R_, e e e?

H(Tl,Tg)——%vl—%vz—;l'—g'}'m (23)
The symbols V2 and V3 are the three-dimensional Laplacians for the coordinates 7
and 7 and represent the kinetic energies of the two electrons. The three particles
interact via an attractive Coulomb potential between the nucleus and each electron
and a repulsive Coulomb potential between the two electrons.

Electrons are indistinguishable, spin—% particles so the overall wave function of
both space and spin coordinates must be anti-symmetric with respect to interchange
of the two electrons. Total spin S of the system can be either zero or one. The
“singlet” S = 0 spin eigenfunction is anti-symmetric while the three “triplet” S =1
spin eigenfunctions are symmetric. Thus, the proper symmetry for the spatial wave
function under interchange of electron coordinates is U+ (7, 71) = (-1)SU* (7, 7).
Since the Hamiltonian in Equation 2.3 does not depend on spin we can perform
independent calculations for the singlet and the triplet cases. The S index is usually
suppressed, so it is to be understood that separate calculations are always performed
for both spin symmetries. Ultimately, we will sum the results for the two values of S
with statistical weights of } for singlets and % for triplets.

Both the initial and final states are described in the asymptotic region of the wave
function. The first step in simplifying the asymptotic boundary conditions for ¥+
is to remove a term W), representing the initial state, from the total wave function
leaving a function UJ; that is identified, asymptotically, as the scattered wave.

(7, 7y) = UY, (7, 72) + UL (7, ) (2.4)

We specify the initial state to be one electron in the hydrogen ground state ®:5(7)
and the other to be a plane wave e**i* with momentum Ak; in the 2 direction.

1
75

To preserve the indistinguishability of the electrons, the initial state \Ilgi is anti-
symmetrized according to the total spin S.

We derive an inhomogeneous differential equation for W} (7}, 7) in terms of the
known function ¥} (7, 7%) by rearranging the Schrédinger equation (Equation 2.1).

T (71, 7) = = (@1a(F1)e™™ + (1)5 @14 (o)™ ) (2.5)

(B — H) i (7, 7) = (H - E) U, (7, 7) (2.6)

Since W] (7, 7) represents the scattered part of the wave function at large distances it
must be an outgoing wave in r; and ro. Thus, we define ¥} (71, 72) to be the outgoing
solution to Equation 2.6.



2.2 Analyzing the asymptotic form of the
scattered wave

We can separate the scattered wave into individual “channel” components that
are identified according to the final state of the hydrogen atom. Hydrogen states can
be written as @, () = “¢nz (r)Yym(7) where the Yy, is a spherical harmonic and [
and m are the usual angular momentum quantum numbers. The functions ¢, satisfy
the radial Schrodinger equation for hydrogen with Hamiltonian H; and energy &j.

B & I+ 1)R° g)

Hyr)= ( ImdrE | 2mr? T @.7)

Bound states of hydrogen are those ®,, that are finite-range and have an energy
that is one of the discrete values &, = —; 6eV The ground state, previously denoted
by ®1s; is P190 in this notation.

In the elastic scattering channel one electron is left bound in the hydrogen ground
state while the other scatters away. Since no energy was exchanged in the collision
the scattered electron will have the same energy as the incident electron. In the
excitation channels one electron is left bound to the proton in some excited hydrogen
state. The momentum Fk, of the outgoing electron is reduced according to the
amount of energy required to raise the atom to its excited state. Since the bound
state energies are quantized, the scattered momenta ik, in the elastic and excitation
channels are limited to a discrete set of values.

B, R,
%k ka + &1 —Enp (2.8)
For scattering below the ionization threshold i.e., ——k2 < |e1], the number of

discrete channels that are “open” are limited to those for which the quantity —k2

defined in Equation 2.8, is positive. In this case, the asymptotic form of the scattered
wave is completely described by an expansion in terms of two-body functions, each
corresponding to an energetically open channel.

UE(F, ™) —s Z \/—( nlmm (T 1)fnlm2( 2) etkim2 4 (- )anlm( 1) eghing, (7‘2))

ri,ro—00 Ml,m

(2.9)

In every term the scattered electron is represented by a radially outgoing wave with
angular dependence determined by the channel scattering amplitude fum (7).

Equation 2.9 does not completely describe the asymptotic form of ¥ for scatter-

ing above the ionization threshold. In this case, all excitation channels are open so

the asymptotic form is an infinite sum over all n. More importantly, ionization is now

possible so an additional term, U (71, 72), must be included to describe ionization.
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The ionization “channel” is really a continuum of final states that cannot be satisfac-
torily represented by a discrete sum of products of one-electron functions.

Many efforts have been made to derive the asymptotic form of Uit  with the
work of Alt et al. [1] being the most complete to date. We will, instead, look at the
relatively simple form derived by Rudge [34] that is valid when all three particles are

widely separated. This form is expressed in terms of hyperspherical coordinates where
the two radial coordinates r; and 7, are replaced by a hyperradius p = 1/r} + 73 and
a corresponding hyperangle & = tan™! (ry/r;).

UL (71, 72) . — fulfy, 7, ) [ I oo+ (17200 /0 In(2np) (2.11)

p~+oo

In Equation 2.11, the angular function multiplying the logarithmic phase is de-
fined as ((f1,7,a) = (sine)™ + (cosa) ™' — (1 — 7, - Fosin 2a) /2. The scattering
amplitude for ionization f;(7y, 72, o) contains all of the angular distribution (the 7y, 7,
dependence) and energy sharing (related to the o dependence) information about the
lonization final state. Equation 2.11 describes the asymptotic form of ¥ as an out-
going wave in the hyperradius p rather than in the two radial coordinates. This very
fact indicates that i}, cannot be adequately represented by a finite sum of two-body

terms i.e., products of a function of 7; and a function of 7.

2.3 Two-body approach to calculating integral
cross sections for ionization

The convergent close-coupling (CCC) method is a particular implementation of
close-coupling that has been successfully applied to calculating discrete channel cross
sections for electron-atom scattering over a wide range of energies. CCC does not cor-
rectly treat the details of ionization [30] but still has remarkable success at calculating
total ionization cross sections, as well as cross sections for discrete channels, in atoms
of several electrons [2]. In order to understand the shortcomings of CCC at calculat-
ing detailed ionization information we will look briefly at a simplified application of
CCC specific to hydrogen [9].

Like all close-coupling formalisms, the CCC method is based upon a physically
motivated expansion of the wave function. This expansion is in terms of products
of one-electron functions similar to Equation 2.9, but the actual hydrogen states are
replaced by functions Yy, (7), called pseudostates. The Y, are generated by diago-
nalizing the hydrogen Hamiltonian represented in a set of square-integrable numerical

basis functions.
2

2 e
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As the size of the numerical basis is increased the negative eigenvalues and corre-
sponding pseudostates in Equation 2.12 converge to the bound state energies and
eigenfunctions of hydrogen i.e., Ay & €, and Ty (7F) = Ppipn (7).




Within the CCC formalism, the wave function ¥ is expanded, analogously
to Equation 2.9, in terms of the Y, rather than exact hydrogenic functions. The
number of terms that are included in the expansion is increased until convergence of
the cross-sections is observed.

Voo ) = Y (Yaim(F2) f5m(F) + 05 Foim(70) Trim (7)) (2.13)

nlm

The CCC expansion coefficients f3,,(7) for all energetically open (A, < E) pseu-
dostate channels have the asymptotic form of an outgoing wave similar to the indi-
vidual terms in Equation 2.9. In the actual implementation, Ut approximates the
total wave function ¥ rather than the scattered wave ¥Z. This has little conse-
quence on the discussion here since both the total and scattered wave functions can
be expanded similarly with only the elastic channel terms being different.

Pseudostates with positive eigenvalues are a sort of discretization of the continuum
of Coulomb waves representing the ionized hydrogen states. These positive-energy
pseudostates, unlike true continuum functions, are finite-range because the underlying
numerical basis is square-integrable. Although they do not, themselves, have physical
meaning, the positive-energy pseudostates do “overlap” with true Coulomb waves.
From a numerical point of view, all pseudostates, including those corresponding to
closed channels and those with positive eigenvalues, must be included in the CCC
expansion to form a complete set of basis functions.

Like other close-coupling formalisms, CCC is essentially exact below the ionization
threshold. It can also produce accurate discrete channel cross sections for scatter-
ing at higher energies. The advantage of CCC over earlier close-coupling methods is
that it has been shown to also produce convergent total ionization cross sections [10].
Convergence of the total ionization cross sections was considered by some to be a sur-
prising result since ionization must be represented by the positive-energy terms in the
pseudostate expansion and those were believed to have no physical meaning. How-
ever, success at calculating total ionization cross sections does not necessarily require
that the the CCC basis accurately describe the details of the ionization component
of the scattered wave.

The success of CCC in calculating total ionization cross sections is a consequence
of the ability of the expansion to both represent, exactly, each of the discrete channel
components of the wave function in the asymptotic region and to accurately describe
the entire wave function within a finite interaction region. With an expansion basis
that is effectively complete over the interaction region, we can assume that the CCC
formalism is properly representing all of the collision dynamics. Since each energet-
ically open term in the expansion is constructed to be an outgoing wave we know
that any outgoing flux generated in the interaction region will successfully escape to
infinity. Therefore, it is not as surprising as originally believed that the CCC method
can calculate accurate total cross sections. Since we already know that the CCC
method can accurately calculate discrete channel cross sections it is clear that by
simply subtracting all discrete channel cross sections from the total cross section we
can obtain a reasonably accurate estimate of the total ionization cross section.




10

1.6 1.6 y
—~14 14t d
> > A o
Dy, — total raw data i CETI Y ’ N
o - = singlet raw data [V ' ’ ~
= « = _triplet raw data £ A
o 1 o 1 7
~ i ~ A S
- ) - ] .
IC) 0.8 “ IO 0.8 N
Zos}, Zos} AN
9} N N
8 0.41 8 0.4 = = symmetrized total S ]
D ool D ool L— integral-preserving guess
0 - e 0 . . -
0 1 2 3 4 5 6 0 05 1 1.5 2 25 3
energy of one electron (eV) energy of one electron (eV)

Figure 2.1: SDCS for e-H calculated by CCC at 20eV incident energy, so that the
total energy is E=6.4eV. The actual calculated cross sections, which are not symmetric
about E/2, are shown on the left. The total “raw” cross section is the sum of the
singlet and triplet “raw” cross sections. A symmetrized SDCS is formed by adding the
raw total to its mirror image. The CCC method removes the unphysical oscillations
in the calculated cross sections by replacing the symmetrized SDCS with a smooth,
integral-preserving guess.

2.4 Two-body approaches fail to provide detailed
ionization information

Shortcomings of the CCC method in treating ionization are most evident in the
energy-sharing or single differential cross section (SDCS) for ionization. The SDCS
is a differential cross section with respect to the energy of one of the electrons ; and
describes how energy is shared between the two outgoing electrons. The energy €; can
range from zero to the total energy E. Because the two electrons are indistinguishable
the SDCS should have the same value at E — £, as at ;. It is, therefore, symmetric
about €; = E/2. By convention, the SDCS is normalized so that it gives the total
ionization cross section when integrated from zero to £/2. An example SDCS calcu-
lated by Igor Bray with the CCC method [12] is plotted in Figure 2.1. The actual
calculated cross sections are shown in the left panel. Two striking features of these
curves are (1) they are definitely not symmetric about /2 and (2) they contain large
amplitude oscillations.

The asymmetry of the calculated SDCS is a consequence of the way the wave
function is analyzed [30]. In the CCC method physical meaning is attached to the
terms in the expansion with pseudostates Y ,;, for which 0 < A,; < E. Each of these
terms is said to correspond to one electron being ejected from the target with energy
An and the other scattering away from the target with energy E — A,;. The SDCS
is constructed over the continuous range of £; by applying appropriate quadrature
weights to the discrete set of positive pseudostate energies [8]. Since the scattered
electron is actually represented in these terms by a plane wave, this assertion is based
on the rather gross assumption that the slower, ejected electron completely shields the



nucleus from the faster, scattered electron. There is some controversy in the literature
over whether the asymmetric method of extracting the SDCS in the CCC method
imposes distinguishability of the two electrons [5], but it is claimed by Bray [7] that
this issue is addressed by post-symmetrizing the result.

The more troubling aspect of the SDCS calculated by CCC is the oscillations.
Since the true SDCS is known to be a very smooth function, Bray constructs a
smooth curve, shown in the right panel of Figure 2.1, that is an integral-preserving
average of the symmetrized oscillatory curve. It is claimed that this curve approxi-
mates what the CCC calculated SDCS would converge to in the limit of an infinite
CCC basis [6]. Convergence of the calculated SDCS to a smooth function has never
been demonstrated and there is much uncertainty about whether the smooth curve
generated in this ad hoc fashion is correct. It is widely believed that the oscillations
in the SDCS calculated by CCC indicate a fundamental problem with the formalism.

Looking for the source of the unphysical oscillations requires scrutinizing the abil-
ity of the CCC basis to adequately describe the ionization component of the scattered
wave. The set of negative-energy pseudostates in the CCC expansion (Equation 2.13)
generate the discrete channel terms in the expansion of the asymptotic form (Equa-
tion 2.10). It is then up to the positive-energy pseudostate terms to construct the
ionization component in Equation 2.10. This is potentially a source of trouble in two
ways. First, and most obvious, is the possibility that the CCC basis cannot ade-
quately represent the ionization component of the scattered wave at large distances.
Second, and probably most significant, is the way that the CCC wave function is
analyzed by attaching physical meaning to the positive-energy pseudostates.

From the Rudge asymptotic form (Equation 2.11) it is clear that the ionization
component is an outgoing wave in the hyperradius p. The positive-energy terms in
Equation 2.13, on the other hand, are an outgoing wave for one electron (the required
asymptotic form of f5, ) and a positive-energy pseudostate for the other. It is claimed
that in the limit of an infinite set of numerical basis functions we can think of the
positive-energy pseudostates as true Coulomb waves. Even in this idealized case we
have a task similar to trying to represent a spherical wave with a sum of products
of plane waves. As the number of plane wave products increases the spherical wave
will be represented fairly well over an increasingly large region of space. However,
forming a spherical wave, in this manner, that is accurate over all space is a hopeless
task. Knowing the asymptotic form of the wave function is effectively the ultimate
goal of scattering calculations, so there is legitimate concern about the ability of the
CCC basis to adequately represent the ionization component of the scattered wave.

The CCC method certainly has trouble correctly representing the ionization com-
ponent of the scattered wave. It is conceivable, although by no means certain, that
with a sufficiently large CCC basis the wave function may be adequately constructed
over a large enough region of space to produce meaningful ionization information.
However, there is still a problem with the analysis because the product of a plane
wave and a Coulomb wave is not a very good representation of a state with two elec-
trons in the continuum. Although the CCC basis could conceivably be used as an
adequate numerical basis it is incorrect to attach physical meaning to the individual
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positive-energy pseudostate terms. Another problem is that this analysis implicitly
treats the electrons as distinguishable.

In a recent study [30] the effects of the CCC energy analysis for ionization were
examined in isolation from other potential sources of error. Accurate scattering wave
functions that contain an ionization component were constructed using the method
presented in Chapter 3, thus removing the uncertainties associated with construct-
ing a CCC wave function. These wave functions were constructed for several two-
dimensional model problems and smooth, accurate single differential cross sections
were extracted from them by using the method described in Chapter 4. However,
a CCC style analysis produced oscillatory cross sections similar to those in the left
panel of Figure 2.1. It was shown that, at least for examples with short range po-
tentials, the CCC calculated SDCS at ¢; = E/2 converges to exactly one fourth of
the correct value. Although no formal proof has been given, it appears that this is at
least approximately the case for electron-hydrogen scattering. However, the relation-
ship between the CCC calculated SDCS and the correct SDCS for all other energy
distributions is completely unpredictable.

The two-body formalism of CCC is very well suited for discrete channels, but not
for ionization. Its shortcomings point to the need for an entirely new formalism to
calculate differential cross sections for ionization that is not tied to any particular
asymptotic form. The method of exterior complex scaling, introduced in the next
chapter, can produce scattering wave functions that are accurate over a finite region
of space and correctly describe the details of ionization without appeal to any asymp-
totic form. In Chapter 4, a procedure is introduced that extracts differential cross
sections for ionization from these wave functions, again, without explicitly invoking
any particular asymptotic form.



Chapter 3

Exterior Complex Scaling Avoids
the Three-Body Asymptotic Form

The fundamental difficulty that traditional, “two-body” methods have with electron-

impact ionization is in representing a wave function with two outgoing electrons.
These methods have the same difficulty even when applied to the two-dimensional
Temkin-Poet model of electron-hydrogen scattering that also supports an “ioniza-
tion” final state with two electrons in the continuum. This model presents difficulties
similar to those of the full problem of electron-hydrogen scattering. It is, therefore,
a useful test-bed for any method intended to be applied to a true electron-impact
ionization problem. Thus, the Temkin-Poet model is an ideal context for presenting
the method of exterior complex scaling as a means of generating wave functions for
electron-hydrogen scattering while avoiding, entirely, the difficulty in specifying the
Coulomb three-body asymptotic form.

3.1 Temkin-Poet Model Problem

The S-wave, or Temkin-Poet, model of electron-hydrogen scattering has been
used for many years to develop and test calculational methods intended for more
realistic electron-scattering problems. This two-dimensional problem, that supports
ionization, was first presented in 1962 by Aaron Temkin [38] in a variational study
of the S-wave component of electron-hydrogen scattering. In 1978, R. Poet [26]
produced the first accurate cross-sections for inelastic processes in the model. Just
like the complete electron-hydrogen system, this model contains an infinite number
of bound states as well as an ionization continuum, but without the complexities
of angular dependence. Therefore, it allows one to isolate and study the difficulties
arising from the radial dependence of three-body breakup.

The Temkin-Poet model can be thought of as a spherical average of the full
electron-hydrogen problem. It is defined by a two-dimensional, radial Schrédinger
equation. A

H{(ry, o)y (r1,72) = By (r1,m2) (3.1)

The total energy FE is the sum of the kinetic energy of the incident electron and the
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ground state energy of hydrogen i.e., E = %kf + €1 With no angular dependence,
the Laplacians from the Hamiltonian in Equation 2.3 reduce to second derivatives
with respect to the two radial coordinates.

N B2 d2  RE 42 €2 2  g?
b2 =_ e ve € €.« 3.2
(r1,72) 2mdr? 2mdr: ry 7o + T (3.2)
The quantity 75 is defined below.

T rT>T
Ty = { L 172 (3.3)
Ta, 1 < To

The attractive potentials between the nucleus and each electron are the same in
the model Hamiltonian as they are in Equation 2.3. The repulsive potential between
. . . 2 . .
the two electrons is replaced by a non-analytic potentlal -e~ which is the zero angular

momentum term in the multipole expansion of Tl (see Equatlon F.13). Just as in

Equation 2.4 we separate the wave function 1/)+ m to two terms: zpki representing the
initial state and ¥fp having outgoing wave boundary conditions.

Pt (r1,72) = PR, (r1,72) + Yp (71, 72) (3.4)

The Temkin-Poet scattered wave, ¥, is the outgoing wave solution to a scattered
wave equation similar to Equation 2.6.

(E = H(ry,m2)) ¥Fp(r1,m2) = (H(ry,2) — E) ¥, (r1,72) (3.5)

We want 9 to represent an electron scattering from a hydrogen atom in the ground
(1s) state. The bound electron is represented by the ground state radial function ¢;.

¢1 (T) 3/2 —r/ao (3'6)

An incident electron with momentum #k; is represented by sin(k;r) which comes from
the zero angular momentum term of the multipole expansion of e*** (see Equation
F.17). The initial state wg_ is an anti-symmetrized product of these two functions.

d)k (r1,72) = \/- (sin(k;r1) s (r2) + (-1)5¢1 (r1) sin(k;72)) (3.7)

Singlet (S = 0) wave functions are symmetric with respect to interchange of the
coordinates 71 and 7o while triplet (S = 1) wave functions are anti-symmetric. As
mentioned in Chapter 2, we perform separate calculations for the two spin symmetries.

3.2 Asymptotic Form

We can write the asymptotic form of the Temkin-Poet scattered wave by direct
analogy with Equation 2.10. It contains a sum of “two-body” terms corresponding
to the discrete channels as well as an additional term for ionization.

Yip(r,me) — 2 ( Jeknm2 4 (st ¢n(7“2)) + Yion(T1,72) (3.8)

T, 700 n=1



Since the Temkin-Poet model supports only the zero angular momentum states of
hydrogen the discrete channels are restricted to elastic scattering and excitations into
other s-states of hydrogen. The s-state radial functions ¢, satisfy the { = 0 radial
equation for hydrogen bound states.

a2 e?
(g = =) $a0) = el (59)
The energies £, are the bound state energies of hydrogen, &, = —%—GeV. Energy

conservation determines the momentum %k, of the scattered electron.
1 1
§h2k,2, +e, = §h2k§ +e=E (3.10)

The ionization term ;o accounts for all of the “three-body” nature of the scat-
tered wave. By analogy with the Rudge asymptotic form of the ionization wave
function in Equation 2.11 we can write an asymptotic form in hyperspherical coordi-
nates pand & (r; = psina, 72 = pcosa) for iy, keeping in mind that the scattered
wave radial function used here includes a factor of ri7s.

Yion(r1,72) —s — fi(0)(/EEEMKPHE/FIIMCK ) (3.11)
p—rco
The ionization scattering amplitude f; and the phase factor ¢ are both functions of
only the hyperangle a.

While the discrete channel components are outgoing waves in one of the radial
coordinates, the ionization component is an outgoing wave in the hyperradius p that
cannot be written as a sum of products of one-dimensional functions of r; and 7. The
presence of both of these two very different types of outgoing waves in v;,, provides
the motivation for a calculational method that is applicable to any outgoing wave
without regard to any specific asymptotic form.

3.3 Exterior Complex Scaling

The method of exterior complex scaling (ECS) uses a mathematical transformation
of the scattered wave equation to simplify the outgoing wave boundary conditions.
Here we will introduce ECS in the context of the Temkin-Poet model. In Appendix
A, it is applied to the simpler problem of one-dimensional potential scattering. Under
ECS, the scattered wave equation (Equation 3.5) is solved with the radial coordinates
mapped on to a complex contour that is real for small values but, beyond a certain
distance, is bent into the upper-half of the complex plane.

The simplest such contour is one where the coordinates are defined to be real
out to some finite radius Ry and beyond that are rotated into the upper-half of the
complex plane at a scaling angle 7 from the real axis. Let By > 0 and 0 < 7 < 90°
define a complex contour z(r) parametrized by the real coordinate 7.

T < Ry

z(r) = { Ro+ (r — Ro)ei” r> Ry (3.12)
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Figure 3.1: On the left is an illustration of the contour z(r) rotated into the upper-
half of the complex plane beyond Ry. On the right is a depiction of exterior complex
scaling for two radial coordinates.

In the Temkin-Poet model this transformation is applied to both 7, and 7y as il-
lustrated in Figure 3.1. Both coordinates are real on an interior box of length R,.
Outside that box there are three distinct regions where one or both of the coordinates
is complex.

3.3.1 Outgoing waves become finite-range functions

We can most easily see the effect of ECS on an outgoing wave by considering an
outgoing spherical wave e*” evaluated on the contour z(r) defined in Equation 3.12.

6ikr - e1:Icz(7-) — ekRo sinneikRo(l—cos 7) eikr cos ne—kr sing (fOI‘ r> RO) (3.13)

The infinite-range outgoing wave is transformed into a function that decays exponen-
tially beyond Ry, provided that n > 0. Exterior complex scaling has the same effect
on any outgoing wave (other one-dimensional examples are shown in Appendices A
and C), including those with logarithmic phase terms, although the exact analytic
expression is more complicated. As a result, every outgoing wave (including the two-
dimensional scattered wave 17p) is transformed into a function that goes to zero at
large distances.

In Figure 3.2 we see the effect of ECS on the eigenvalue spectrum of the Hamil-
tonian for a hydrogen atom. The characteristics of eigenvalue spectra under ECS
were originally described by Barry Simon [36]. Bound state energies of hydrogen are
unaffected by ECS because the bound state eigenfunctions remain bound under ECS.
The positive eigenvalues, which correspond to the continuum of ionized states of hy-
drogen, have been rotated into the lower-half of the complex plane. This is directly
linked to the transformation of the infinite-range continuum states to finite-range
functions under ECS. The eigenvalue spectrum for the two-electron Hamiltonian is
more complicated but, has these same general features.
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Figure 3.2: The eigenvalue spectrum of an exterior complex scaled radial Hamiltonian
for hydrogen. All of the eigenvalues with positive real parts lie below the real axis.
Numerical values for the bound state eigenvalues are compared with the exact hydro-
gen bound state energies. The grid spacings used in this example are also given. The
Coulomb potential was truncated at 50ay. Beyond 50aq the coordinates are complex
with a scaling angle of 30° and extend another 30qs.

3.3.2 Application to long-range potentials

The presence of Coulomb, or any other long-range potentials, in the Hamiltonian
precludes straight-forward application of ECS to the scattered wave equation. Under
ECS, outgoing waves become finite-range functions and bound states remain bound.
However, incoming waves become exponentially increasing functions as can be easily
seen by changing the sign of k£ in Equation 3.13. This is a problem because the
definition of the initial state 1}, contains sin(k;r) which can be written as the sum of
an incoming and an outgoing wave. Thus, 1/),%, which appears in the driving term of
the scattered wave equation, is an exponentially increasing function under ECS.

Since vp. is acted on by the operator (H — E) in the scattered wave equation we
need to consider the entire right-hand side of Equation 3.5.

2 2 s [ o2 2
(B-E) ¢ = % (:—> _ ‘;—1) sin(kir1) s (ra) + % (:—> . j—2) 1 (r1) sin(kirs)
(3.14)

The unscaled right-hand side decays like % due to the Coulomb potentials left over

after (H — E) acts on ¥p.. The damping from the Coulomb potentials is not enough
to counteract the exponential increase in ¢gi after the ECS transformation. Thus,
under ECS the driving term in Equation 3.5 diverges for large r; or rs.

The prescription for getting around this limitation is demonstrated in Appendices
A and B. Long-range potentials are truncated at Ry, effectively replacing them by
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artificially short-range potentials and making the driving term in Equation 3.5 vanish
where the coordinates are complex. Obviously, in order for the calculated results to
be meaningful Ry, must be large enough that truncating the potentials has little effect
on the collision dynamics. The purely outgoing nature of ¥Fp minimizes the error in
the calculated wave function due to truncating the potentials.

3.3.3 Wave function unaffected where coordinates are real

In the region where the coordinates are real the scattered wave equation is unaf-
fected by the ECS transformation. Assuming the numerical methods used are accu-
rate, we expect the scaled wave function to be the same as the unscaled (physical)
wave function in the region where both coordinates are real.

¥ip(2(r1), 2(12)) = Yip(ry, m2) (for 71,79 < Rp) (3.15)

However, we cannot claim true equality in Equation 3.15 because the Coulomb
potentials are truncated at r = Ry. Since 1¥p is an outgoing wave, we can expect
that truncating the potentials at Ry has little effect on ¢, for r < Rp. Truncating
the potential does affect the higher-energy hydrogen bound states so Ry needs to be
large enough that all bound states that contribute significantly to 7, are essentially
confined to the region where the coordinates are real. For now, we will assume that
the scaled wave function is physically meaningful on the real coordinates, provided
that Ry is sufficiently large, and that we may extract various physical quantities by
analyzing the numerically generated wave function on the region inside Ry.

3.4 Finite Difference Implementation

Exterior complex scaling makes the scattered wave equation solvable. We now
need a numerical implementation for accurately calculating the scaled wave function.
The simple ECS contour described in Equation 3.12 has a discontinuous derivative
at Ry. Consider what this means for an outgoing spherical wave. For r < Ry the
outgoing wave is e?*" and the second derivative as r — Ry from smaller 7 is —k2e™Ro,
However, for 7 > Ry we must use the functional form given in Equation 3.13. The
second derivative as r — Ry from larger r is —k2e*7e?*Ro_ Thus, the second derivative
is discontinuous at 7 = Ry by a factor of e?. Consequently, standard basis set
methods that expand the wave function in some set of analytic functions cannot be
used with this contour. As described in Appendix B, analytic basis set methods can
be made to work if a “smooth” contour is used instead. However, using a smooth
contour rather than the “sharp” contour from Equation 3.12 adds significantly to the
cost of solving the scattered wave equation.

Two types of methods that can correctly represent a function under ECS with
the sharp contour are finite difference and finite elements. Finite element methods
divide space into finite regions and expand the wave function in each region with
a set of basis functions that are defined to be zero outside their particular region.
If Ry lies on the boundary between two regions then finite element methods can




be designed to produce wave functions with exactly the right discontinuity in their
first derivatives. Finite elements have been successfully applied to the Temkin-Poet
model [20]. However, producing the matrices for this method is expensive, making it
less suitable for the full electron-hydrogen problem.

Finite difference methods map the wave functions directly on to a numerical grid
and can produce wave functions with the correctly discontinuous first derivatives. The
matrices involved are much simpler to construct than those for finite elements. For
this and other reasons, finite difference is more easily extended to the full electron-
hydrogen problem and will be the method of choice throughout this dissertation.

3.4.1 ECS on a grid

Under ECS, the scattered wave ¥dp (2(r1), 2(r2)) is a continuous function but has
discontinuous first derivatives along the lines 7, or 73 equal to Ry. There is no problem
representing the wave function on a two-dimensional grid in r; and 79, but in order
to correctly approximate its derivatives on each grid point we will require that Ry be
one of the grid points. The scattered wave will be calculated directly on to the ECS
contour by solving Equation 3.5 on the two-dimensional, complex-scaled grid.

Functions whose analytic forms are known, such as the right-hand side of Equation
3.5 and the potentials in the Hamiltonian, are mapped on to the ECS contour by
simply evaluating them on the contour z(r) for both 7, and r,. The non-analytic
two-electron potential f; is scaled in this way by noting that it is piece-wise analytic
and scaling the 7 < 75 and r; > 7o regions separately. The potential is unchanged
on the real part of the grid and, as will be demonstrated later in this chapter, the
potentials beyond Ry have very little effect on the wave function in the interior region.

3.4.2 Finite difference approximations to derivatives

We replace the kinetic energy term in Equation 3.2 by finite difference formulas
given in Appendix C. The second derivative with respect to 7, or ro at some grid
point is represented by a formula involving the value of the wave function at that
point and at three points on either side. For a uniform grid, the seven-point finite
difference formula is accurate to sixth order in the grid spacing. The sum of the two
second derivatives forms the cross-shaped, 13-point “stencil” shown in Figure 3.3.

At one or two grid points away from r; = 0 or o = 0 the seven-point formulas
cannot be used because they would require terms for grid points at negative r. Less
accurate five-point formulas are used at these points instead. A very small grid
spacing near r = 0 is required because the Coulomb potentials are singular at zero, so
five-point finite difference near r = 0 still provides good accuracy. There is no such
issue at the large 7 boundary, 7 = Ryax- If (Bmax — Ro) is large enough that ¢
is effectively zero at R, then we can define the wave function to be zero at Rpax
and beyond and thus implicitly include the value of the wave function at any point
beyond the extent of the grid.

Application of exterior complex scaling to finite difference is very straight forward.
To understand how ECS is applied to the kinetic energy term, let us consider what
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Figure 3.3: The sixth order finite difference representation of the two-dimensional
Laplacian uses a 13-point stencil based on the 7-point formulas for the second deriva-
tive in one dimension as illustrated on the left. Along the grid boundaries the func-
tion’s value is fixed to be zero and the edge points are included in the finite difference
formulas implicitly. If the center of the stencil is two grid points from an edge then
the 5-point formula replaces the 7-point formula in one dimension. If the center is
one grid point from an edge then a special, asymmetric 5-point formula is used.

scaling the derivatives means.

e 2 (dz('r))_2 &
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If all points included in the finite difference formula lie on the complex part of the grid
then we simply multiply the formula by e~*?7. By examining the formulas in Appendix
C we see that this is equivalent to multiplying the grid spacings by e¢®. This view
is consistent with the fundamental concept expressed in Equation 3.16 that after the
ECS transformation the derivatives with respect to r become derivatives with respect
to the complex contour z(r).

In general, we apply ECS to finite difference by multiplying all grid spacings for
T > Ry by €. The finite difference formulas for r < Ry and r > Ry differ by a factor
of €7, exactly the discontinuity factor that we found when considering the outgoing
spherical wave. This is why finite difference is well-suited for a sharp ECS contour
provided that Ry is one of the grid points. Finite difference formulas for grid points
at or near Ry will straddle Ry so that some of the grid “spacings” in these formulas
are real and some are complex. Therefore, we cannot assume a uniformly spaced
grid when using ECS. Specialized finite difference formulas designed for the interface
between two regions of different grid spacings are given in Appendix C.

3.4.3 System of linear equations

We will solve for ¢ip(r1,72) directly on to a two-dimensional Cartesian grid of
discretized radial coordinates that is defined in terms of a one-dimensional grid of n,
grid points spanning the space between zero and some radius Ry > Rg. Rmax Must
be large enough that the exterior complex scaled scattered wave can be assumed to be
zero for 1,79 > Rmax. Referring to Equation 3.13, we see that an outgoing wave with




momentum fik decays like e~*57(r—Fo) for > R;. That means we should choose 7
and Ry 50 that e~#sinn(fmax—Ro) ig effectively zero.

The total number of grid points, and thus the number of values calculated for
Php, is N = n_f]. We calculate the scattered wave by casting Equation 3.5 as a matrix
equation of the form Ax = b where x is a vector of the NV unknown values of ¥ on
the grid, b is a vector of IV values obtained by evaluating Equation 3.14 on the grid,
and A is the N x N matrix representation of the operator (E — H). The vectors x and
b are ordered so that the values of 95 (r1, 72) for the same r, are stored contiguously.
To form the matrix we add together the matrix representations of each individual
term from the Hamiltonian definition in Equation 3.2. One consequence of using
exterior complex scaling, or using any grid with multiple grid spacings, is that the
Hamiltonian matrix will not be Hermitian or even complex-symmetric.

Potentials are simply evaluated on the grid and those N values, along with the
constant term F, are added to the diagonal. The finite difference formulas provide all
of the non-zero off-diagonal matrix elements. As shown in Figure 3.3, the Laplacian
at each grid point is determined by function values from no more than 13 grid points.
This means that each row of the matrix will have at most 13 nonzero matrix elements,
so the matrix is very sparse. The sparsity structure of the finite difference matrix
representation of (E — H) is shown in Figure D.1.

3.4.4 Dimension of the problem

The size of the calculation needed to obtain 13, is governed by the total number
of grid points. Deciding how to distribute a fixed number of grid points requires
striking a balance between the higher accuracy of closely spaced grid points and the
greater information content of a grid covering a larger region. An advantage of using
the sixth order finite difference formulas is that we get a large payoff in accuracy from
small increases in grid density. In general, we can represent ¥, accurately if there
are several grid points per oscillation. Most of the calculations presented here used
five grid points per atomic unit, sufficient for incident energies less than 50 eV.

However, the Coulomb potentials are singular at 7 = 0 so a spacing of 0.2ay is
inadequate for representing the potentials at small . We can evaluate how well a
particular grid represents the Coulomb potential by diagonalizing the finite difference
approximation to the one-dimensional radial hydrogenic Hamiltonian of Equation 3.9
and comparing the negative real eigenvalues with the known bound state energies of
hydrogen. A spectrum from a complex scaled Hamiltonian is shown in Figure 3.2.
In this example a spacing of 0.01ag near 7 = 0 and 0.05a¢ out to r = 2a, gives the
ground state energy and excited state energies up to n = 4 correct to better than
0.05% and we can assume that the corresponding eigenstates are good approximations
to the true hydrogen states. Note that the calculated ground state energy is below
the exact value. With finite difference there is no variational principle that forces the
calculated ground state energy to be larger than the exact value.

Beyond r = R, the wave function is particularly insensitive to grid spacing and we
can use very large (but still less than lap) grid spacings near r = Ry.c. Specialized
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finite difference formulas valid for “stencils” that span regions of two different grid
spacings are listed in Appendix C. These formulas allow us to use grid spacings of
0.2a¢ over most of the grid, a tight grid spacing for small r, and a very large grid
spacing for large 7 with only a moderate cost in accuracy. These specialized formulas
also make application of ECS possible.

A typical grid that spans 100ag in real coordinates and an additional 25a, in
complex coordinates requires 458 grid points in one dimension. The total number
of grid points in two dimensions, and the dimension of the matrix equation, is then
209,764. The largest calculation presented here was for a grid that is real out to 450aq
with 1,339 grid points giving a system of 1,792,921 equations.

3.4.5 Solving linear equations

We have cast Equation 3.5 into a linear matrix equation that must be solved in
order to generate the scattered wave. The size of the matrix for the Temkin-Poet
model is large enough to warrant developing an efficient algorithm for solving the
system of linear equations, especially since we ultimately want to solve the much
larger six-dimensional problem of electron-hydrogen scattering.

Most of the matrix elements are zero and there is a huge savings in computer
memory if the matrix representation of (F —H ) is stored in the sparse format described
in Appendix D. In a sparse matrix storage scheme only the nonzero matrix elements
are stored. Sparse matrix algorithms are more difficult to write and almost never
generate impressive MFLOPS ratings. However, if the matrix is truly sparse then the
reduction in the number of required arithmetical operations more than makes up for
this and the sparse matrix algorithms typically take significantly less time than their
dense matrix counterparts. Setting up the finite difference matrix equations is trivial
so most of the computational time is used for solving the large matrix equations.

The canonical “direct method” for solving a system of linear equations is Gaussian
elimination. Solving systems of equations of the size needed here requires highly
optimized software running on modern, high-performance computers. At present, the
only numerical software capable of directly solving matrix equations this large is a
package of LU-factorization routines, called SuperLU [19], that is designed for sparse
matrices. Time and memory costs of using SuperLU to solve linear equations with
two-dimensional finite difference matrices are discussed in Appendix D.

The time and memory requirements for LU-factorization of the low-order finite
difference matrix are much less than those for the high-order matrix. An iterative
algorithm which arrives at the solution to the high-order equations by repeatedly
using SuperLU to directly solve the low-order equations is described in Appendix E.
This iterative algorithm gives substantial savings in memory and time compared with
directly solving the high-order finite difference matrix equations.
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Figure 3.4: Sample scattered waves for the Temkin-Poet model with singlet spin
symmetry at an incident energy of 20.4 eV. Real parts of the wave functions are
shown. Upper picture shows a wave function calculated on a grid that was real to
40ay. Lower picture shows a wave function calculated on a grid that was real to 100ag.
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Figure 3.5: Sample scattered wave for the Temkin-Poet model with triplet spin sym-
metry at an incident energy of 20.4 eV. Real parts of the wave functions are shown.
Upper picture shows wave function calculated on a grid that was real to 60a,. Lower
picture shows the same wave function after projecting out the elastic channel.



3.5 Properties of the Calculated Wave Functions

Figures 3.4 on page 23 and 3.5 on page 24 show examples of the real part of
the Temkin-Poet scattered wave for an incident energy 6.8 eV above the ionization
threshold. The singlet wave function is symmetric while the triplet wave function
is anti-symmetric with a characteristic “trough” down the ray r; = r,. Different
asymptotic components of the scattered wave, as identified in Equation 3.8, are visible.
Discrete channel components are products of outgoing waves, which span the length
of the grid, and bound states, which extend over small distances. These components
appear as oscillations localized along the r; and 75 axes. The ionization component has
both electrons in the continuum and appears as circularly outgoing waves spanning
the space between the two axes. It is this part of the wave function that is difficult to
represent in traditional, “two-body” formalisms. The exponentially- damped “fringe”
where the coordinates are complex is visible in each picture.

Figure 3.4 shows the singlet wave function calculated on two different sized grids.
Two distinct components of the singlet wave function are visible on the smaller grid.
Peaks along the edges are due to elastic scattering. The wavelength of those oscilla-
tions is equal to the wavelength of the incident wave, and the shape of the peaks is
proportional to the ground state radial function for hydrogen. Circular waves corre-
sponding to ionization span the space between the two coordinate axes. These have
a longer wavelength because ionization requires a loss of kinetic energy equal to the
ionization potential of hydrogen (13.6 €V). More components of the wave function are
visible on the larger grid. At larger distances, excitation channel components emerge.
These look like products of excited states of hydrogen, which extend further from the
axes, and plane waves with longer wavelengths. The presence of different wavelengths
causes a “beat” pattern in the wave function along the edges of the grid.

The upper picture in Figure 3.5 shows the triplet wave function calculated on
a grid that is real out to 60ay. Elastic scattering dominates this wave function so
much that almost nothing else is visible. The lower picture in Figure 3.5 shows the
same wave function but with the elastic scattering component projected out using
the projection operators defined in Equations 4.10 and 4.11. With the elastic channel
removed the wave function on the edges of the grid is dominated by excitation of the
n = 2 state. By comparing the upper and lower pictures we can see the difference in
the wavelengths of the elastic (n = 1) and the n = 2 components. Also, the shape
of the peaks in the lower picture is proportional to the n = 2 radial function for
hydrogen. Because the triplet wave function is anti-symmetric, the ionization waves
have a “trough” along the ray r; = rs.

In the examples shown in Figures 3.4 and 3.5 the ionization component forms well-
defined outgoing waves in the hyperradius p within about 20a,. As the scattered wave
propagates away from the origin the discrete channel components remain confined to
a certain distance from each edge so they occupy a continuously decreasing range of
the hyperangle .. The ionization wave, however, continues to span the full range of
a. Thus, as the scattered wave propagates outward the discrete channel components
spatially separate from the ionization wave so that an increasingly larger fraction of
the ionization wave is “uncovered” by the discrete channel components.

25




26

hyperradius of 2030 hyperradius of 50ao hyperradius of 80a0
L EstAdeVi L Estadevi L L EstAdev,
¢ i ESBAGRVL LG L L E=SAdeV.. J
o 15 30 45 60 75 90 0 15 30 45 €0 75 0 15 30 45 60 75 90
hyperangle (degrees) hyperangle (degrees) hyperangle (degrees)
hyperradius of 1 10&10 hyperradius of 140.210 hyperradius of 170a0
K C ESAeVL ] J ISR TV B IR - V1
L. EsSAdeV. |
o 15 30 45 60 75 90 0 15 30 45 €0 75 90 0 30 45 60 5 90
hyperangle (degrees) hyperangle (degrees) hyperangle (degrees)

Figure 3.6: The absolute value of the scattered wave radial functions along arcs of
a constant hyperradius. At each hyperradius two wave functions corresponding to
incident energies E; = 14.1eV and 54.4eV are shown. For each energy the vertical
scale is the same at every hyperradius.

This uncovering of the ionization wave is visible in Figure 3.6 which shows cross-
sections of the scattered wave for two incident energies along six different arcs of
constant hyperradius. Looking at either wave function, we can see initially that for
a hyperradius of 20ao there are two well-defined peaks corresponding to elastic scat-
tering with a smooth curve between them. As the hyperradius increases the elastic
scattering peak becomes confined to a smaller region of the hyperangle. Also, peaks
corresponding to the excitation components begin to emerge as they, too, become con-
fined to smaller regions of the hyperangle. The heights of the discrete channel peaks
remain essentially constant, aside from small fluctuations due to the beat pattern
mentioned previously, while the height of the ionization curve decreases monotoni-
cally with increasing hyperradius.

Although, formally, there are an infinite number of excitation channels present,
their importance relative to ionization decreases for increasing energy quantum num-
ber. For a given incident energy there are a finite number of discrete channel com-
ponents that need to be removed from the scattered wave to isolate the majority of
the ionization wave to acceptable accuracy. The number of these components that
cannot be ignored determines how far from the origin we must look in order to see the
uncovered ionization wave. As can be seen in Figure 3.6, for incident energies near
the ionization threshold the uncovering of the ionization wave happens much more
slowly. This is because the ionization wave is much smaller relative to the discrete




channel components at scattering energies slightly above the ionization threshold.

3.6 Accuracy of the Calculated Wave Functions

Accuracy of the calculated wave functions can be affected by numerical error in
the calculations as well as systematic error due to the formalism. Numerical error
can come from round-off errors in solving the large systems of linear equations but is
mainly due to error in the finite difference representation. The primary grid spacing
is typically 0.2a9, so by using sixth order finite difference formulas the error should
be no more than 10™%. Thus, we expect the numerical error in the wave functions to
be better than a tenth of a percent.

In terms of systematic error, the main concern is the effect from truncating the
Coulomb potentials. We are trying to use artificially short-range potentials to calcu-
late information for systems with long-range potentials. In order for these calculations
to be meaningful, it is necessary that on the interior region the wave function be un-
affected by truncating the potentials. We can check this by comparing two wave
functions calculated on different grids, with the size of the grid determining where
the potentials are truncated.

Figure 3.7 shows several comparisons performed along arcs of constant hyperradius
p, similar to Figure 3.6. For the most part, the relative differences in the wave
functions are no more than 0.01% which is less than the estimated numerical error for a
primary grid spacing of 0.35a,. The differences are somewhat greater for comparisons
done at larger p but are still acceptable, especially considering that the grid spacing
used for these comparisons was wider than what would normally be used.

Plots in Figure 3.7 compare results from potentials truncated at different distances.
Ideally, we would compare to results for truly infinite range Coulomb potentials.
Of course, this is impossible. Instead, we can see if the calculated wave functions
are approaching the asymptotic form for ionization given in Equation 3.11. This
two-dimensional form was presented by analogy with the Rudge asymptotic form in
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Figure 3.7: Comparison of 14.4eV incident energy, singlet, Temkin-Poet wave func-
tions along a constant hyperradius p for calculations using grids that were real out
to different values of Ry. The primary grid spacing used in these calculations was
0.35a45. All distances are in units of ag.
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Figure 3.8: Demonstration of the logarithmic phase term in the singlet Temkin-Poet
scattered wave for 54.4eV incident energy. All four figures show the real part of
e (r1,79) (solid line) along the ray r; = 7. The wave function is complex scaled
beyond 283a. The upper figures show a function (dashed line) with a logarithmic
phase fit to ;. The fit was done for large values of the hyperradius p and the
two curves are distinguishable only for p > 283a, where i is complex scaled. The
upper right compares the same functions for a region of smaller p where there are
slight differences in the amplitudes between the two. The lower figures make the same
comparison, but fit to a functional form without a logarithmic phase. The fit is again
done at large p, but this time there is a noticeable difference in phase at smaller p.

Equation 2.11 which is valid only when the two electrons are well separated from
each other. It is unclear exactly what this means in the Temkin-Poet model so we
certainly cannot use the form in Equation 3.11 to match to the entire wave function.
However, if we look only along the ray r; = 75 then we can expect 1, to have the
essential features of Equation 3.11: a logarithmic term in the phase and a ‘/L,_) decay
in the amplitude.

In Figure 3.8 the real part of the wave function along the ray r; = ry is compared
to a function of the form % sin (kp + Bln2kp + C) where %l‘éz = F, which in this
example is 54.4 eV. The wave function was calculated on a grid that was real on a box
of length 200a, so the coordinates are real out to p = 282.8a, along the ray r, = 7.
Coefficients A, B, and C were chosen to fit ¥, locally over a range of p between
270ao and 280ae. This functional form fits ¥Fp in this region so well that it is visible
only beyond 283ay where 9Jp is exponentially damped by the complex coordinates.
Even at smaller p it fits 1t very well, with only a slight difference in amplitude but
still very good agreement in phase.

For comparison, the same type of fit was done without the logarithmic phase term
i.e., forcing the coefficient B to be zero. Coefficients A and C were chosen to match
e over the same range of p between 270aq and 280ae. Even without the logarithmic
phase we can match ¢, well over a small region, but there is a significant difference
in phase when we examine a different range of p. Logarithmic phase terms are char-
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Figure 3.9: The figure on the left shows the absolute value of ¥ (1, 72) along the ray
r1 = 19 for incident energies of 54.4eV and 14.14eV. Several dashed lines proportional

to \/L,_, are provided for reference. On the right is an attempt to fit o/t for 14.14eV

to the same functional form as in Figure 3.8, with a logarithmic phase term.

acteristic of Coulomb potentials and the fact that a logarithmic phase is present in
our calculated wave functions suggests that truncating the Coulomb potentials has
not caused fundamental damage.

The other feature we expect to see in the wave function is a Lp decay in the

amplitude. It is clear from Figure 3.8 that this is indeed the case, at least for 54.4 eV
incident energy. The ﬁ decay is a consequence of having both electrons in the con-
tinuum. Discrete channel components have just one electron in the continuum and do
not decay as the radial coordinate for the continuum electron increases. Thus, the \/Lﬁ
dependence requires the absence of discrete channel components. From Figure 3.6 we
know that for very low incident energies the discrete channels contribute significantly
to 9dp over a much larger region.

The absolute value of 9f, for incident energies of 54.4 €V and 14.14 eV is plotted
on a logarithmic scale in Figure 3.9. We can see that along the ray r; = ro the 54.4
eV wave function decays like —\}—5 beyond about 20ae. On the other hand, the 14.14
eV wave function does not exhibit this behavior even at 280ay. An attempt to fit the
14.14 eV wave function to the same functional form as in Figure 3.8 confirms that
this wave function still has not reached its asymptotic form.

So, exterior complex scaling provides 3 means for calculating the scattering wave
function to arbitrary accuracy, but only on a finite region. We can extract physical
quantities from the calculated wave functions if we are able to limit our analysis to
the region in which both coordinates are real. To get meaningful results for ionization
we need to make the complex scaling point large enough so that a significant portion
of the ionization wave has been “uncovered” before the coordinates become complex.
Incident energies very near the ionization threshold will require huge calculations
so there is an effective lower limit in energy for which this method works. In the
next chapter we will investigate the validity of extracting scattering information from
calculated wave functions that are known on only a finite region of space.
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Chapter 4

Calculating Cross Sections for
Electron-Impact ITonization

Having calculated wave functions that describe ionization, we need a procedure
for extracting from them differential cross sections for ionization. The total scatter-
ing cross section is the sum of discrete cross sections for elastic scattering, for each
excitation, and for ionization. In the elastic and excitation channels the energy of the
outgoing electron is quantized. However, when ionization occurs energy is shared con-
tinuously between two outgoing electrons. Single differential cross sections describe
this energy sharing. Although differential cross sections for ionization are intrinsically
tied to the asymptotic form for three-body breakup, they can be extracted from a
wave function known only over a finite region by directly calculating the scattered
flux and then using an extrapolation procedure. This method has produced accurate
single differential cross sections in the Temkin-Poet model [3].

4.1 Total Cross Section

Scattering cross sections are defined in terms of the probability current density for
the scattered wave. For consistency with the full electron-hydrogen problem we will
treat the Temkin-Poet wave ¥, (r;,72) as the radial function for a six-dimensional
scattered wave that happens to have no angular dependence. The six-dimensional
scattered wave W7 and the three-dimensional ground state function @, are related,
in the Temkin-Poet model, to their radial function counterparts (defined in Equations
3.4 and 3.6) by multiplication by appropriate factor(s) of Yo (7).

D1(7) = ;1(r)Yoo(F)  TE(7, 72) = 7 tdp(r1, 72) Yoo (f1) Yoo(fe)  (4.1)

Scattering processes are quantified by scattering cross sections defined as the scat-
tered flux divided by the incident flux density. The flux density of some wave function
¥ through a surface S is defined as the probability current density js along the surface
normal 7g.

js = Im {T*V¥} - s (4.2)




The gradient in Equation 4.2 is the one appropriate for the coordinate space in which
¥ is defined.

For a plane wave e the flux density is k; in the 2 direction. We need to relate
sink;r in the Temkin-Poet initial state (Equation 3.7) to the expansion of a plane
wave in terms of Ricatti-Bessel functions 7 (k;r).

e"’“:‘:é i fam(20+ 1 jlgj’T)Yw() (4.3)

Since jo(k;r) = sin(k;r) the initial state defined in Equation 3.7, after multiplication
by the %Yo,o(f) factors, is equal to the ! = 0 term of the expansion in Equation
4.3 anti-symmetrized with the hydrogen ground state and multiplied by %. Thus,
the incident flux density in the Temkin-Poet model, with the initial state defined in
Equation 3.7, should be gf';.

Measuring the scattered flux requires a closed surface S in six-dimensional space
that surrounds the interaction region. The discrete channel flux is outgoing in 7, and
T2 while the ionization flux is outgoing in the hyperspherical radius p. Since discrete
channel flux remains localized near the r; and 75 axes in a two-dimensional radial
coordinate system (see Figure 3.6) we can say that, in the limit p — oo, all scattered
flux is outgoing in p. Thus, the appropriate surface S is a hypersphere of radius p = py
in the limit py — oo.

We define the probability current den31ty Jpo through a hypersphere of radius pg
by Equation 4.2 with surface normal s = p. In general, j,, is a function of the two
sets of angular coordinates 7; and 75 and the hyperspherical angle .

jpo (f'la fZ’ a) = Im { (l:[lsc('rl, T2)) ( :(-:('Fl, 772)) } (4°4)

p=po

The total cross section is obtained by integrating j,, (in the limit py — o) over the
surface of the hypersphere and dividing by the incident flux.

atotal - h oo k3 /Jpo(rla T27a)ds (4'5)

The differential dS represents the surface differential of a hypersphere such that it is re-
lated to the full six-dimensional volume element by dSdp = dridri = r2r2df,dfodr drs.

dS = rirididispdo (4.6)

We can now write an expression for the total cross section as a surface integral in
terms of the scattered wave UZ. For later convenience, the Jacobian factor (ry,72)2
is associated with the scattered wave. We will take Equation 4.7 as our working
definition of the total cross section.

Ototal = B / Im{ rl,rglllsc('rl,rg)) o (rl,rg‘llsc(rl,rz))}pdfldf'zda 4.7)

p—00
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The normalization in Equation 4.7 is for the initial state defined in Equation 3.7.

A more numerically stable method for calculating the total cross section comes
from converting the surface integral in Equation 4.7 to a volume integral by applying
Green’s theorem.

4 IR -
Ttotal = 73 /Im {(\Iljc(rl,'rg)) V2\I!:c(r1,r2)} dridrs (4.8)

The operator V? is the 6-dimensional Laplacian and the integration is over all space
for both coordinates. For the case of the Temkin-Poet model, integration over the
angular coordinates merely removes the spherical harmonics contained in ¥, leaving
just the radial scattered wave ¥fp.

ar T « [ d? d?
Ototal = % /Im {(1/)91:?(7”1,7‘2)) (d_r% + @) lﬁ%p(ﬁﬂ”z)} dridry  (4.9)
‘o

Equation 4.9 is the volume integral expression for the Temkin-Poet total cross section.
Integration is from zero to infinity in both radial coordinates.

4.2 Channel Cross Sections

Channel cross sections o, correspond to elastic scattering or excitations with one
electron left behind in the ¢, bound state. To define them we will use the two-
dimensional projection operator P, (r1,72).

Pn(r1,72) = Pp(r1) + Pa(rs) — Pu(r1)Pn(rs) (4.10)

Each one-dimensional projection operator P,(r) projects on to the bound state ¢, (r).

oo

Pa(r) () = da(r) [ 6alr)F(")ar (411)

0

As indicated in Equation 3.8, the scattered wave can be completely described asymp-
totically as components for ionization and each bound state. Thus, the ionization
component is the piece of the wave function that remains after all bound state com-
ponents have been removed so we can in principle define a projection operator cor-
responding to ionization.

Pion(r1,72) =1 = ) Pp(ry,m2) (4.12)

n=1

In order to use the projection operators we need an alternate expression for the
total cross section. Any real potential can be added to the second derivatives inside
the integrand in Equation 4.9 without changing the value of the cross section. For



1s — 1s elastic cross section (units of a2)
| incident energy (eV) [ 16.5 [ 19.6 | 23.1 | 27.2 | 30.6 |

ECS (Ry = 100ao) 3.093 | 2.433 | 1.978 | 1.644 | 1.449
Poet [26] 3.103 | 2.443 | 1.987 | 1.651 | 1.456
Burke and Mitchell [14] || 2.878 | 2.428 | 1.938 | 1.663 | 1.509

1s — 2s excitation cross section (units of a2)

| incident energy (eV) || 165 | 19.6 | 23.1 [ 27.2 | 30.6 |
ECS (Ry = 100a,) 0.441 | 0.355 | 0.277 | 0.211 | 0.172
Poet [26] 0.444 | 0.356 | 0.276 | 0.211 | 0.172
Burke and Mitchell [14] || 0.627 | 0.347 | 0.302 | 0.211 | 0.157

Table 4.1: Elastic and first excitation cross sections for the Temkin-Poet model with
singlet spin symmetry. Values calculated using exterior complex scaling (ECS) beyond
Ry = 100ay are given along with “exact” values calculated by Poet using a method
specialized for the Temkin-Poet model. Results from an early close-coupling calcula-
tion by Burke and Mitchell are also shown. These values have not been multiplied by
spin statistics factors.

instance, we can write an equivalent expression in terms of the S-wave hydrogen radial
Hamiltonian in Equation 3.9 which will be denoted here by Hy so that Hy¢, = £,¢,,.

Ototal = —?_:;—kn; / Im {(@b}‘P(rl,rz))* [If_ro(rl) + Ho(ra)| ¥dp (r1, 7‘2)} dridry (4.13)
‘o

To arrive at the channel cross sections, we insert the identity operator 1 as the
sum of all projection operators P,, including the ionization projection operator Pjqy.
Since the projection operators all commute with the hydrogen Hamiltonian H; and
Pn(r1,72)Pps (11,72) = 0 Pr(r1, m2) the total cross section is now a sum of individual

“channel” cross sections. -

Ototal = Z On -+ Oion (4-14)

n=1
Each discrete channel cross section o, can be calculated via an expression analogous
to Equation 4.9 but with the projection operator P,, acting on the scattered wave.

4 « [ d? d?
Op = 75; 0/Im {(Pnz[;:ltp(rl,rz)) [d_r% + d_rg] (Pni/"'ltP (r1, 7‘2)) } dridrs (4.15)

We can immediately identify o; as the elastic scattering cross section and each o, for
n > 1 as the cross section for excitation into the ¢, bound state.

The channel cross sections provide our first opportunity to judge the accuracy
of the scattered wave calculated by exterior complex scaling. Accurate values for
the channel cross sections have been calculated by R. Poet [26,27]. Table 4.1 lists
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singlet o, (in units of a?) for 14.14eV incident energy

| ECS beyond Ry =| 40ag | 50ay | 70ay | 100a, | 150a, |
total : | 4.53915 | 4.53914 | 4.53914 | 4.53913 | 4.53914
n=1:]3.88524 | 3.88523 | 3.88523 | 3.88522 | 3.88523
n=2:0.50096 | 0.50096 | 0.50097 | 0.50096 | 0.50096
n=23:1]0.09453 | 0.09453 | 0.09453 | 0.09453 | 0.09453
n=4:]0.02781 | 0.02839 | 0.02844 | 0.02844 | 0.02844
n=>5:]0.00483 | 0.00963 | 0.01131 | 0.01134 | 0.01134
n=26:1]0.00190 | 0.00152 | 0.00473 | 0.00544 | 0.00545

triplet o, (in units of a2) for 14.14eV incident energy

| ECS beyond Ry =] 40ap | 50a; | 70aq | 100a; | 150aq |
total : | 11.6240 | 11.6240 | 11.6241 | 11.6240 | 11.6241
n=1:(11.6142 | 11.6142 | 11.6143 | 11.6142 | 11.6143
n=2:|0.00938 | 0.00938 | 0.00939 | 0.00939 | 0.00939
n =3 :| 0.00027 | 0.00027 | 0.00027 | 0.00027 | 0.00027
n =4 :| 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003

Table 4.2: Total and several discrete channel cross sections for 14.14eV incident
energy. Results are given for both singlet and triplet spin symmetries (spin statistics
factors not included) from calculations using different size grids.

some of these for the elastic channel and first excitation channel along with values
calculated using complex scaling beyond 100ay. Values are given for several energies
above the ionization threshold. In all cases, the difference between Poet’s values and
those calculated here is better than 0.1%. This suggests that at least some scattering
information can be obtained from a finite range, ECS transformed scattered wave.

The only systematic error in the ECS formalism comes from truncating the Coulomb
potentials where the coordinates become complex. We expect that truncating the po-
tentials might affect only those channels corresponding to bound states that extend
beyond the range of the real coordinates. Total and several channel cross sections for
an incident energy just 0.5 eV above the ionization threshold are listed in Table 4.2.
Results from calculations using several values of the complex scaling point Ry are
given. The total and elastic scattering (n = 1) cross sections as well as the excitation
cross sections up to n = 3 are essentially identical for Ry = 40ao and beyond. For
the singlet case the n = 4 cross section changes slightly for Ry larger than 40ay while
the n =5 and n = 6 cross sections change significantly.

Error in the wave function is mainly in the excitation channels for states that
extend beyond where the Coulomb potential is truncated. Looking at Table 4.2, we
see that if Ry is 100aq or larger the discrete channels up to n = 5 are accurately
represented. The relative contributions of the excitation channels to the total wave
function decrease rapidly as n increases. Note that this decrease in the relative




contribution from the excitation channels is especially rapid in the triplet case. This is
a unique characteristic of the Temkin-Poet model and will not be a feature of electron-
hydrogen scattering. Channel cross sections converge rapidly as Ry increases and we
can assume that for Ry of at least 100ay the error from truncating the potentials is
no worse than numerical error from using finite difference.

The rapid decrease in the channel cross sections as n increases suggests that we
might obtain accurate total ionization cross sections by subtracting the elastic and
excitation channel cross sections from the total cross section. As we will see later, the
ionization cross section is a small fraction of the total and, in some cases, subtracting
channel cross sections up to n = 6 may not be enough to produce an accurate ioniza-
tion cross section. If enough discrete channels can be accurately represented on the
grid then subtracting channel cross sections from the total is the most accurate way
to calculate a total ionization cross section. However, this does not lead to a method
for producing differential cross sections. For that we will need a different approach.

4.3 Differential Cross Section for Ionization

The surface integral expression for the total cross section in Equation 4.7 provides
a natural means for defining a differential cross section with respect to the four an-
gular coordinates and the hyperspherical angle a. We will soon see that the angle o
parametrizes energy sharing between the two outgoing electrons. Consequently, the
integrand in Equation 4.7 will lead to a cross section that is differential with respect
to the energy of one electron as well as the directions of both electrons.

The greatest challenge in treating ionization is correctly describing energy shar-
ing between the two outgoing electrons. Since there is no directional dependence
in the Temkin-Poet model we can perform the trivial integration over the angular
coordinates in Equation 4.7 and look at just the o dependence.

Ototal = %T / Im {(?P%P(Tl, Tz))*dip (¢’-Ii‘_P(T1)T2)) } pda (4.16)
o

p—roo

The integrand in Equation 4.16 defines a differential cross section with respect to c,
but only in the limit p — oco. Under exterior complex scaling we know the wave
function only on a finite region, so we need a means of extracting the p — co limit
from a finite region of space. To this end, let us first define a generalized flux f, ()
evaluated at a finite hyperradius py.

fnle) = T { o (tp(rn,r)) 55 (i) (@17)

P=pPo

The f,,(c) are always symmetric about o = 45° just like the absolute value of the
scattered wave plotted along arcs of constant p in Figure 3.6. Examples of f,(«) cal-
culated from the same wave function, but at different values of py are shown in Figure
4.1. The plots in Figure 4.1 show the behavior of the two distinctive components of
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Figure 4.1: Flux, as a function of the hyperangle, calculated for various values of the
hyperradius p in the Temkin-Poet model with incident energy of 20.4 eV. The flux is
symmetric about 45°. The upper figures zoom in on the discrete channel contributions
near the edges while the lower figures show the smaller ionization component.

the flux (discrete channel peaks near the edges and the ionization component in the
middle) as the flux surface moves outward in the hyperradius.

As py increases the width of the discrete channel peaks decrease and more of the
ionization component is uncovered. Unlike the peaks shown in Figure 3.6, the peaks
in the flux increase monotonically with py due to the factor of p in Equation 4.17.
This must be so because conservation of flux in each channel requires that the areas
under the peaks remain constant. In the limit pg — co the discrete channel flux will
become delta functions in o at zero and 90° and f,, will consist only of ionization flux
except for infinitesimally small regions near the edges. Thus, we can use f, (a) to
define a differential cross section d—”%ﬁ for ionization that is valid everywhere except
very near « equals zero and 90°.

/2
doion Cion H T
Oion = [ p(®dar, o) o lim ¢, (o) (4.18)

This differential cross section is supposed to give the total ionization cross section
when integrated over the full range of a. The conditional equality in the definition
of @% reflects the fact that f,,(«) formally contains discrete channel contributions
at o equals zero and 90°. In principle, we could eliminate the discrete channel con-
tributions by forcing —dﬁ%ﬂ to be zero at « equal to zero and 90° after taking the
po — oo limit.

To obtain the differential cross section defined in Equation 4.18 we need to some-
how take the py — co limit of the flux from a wave function known only on a finite
region of space. If we substitute the asymptotic form for the ionization part of the
scattered wave given in Equation 3.11 for 9% in Equation 4.17 we see that the ion-
ization part of the flux f,,(«) approaches its asymptotic limit like pio.

forlarge p:  fy(a) ~ fo(a) + Ale)

(4.19)
Thus, if we calculate f,,(a) for two or more values of py that are large enough for this
form to apply we can estimate the flux in the py — co limit by fitting Equation 4.19
to the calculated f,,.
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Figure 4.2: Comparison of calculated flux to a 1 extrapolation curve in the Temkin-
Poet model with incident energy of 20.4 eV. The comparision is done for three different
values of the hyperangle. The solid line is the X least-squares fit and the markers are

the values of the flux from the wave function. The values of the flux that were used
to produce the least-squares fit are circled.

Examples of fitting the functional form in Equation 4.19 to the f,, from a particular
scattered wave are shown in Figure 4.2. In this example the function A(«) and the
po — oo limit of the flux were estimated by a least-squares fit using f,, calculated at
five evenly spaced values of gy ranging from 180ag to 200a. The curves in Figure 4.2
are the resulting fits, as functions of p, plotted for three different values of . For
comparison, f,, calculated at several values of py are also shown. Only the last five
directly calculated f,, shown in Figure 4.2 were used for the least-squares fit.

Other f,, (evaluated at smaller po) are plotted to show how well the f,, fit Equation
4.19 for different hyperangles. At hyperangles of 30° and 45° the flux fits the form
in Equation 4.19 very well beyond p =~ 100ay. However, at a hyperangle of 15° the
flux does not reach this form until somewhere beyond 150ay. In general, the form
in Equation 4.19 is reached more slowly for o near zero and 90°. This is primarily
due to “contamination” from discrete channels, which do not extrapolate in this way,
near the edges of the grid.

In the true p — oo limit, as py increases the discrete channel peaks in the f,,
become confined to infinitesimal regions of a near the endpoints. This behavior
cannot be replicated by extrapolation. Consequently, the region over which d"—‘j’dgf—al is
valid is restricted to the range of o over which the f,, used for the extrapolation do
not contain appreciable amounts of discrete channel contributions. In other words,
extrapolation does not provide a means for further “uncovering” the ionization flux.
Thus, we cannot calculate 222 in this manner over the full range of o Figure 4.3

shows three different dﬂl‘%ﬁ obtained by extrapolation from f,, from three different,
disjoint ranges of py. They all have large oscillations near the edges that come from
trying to extrapolate the discrete channel components using Equation 4.19. Each
extrapolated curve is valid only over the region of o where it is smooth.

One might think that we could use the projection operators defined in Equation
4.10 to remove the discrete channel components from the scattered wave leaving
behind a pure ionization wave. However, if we were to actually try projecting out
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Figure 4.3: Comparision of flux extrapolated from different ranges of the hyperradius
in the Temkin-Poet model at two different incident energies. Fach extrapolation was
from flux calculated at three different values of the hyperradius over a 10ay range. The
curves are identified by the largest hyperradius that was used for the extrapolation.

all of the discrete channel components (or, at least all of those that fit on the grid)
we would find that the remaining wave function does not have the expected smooth
behavior over the full range of a. This is because the discrete channel projection
operators project out states that are not eigenfunctions of the full Hamiltonian. They
are, instead, eigenfunctions of an “asymptotic” Hamiltonian describing a hydrogen
atom and a free electron. All of the dynamics of the true ionization wave are governed
by the full Hamiltonian and it cannot be assumed to be orthogonal to the asymptotic
forms for the discrete channels. For this reason, distinguishing between the ionization
wave and the discrete channels really does rely on spatial separation of the different
components. Because we know the wave function only over a finite region of space,
projecting out discrete channels from the scattered wave will not improve our ability
to calculate %2 near « equals zero and 90°.

Formally, there are an infinite number of discrete channels present in the scattered
wave. The larger the energy quantum number n the greater the extent of the bound
state. That means for any finite grid, no matter how large, we can always find a
maximum n for which the n* and higher bound states extend beyond the range
of the grid. These bound states cannot be correctly represented on the grid and the
corresponding discrete channel components of the scattered wave cannot be accurately
removed using projection operators.

Removing the first few discrete channel components would certainly make the os-
cillations in Figure 4.3 much less dramatic, but they would still exist over the same
range of a because it is actually the higher excitation channels that are the limiting
factor. Furthermore, the rate at which the ionization component reaches the asymp-
totic form in Equation 3.11 is no faster than the rate at which the discrete channel
components “uncover” the ionization wave. This means that even after as many dis-
crete channels as possible are removed, the flux from the “uncovered” ionization wave



may still not fit Equation 4.19.
We can see in Figure 4.3 that the size of the region over which g"—‘j’}a@ is valid
depends on the distance at which the f,, used in the extrapolation were calculated.

For the lower energy example in Figure 4.3 the %l extrapolated from 100qq and

200ag are valid between o = 15° and a = 75°, while the g"‘—(‘;;(—al extrapolated from
50aq is valid only between o = 30° and o = 60°. In the higher energy example the
regions of validity are somewhat larger. Over the range of « in which all of the 4oion(e)
are valid there is quite good agreement among the different extrapolated results. The
plots in Figure 4.3 suggest that, within the range of « that extrapolation is valid, the

error due to extrapolation in p is about 5%.

4.4 Single Differential Cross Section

The hyperspherical angle o has no direct physical meaning so differential cross
sections with respect to « are of little practical use. Instead, we are interested in a
differential cross section that describes how energy is shared between the two outgoing
electrons. The single differential cross section (SDCS) is a differential cross section
with respect to the energy of one electron. It is directly related to 5‘”—;’;@ because «
parametrizes the energy distribution between the two electrons.

We associate two momenta k; and ke with the two outgoing electrons. The mo-
menta are constrained by conservation of energy so that £-(k2+k2) = E. Looking at
the final state semi-classically, we know that the electron with the larger momentum
is moving faster so, at some time following ionization, that electron will be further
from the nucleus than the “slow” electron will be. If we trace the trajectory at large
distances for this semi-classical picture in the two-dimensional radial plane it should
follow a fixed ray for some hyperspherical angle c.

So, intuitively we expect that for large p the hyperspherical angle oo parametrizes
the energy sharing between the two outgoing electrons.

lim tan™" (ﬁ) — tan™! (T—2> =a (4.20)
p—+c0 k1 T

The relation in Equation 4.20 was shown formally by Rudge [34] by a stationary
phase argument. Using this relation, a differential cross section for electron-impact
ionization that is a function of « can be converted to a cross section that is differential
in the energy of one of the two electrons.

The individual electrons’ momenta are proportional to sin @ and cos« for large
p and their kinetic energies are €, = Ecos?« and €5 = Esin? . To convert from a
differential with respect to « to a differential with respect to the energy of the second
electron we divide d"ﬂ;—'&("‘) by the quantity % = 2Esinacosa. Energy differential
cross sections 2eat) wil] be symmetric about € = % just as the ‘1‘73—’;‘@ are symmetric
about o = 45°. By convention, the SDCS is the energy differential cross section
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Figure 4.4: Differential cross sections in the Temkin-Poet model for 54.4 €V incident
energy. The upper plots are the singlet cross section multiplied by a spin statistics
factor of g, the lower are the triplet multiplied by 2. The “raw” 2 (dashed lines on
the right) come directly from extrapolating the flux in p and are converted to “raw”
42 (dashed lines on the left). The noise at the edges of the “raw” 2 is replaced by
a linear extrapolation in € to produce the final SDCS (solid lines on the left). The
final SDCS were transformed back to a final d—‘";—:;(ﬂ (solid lines on the right).

defined for & between zero and £.

*F doion()
Oion\&
ion — 4.2
o 0/ I de (4.21)

The total ionization cross section is obtained by integrating the SDCS over half of

the energy range so there is an additional factor of two contained in the conversion
from 2%a(®) t5 the SDCS, ienle),

dO’ ion (8 )
de

" Esinacosa da

(4.22)

e=FEsin? o

Equation 4.22 along with Equations 4.18 and 4.17 define the energy sharing SDCS in
terms of a flux calculated as a function of a.

We are still faced with the problem that extrapolation in p produces a differential
cross section that is invalid near &« = 0 and o = 90°. This means that we cannot
calculate the SDCS for the case where one of the electrons carries most of the energy.
We know that the correct SDCS should be a very smooth function of €. In fact, the
SDCS can be assumed to be linear near € = 0.

The two differential cross sections %ﬂ and %2 for both singlet and triplet
spin symmetries at an incident energy of 54.4 eV are shown in Figure 4.4. The
dashed lines are the “raw” results obtained directly from extrapolation in p. These
lines contain large amplitude noise from the discrete channels near the edges. In both
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Figure 4.5: Examples of the singlet, triplet, and total SDCS at incident energies of
27.2 eV and 81.6 eV. The singlet and triplet cross sections have been multiplied by
the appropriate spin statistics factors.

spin symmetries the SDCS is essentially linear near where the discrete channel noise
begins. This suggests that we can estimate the SDCS for small € by replacing the
discrete channel noise with a linear extrapolation in €. The solid lines in the left
panels of Figure 4.4 are the final SDCS obtained by replacing the “raw” SDCS for
small £ with a linear fit in € that is matched to the “raw” SDCS at the lowest value
of € where the extrapolated results can be assumed to be reasonably accurate.
Choosing the value of £ at which to perform the linear match is, admittedly, a
somewhat arbitrary process and there is really no way to quantify the accuracy of
the procedure. In practice, we choose the matching point by looking at plots similar
to Figure 4.4 and choosing a value of ¢ just inside where the oscillations are visible.
In Figure 4.4 we see that the fraction of the energy range occupied by discrete
channel noise in the “raw” SDCS is much smaller than the fraction of the total o
range occupied by the noise in the “raw” Eiﬁ’o“iﬂ. This is because converting from a
function of a to a function of € compresses the function near the ends. Consequently,
the fraction of the SDCS that comes from the linear fit is much smaller than might

be expected from looking at plots of the “raw” d"—‘;}:‘}ﬂ. Converting the final SDCS

back to a differential with respect to o shows what the true %l should look like
over the full range of a.

4.5 Temkin-Poet Results

Examples of the final SDCS for both singlet and triplet spin symmetries are shown
in Figure 4.5. The total SDCS is the sum of the singlet and triplet SDCS with statis-
tical weights of 1 multiplying the singlet cross section and 2 multiplying the triplet
cross section. All of the SDCS are symmetric and very smooth with the minimum
value at 12'3- and the maximum value at zero and E. These general characteristics of
the SDCS will carry over to electron-hydrogen scattering. The SDCS for the triplet
case are zero at € = % because the triplet radial wave functions are anti-symmetric.
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Figure 4.6: Comparison of convergent close-coupling [6] and exterior complex scaling
results for the singlet and triplet SDCS in the Temkin-Poet model at 40.8 eV incident
energy. The ECS results (solid lines) are shown over the full energy range (0 to 27.2
eV) to illustrate the symmetry in the method. They are normalized so that the total
lonization cross section is the integral from 0 to E/2 = 13.6 eV. The CCC data
(diamonds) are not symmetric about E/2. In the singlet case the CCC data has large
oscillations so it is replaced by an integral preserving estimate (dashed line) which is
defined between 0 and E/2.

Overall, the triplet SDCS is much smaller than the singlet SDCS. In fact, all inelas-
tic processes, including ionization, in the Temkin-Poet model are dominated by the
singlet spin symmetry. This characteristic is unique to two-dimensional models such
as Temkin-Poet and will not carry over to electron-hydrogen scattering.

Singlet and triplet SDCS for 40.8 eV incident energy are compared in Figure 4.6
with results calculated by Igor Bray [6] using the convergent close-coupling (CCC)
method. CCC is very good for calculating discrete channel cross sections for electron-
atom scattering. It also has shown promise for calculating total ionization cross
sections. However, it has, so far, been unable to produce correct differential ionization
cross sections, even in the Temkin-Poet model, for incident energies below 100 eV.
The SDCS produced by CCC are always asymmetric. If the method produced SDCS
that were correct only from zero to % then the calculated cross section in the upper-
half of the energy range would be irrelevant. This is the case for the triplet spin
symmetry, but not for the singlet spin symmetry.

Bray claims that the calculated values in the singlet case oscillate about the correct
SDCS and he replaces them with a smooth estimate of the true SDCS between zero
and 123- The properties of the singlet and triplet SDCS calculated in the CCC method
for two-dimensional models is discussed in reference [30]. The ability of the CCC
method to calculate the triplet SDCS is made possible only because the triplet SDCS
is zero at % This does not provide much hope for CCC being generally successful at
calculating differential ionization cross sections because no SDCS in a real system is
zero for equal energy sharing.




[ B, ] 20.4eV | 27.2¢V | 40.8¢V | 54.4eV | 68.0¢V | 81.6eV |
Gl || 29989 | 2.2373 | 1.4816 | 1.0842 | 0.8381 | 0.6713 |
o1 2.3077 | 1.6437 | 1.0826 | 0.8106 | 0.6421 | 0.5256
o5 0.3354 | 0.2113 | 0.1008 | 0.0580 | 0.0375 | 0.0263
73 0.0865 | 0.0565 | 0.0267 | 0.0151 | 0.0096 | 0.0067
2 0.0343 | 0.0223 | 0.0109 | 0.0061 | 0.0039 | 0.0027
5 0.0170 | 0.0116 | 0.0055 | 0.0031 | 0.0019 | 0.0013
T6 0.0097 | 0.0066 | 0.0031 | 0.0018 | 0.0011 | 0.0008

Ttotal — zﬁjlan 0.2083 | 0.2846 | 0.2520 | 0.1896 | 0.1420 | 0.1080

E/2

{/“—‘;;—@ds 0.2028 | 0.2849 | 0.2520 | 0.1899 | 0.1423 | 0.1077

Table 4.3: Integral cross sections for the Temkin-Poet model with singlet spin symme-
try, spin statistcs factors are not included. Total and discrete channel cross sections
are shown. Also listed are total ionization cross sections calculated both by subtract-
ing discrete channel cross sections from the total and by integrating the SDCS.

Having calculated the SDCS we can now integrate them to obtain total ionization
cross sections. First, it should be noted that volume integral formulations for calcu-
lating integral cross sections are much less susceptible to numerical error than first
producing, then integrating differential cross sections. Still, integrating the calculated
SDCS allows for interesting comparisons using the channel cross sections discussed
earlier in this chapter.

Total cross sections oioa and channel cross sections o, up to n = 6 for several
incident energies are listed in Table 4.3. As mentioned before, we can obtain the total
ionization cross section oi,, by subtracting all of the o, from oiota1- The remainders
after subtracting the first six o, from the oyta are listed in Table 4.3. These provide
an upper bound for the oj,,, assuming the o, themselves are accurate. We can see
from Table 4.3 that in order to obtain the oj,, to three or more significant figures
we will probably need o, beyond n = 6. However, for n this high the accuracy of
the o, is in doubt. For comparison, the oj,, obtained by integrating the SDCS are
also listed. The o;,, Obtained in the two different ways compare quite well with most
differences being less than 0.3% and the largest difference being less than 3%.
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Chapter 5

Six-Dimensional Wave Function for
Electron-Hydrogen Scattering

Theoretical treatment of electron-hydrogen scattering requires computing a six-
dimensional scattered wave function with outgoing wave boundary conditions. As in
the two-dimensional Temkin-Poet model, the scattering boundary conditions can be
simplified by using exterior complex scaling of the radial coordinates. Methods used
to calculate the Temkin-Poet wave function are readily extended to a partial wave ex-
pansion of the six-dimensional scattered wave. Computing the scattered wave requires
calculating a large number of two-dimensional radial functions to form its partial wave
expansion. These are solutions to sets of coupled differential equations that are solved
using an iterative algorithm on a distributed memory parallel computer.

5.1 Coupled Equations for the Scattered Wave

Scattering of an electron from a hydrogen atom is described by the six-dimensional,
two-electron scattered wave U (71, 72) defined in Equation 2.6. Just as in the Temkin-
Poet model, the asymptotic boundary condition on ¥}, (Equation 2.10) can be sim-
plified by exterior complex scaling (ECS) of the radial coordinates. Extending the
methods from Chapter 3 to the six-dimensional scattered wave equation is straight-
forward after first expanding the wave functions in partial waves.

5.1.1 Partial wave expansion of the wave function

We expand the wave functions ‘I’?c,- and ¥} in terms of two-particle, coupled spher-
ical harmonics y,ﬂg which are functions of the four angular coordinates. The Y}/
are eigenfunctions of total angular momentum, L, of the system and its projection,

M, along the z axis as well as the individual electron angular momenta I; and [s.

y{;%('fl, fz) = Z (lll2m1m2]LM>Yl1m1 (’f‘l)Ylgmz (fQ) (5.1)

mi,m2

They are related to ordinary spherical harmonics by the Clebsch-Gordan coefficients
(hlamama|LM). Clebsch-Gordan coefficients are discussed in Zare [39] and most quan-



tum mechanics text books. Some properties of the yll 1, useful for this particular
application are mentioned in Appendix F.

The term representing the initial state is \Ilgi, defined in Equation 2.5 as the
anti-symmetrized product of a plane wave and the ground state of hydrogen. Using
the expansion, in ordinary spherical harmonics, of a plane wave (Equation 4.3) we
immediately write an analytic expression for the partial wave expansion of \Ilgi.

\Ilg.(ﬁ,rg)_z \/27(2T+1—< bt (1) 71 (kiro) VEO (71, 72) + )

2 5.2
2 gk \ 0% (ki) (ra) VES (7 o) (5:2)

Since the coordinate system is chosen so the z axis lies along the incident direction,
only m = 0 spherical harmonics are present in Equation 4.3. Also, the ground state
of hydrogen ®;5 (see Equation 4.1) is spherically symmetric. So, the projections along
the z axis of both individual electron angular momenta l; and I, as well as the total
angular momentum L are zero and Equation 5.2 contains only terms with M = 0.
This is a consequence of the cylindrical symmetry of the system for scattering from
a spherically symmetric target.

Solving the scattéered wave equation means calculating the two-dimensional radial
functions 1,/),[1’12 in a partial wave expansion of ¥} . This expansion also contains only
terms for which M = 0 because M is a conserved quantum number of the system.

\II:(-:(F]J 7'2) =—_— Z ¢l112 (T]-’ 7'2):)}11’[2 (7'1, 7'2) (5‘3)

TiT2 L,

Four continuous angular variables have been replaced by three discrete angular mo-
mentum quantum numbers [, Iy, and L. That leaves only two continuous variables,
r1 and 79, the same as for the model problem in Chapter 3. However, there are an in-
finite number of the radial functions ¢,€’ 1, and they will be solutions to sets of coupled,
two-dimensional differential equations.

Since W (71, 72) is an outgoing wave each individual radial function 9f;, (r1,2) in
its partial wave expansion has outgoing wave boundary conditions similar to those in
the Temkin-Poet model. Application of exterior complex scaling, as given in Equation
3.12 and illustrated in Figure 3.1, to the partial wave expansion simplifies the bound-
ary conditions on each individual radial function. Under ECS, every 9f,, (r1,72) is
transformed in to a function that decays exponentially for either 7, or o larger than
the complex scaling point Rp.

5.1.2 Coupled differential equations

Total angular momentum of the system is a conserved quantity so there will be
no coupling between partial waves with different values of L. For each total angular
momentum L and spin .S there is a separate, independent set of coupled equations.
In most of what follows the quantum numbers L and S are treated as parameters
that are frequently suppressed. Calculating physical quantities requires assembling
all of the separate L and S components of the wave functions and/or cross sections.
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To arrive at the coupled equations we substitute the partial wave expansions
for ¥ (Equation 5.3) and ¥} (Equation 5.2) into the scattered wave equation in
Equation 2.6. We then multiply both sides of the equation on the left by some
spherical harmonic Y} &, and integrate over the four angular variables. The attractive
potentials between the nucleus and each electron have no angular dependence and the
y,l 1, are eigenfunctions of the kinetic energy operators. So, integration is trivial for
all terms of the operator (£ — H ) except the repulsive, two-electron potential. Since
the Y29, are orthonormal all of the one-electron terms are non-zero only when Iy = [;
and I, = l;. Together, when acting on a radial function, they can be expressed as a

partial wave radial Hamiltonian for hydrogen, H, (r)= - 2"; ;:2 + l(l;r;llr)f :_ 9:—
(U1 LO| H|ly1,LOY = (H, (r1) + Hi, (ra)) 81,060, + (lalol 115 1 (5.4)

Dirac notation is used to represent integration over only the angles and not over
the radial coordinates. Shorthand notation (l1l5||ljly), in the last term of Equation

5.4 represents the multipole expansion of the two-electron potential h—| It is a
function of both 7; and 7, and is discussed, in more detail, in Appendix F.
o2 A
(alllily) = (W L0z [ BL0) = € ;0,?;;;,;?—;% (5.5)

Here, r< refers to the smaller and 7~ to the larger of r; or . Formulas for calculating
the coefficients C; 1y, are given by Percival and Seaton [24]. The index A ranges over
a finite subset of the non—negamve integers. For the special case [y =1l =l =1, =0,
(00]]00)o = = wh1ch is the two-electron potential in the Temkin-Poet model.

Two radlal functions ¢l, y, and ¥, are coupled only if (lll2L0|lﬁ_T_2||l’ll’2L'O) is
nonzero. This term is nonzero only if L' = L. When L' = L it is always nonzero for
any (l1,12) and (I, ;) pairs for which the sums [y + 5 and I} + I} are either both even
or both odd integers. So, all partial waves for a particular L with the same parity
are coupled together. Using Equations 5.4 and 5.5 we write, for each L, the coupled
radial differential equations that come from the scattered wave equation.

(B — Hy(r) — Hiy(r2)) i, (r1me) — D (ballllo) cobf gy (r,ma) = Xy (11,72) (5.6)

1.0

We now define the radial functions W{zz as the outgoing solutions to the coupled
equations in Equation 5.6. The functions xﬁlz, defined in Equation 5.7, are radial

functions from the partial wave expansion of (I—:T - E) (5

ik e? N
X, = T V2L { ((l1lz|]0L)L = E%o%L) Gni(r1) 30 (kir2) + (-1)S (1 == 2)}

(6.7)
Since only Xll;lz with even parity exist (see Appendix F), the (;,l;) pairs that con-
tribute to the expansion of UJ are restricted to those for which I; + I + L is an even
integer. The sum in Equation 5.6 involving the coupling potential {l1l2]|ljl5) 1 is over
all 1,15 pairs in the expansion, including the case I} = {3 and I} = bs.
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Figure 5.1: Block structure for the coupled equations

5.2 Iterative Solution of the Coupled Equations

There is an infinite number of sets of coupled equations for the different values of
L and each of these couples an infinite number of partial waves with different (I, l3)
pairs. In practice, of course, we solve the coupled equations for only as many L values
as needed for numerical convergence. Likewise, each individual L coupled equation is
limited to a finite number of (I, l2) pairs. Coupling even a few partial waves produces
a very large system of linear equations that must be solved by an iterative algorithm.

5.2.1 Matrix equation

Just as was done for the Temkin-Poet wave function in Chapter 3, each complex
scaled radial function is calculated directly onto a two-dimensional radial grid using
finite difference approximations for the differential operators. The finite difference
representation of the coupled equations forms a matrix with the block structure illus-
trated in Figure 5.1. That example shows the case L = 0 where l; = [, for all partial
waves and there is an obvious ordering for the (I;,l2) pairs. Each block in the array
of radial functions corresponds to the values of 9, on the two-dimensional radial
grid for a particular (I3,ls) pair. Likewise, the blocks in the array on the right-hand
side are the xfl 1,» defined in Equation 5.7, evaluated on the grid.

The diagonal blocks are finite difference matrix representations of the operators
B - ﬁll (r) — I:Il2 (r2) — (lil2]])ly, l2) 1. These matrices have exactly the same sparsity
structure, shown in Figure D.1, as the Temkin-Poet matrix. In fact, the L = [; =
Iy = 0 diagonal block is the Temkin-Poet matrix. The off-diagonal blocks, on the
other hand, are just the coupling potentials evaluated on the grid so each of these is
a diagonal matrix.

If we remove the off-diagonal blocks i.e., set {(lilo]|l{l)r = 0 for (14,5) # (L, 1),
then the matrix is block diagonal and we have a large set of uncoupled equations for
each 1,0{;,2. Solving each of these uncoupled equations is comparable to solving the
Temkin-Poet model problem. In Chapter 4 we found that we need the radial functions
at distances of at least 100ay to get meaningful ionization information. Calculating
accurate radial functions that extend this far requires on the order of 240,000 grid
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points. Solving a Temkin-Poet problem of this size already uses substantial compu-
tational resources. Solving the entire set of uncoupled equations is merely a matter of
performing multiple calculations of that same size. However, keeping ten or so partial
waves in a set of coupled equations forms a linear system of two or three million.

5.2.2 Iterative algorithm with pre-conditioner

Linear systems this large must be solved using an iterative algorithm. Convergence
properties of iterative algorithms are governed largely by the eigenvalue spectrum of
the matrix. Since the six-dimensional Hamiltonian should have a spectrum similar to
that of the Temkin-Poet Hamiltonian we can apply the lessons learned in using an
iterative algorithm for solving the Temkin-Poet model toward developing a method
for iteratively solving the coupled equations. In particular, it is reasonable to expect
the conjugate gradient squared (CGS) algorithm to converge to the solution provided
an effective pre-conditioner is used.

The matrix structure shown in Figure 5.1 suggests using the uncoupled equations
as a block-diagonal pre-conditioner. That means that each pre-conditioning step in
the CGS algorithm, given in Figure E.2, requires solving the uncoupled equations, but
with different right-hand sides. The effectiveness of using the uncoupled equations
as a pre-conditioner depends upon the two-dimensional radial Hamiltonians in the
diagonal blocks having an eigenvalue spectrum similar to that of the six-dimensional
Hamiltonian. This is a reasonable expectation because the basic characteristics of
the eigenvalue spectrum is determined by the radial dependence of the Hamiltonian.
For instance, the bound state energies of hydrogen are determined solely by the one-
dimensional radial Hamiltonians for hydrogen. With exterior complex scaling, the
movement of the continuum spectrum into the lower-half of the complex plane is de-
termined by the scaling of the radial coordinates. Therefore, the uncoupled equations
should have the same inelastic thresholds as, and a similar eigenvalue spectra to, the
coupled equations.

5.2.3 Convergence of iterative algorithm

Indeed, the uncoupled equations are a sufficiently robust pre-conditioner to make
the CGS algorithm converge to solution to the coupled equations for any value of L
over the range of incident energies considered here. Convergence of the CGS algorithm
on the coupled equations for a few representative L at two different energies is shown
in Figure 5.2.

Error in the iterative solutions is measured by substituting the calculated radial
functions at each iteration into the left side of Equation 5.6. The difference between
the left and right sides of Equation 5.6 gives a two-dimensional “residual” function for
each partial wave. Integrating the modulus-square of each residual produces “partial
wave errors”’. Total error for a set of coupled partial waves is defined to be the
sum of these partial wave errors. In all cases, convergence of the CGS algorithm is
well behaved with very little sign of instability and the solution can be improved to
arbitrary accuracy.
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Figure 5.2: Convergence of the CGS algorithm for the coupled equations with singlet
spin symmetry for various total angular momenta L. Error of the calculated scattered
wave is plotted for incident energies of 17.6 eV (asterisks) and 25 eV (diamonds).

In principle, the convergence rate depends on the number of partial waves kept in
the coupled equations. However, once the most important partial waves are included
adding a few more that are less important has little eﬁ'ect on convergence. All of the

coupling potentials are built from terms that look like —é— and are peaked along the

ray 7, = 1. Therefore, the strength of the coupling depends on the magnitudes of
the radial functions near r; = o as well as on the coupling potentials themselves.

Less important radial functions i.e., ones with relatively small magnitudes near
71 = 79, add only a small amount of coupling to the other partial waves. Triplet
radial functions with /; = [, have significantly smaller ionization components than
do their singlet counterparts. For this reason, convergence of the coupled equations
is typically more rapid for the triplet spin symmetry. Convergence also tends to be
faster at higher energies.

Solution to the uncoupled equations with the original right-hand side is used as
the starting point for the iterative algorithm. Typically, the error actually increases
slightly for the first few iterations before reaching a point where it then decreases
fairly reliably. This is due to an initial redistribution of flux in the ionization region
of the radial functions. This can be seen in Figure 5.3 which shows solutions to the
uncoupled equations along with converged solutions to the coupled equations.

In the L = 0 uncoupled equations the (I1,l2) = (0,0) radial function (i.e., the
Temkin-Poet wave function) carries most of the ionization flux. Iterating to arrive
at a solution to the coupled equations removes flux from this partial wave ‘and re-
distributes it to the higher angular momentum partial waves. Ultimately, the (1,1)
radial function has the largest ionization component of the singlet, L = 0 partial
waves. We see similar behavior for L = 2 where the (1,1) radial function is largest
initially. The magnitude of the (1,1) radial function decreases while the magnitudes
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Figure 5.3: Comparison of solutions to the coupled and uncoupled equations for
singlet spin symmetry and 25 eV incident energy. The magnitudes of the radial
functions at a hyperradius of 100ay are shown. Dashed lines are the solutions to the
uncoupled equations and solid lines are the solutions to the coupled equations.

of the others increase. Eventually the combination of (0, 2) and its mirror image (2, 0)
is the dominate L = 2 partial wave.

5.2.4 Parallel implementation

Each iteration of the CGS algorithm requires two applications of the pre-conditioner
and two matrix-vector multiplies with the full matrix representation of the coupled
equations. A key advantage of solving for the radial functions directly onto a grid
is that potentials are represented by diagonal matrices. This means that inclusion
of the coupling potentials in the full matrix-vector multiply is relatively inexpensive.
Each coupling term requires exactly N (complex) multiplies and adds, where N is
the number of two-dimensional radial grid points.

Most of the time used for solving the coupled equations is spent on applying the
pre-conditioner. Each application of the pre-conditioner is equivalent work to solving
the Temkin-Poet model problem for each partial wave. As mentioned in Chapter 3
and Appendix E, the Temkin-Poet model was also solved using the CGS iterative
algorithm. Therefore, the method for solving the coupled equations actually uses the
CGS algorithm at two levels. The coupled equations are solved iteratively using the
CGS algorithm with the two pre-conditioning steps for each outer iteration requiring
solutions to two-dimensional radial equations. These are, themselves, solved using
low-order finite difference matrices as pre-conditioners to iteratively solve high-order
finite difference matrix equations.

Since the work needed to couple partial waves is a small fraction of the total work,
this method makes efficient use of distributed memory, massively parallel supercom-



puters. The block structure of the full matrix suggests a natural level of parallelism
for solving the coupled equations. Each partial wave is assigned to a separate group
of processors. Application of the pre-conditioner and the block-diagonal portion of
the matrix-vector multiply are then accomplished independently within each group
of processors. Significant communication between groups of processors is needed only
when adding the coupling terms in the full matrix-vector multiplies.

By solving the uncoupled equations in parallel, application of the pre-conditioner
takes the same amount of time required to solve just one uncoupled equation. Accord-
ing to the table in Figure E.1 the most time-consuming step in solving each uncoupled
equation is the LU factorization. The LU factors depend only on the matrix and not
on the right-hand side so they will be the same for each iteration. Saving the LU
factors after the first pre-conditioning step significantly reduces the work required for
each subsequent application of the pre-conditioner.

5.3 Partial Wave Radial Functions

Formally, calculating the complete wave function requires solving an infinite num-
ber of coupled equations, each of which couples an infinite number of partial waves.
In practice, of course, we must put 2 maximum on the values of L for which we solve
the coupled equations and we must limit the number of partial waves coupled for
each individual L. The number of partial waves coupled together determines the cost
of solving the coupled equations. It is, therefore, beneficial to make sure that the
most important partial waves are the ones included first in the calculation. For this
reason, we want to choose partial waves, at least roughly, in their order of relative
importance. To choose an ordering for the partial waves we should understand the
basic properties of the different radial functions.

In the Temkin-Poet model the scattered wave was either symmetric or anti-
symmetric with respect to interchange of the radial coordinates. The same symmetry
property for the six-dimensional scattered wave, U (7%, 71) = (-1)SUL (71, 72), leads
to more complicated symmetry rules for the radial functions (see Appendix F).

"Ibllzlll (T27 Tl) = (—l)sqpl]:;h (Tla T2) (5.8)

When I; = I, the radial function ¢f;12 has the same symmetry property as the
Temkin-Poet wave function. A symmetric and an anti-symmetric example of L = 2
radial functions are shown in Figure 5.4. For both examples {; = I3 = 2 so the
dominant discrete channel component that can be seen along the r; and 7o axes is
excitation of the 3d state of hydrogen. As in the Temkin-Poet model, any triplet
partial wave with [, = Il contributes negligibly to ionization because of a “trough”
that exists along the ray r; = ro. Since l; = [y for every L = 0 partial wave, the
entire set of L = 0 triplet partial waves plays an insignificant role in ionization.

Unlike the Temkin-Poet model, there exist radial functions in the partial wave
expansion of ¥k (7,7) that have no symmetry themselves. Examples of these are
shown in Figure 5.5. In these examples the discrete channels are noticeably different
on the two axes. The dominant discrete channel component along the ro axis is
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Figure 5.4: L = 2 and I, = I, = 2 radial functions for electron-hydrogen scattering
at 17.6 eV incident energy. The upper picture shows the symmetric singlet radial
function and the lower picture shows the anti-symmetric triplet radial function.
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Figure 5.5: Asymmetric radial functions for electron-hydrogen scattering at 17.6 eV
incident energy and singlet spin symmetry. The upper picture shows L =1, [ =1,
lo = 2 and the lower picture shows L =3,1;, =0, [ = 3.
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g (units of a,)

Figure 5.6: L = 2 symmetric radial functions for electron-hydrogen scattering at 17.6
eV incident energy. The upper picture shows the I; = I, = 1 radial function and the
lower picture shows the [; = I, = 3 radial function.
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Figure 5.7: L = 4 radial functions for electron-hydrogen scattering at 17.6 eV incident
energy and singlet spin symmetry. The upper picture shows the I, = I = 5 radial
function and the lower picture shows the I; = 1, Iy = 5 radial function.
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Figure 5.8: Magnitudes of several L = 2 radial functions along an arc of hyperradius
100ao. Examples shown are for singlet spin symmetry and 25 eV incident energy.

determined by the value of /; and vice-versa. For instance, the upper picture in
Figure 5.5 corresponds to [; = 1 and I, = 2 so excitation of the 2p state is visible
along the ry axis and excitation of the 3d state is visible along the r; axis. Similarly,
the lower picture with [; = 0 and l, = 3 has an elastic scattering component along
the ry axis with an emerging 4f excitation component barely visible along the r; axis.

For any {2, with l; # I, there is a complementary radial function %%, such that
the sum of the two is either symmetric or anti-symmetric. If we include some 1/1{; 1, for
l; # Iy then we must be sure to also include sz;zl in order to maintain the symmetry
of the entire partial wave expansion. However, the radial functions ¢1L112 and 1/)le11
contain the same information so there is no need to explicitly store both.

When solving the coupled equations on a parallel computer each group of proces-
sors is assigned an (ly,ls) pair with I; < ly. If [; # I, then that group is responsible
for adding the couplings from both zlzlLl,2 and 'zj){;ll Thus, except for L = 0, the number
of partial wave terms coupled is actually larger than the number of processor groups
used for the calculation. Also, when gauging the importance of an (I, l,) partial wave
with {; # [, it is best to consider the combined contribution from ¢[;,2 and ¢1L211-

The relative importance of different partial waves for L = 2 is illustrated in Figure
5.8. A “rule-of-thumb” for ordering partial waves is that those corresponding to larger
angular momentum have less importance, this does not necessarily hold for very small
angular momenta. This “rule” applies similarly to both the total and the individual
angular momenta. For the energies considered here, the L = 2 sets of partial waves
contribute most for the singlet spin symmetry and the L = 3 sets contribute most for
triplet spin symmetry. As L increases beyond these maxima, the relative importance
of the corresponding sets of partial waves decreases monotonically. This suggests that
ordering sets of partial waves for each L by increasing L is reasonable assuming that




more than the first four values of L will be used.
Obtaining each set of L partial waves is an independent calculation so, deciding

where to truncate the expansion in L is a matter of adding calculations for increasingly

large L until sufficient convergence is achieved. Deciding which (l1,1,) pairs to keep
in the coupled equations for each L requires more thought. All partial waves for a
particular L are coupled so one cannot easily add another term to the expansion to
see if the results change. If more partial waves are added to an already converged set
then the iterative algorithm must be re-applied to the full, larger set of partial waves.

If an individual angular momentum for a partial wave is large then the dominant
discrete channel component along the appropriate axis is excitation to a high-energy
state. These components have much smaller magnitudes than those for elastic scat-
tering and excitation of low-energy states. Examples of symmetric radial functions for
two different individual angular momenta are pictured in Figure 5.6. The [; =l =1
case has excitation of the 2p state clearly visible along both axes while the [; = lo = 3
case does not appear to have any discrete channel components. In actuality, excita-
tion of the 4f state is present, but is not strong enough to have “emerged” from the
ionization component before 120a,. Examples with individual angular momenta of
five are shown in Figure 5.7. In the symmetric case (l; = lo = 5) no discrete channels
are visible and the radial function appears to be purely ionization. The asymmetric
example has l; = 1 so excitation of the 2s state is visible along the ry axis.

The ordering used for L = 2,3 and 4 is indicated in Figure 5.9. Two selection
rules, that govern which (I1,l;) partial waves exist for a particular L, determine the
patterns formed on the l;, I, matrices. First, the sum of {; and I, must have the same
even/odd parity as L (see Appendix F). Second, the difference between I; and I,
must not exceed L i.e., |lo — ;] < L. The parity rule means there are never pairs
with [; = I, for any odd value of L, while the second rule requires that only l; = I,
pairs exist for L = 0. For even values of L greater than zero the coupled equations will
contain some partial waves with l; = lo and some with l; # l. For L = 0 the pattern
in the l1, l> matrix is particularly simple, only the “diagonal” (I; = l,) partial waves
exist. In this case, as well as for L = 1, there is an obvious ordering for the partial

L=1 L=2 L=3 L=4

1 2 3 4 01 2 3 4 01 2 3 4 01 2 3 4
0 1 0 2 0 2 0 4
1 2 1 1 4 1 1 41 1 2
2 2 3 9 2 3 6| 92 1 3 9 1 5
3 3 41 3 4 5 3 2 3 5[ g 2 3
4 4 4 6 71 4 4 5 4| 4 5 6

Figure 5.9: Illustration of how partial waves were chosen for L = 1,2,3 and 4. The
rows and columns of each matrix correspond to the values of l; and l,. Empty
matrix cells indicate (I;,l3) pairs that do not exist for that value of L. Non-empty
cells indicate (l3,l,) pairs that are included and the numbers in those cells give the
orderining in which the pairs were chosen.
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(=0 o [ t [2]3 J4f[s5]6] 7 ]81]9 |
1 ] 00 | 01 [11]12]22][23[06]0,7 08109
2 | 11 | 1,2 |02 03 |13[1,4[1,56] 1,6 | 1,7 | 1,8
3122 | 23 [22] 23 [33134[24] 25| 26 | 2,7
4 || 33 | 34 |1,3| 1,4 [0,4]05]33| 34 | 35 | 3,6
5 || 44 | 45 |33 34 [24(25[1,7| 1,8 | 44 | 45
6 | 55 | 56 |24 25 | 44145126 2,7 | 1,9 | 1,10
7 | 66 | 6,7 |44 45 1,561,635 3,6 | 2,8 | 2,9
8 | 7,7 | 7.8 |35 36 |3,53,6 44| 45 | 3,7 | 38

e

88 | 89 |55 5.6 |5556]2,8]| 2,9 | 4,6 | 4,7
10 || 9,9 | 9,10 (46| 4,7 | 2,6|2,73,7] 38 | 55 | 5,6
11 || 10,10 [ 10,11 | 6,6 | 6,7 | 4,6 | 4,7 | 4,6 | 4,7 | 2,10 | 2,11
12 [[11,11|11,12|5,7] 5,8 | 6,6 | 6,7]5,5 | 5,6 | 3,9 | 3,10
13 12,12 (12,13 |7,7| 7,8 | 3,7 | 3,8 3,9 3,10 | 4,8 | 4,9
14 | 13,13 (13,14 6,8 6,9 | 5,7 58|48 | 4,9 | 5,7 | 5,8
15 | 14,14 | 14,15 | 8,8 | 89 | 7,7 17,8 |5,7| 58 | 6,6 | 6,7
16 || 15,15 | 15,16 | 7,9 | 7,10 | 4,8 | 4,9 | 6,6 | 6,7 | 3,11 | 3,12

Table 5.1: The order in which partial waves were chosen for each value of L.

waves. Since including (I;,l3) implicitly means also including (l2,;), complementary
matrix cells are assigned the same number.

In deciding which (I, 15) partial waves to keep in the coupled equations we need
to order them according to their relative importance. This can be done precisely only
after actually calculating the radial functions. Relative magnitudes of several radial
functions for L = 2 are compared in Figure 5.8. Of course, we need to choose the
ordering before calculating the radial functions. The basic algorithm, which should
be reasonable if enough partial waves are coupled, is to select partial waves in the
order of increasing individual angular momenta. This ordering is complicated when
highly asymmetric radial functions with a large [, and small /; are involved.

The orders in which the (l;,l;) pairs were chosen for calculations at particular
values of L are listed in Table 5.1. In general, the pairs are ordered so that smaller
angular momentum terms are included first. The ordering in Table 5.1 was computer
generated by an algorithm that sometimes chooses the pairs in the order of increas-
ing min(l;,ls) and sometimes in order of increasing max(l;,ls) and is probably not

total angularmomentum (O (1| 2 | 3 |4 | 5 | 6 | 7| 8| 9
number of (13, ls) pairs 616101016 |16 | 14|13 | 10|10

Table 5.2: The number of (I;,ls) pairs that were included for each value of L using
the ordering in Table 5.1. Each pair with [; # [ actually adds two partial waves.



optimal. Handpicking which terms to include, or perhaps using a different algorithm,
might provide a better ordering. Usually, the number of different pairs to include is
chosen so that all pairs with either I; or I, below some minimum are included.

The number of partial waves that need to be kept depends upon the physical
quantity being calculated. The more detailed the scattering information, the more
partial waves that must be included to converge the results. In the next chapter we will
extract differential cross sections for ionization from the radial functions calculated
here. It was found that generating radial functions up through L = 9 was sufficient.
The numbers of partial waves (with [; < l;) that needed to be included for each L in
order to converge the most detailed cross sections are listed in Table 5.2.
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Chapter 6

Differential Cross Sections for
Electron-Impact Ionization

A complete theoretical treatment of electron-impact ionization means obtaining
differential cross sections that give detailed information about the two outgoing elec-
trons. The triple differential cross section gives angular distributions for both elec-
trons and describes how energy is shared between them. Results presented in this
chapter represent the first calculated triple differential cross sections that agree, on
an absolute scale, with experiment [29]. The single differential cross section provides
information only about how energy is shared between the two electrons. Both types
of differential cross sections are obtained from the outgoing flux of the scattered wave.
Since the wave function is known only on a finite region, an extrapolation procedure
is used to calculate the asymptotic limit of the flux.

6.1 Scattered Flux

Differential cross sections for electron-impact ionization of hydrogen can be calcu-
lated from the scattered flux by a straightforward extension of the procedure devel-
oped for the Temkin-Poet model problem. The same characteristics and limitations
encountered in Chapter 4 will apply here. In addition, there are further complications
due to the directional dependence of the flux.

6.1.1 Flux at finite distances

‘The total cross section is related to the integral of the probability current density
Jpo through a hypersphere of radius po in the limit py — co. For electron-hydrogen
scattering, j,, is a function of the scattering directions #; and 75 for both electrons as
well as the hyperspherical angle c.

fno(@f1,70) = p- Im { (TL(71, 7)) VLR, 7)) - (6.1)

Equation 4.5 gives the total cross section in terms of an integral over the probability
current density in the Temkin-Poet model. A similar expression gives the total cross




section for electron-hydrogen scattering.

71'/2

Ototal = % / / / Jpo (@, 1, o) T2r3df diopodar (6.2)

47 47 Po—00

Equation 6.2 differs from Equation 4.5 in that it is an integral over the hyperangle
and both directions. Also, the normalization factor is different because the initial
state \Ilgi, defined in Equation 2.5, is normalized differently from the one used for the
Temkin-Poet model. In Equation 2.5 the incident electron is represented by e®i* so
the incident flux density consistent with Equation 6.1 is simply k;.

We will work with a generalized, dimensionless flux f,,(a, 71,72) that includes a
factor of k; and the Jacobian factor r2r2p from the volume element in Equation 6.2.

A d
fpo (Ot, T, 7‘2) =Im {kzp (Tsz\Ifsc(Tl, 7”2)) p (7"17'2\1’5(:(7‘1, 7”2))}

(6.3)

p=po

Total scattered flux is related to f,, in the limit py — co by integration over the
hyperspherical angle and both directions.

/2

Ototal = k‘2 ///fpo(a 71, 7"2) di disda (64)

47 47 po—r00

Just as in the two-dimensional model problem, the flux is directly related to differen-
tial cross sections for ionization, except in the cases where one of the electrons carries
nearly all of the energy (see Section 4.4).

Equation 6.4 shows that, in the limit py — oo, f,, (@, 71, 72) gives the distribution
of the scattering probability over the directions 7; and 7, and the hyperangle a. We
will need the asymptotic limit of the flux to calculate differential cross sections for
ionization. With exterior complex scaling we know the wave function only on a finite
region so we can directly calculate f,, only for finite py. That means we will need
to employ an extrapolation procedure similar to the one used in Chapter 4 to obtain
the pgp — oo limit. Unlike in Chapter 4, the scattered wave is a function of the
hyperradius and five angles and it must be constructed from as many of the partial
wave terms from Equation 5.3 as necessary to converge the final results.

foo(ct, 1,72) = Im {ki/) > 2 ( ) (T/’tltz)( ) yzl,zz}

L'y 1, Lyl

(6.5)

p=po

6.1.2 Coplanar geometry

The flux is a function of five variables: the hyperangle a and the four spherical
polar angles 6, ¢;, 02, and ¢>. In examining properties of the calculated flux we
will restrict the two final directions so that they and the incident direction all lie
within a plane. This “coplanar” geometry is illustrated in Figure 6.1. All available
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Figure 6.1: Diagram of coplanar geometry. Two electron detectors and the incident
electron beam all lie within a plane.

experimental data is for these types of geometries. In an experiment, the two electron
detectors and the incident electron beam all lie in a single plane. The angle between
one of the detectors and the incident beam is denoted by 6; and the angle between
the two detectors by 6.

6.1.3 Adding partial waves

Computing the flux requires constructing the complete scattered wave from its
partial wave terms as shown in Equation 6.5. That means we need to be concerned
about the convergence of the calculated flux with respect to the number of partial
waves kept in the expansion of UJ. This is an issue at two levels: the number of
(11, l2) pairs kept for each total angular momentum L and the maximum value of L
kept in the expansion. The minimum number of (I1,15) pairs kept for each particular
L is shown in Table 5.2. These numbers were chosen mainly by determining at what
point adding more partial waves to a pre-existing solution to the coupled equations
stopped affecting the previously computed radial functions.

Examples of the flux at py = 120ay, shown in Figure 6.2, illustrate the effect that
including partial waves with increasingly large values of L in the expansion of ¥
has on the calculated flux. Flux in Figure 6.2 were calculated for a hyperangle of
45° with the two scattering directions chosen so that the incident direction always
bisects the angle between them. The solid line in the upper part of each panel is the
flux constructed by keeping partial waves only up to the particular value of L < 9
indicated. The dashed line in every panel is the flux calculated when keeping partial
waves up to L = 9.

Comparing flux calculated using different numbers of partial waves is a good
method for measuring the convergence of the flux with respect to adding more partial
waves. For each panel the relative difference between the solid and dashed lines in
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Figure 6.2: Convergence of flux when including partial waves up to increasingly large
L. Flux at pp = 120qay is shown for coplanar geometries with 8, = —8;. The dashed
line in each panel shows the flux when partial waves up to L = 9 are included.

the upper part is plotted on a log scale in the lower part. This gives an indication of
the error due to prematurely truncating the expansion in L. Convergence in L is very
slow when the scattering directions are close together and much more rapid when the
electrons are moving directly apart from each other.

6.2 Differential Cross Sections for ITonization

The cross section definition in Equation 6.4 requires the py — co limit of f,;.
Since the wave function calculated under exterior complex scaling is equivalent to the
unscaled wave function only on a finite region we can calculate f,, only for finite pq.
Thus, in order to obtain differential cross sections for ionization from flux calculations
we must use an extrapolation in py similar to the procedure described in Chapter 4
for calculating single differential cross sections in the Temkin-Poet model.

6.2.1 Extrapolating ionization flux

According to the asymptotic form for ionization in Equation 2.11, the ionization
flux is expected to approach its asymptotic limit like 516'

1 )
large po:  fy(a,71,72) = foola,1,72) + O (;—) (6.6)
0
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Figure 6.3: Extrapolation in p of ionization flux for coplanar geometries with fixed
f12 at 20 eV incident energy. In each panel flux calculated at p = 100, 105,110,115
and 120ay are shown along with the extrapolated flux. The line for the extrapolated
flux always lies below the others.

Fitting Equation 6.6 to several f,; calculated directly from the wave function gives
the py — oo limit of the flux provided that the calculated f,, are in the region where
the flux behaves according to Equation 6.6.

The flux can, of course, be calculated only in the region where both coordinates
are not complex-scaled i.e., for 7,79 < Ry. That restricts the f,, used for the ex-
trapolation to those for which py < Ry if the f,, are needed over the full range of
the hyperangle o. However, if the cross section is only needed for values of o near
45° then we can also calculate f,, for hyperradii in the range Ry < py < v2Rp. In
Chapter 4 we found that the quality of the extrapolated results depended on the
hyperangle a because of contamination from bound states. With a flux that is also
a function of the two directions we can expect that the extrapolation behavior will
depend upon the four angular coordinates as well.

Three examples of calculated and extrapolated flux for both singlet and triplet spin
symmetries with & = 45°, where contamination from bound states has the least effect,
are shown in Figure 6.3. These examples are restricted to coplanar geometries (see
Figure 6.1) with a fixed angle 65 between the two scattering directions. In all cases,
the line for the extrapolated flux lies below the lines for the flux calculated at finite
po- Relative differences between the calculated and extrapolated flux are largest when
the angle between the two directions is smallest. This is sensible because a particular
hyperradius p, corresponds to a distance of 2py between the two electrons when they
are moving directly away from each other whereas the actual distance between the
two electrons is smaller when the angle between their directions is less than 180°.

A general property of the flux shown in Figure 6.3 is that there are always local
minima at 6 = 3615 and 6; = 161, + 180°. Both of these correspond to cases where
the incident direction bisects the angle between the two detectors. In fact, in these
cases the Pauli exclusion principle requires that the triplet contribution be identically
zero because of the cylindrical symmetry of the system.




6.2.2 Triple differential cross section

For large p the hyperangle o parametrizes energy sharing between the two elec-
trons as &; = Fcos’a and €y = Esin® . It is simple to convert a quantity that is
differential in o to one that is differential in the energy of one electron.

daion (87 fl) fZ) . 1

~ ] £ A .
dedp,dry no% TZEsnacosa oo (@, 1, 72) (6.7)

e=Esin?a

For ionization, the most detailed quantity of interest is the so-called triple differen-
tial cross section (TDCS) defined in Equation 6.7. It gives the distribution of the
ionization cross section over energy sharing between the two electrons and the two
directions 7; and 7.

The conditional equality in Equation 6.7 was discussed in Chapter 4. We are
interested in only the flux due to ionization, but we are calculating flux from the full
scattered wave that contains discrete channel components as well as ionization. Thus,
the region of validity for the TDCS obtained by extrapolation is limited to the range
of € (or ) where the directly calculated flux f,, were composed only of ionization.
This means that we cannot calculate the TDCS for single-electron energies smaller
than 20%, or so, of the total energy.

By convention, the TDCS is normalized so that the total ionization cross section
is related to it by integration over the one-electron energy ¢ from zero to E/2 and
integration over the full range of both directions 7; and 7s.

E/2

daxon(s 71, 7'2) g
jon = d1d .
Tio / / / dediidfs F1dfzde (6.8)

Any energy sharing cross-section must be symmetric about E/2 because of the im-
possibility of distinguishing which electron has energy €; and which has energy €, =
E — £1. Since the differential cross section is defined for only half the energy range
there is a factor of two included in Equation 6.7.

6.3 Comparison With Experiment

Measuring the TDCS requires two electron detectors. One is tuned to detect
electrons of some energy £; and the other is tuned to detect electrons of energy
gy = E — g;. Although the basic experimental apparatus is simple to envisage,
accurate and detailed measurements are apparently quite difficult and, unfortunately,
there is very little absolute experimental data available.

The best collection of TDCS data for electron-impact ionization of hydrogen at
low energies comes from “symmetric, coplanar” measurements performed by Roder et
al. and published in 1996 [33]. For these measurements both detectors were tuned to
detect electrons with energy E/2 and arranged in the coplanar geometry depicted in
Figure 6.1. In this geometry the electron source, the two detectors, and the interaction
region all lie on the same plane. For most of the comparisons presented here the angle
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Figure 6.4: Symmetric coplanar TDCS for 17.6 eV incident energy with 8, fixed. 1996

data [33] normalized by comparison with 1997 data [32] for #;, = 180°. Normalization
factor = 0.23.



612 between the two detectors is held fixed while the angles between the detectors and
the incident direction are varied. Unfortunately, this data was originally presented in
unknown units and must be multiplied by an overall scaling factor to compare with
calculated cross sections. This scaling factor is dependent on energy, but supposedly
not on the geometry, and is expected to be the same for all data sets of different
geometries but the same energy.

6.3.1 TDCS for 17.6 eV

Réder et al. presented a small set of measurements in 1997 [32] that attempted
to put the previously measured TDCS data on an absolute scale. They gave experi-
mentally normalized data for incident energies of 15.6 eV and 17.6 €V, but only for
the case where 65 = 180°. We have calculated wave functions for 17.6 eV incident
energy so we can compare with absolute experimental data at this one energy [29].
We normalized the set of 17.6 eV measurements by comparing the 612 = 180° data
from 1996 to the corresponding data from 1997 and choosing a normalization factor
that scales the 1996 data to coincide with the 1997 data.

Absolute data from 1997 and normalized 1996 data with 6;, = 180° are shown
together, along with the TDCS calculated with exterior complex scaling, in the top
panel of Figure 6.4. The cross section in this case is strongly peaked at angles of
0° and 180°, where one electron is scattered forward and the other “recoils” in the
backward direction. Unfortunately, experimental measurements were not possible
near these points. A normalization factor of 0.23 scales the 1996 data to coincide
with the 1997 data in units of 10~ *¥cm2eV 1.

The remaining four panels in Figure 6.5 show the calculated TDCS at different ;-
compared with 1996 data using the same normalization factor. Agreement between
the calculated TDCS and experimental data is excellent, particularly for 6,5 of 120°,
100°, and 90° where measured values exist for the cross section peaks. The largest
discrepancy is at the minimum for 6;5 = 90°. Since this is the smallest value of all
the data sets we expect the measurement to be less accurate there. Also, converging
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Figure 6.5: Symmetric coplanar TDCS for 17.6 eV incident energy with 6, fixed.
Measurements [33] scaled to fit calculated cross section. Normalization factor = 1.15.
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calculated TDCS in terms of partial waves was more difficult for ;5 = 90 than for
the other geometries.

Additionally, there are two sets of 1996 measurements at 17.6 eV where the posi-
tion of one detector was held fixed while the other was rotated independently. This
data is normalized differently than the fixed 6;, measurements. A single normaliza-
tion factor for these two sets of data was chosen to give the best fit to the calculated
cross section. Normalized experimental data and the calculated TDCS for these two
cases are shown in Figure 6.5.

6.3.2 TDCS for 20, 25, and 30 eV

Comparisons between the calculated TDCS and measured values for incident en-
ergies of 20, 25, and 30 eV are shown in Figures 6.6, 6.7 and 6.8. Experimental
values were presented by Roder et al. [33]. As with the 17.6 eV measurements, the
data is presented in arbitrary units and must be normalized. However, for these
energies there are no absolute measurements available with which to normalize the
data. Therefore, we normalized the experimental values by choosing a scaling factor
for each energy that best fits the experimental data to the calculated cross section.

With these results, experimental data at these energies has been put, for the first
time, on an absolute scale. It is important to emphasize that a single scaling factor
was used for all data at a particular energy. Overall, the agreement between the
present calculations and measured values is excellent. The largest discrepancy is for
62 = 80° at 20 eV incident energy. We should expect larger disagreement for the
smallest value of 6, because converging the calculated cross section in terms of partial
waves is more difficult when the two scattering directions are closer together.

6.4 Single Differential Cross Sections

The single differential cross section (SDCS) gives only the energy distribution
between the two electrons and is related to the TDCS by integration over the two
scattering directions 7; and 7s.

damn(e) doion(€,T1,72) ,. ..
/ / dedfidfy ar1dr (6:9)

Constructing the TDCS from a partial wave expansion requires a double sum over all
angular momentum quantum numbers as in Equation 6.5. Because of the orthonor-
mality of the spherical harmonics, Y9, (71, 7,), integration over #, and 7, collapses
this into a single sum over each angular momentum quantum number.

Consequently, the SDCS is a simple sum of partial wave terms for each set of
L, 11,15 quantum numbers. Each individual term is calculated from a single partial
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Figure 6.9: Components of the SDCS (with spin factors included) for electron-
hydrogen scattering at 25 eV incident energy corresponding to particular total spin
and angular momentum quantum numbers.

wave component of the scattered wave.

dUion(g) ~ d .
de kESlnacosa 2 Im{(¢lll2 7”1,7‘2)) dp (d’llzz(ﬁ,m))}

e=Esin® o L)l

p—roo

(6.10)
Calculating each term in Equation 6.10 is equivalent to calculating the SDCS in
the Temkin-Poet model. So, calculating the SDCS for electron-impact ionization of
hydrogen is a trivial extension of the procedure described in Chapter 4.

In general, significantly fewer partial wave terms are needed to converge the SDCS
than are needed to converge the TDCS. For the incident energies treated here there
is never a need to include contributions for L > 6. Also, the number of partial waves
needed for any particular L component is generally smaller than the number needed
to converge the TDCS. Individual total angular momentum components of the SDCS
at 25 eV incident energy are shown in Figure 6.9 for both singlet and triplet spin
symmetries. For the singlet case the L = 2 component is the most important with
the relative importance of each component decreasing with increasing L for L > 2.
For the triplet case it is the L = 3 component that is most important. The L = 0
radial functions must all have the same symmetry properties as in the Temkin-Poet
model. That means the L = 0 component of the triplet SDCS is insignificant because
those radial functions must vanish in the middle of the ionization region.

6.4.1 Contamination from bound states

At finite py the discrete channel components of ¥ extend over a nonzero range
of the hyperangle a. The discrete channel components of the flux do not behave
like Equation 6.6 so the extrapolated flux is not valid over the full range of «. For
the Temkin-Poet model we found that the asymptotic flux extrapolated from py near
100ao was valid for o between 15° and 75°. We expect the same qualitative behavior
here. The range of o over which we may extrapolate the ionization flux is limited



according to which discrete channel components have non-negligible magnitudes. This
will be slightly different for each partial wave as can be seen in Figure 5.8.

For the most significant partial waves the discrete channels are still confined within
15° of the edges. Partial waves with larger angular momenta have longer-range dis-
crete channels that are visible. In the cases with the largest angular momenta it
is really not even possible to distinguish between ionization and higher excitations.
However, the partial waves for which the discrete channels obscure a larger portion
of the ionization wave are less significant so we can still assume that the sum of the
extrapolated flux for all partial waves is reasonable over the same range of o as was
found in the Temkin-Poet model.

We estimate the SDCS over the full range of € by using the same extrapolation
in energy introduced in Chapter 4 for the Temkin-Poet model. We assume that the
SDCS behaves linearly near the edges and replace the calculated values in a small
region near € =0 (and € = E) with a linear extrapolation. There is some ambiguity
about whether this should be done to each partial wave term individually or whether
it should be applied to the sum, but in practice this makes little difference. For the
results presented here the extrapolation in energy was applied to L-components of
the singlet and triplet SDCS. These were formed by adding together all partial wave
terms from Equation 6.10 with the same values of L and S. End-regions of the L-
components were then replaced by linear extrapolations in energy, producing SDCS
components such as those shown in Figure 6.9.

6.4.2 SDCS for 17.6, 20, 25, and 30 eV

Results for the calculated SDCS at all four energies treated here are shown in
Figures 6.10 and 6.11. In each case, the singlet and triplet components of the SDCS
are shown along with the total SDCS. Spin factors are included in the spin components
so the total SDCS is simply the sum of the singlet and triplet SDCS. All of the curves
are very smooth and symmetric about E/2. Unlike in the Temkin-Poet model, the
triplet SDCS is not zero in the middle. The only experimentally determined values
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Figure 6.10: Single differential cross sections for electron-hydrogen scattering at 17.6
eV (left) and 20 eV (right) incident energies. The cross sections for singlet and triplet
spin symmetries (with spin factors included) are shown along with the total.
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17.6 eV 20 eV 25 eV 30 eV

e/E[|S=0|S=1|S=0][S=1[S=0[S=1[S=0[S=1
0.0 || 297 | 058 | 2.70 | 0.55 ]| 2.15 | 0.63 || 1.68 | 0.61
01 || 2.90 | 0.57 | 2.64 | 053 || 2.02 | 054 || 1.53 | 0.49
02 ]| 2.84 | 0.55 | 2.58 | 0.51 | 1.88 | 0.45 || 1.39 | 0.37
0.3 || 280 | 0.54 || 2.583 | 049 | 1.79 | 0.38 || 1.31 | 0.29
04 || 2.78 | 0.53 || 249 | 048 [ 1.74 | 0.34 || 1.25 | 0.24
05 | 277 | 053 || 248 | 047 || 1.72 | 0.33 || 1.24 | 0.23

‘Table 6.1: Numerical values for the singlet and triplet components of the SDCS, spin
factors are not included, in units of 10~"cm2eV~!. Values are given at different one-
electron energies € for incident energies of 17.6, 20, 25, and 30 eV. Total energy E is
equal to the incident energy minus 13.6 eV.

for the SDCS are those obtained by Shyn [35] at 25 €V incident energy. They are
compared with the calculated SDCS in Figure 6.11. These values were determined by
integrating measurements of the double differential cross section that depends upon
the polar angle as well as the energy of one electron. Numerical values for the SDCS
at all four energies are listed in Table 6.1 for six different ratios of the one-electron
energy to the total energy.

6.5 Integral Ionization Cross Sections

As a final means of measuring the ionization component present in the wave
functions calculated using exterior complex scaling, we will consider spin asymmetries
and integral cross sections for ionization. The integral ionization cross section oy,
is obtained by integrating the SDCS. Spin asymmetry is a measure of the relative
contributions of the singlet and triplet spin components to oi,. Both are given in
terms of the individual ionization cross sections for singlet, os, and triplet, o7, spin

-y

L

NGJ

5 06

e

2 2

20.2[- _ : : 3 : tiplet @ .
G " M 1 G i i 1 : i i 1 M
0 2 6 8 10 0 2 4 6 8 10 12 14 16

energy of one electron (eV) energy of one electron (eV)

Figure 6.11: Same as Figure 6.10, but for 25 €V (left) and 30 eV (right) incident

energies. Experimentally determined values due to Shyn [35] are shown for 25 eV
incident energy.




| incident energy || 17.6 eV | 20 eV [ 25 eV | 30 eV |

singlet 2.027 | 2.741 | 3.807 | 4.036
triplet 0.389 | 0.538 | 0.885 | 1.047
total 0.798 | 1.089 | 1.616 | 1.794
asymmetry 0.513 | 0.506 | 0.452 | 0.416

Table 6.2: Singlet, triplet and total ionization cross sections and the spin asymmetry.
Cross sections are in units of a2, asymmetry is dimensionless. Spin factors are not
included in the singlet and triplet cross sections.

symmetries that are defined without including spin statistical factors.

0s — 0T

1 .
Tion = (os + 30r) Spin Asymmetry = s ¥ 30m

(6.11)

Values for os, o7, Oion, and the spin asymmetry are listed in Table 6.2. The
comparisons between measured and calculated TDCS earlier in this chapter indicate
that exterior complex scaling is successful in correctly describing the details of at
least part of the ionization final state. The values in Table 6.2 provide the coarsest
measure of the ionization final state and may be useful for future comparisons with
experiment or other theoretical methods.
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Chapter 7

The Quest for a General Solution
to Electron-Impact Ionization

7.1 Significance of this work

Electron-impact ionization is the aspect of electron-hydrogen collisions most diffi-
cult to treat theoretically and has stood as the last unsolved problem in the quantum
mechanics of two-electron systems. With the work reported here, a complete solu-
tion to electron-hydrogen scattering above the ionization threshold has finally been
realized nearly thirty years after the first meaningful calculations were performed on
the system. Triple differential cross sections for electron-impact ionization are now
known, for the first time, on an absolute scale. These detailed cross sections can be
calculated for a range of geometries and energy sharing ratios where no experimental
data is available and that is currently inaccessible to other theoretical methods.

The real impact of this work is that it signifies the first solution to a particular
class of fundamental problems in atomic physics. Never before has a detailed descrip-
tion of a quantum mechanical system of three charged particles moving apart been
possible. These results enable an understanding of the details of three-body breakup
processes that will carry forward to systems more complicated than electron-hydrogen
scattering. Combined with the existing formal theory of ionization, they provide a
solid basis for thoroughly understanding the dynamics of three-body breakup.

Also, this dissertation provides the first demonstration of exterior complex scal-
ing as a viable approach to electron collision theory. Currently, ECS stands alone
in its ability to produce wave functions describing two electrons in the continuum.
The spectacular agreement between experimental values and calculated cross sections
validates the correctness of these wave functions. This is strong evidence in support
of the claim that exterior complex scaling can represent any final scattering state, no
matter how complicated the boundary conditions. Unlike other methods proposed to
study ionization, this method involves no uncontrolled approximations. Accuracy of
the results is limited only by the finite size of the grid used and the number of terms
retained in the partial wave expansion.

The wave functions presented in Chapter 5 are the first verified to correctly de-



scribe scattering with two electrons in the continuum. They stand as a benchmark
with which to test new methods designed to study breakup in more complicated sys-
tems. Developing a methodology suitable for calculating electron-impact ionization
cross sections for more complicated atoms and molecules is the real challenge to the
electron-scattering theory community. The present work is a significant step toward
being able to obtain detailed information for the ionization of multi-electron targets.
Other promising methods are currently under development, and the ultimate solution
will undoubtedly draw on methods and concepts from several of these efforts.

7.2 Shortcomings of this method

Although these calculations were remarkably successful, there is still room for
improvement. The most obvious shortcoming is their inability to calculate differential
cross sections over the range where one of the outgoing electrons carries most of
the total energy. Linear extrapolation, in energy, of the SDCS is only marginally
satisfactory, and, that procedure is useless for extending the energy sharing range
over which we can calculate the TDCS.

The present method relies too heavily on being able to calculate the wave function
at large distances. Extending the energy sharing range over which cross sections can
be calculated, or simply improving the accuracy of the results, requires knowing the
wave function at even larger distances. This “brute force” approach is unsatisfactory
because perceptible improvements in the quality of the results require substantially
increasing the size of the calculations.

Knowing the wave function at large distances is necessary mainly because of the
extrapolation in the hyperradius used to obtain differential cross sections. Flux used
in the extrapolation must be calculated in the near-asymptotic region where the
aysmptotic form in Equation 2.11 holds. Furthermore, the procedure for extracting
differential ionization cross sections from the wave functions is unable to distinguish
between excitation of the atom into higher energy states and ionization with one
electron carrying most of the energy. Thus, it relies on a significant portion of the
ionization component being spatially separate from the discrete channels at the values
of the hyperradius where the flux is actually calculated. Finally, since the procedure is
based on direct calculations of the flux rather than integral expressions it is accurate
only to first-order in wave function error.

Also, there are limitations to the range of incident energies for which we can calcu-
late wave functions. Calculations for scattering very near the ionization threshold are
problematic because all of the difficulties mentioned previously are magnified at lower
energies. Numerical error in using finite difference over large distances for incident
energies above 50 eV creates an upper bound to the range of energies accessible by
the present implementation.
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7.3 Improving the Method

An integral expression for the ionization flux would significantly improve the
method. Some preliminary work toward developing such an expression [34] has al-
ready been done. An integral expression has the potential to be variational and, thus,
less sensitive to wave function error which might allow the use of numerical methods
that produce less accurate wave functions, but require fewer computational resources.
A key promise of this approach is the possibility of extracting information only about
lonization. Being able to better distinguish between ionization and discrete channels
might extend the energy sharing range over which we can calculate differential cross
sections. Also, we could expect the cross sections to converge much more rapidly as
a function of grid size.

Changing the formalism to reduce the distances over which the wave function
must be known is the best path to improving the method. We could also improve the
results by using more efficient numerical methods to increase the range over which
the wave function can be calculated. One promising approach is to replace finite
difference with a finite element method using a set of discrete variable representation
(DVR) basis functions. Finite elements have already been shown to work well with
exterior complex scaling [20]. A DVR basis will lead to matrices that are smaller than
those for finite difference, but with matrix elements that are just as easy to calculate.

Another possibility for increasing the distances at which the wave function can be
calculated comes from noting that obtaining ionization cross sections by calculating
flux requires the wave function only at large distances. ECS produces an arbitrarily
accurate wave function on a finite region. If we want the wave function at larger
distances we could employ a “marching” algorithm that uses the wave function already
calculated on an interior region as a boundary condition for calculating the wave
function on an exterior region. The outgoing nature of the scattered wave should
allow for propagating it outward in this manner without significant numerical error.

7.4 Going beyond hydrogen

The primary motivation for improving on the present formalism is not to obtain
better results for hydrogen but to move toward being able to calculate ionization cross
sections for multi-electron atoms and even molecules. Although, in principle, ECS
can be applied to arbitrarily complex systems, the present implementation is suitable
only for two electron systems. Applying it to the ionization of one-electron ionic
targets such as e~ +Het — 2e~ +He " requires only straight-forward modifications.
To extend it to multi-electron atoms one could treat the atom as having just one
“active” electron with the inner electrons accounted for by a pseudo-potential. This
approximation will work best for the alkalis, whose inner electrons form a closed shell.

The next great challenge to theoretical treatment of ionizing collisions is the com-
plete solution to a true three-electron system. Simple extension of the methods used
here is not feasible because of the increase in dimensionality that comes from adding
a third electron. The first step will be solving some three-dimensional radial model




problem analogous to the Temkin-Poet model. Using the methods described in Chap-
ter 3, this means directly solving for the scattered wave onto a three-dimensional grid.
With currently available computational hardware, we cannot expect to be able to cal-
culate a three-dimensional wave function, in this way, beyond about 25qy.

Another approach to the three-dimensional problem might be to reformulate it as
a set of coupled two-dimensional problems where a known square integrable function
represents one electron and a two-dimensional scattered wave describes the other two.
This requires that we are willing and/or able to ignore double-ionization. Care must
be taken to be sure that linear dependence is not introduced into the expansion of
the three-dimensional wave function.

Moving from a three-dimensional model problem to a nine-dimensional, three-
electron problem will be an imposing computational challenge. Converging the par-
tial wave expansion of a three-electron wave function will probably require retaining
many more terms than were necessary for the two-electron system. The barriers
to computing three-dimensional radial functions combined with the requirements for
converging a three-electron partial wave expansion ensure that calculation of an exact,
three-electron scattering wave function will not be possible in the immediate future.
The first useful results for electron-impact ionization in a three-electron system may
very well come from some sort of coupled-channel approach.

Ultimately, the scattering theory community will develop theoretical methods that
can calculate cross sections for electron-impact ionization of molecules. The imple-
mentation described here specifically assumes that the nucleus is located at the origin
of the coordinate system and it cannot be used for molecular targets. Any method
developed for molecules should be designed so that it can be interfaced with an exist-
ing quantum chemistry package. This suggests the need for a formalism that can be
implemented by a basis set expansion. Sharp exterior complex scaling is incompatible
with ordinary basis sets. One alternative is to use a smooth contour, another is to
devise a finite element scheme that can be interfaced with quantum chemistry codes
but still use a sharp exterior complex scaling contour.

79




80

Bibliography

10.

11.

E. O. Alt, A. S. Kadyrov, and A. M. Mukhamedzhanov. Approximate triangle

amplitude for three-body charge exchange processes. Phys. Rev. A, 53:2438,
1996.

N. R. Badnell, M. S. Pindzola, I. Bray, and D. C. Griffin. Time-independent and
time-dependent close-coupling methods for electron-impact ionization of Mg,
AI?* and Si®*. J. Phys. B, 31:911, 1998.

M. Baertschy, T. N. Rescigno, W. A. Isaacs, and C. W. McCurdy. Benchmark
single-differential ionization cross section results for the s-wave model of electron-
hydrogen scattering. Phys. Rev. A, 60:R13, 1999.

R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
V. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear
Systems. SIAM, Philadelphia, 1994.

Gy. Bencze and Colston Chandler. Impossibility of distinguishing between iden-
tical particles in quantum collision processes. Phys. Rev. A, 59:3129, 1999.

I. Bray. Close-coupling theory of ionization: Successes and failures. Phys. Rev.
Letts., 78:4721, 1997.

I. Bray. Reply to “impossibility of distinguishing between identical particles in
quantum collision processes”. Phys. Rev. A, 59:3133, 1999.

I. Bray and D. Fursa. Calculation of ionization within close-coupling formalism.
Phys. Rev. A, 54:2991, 1996.

I. Bray and A. T. Stelbovics. Convergent close-coupling calculations of electron-
hydrogen scattering. Phys. Rev. A, 46:6995, 1992.

I. Bray and A. T. Stelbovics. Explicit demonstration of the convergence of the
close-coupling method for a coulomb three-body problem. Phys. Rev. Letts.,
69:53, 1992.

I. Bray and A. T. Stelbovics. Calculation of the total ionization cross section
and spin asymmetry in electron-hydrogen scattering from threshold to 500 ev.
Phys. Rev. Letts., 70:746, 1993.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Igor Bray. Electron-impact ionization of atomic hydrogen from near threshold
to high energies. Draft of a manuscript submitted to J. Phys. B, April 1999.

P. G. Burke, D. F. Gallaher, and S. Geltman. Electron scattering by atomic
hydrogen using a pseudo-state expansion I. elastic scattering. J. Phys. B, 2:1142,
1969.

P. G. Burke and J. F. B. Mitchell. Electron scattering by atomic hydrogen
using a pseudo-state expansion IV. the convergence of the s-state expansion at
intermediate energies. J. Phys. B, 6:320, 1973.

P. G. Burke and T. G. Webb. Electron scattering by atomic hydrogen using
a pseudo-state expansion III. excitation of 2s and 2p states at intermediate
energies. J. Phys. B, 3:L131, 1970.

James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia,
1997.

S. Geltman and P. G. Burke. Electron scattering by atomic hydrogen using a
pseudo-state expansion II. excitation of 2s and 2p states near threshold. J. Phys.
B, 3:1062, 1970.

W. A. Isaacs, C. W. McCurdy, and T. N. Rescigno. Theoretical support for a
ramsauer-townsend minimum in electron-CF, scattering. Phys. Rev. A, 58:309,
1998.

Xiaoye S. Li and J. W. Demmel. Making sparse gaussian elimination scalable
by static pivoting. In Proceedings of the ACM/IEEE SC 98 Conference, Los
Alamitos, CA, November 1998. IEEE.

C. W. McCurdy, T. N. Rescigno, and D. A. Byrum. Approach to electron-impact
ionization that avoids the three-body coulomb asymptotic form. Phys. Rev. A,
56:1958, 1997.

Albert Messiah. Quantum Mechanics, Volume II. North-Holland Publishing
Company, Amsterdam, 1961.

D. H. Oza. Convergence of pseudostate expansions in electron-hydrogen scat-
tering. Phys. Rev. A, 30:1101, 1984.

D. H. Oza and J. Callaway. Pseudostate expansion in a simplified model of
electron-hydrogen scattering. Phys. Rev. A, 27:2840, 1983.

I. C. Percival and M. J. Seaton. The partial wave theory of electron-hydrogen
atom collisions. Proc. Cambridge Phil. Soc., 53:654, 1957.

R. K. Peterkop. Opt. Spectrosc., 13:87, 1962.

R. Poet. The exact solution for a simplified model of electron scattering by
hydrogen atoms. J. Phys. B, 11:3081, 1978.

81




82

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

R. Poet. Symmetrically coupled partial differential equations in scattering i.
model electron-hydrogen collisions. J. Phys. B, 13:2995, 1980.

T. N. Rescigno, M. Baertschy, D. Byrum, and C. W. McCurdy. Making complex
scaling work for long-range potentials. Phys. Rev. A, 55:4253, 1997.

T. N. Rescigno, M. Baertschy, W. A. Isaacs, and C. W. McCurdy. Collisional
breakup in a quantum system of three charged particles. Science, 286:2474,
December 24, 1999.

T. N. Rescigno, C. W. McCurdy, W. A. Isaacs, and M. Baertschy. Use of two-
body close-coupling formalisms to calculate three-body breakup cross sections.
Phys. Rev. A, 60:3740, 1999.

T. N. Rescigno, C. W. McCurdy, A. E. Orel, and B. H. Lengsfield III. The Com-
plex Kohn Variational Method. In Winifred M. Huo and Franco A. Gianturco,

editors, Computational Methods for Electron-Molecule Collisions. Plenum Press,
1995.

J. Roder, H. Ehrhardt, C. Pan, A. F. Starace, I. Bray, and D.V. Fursa. Absolute
triply differential (e, 2e) cross section measurements for H with comparison to
theory. Phys. Rev. Lett., 79:1666, 1997.

J. Roder, J. Rasch, K. Jung, C. T. Whelan, H. Ehrhardt, R.J. Allan, and H.R.J.
Walters. Coulomb three-body effects in low-energy impact ionization of H(1s).
Phys. Rev. A, 53:225, 1996.

M. R. H. Rudge. Theory of ionization of atoms by electron impact. Rev. Mod.
Phys., 40:564, 1968.

T. W. Shyn. Doubly differential cross sections of secondary electrons ejected
from atomic hydrogen by electron impact. Phys. Rev. A, 45:2951, 1992.

B. Simon. The definition of molecular resonance curves by the method of exterior
complex scaling. Phys. Letts. A, 71:211, 1979.

John R. Taylor. Scattering Theory: The Quantum Theory of Nonrelativistic
Collisions. Robert E. Krieger Publishing Company, Malabar, FL, 1987.

A. Temkin. Nonadiabatic theory of electron-hydrogen scattering. Phys. Rev.,
126:130, 1962.

R. N. Zare. Angular Momentum: Understanding Spatial Aspects in Chemistry
and Physics. John Wiley & Sons, 1988.



Appendix A

One Dimensional Potential
Scattering Examples

Potential scattering provides an simple context for studying the method of exte-
rior complex scaling without the complications from inelastic processes and multiple
dimensions. The ! = 0 components of partial wave expansions for scattering from
spherical potentials provide simple test problems for any method in quantum colli-
sion theory. There already exist a variety of ways to treat potential scattering that
can calculate scattering information to arbitrary accuracy. Thus, we can thoroughly
evaluate exterior complex scaling by comparing its results with calculations from
other methods. We will examine the effects of changing the complex scaling angle
and the complex scaling point for both a short-range and a long-range potential.

A.1 Potential scattering

One-dimensional potential scattering describes the scattering of two particles in-
teracting via a central potential V (r) that depends on only the inter-particle distance.
For incident momentum #hk; we write the wave function ¥* as the sum of an outgoing
wave ¥t and a plane wave representing the initial state.

TH(7) = % 4 T (7) (A1)

The scattered wave ¥, is obtained by calculating the radial functions 1 (r) for
each angular momentum quantum number [ in a partial wave expansion.

X /A (2l+1) -
‘I’:c ) = ZleYlo(T)iﬁ?' (r) (A.2)
=0 ?

With no angular dependence in V(r), the 7" are all independent of each other. They
are outgoing solutions to one-dimensional scattered wave equations with reduced mass
p and regular Riccati-Bessel functions 7; from the expansion of ¢t

B2 R2I0+1)

+ - DD v v ) = Vi) (A3)
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Each ¢;" is a radlally outgomg wave that, asymptotically, is proportional to a
Hankel function h, = 7, + tJ; where 7, is an irregular Riccati-Bessel function. For
1=0, hi(z) = €.

U (r) — €% sin (&) b (kar) (A4)
The proportionality factor in the asymptotic form of ;" has the form given in Equa-
tion A.4 where the phase shift §; is a real number.

The total cross section is the sum of partial wave cross sections o;, each of which
is directly related to the phaseshift §;.

o= %o: o1, o1 = 4 (2l + 1) 75 sin® (&) (A.5)
1=0 :

Thus, the ¢; provide a complete description of the final state. We can obtain them
from the amplitude f; defined below.

filks) = / )V () [i(ker) + iF ()] dr (A.6)

h2k2

Since f; is proportional to €% sin (§;) (see, for example, Taylor [37]), the tangent of
the phase shift is equal to the imaginary part of f; divided by the real part.

tan (5) = g’;gg (A7)

The integral expression in Equation A.6 is less sensitive to wave function error than is
directly calculating scattered flux, but still provides complete scattering information.

A.2 Complex Kohn method

In this appendix we will examine the accuracy of results calculated using com-
plex scaling by comparing with results calculated using the more established com-
plex Kohn [31] variational method. Complex Kohn has been successfully applied
to electron-scattering from relatively large molecules [18]. However, like most other
methods in scattering theory, it is suited only for discrete scattering processes and
can not be applied to ionization.

The complex Kohn method expands the scattered wave in a set of basis functions

consisting of one function that has the exact asymptotic form of an outgoing wave
h+(k r) and as many square-integrable functions as needed to converge the calculated
wave function. Thus, the complex Kohn method produces the correct scattered wave
over all space. We can gauge the accuracy of results in the complex Kohn method
by observing the convergence of calculated phase shifts as more square-integrable
functions are added to the expansion basis.

To devise one-dimensional scattering problems with which to study and test nu-
merical methods we need consider only the [ = 0 partial wave. For this case the term



V(r) = 2r’e Vir)=@0+7r)™
N| k=015 k=10.35 k =0.55 k=0.15 k=10.35 k= 0.55
5 || -1.2683674 | 0.3121880 | -0.9936457 | -0.0611005 | -0.1004421 | -0.1187034
10 || -1.2679899 | 0.3286518 | -1.0021799 || -0.0611092 | -0.1004424 | -0.1187109
15 | -1.2679887 | 0.3286586 | -1.0021589 || -0.0611095 | -0.1004425 | -0.1187108
50 || -1.2679887 | 0.3286583 | -1.0021585 || -0.0611005 | -0.1004425 | -0.1187100
95 || ~1.2670887 | 0.3286588 | ~1.0021585 || -0.0611095 | -0.1004425 | -0.1187109

Table A.1: Convergence, in number of square-integrable basis functions N, of I = 0
phase shifts calculated with the complex Kohn method.

from the plane wave initial state is jo(k;r) = sin(k;r) and asymptotically the radial
function 9;L, is an outgoing spherical wave proportional to e?:". For later convenience
we will rewrite the expression for the amplitude f; as the sum of two integrals.

folks) = —% { / sin?(k;r)V (r)dr + / sin(k,-r)V(r)@[;f;O(r)dr} (A.8)

Once %t is calculated by solving Equation A.3 for | = 0 we use Equation A.8 to
compute fo and then obtain the [ = 0 phase shift.

In the remainder of this appendix we will examine the application of complex
scaling to potential scattering with a short-range potential, V(r) = 2%, and a
long-range potential, V(r) = (1 + )% Values of the phase shifts calculated using
the complex Kohn method for both potentials at three different energies are listed
in Table A.1. Convergence of the calculated phase shifts as more square-integrable
functions are added to the basis is very rapid.

A.3 Uniform complex scaling

We will first consider the simplest complex contour, 7 — 7e¢®. Under this uniform
complex scaling transformation the wave function is complex-scaled everywhere so
there is no region where the calculated ;" is equal to the “physical”, unscaled scat-
tered wave function. However, we can can still extract scattering information from
it. The first integral in Equation A.8 involves sin(k;r) and the potential V. It exists
provided the potential decays to zero faster than % for large r. Since the integrand
in the first term is a known function, that term can simply be integrated numerically
along the real axis. So, no complex scaling should be used for the first term.

The second integral, on the other hand, involves the unknown scattered wave.
Again, this integral exists provided the potential goes to zero fast enough. However,
if we use complex scaling to evaluate the scattered wave then we know ;" only on
the complex contour and the integration must be done along that contour. Under
complex scaling, with a scaling angle 7 in the range 0 < 7 < 90°, the scattered wave
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decays exponentially, but sin(k;r) increases exponentially. The product of the two,
however, remains bounded.

sin(k;reMV (re )bl (re'h)

=300

_2]‘_7: ez‘ﬁo sin( 50) [e—2k,-'r sin(n) et2kir cos(n) __ 1] 174 (Tei")

(A.9)
Asymptotically, the second integrand from Equation A.8 decays exactly as the po-
tential V evaluated on the contour.

Thus, the second integral from Equation A.8 exists along any uniform complex
contour provided that V (re®) decays sufficiently fast. Since the potential will force
the integrand to zero as r — oo the integral along any complex contour is identical
to the integral along the real axis. Therefore, if we know the scattered wave function
along some contour z(r) then we can calculate the correct amplitude by evaluating
sin(k;z(r)) and V (z(r)) and then integrating along that contour.

Knowing that the integral involving the scattered wave exists along some complex
contour is not useful unless the scattered wave can be calculated on that contour. The
scattered wave is obtained by solving the scattered wave equation in Equation A.3
whose driving term, V' (z(r)) sin (k;z(r)), is well behaved only if the potential decays
more rapidly than the exponential increase of sin (k;e™). This requires the potential
to be exponentially decreasing. Suppose the potential decays like e™", then the
requirement that V (re™) sin (k;7e™) go to zero restricts the complex scaling angle to
0 < tan(n) < %+ S0, uniform complex scaling is more problematic at higher energies.

Phase shifts for scattering from a potential with decay constant o = lag’ that
are calculated using several scaling angles are listed in Table A.2. For energies with
k; of 0.15 and 0.35 ag! it is possible to use scaling angles as large as 60°. However,
when k; = .55a5"! a scaling angle of 60° causes numerical instability that comes from
having to evaluate sin(z) for arguments with large imaginary parts. The results are
essentially independent of the complex scaling angle, and agree with the correct values
calculated using complex Kohn, provided that the angle lies within the allowed range.
One caveat is that with smaller scaling angles the scattered wave decays more slowly
which requires that it be calculated over a larger range of .

scaling angle | £k=0.15 | £=0.35 | k£=0.55
20° -1.2679889 | 0.3286587 | -1.0021581
40° -1.2679887 | 0.3286587 | -1.0021584
60° -1.2679884 | 0.3286587 | -1.4261539
| complex Kohn || -1.2679887 | 0.3286588 | -1.0021585 |

Table A.2: Phase shifts for V(r) = 2r2e™"
using different scaling angles.

calculated with uniform complex scaling



scaling point | £=0.15 | k=0.35 | k=0.55
0ay -1.2679887 | 0.3286587 | -1.0021585
20ag -1.2679887 | 0.3286588 | -1.0021585
40ag -1.2679887 | 0.3286588 | -1.0021585

| complex Kohn || -1.2679887 | 0.3286588 | -1.0021585

Table A.3: Phase shifts for V(r) = £2r2%¢™" calculated using exterior complex scaling
with a scaling angle of 30° and three different complex scaling points.

A.4 Exterior complex scaling

For exterior complex scaling (ECS) we generalize the definition of the contour so
that the coordinates are complex only beyond some distance Ry. Uniform complex
scaling is then the special case of Ry = 0.

_ T r < Ry

2(r) = { Ro+(r—Ro)e™ 1> Ry (A.10)
The second integral in Equation A.8 is still well-defined on this contour for the same
reasons as for uniform complex scaling and it is possible to calculate the phase shift as
long as the scattered wave is known on the contour. Since the potential will decrease
more rapidly on the real axis than on a complex contour one advantage of using ECS
rather than uniform complex scaling is that Ry can be chosen so the potential is
already close to zero before the complex scaling begins. Also, ECS allows the use of
potentials that are known only numerically for small r.

Values of the phase shift for a short-range potential calculated using ECS with
different complex scaling points Ry are listed in Table A.3. The accuracy of the results
is essentially independent of Ry. However, the size of the required calculation does
depend on Ry. In a finite difference implementation, the extent of the grid needed
depends upon the length beyond Ry necessary for the ;" (2(r)) to decay effectively
to zero. This distance is independent of Ry so increasing Ry increases the number of
real grid points while the required number of complex grid points remains the same.

One advantage of using ECS is that ¢;' (2(r)) is the same as ;" (r) between zero
and the complex scaling point Ry. So, with ECS we obtain the actual wave function,
but only on a finite region. Scattered waves calculated with ECS for different Ry are
compared, in Figure A.1, with one calculated by the complex Kohn method. In the
region where the ECS contour is real the two wave functions are identical within the
accuracy of the numerical methods used. The accuracy of the wave function over the
region where the coordinates are real is independent of the complex scaling point Ry.

A.5 Long-range potentials

Implementing ECS for potentials that do not decay exponentially is more difficult.
The problem is not in calculating the phase shift (the second integral in Equation
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Figure A.1: Scattered waves for V(r) 2r2e" calculated using ECS for three
different Ry compared with one calculated using the complex Kohn method. The
incident momentum is k; = 0.55a5" and the complex scaling angle is 30°. Differences

between ECS and complex Kohn wave functions are plotted on a log scale.

A.8 is still defined on the complex contour) instead the problem is in calculating
the scattered wave. With long-range potentials the driving term in Equation A.3
diverges on the contour and the scattered wave equation cannot be solved without
modification. In Appendix B it is shown that this limitation can be overcome by
truncating the potential at (or before) the complex scaling point Rp.

Truncating the potential makes it possible to solve the scattered wave equation
on the complex contour, but the potential is now different. Changing the potential
will, of course, affect the solution so the calculated wave functions and phase shifts
will be less accurate. Accuracy of the calculated phase shifts depends on how close
to zero the potential is at Ry. As can be seen in Table A.4, the calculated phase
shifts for a long-range potential are more sensitive to Ry than they were for short-
range potentials. However, they do converge to the correct, “physical” value as Ry
increases. The effect of truncating the potential on the calculated wave function is
illustrated in Figure A.2 where wave functions calculated with ECS are compared to
those calculated by the complex Kohn method.
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Figure A.2: Scattered waves for V(r) = (1 + r)~* calculated using ECS for three
different Ry compared with one calculated using the complex Kohn method. The
incident momentum is k; = 0.55a5 ' and the complex scaling angle is 30°. Differences
between ECS and complex Kohn wave functions are plotted on a log scale.



scaling point || £ =0.15 k=0.35 k=0.55
10ay -0.0562652 | -0.0989343 | -0.1179933
200y -0.0607733 | -0.1002030 | -0.1185759
30ag -0.0609288 | -0.1003711 | -0.1186671
40qy -0.0610577 | -0.1004141 | -0.1186939
50ag -0.0610715 | -0.1004289 | -0.1187025
60ag -0.0610932 | -0.1004349 | -0.1187057
70ag -0.0610959 | -0.1004378 | -0.1187076
80ag -0.0611025 | -0.1004393 | -0.1187088
90ay -0.0611033 | -0.1004402 | -0.1187095
| complex Kohn [ -0.0611095 | -0.1004425 | -0.1187109 |

Table A.4: Phase shifts for V(r) = (1+7)~* calculated using exterior complex scaling
with a scaling angle of 30° and several different complex scaling points. In each case,
the potential is truncated at the complex scaling point. The complex Kohn values

were calculated with a potential truncated at 250a,.
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Appendix B

ECS and Long-Range Potentials

“Making complex scaling work for long-range potentials”, originally published in
Physical Review A [28], shows that exterior complex scaling can be used to calculate
phase shifts for one-dimensional potential scattering with long-range potentials by
performing the calculations with the potential truncated at the complex scaling point.
The calculated results are meaningful if the complex scaling point is large enough so
that the truncated potential is physically indistinguishable from the original long-
range potential. Although the potential treated in this article is not as long-range
as a Coulomb potential, the ideas developed here laid the groundwork for applying
exterior complex scaling to electron-impact ionization. Also, this article demonstrates
how to implement exterior complex scaling with an analytic basis set. The “sharp”
contour of Equation A.10 is replaced by a “smooth” contour that has continuous first
and second derivatives.
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L INTRODUCTION

The method of complex coordinates or complex scaling
(i.e., the idea of treating the Hamiltonian as a function of
complex position variables) is well known in physics. The
idea was first used over 30 years ago in the theory of poten-
tial scattering to extend the region of analyticity of the Jost
function into the lower half % plane [1]. It also has a long
history in atomic and molecular physics as the basis for vari-
ous methods used in computational scattering theory dating
back to the early seventies [2,3]. Most of the applications
have centered on the calculation of resonances in atoms and
molecules whose energies and lifetimes, under complex scal-
ing, are related to the real and imaginary parts of the discrete
eigenvalues of an analytically continued Hamiltonian [4].
Nevertheless, as Reinhardt pointed out in his 1982 review
[5], it is important to bear in mind that the original motiva-
tion for interest in the method, and indeed the principal mo-
tivation for this study, was the prospect of calculating scat-
tering cross sections without explicit enforcement of
asymptotic boundary conditions. In contrast to the develop-
ment of “‘direct”” methods for evaluating resonances based
on complex scaling [6], this other aspect has received far less
attention [7,8] and, apart from applications to photoioniza-
tion [9-12], has met with only partial success. The reason?
A solution of the full scattering problem requires matrix el-
ements of the resolvent between continuem functions. Un-
fortunately, the method of complex scaling as originally pre-
sented only provides convergent expressions for these
quantities in the case of interaction potentials that fall off
exponentially [2,13], which would appear to exclude most of
the problems encountered in atomic and molecular physics.
Although methods based on complex scaling or, more accu-
rately, on the use of complex basis functions [8] have been
proposed to tackle this harder problem, it is probably fair to
say that, after many years, no definitive method for entirely

circumventing the specification of boundary conditions has
emerged.

One notable extension of the complex coordinate method
was Simon’s exterior complex scaling procedure [14], in
which the coordinates are only scaled outside a (hyper)-
sphere of radius [r|=R,. The motivation for this develop-
ment was the desire to treat Hamiltonians that have nonana-
Iyticities in the interior region, such as the Bom-
Oppenheimer Hamiltonian whose electron-nuclear attraction
terms are not dilatation analytic when viewed solely as a
function of the electronic coordinates [15]. In computational
applications, exterior complex scaling has been used mainly
in direct numerical integration methods [16-18], although
there have been a few attempts, in connection with resonance
evaluations, to implement the method in a basis [19-21].

The purpose of this paper is to show that exterior scaling
can be used to formulate a procedure for solving the full
scattering problem using only square-integrable functions
and that, unlike the original complex scaling method, the
method is not restricted to exponentially bounded potentials.
To be able to implement the method with arbitrary basis
functions, we have found it necessary to generalize Simon’s
procedure to a broader class of transformations, where the
transition from real to scaled coordinates is smoothly carried
out over a finite range.

The method is outlined in the following sections, after a
brief review of the earlier techniques. We then make some
comments on the connection between complex scaling and
complex basis function methods. Section V presents some
numerical examples and Sec. VI has some concluding re-
marks.

II. COMPLEX SCALING

For notational simplicity, we will use the symbol r to
refer collectively to all the interparticle coordinates in an
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N-body system. The starting point for a definition of the
complex coordinate method is to introduce a scaling of r by
areal factor e® € R under which the wave function is mapped
as

W(r)—eNoP¥(efr), (1)

where the factor e¥%? must be included to preserve the nor-
malization of the wave function. Since # is real, this corre-
sponds to a unitary transformation of the Hamiltonian, H,
=U()HU (), and the spectrum of H 4 is independent of
6.

The complex coordinate method analytically continues
H g by considering a broader class of (nonunitary) scaling
transformations e?,8&C. In this paper, we use the terms
*“‘uniform’” or *‘ordinary” complex scaling to denote this
transformation which scales all interparticle coordinates by a
complex constant. There is a considerable literature on the
properties of the Hamiltonian under this {(nonunitary) trans-
formation for the class of dilatation analytic potentials
[5,22], the principal results of which can be summarized as
follows.

(1) The bound-state eigenvalues of H, are the same as
those of H for |arg fl=<m/2.

(2) The segments of the continuous spectrum of H, be-
ginning at each scattering threshold are rotated into the lower
half plane by an angle 2 Im8 (Im&>>0).

(3) H, may have isolated complex eigenvalues (reso-
nances), and corresponding L? eigenfunctions, in the wedge
formed by the continuous spectra of H and H,. They are
independent of 8 as long as they are not covered by branches
of the continuous spectrum of H .

Property 3 has accounted for the attractiveness of uniforrn
complex scaling as a means for finding resonances. Con-
sider, for example, the case of s-wave scattering from a
spherically symmetric potential V(). One simply chooses a
basis of L2 functions, forms a (complex symmetric) matrix
representation of the operator

>

Hy(r)=- % e~ +V(re%, )

dr*

diagonalizes it and varies # to find those eigenvalues which
are roughly independent of the scaling angle. In practice, the
eigenvalues may depend strongly on the rotation angle for
basis sets that are not carefully optimized and modifications
of the method, which need not concern us here, are needed to
make the method practical for many-electron systems [23].
We refer the interested reader to several reviews for further
details [5,6,24].

It is property 2 that has stimulated interest in complex
scaling as a way to implement scattering theories that do not
rely on explicit enforcement of asymptotic boundary condi-
tions. The idea is to express the quantity of interest, such as
a scattering amplitude, as a matrix element of the resolvent
or full Green’s function lim,_o(E—~H+ig) ! and to use the
fact that the latter can be approximated as the inverse of the
matrix representation of £—Hy in an L? basis, ie., as (E
—H )~ [2,8]. Because the continuous spectrum of H , has
been rotated off the real axis, the matrix (E~’ -H D lisa
meaningful approximation to the resolvent for real values of

E. To evaluate the scattering amplitude or T matrix, we re-
quire matrix elements of the resolvent between continuum
functions. Specifically, what is required is lim,_ o ¥o|V(E
—H+ie)”'V|ih,), where i is a continuum function. Un-
fortunately, with ordinary complex scaling, these so-called
“free-free”” elements only converge for exponentially
bounded potentials V [2,13]. Our main purpose here will be
to show how such a construction can be made to work even
in the case of a Hamiltonian with long-range interactions.

The method of exterior complex scaling was proposed by
Simon [14] as a logical extension of uniform complex scal-
ing to deal with potentials that may have interior nonanalyt-
icities, but are well behaved outside some (hyper)sphere of
finite volume [25]. Specifically, Simon suggested the map-
pmng

r, r<0

Oro. (1) =R+ (r=Ro)e™¥, r=Ry )
The spectral properties of the Hamiltonian under this more
general scaling transformation are the same as those listed
above for uniform complex scaling. The particular example
that prompted Simon’s work was the Born-Oppenheimer
Hamiltonian with fixed, real nuclear coordinates. The
nonanalyticity of the electron-nuclear attraction terms spell
trouble for uniform scaling [15], but are readily accommo-
dated under exterior complex scaling.

The slope of the contour defined by Simon’s exterior
complex scaling changes discontinuously at R, which can
complicate its implementation in certain applications [26].
We will therefore first consider a more general class of trans-
formations which pass smoothly from real to complex r and
then return to exterior complex scaling as a limiting case. We
will use the term smooth exterior scaling to distinguish this
class of mappings from Simon’s original prescription, which
we call sharp exterior scaling, while the term ‘‘complex scal-
ing’” without modifiers can refer to any method which allows
the position variables to take on complex values.

Consider some smooth complex contour R(r) which has
the properties

r, r—0
R(r)=[rei¢’ o0 @
but is otherwise arbitrary. We first need to determine the
explicit form of the transformed Schrodinger equation as a
function of the real coordinate r.

The implementation of complex scaling requires that one
take into account the metric which accompanies the scaling
operator. In analogy with Eq. (1), we define the operator that
does the scaling as

U¥(ry=J(r)¥(R(r)), (5
where the Jacobian is

dR\ 12
| 0

](r)=(E

and the scaled Schrodinger equation is

UHU YUV =EUV. %)




The inverse of U is given by

. _
u "I’—J(RT(r)—)‘I’(R (), ®

where R™(r) is the inverse of the function defining the
contour.

Next, we need an expression for the radial kinetic-energy
operator under this transformation. The algebra simplifies
considerably if we represent the contour in the following
form [26]:

7= [atrar, ©)
with
1, r—0
q(r)=[e,-¢, g (10)
so that
J(r)=q"(r) 1)

for functions ¢ that are continuous. Finally, if we define
¢@(r) as the original wave function on the contour, ie.,

U¥(r)=J(r)e(r)=q"r)o(r), (12)
then it can be shown that

dz -1 12 1 12,1 q, 12 1
772U (r)¢(r)=q—zq o"'——=5 9",

q
(13)

where the primes denote differentiation with respect to the
real coordinate r. The transformed radial Schrodinger equa-
tion He(r)=E(r) involves the Hamiltonian operator

This representation of the second derivative operator now
allows us to derive a symmetric matrix representation of the
scaled Schrodinger equation in a basis. The idea is to expand
just @(r)=¥(R(r)), and not UW¥(r) which contains the
Jacobian factor, in a basis

qo(r)=§ CuXn(r)- (15)

Inserting this expression into Eq. (14), multiplying from the
left with q(r)x,,(r) and integrating over r gives

2 HpCh=E>, SpnCrs (16)
with
Sn= fo XnP)Xu(P)g(r)ar, a7)

Hon=Tpn+ Vi (18)

Tor= [ Xn VRO, 19

_ 1 (= 1 - q'(r
Ton=— 5 J:) Xm(r)[q(_r) Xn(r)_ m Xn(r) dr,
(20a)
1 (=, 1 '
=—2— fo Xm(T) q(_r)X"(r)dr’ (20b)

where the last expression comes from integration by parts
and the assumption that the basis functions vanish at the
origin and infinity. Note that the kinetic-energy elements
given by Eq. (20b) obviously define a complex symmetric
matrix.

Equations (17)-(20) which, together with the transformed
Hamiltonian in Eq. (14), are the principal results of this sec-
tion, show how to represent the transformed radial Schro-
dinger equation in a basis. In the limiting case of sharp ex-
terior scaling, g(r) changes discontinuously from 1 to e’¢ at
r=R, and some care is needed to properly define the kinetic-
energy elements. It can be shown that Eq. (20b) still gives
the correct representation of the kinetic-energy operator in
this instance. Note that, unlike Kurasov, Scrinzi, and Elander
[26], we have not included the Jacobian factor Vg(r) in the
definition of the scaled wave function in Eq. (5) so that,
under sharp exterior scaling, ¥ (R(r)) is not discontinuous at
Ry. However, the derivatives of W(R(r)) (with respect to
r) are discontinuous. The implication is that, even with the
kinetic-energy operator properly defined via Eq. (20b), an
analytic basis set cannot give uniform convergence with
sharp exterior scaling because such an expansion cannot rep-
resent the cusp discontinuity in the wave function at Ry.

III. COMPLEX SCALING VS COMPLEX BASIS
FUNCTIONS

At this point, it is possible to establish a connection be-
tween complex scaling and another class of techniques com-
monly referred to as complex basis function methods. For
some implementations of complex scaling, it is possible to
reinterpret the prescription of using real L? functions in con-
nection with a complex Hamiltonian as being entirely
equivalent to using complex basis functions with a real
Hamiltonian. For example, with uniform scaling, we have
q(r)=ei¢Vr and thus have to construct matrix elements of
the form

I=e" f:Xm(r)H (re*?)xq(r)dr. @1

It is easy to see that if we make the change of variable
r—re~*? in the above integral and use Cauchy’s theorem to
distort the integration contour back to the real axis, we get

1= [“nre ORI e 0ar, @)

so that we can view the case of uniform scaling as being
equivalent to using a real Hamiltonian and working with
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complex basis functions x,(re %) and a scalar product de-
fined without complex conjugation of the radial functions.
While complex scaling and complex basis functions are
equivalent in this simple case, the complex basis function
interpretation turned out to be more flexible, since it allowed
one to mix real and complex basis functions in many-body
problems where the wave functions are represented as orbital
products. The inner-core orbitals in a heavy atom become
highly oscillatory under uniform complex scaling which
causes severe convergence problems. With complex basis
function methods, one can use real basis functions to expand
the core orbitals and complex functions only for the outer
orbitals [23]. The method is then no longer the same as uni-
form complex scaling and may well not correspond to an
easily derived variable scaling of the Hamiltonian operator.
The ““method of complex basis functions’” [23,24] played an
important role in the evolution of numerical scattering meth-
ods, since it enabled practical calculations to be performed
on many-electron atoms as well as molecules. In fact, some
progress was made in establishing a relationship (but not an
identity) between computations carried out with complex ba-
sis functions and the exterior complex scaling concept [27].

The development of the preceding section enables us to
make a clearer connection between complex scaling and
complex basis functions. The matrix elements we have to
consider [Egs. (17), (19), and (20)] have the form

Ao [ X IR 917
® dR
=f X VHR(r))xnlr) - dr. (23)
0 r

If we can construct R ™!, the inverse of the function which
defines the contour, then we can make the change of variable
from r to x, where r=R " !(x) and again use Cauchy’s theo-
rem to carry out the integration along the real x axis. The
result is

o= [ Xn®CDH@ 1,0 Nz, 29

which establishes the desired connection between complex
scaling and an equivalent complex basis. For the case of
uniform complex scaling, as well as sharp exterior scaling,
the inverse map is simply R™Yr)=r*. In fact, any smooth
mapping that satisfies

x—0

R"(x)=‘§;—,~¢, (25)

X—o

and has a smooth inverse can be used to define a set of
complex basis functions to use in Eq. (24). Note that with
exterior scaling, there is no need for mixing real and com-
plex basis functions; the inner-core orbital problem in many-
electron systems is automatically handled in a natural way,
since tight functions that do not extend beyond R, are effec-
tively left real.

IV. SCATTERING

We will next investigate the question of applying the for-
malism outlined above to a collision problem. For simplicity,
we will consider the case of s-wave scattering from a spheri-
cally symmetric potential. The scattering cross section is pro-
portional to the squared modulus of the T matrix, which is
defined as

T(E)= f:z//oo)V(r)«/ﬁ(r)dr

= Lwl//o(r)V(r)(%(r)'*'t/f“"(r))dr, (26)

where §**(r) is the scattered wave part of the full scattering
wave function. The T matrix can also be expressed in terms
of the full Green’s function

T(E)= f:l/fo(r)(V(r)+V(r)G+(r,r')V(r'))t//o(r)dr dr’

=lim{yo|V+V(E+ic—H)™'V|¢y), @n
e~0
with
o= 2/k sin(kr), E=Kk%/2. (28)

Note that with these definitions, T=e%in8, where & is the
phase shift. The scattered wave part of the T-matrix is now
approximated as

(WolV(E+ie—H) 'V|goy~F-(ES—Hp) '-f, (29)

where the matrices S and H are defined in Egs. (17)-(20)
and f is a vector with elements

=R f:xm(r)V(R(r>)sin<kR(r»q(r)dr, (30)

Since the continuous spectrum of H, has been rotated into
the lower half plane, this representation should converge for
real E if V is sufficiently well behaved. Unfortunately, as
Baumel, Crocker, and Nuttall [13] have pointed out, V(r)
must be exponentially bounded for Eq. (29) to converge
since sin(kr) diverges exponentially under coordinate rota-
tion. This will be formally true both for uniform scaling or
exterior scaling. With exterior complex scaling, however,
there is a way around this problem.

Although the development to this point allows any
switching function g(r) that satisfies Eq. (10), we will see
that there are distinct advantages to having a contour that
coincides exactly with the real axis over a finite range 0<r
<R,. We can then replace the original potential V(r) by a
finite range potential Vg,(r) that vanishes beyond R, and is
identical to V(r) for r<R,

V(r), r<R
Ve(N={o, r=r, ° 31)

We can use exterior scaling to calculate the T matrix corre-
sponding to this potential T, relying on Eq. (29) to approxi-




mate the scattered wave part in a basis set of N square-
integrable functions with Eqs. (17)-(20) defining the
required matrix elements. Since Vg (r) is a finite-range po-
tential, the method will converge for any value of Ry if N is
large enough. This truncation of the potential allows us to
define a process that limits to the correct physical result as
Rg—. Thus, by choosing the interior region large enough,
we can insure that the truncated potential differs insignifi-
cantly from the physical potential under consideration [28].

We can contrast the above procedure to the situation that
pertains to uniform complex scaling with a truncated long-
range potential. In the latter case, it is convenient to use the
“‘complex basis set’’ interpretation of uniform scaling [i.e.,
Eg. (22)], so that we can continue to use the same real,
finite-range potential V, o(7). The matrix elements of the po-
tential would then be of the form

_ [Ro —ig —ig
IRo—L Xu(re 'OV (D) x,(re  )dr. (32)

In contrast to the case of exterior scaling with Vp o(r), uni-

form scaling will not yield physically meaningful results as
Ry is increased. Indeed, in the limit Ry— 0, the matrix ele-
ments defined in Eq. (32) become, after the change of vari-
able r—ref?

Ig, lim =e? f XDV e (dr,  (33)

Ro—w 0

which is precisely the case that Baumel, Crocker, and Nuttall
[13] showed to be divergent.

We will now give the specific form of the transformation
we used to implement smooth exterior scaling. We chose

1, r<Ro—h

q(r): f(r), Ro_h<r<R0+h, (34)
e'd), r>Ro+h

where f(r) is a smooth switching function defined on [R,
—~h<r<Ry+h]. To insure uniform convergence with an
analytic basis, we want f(r) to be continuously differentiable
at r=Ro*h. We thus chose f(r) to be the lowest order
polynomial needed to make g(r) and ¢'(r) continuous at
Ro—h and Ry+h. If we define

fN=1 +(e"¢—1)1>('_hR°), (35)

then the requirement is that P(—1)=0, P(1)=1, P'(—1)
=0 and P'(1)=0. These conditions uniquely define P(x)

P(x)=3%(2+3x—x%). (36)
The truncated potential Vp_is defined as

v _{V(R(r))=V(r),
Ro™10, r=Ry—k

We reiterate that by zeroing the potential on the complex
portion of the contour, we eliminate any numerical difficul-

I'<R0"'h (37)

TABLE L. Phase shift for s-wave scattering by an exponential
potential. N refers to the number of Laguerre-type functions used in
the calculation. Results are given for both uniform complex scaling
and smooth exterior scaling. See text for basis set and contour pa-
rameters.

N Uniform Smooth Exterior
k=0.15
5 —0.898 51172 —0.000003 17
10 —1.046 15320 0.548 948 06
15 —1.058 928 49 —0.950252 63
20 —1.04723252 —1.027 465 88
25 —1.051 19581 —1.062 783 68
30 —1.050 256 94 —1.046716 28
35 —1.050417 02 —1.051224 59
40 —1.05040338 —1.050281 54
45 —1.050 400 37 —1.050 404 85
50 ~1.050 402 26 —1.050 406 59
55 —1.050 401 68 --1.050 400 28
60 —1.050 401 80 —1.050402 73
k=035
5 142393379 0.000 008 38
10 1.460 33720 021281371
15 146122277 143632377
20 1461247 16 145572439
25 1.461 247 57 1.461 076 10
30 1.461 247 56 146124573
35 1.461 247 56 1.461 248 05
40 1.461 247 56 1.461 248 37
k=0.35
45 1.461 247 56 1.461 248 45
50 1.461 247 56 1.461 24759
55 1.461 247 56 1461247 64
60 1.461 247 56 1.461 24759
k=055
5 1.155 83718 —0.000 02724
10 1.144 127 89 0.226 360 78
15 1.144 23525 0.922 345 22
20 1.144 234 35 1.14172379
25 1.144 234 36 1.142999 29
30 , 1.144 234 36 1.144 086 07
35 1.144 234 36 1.144 226 53
40 1.144234 36 1.144 232 62
45 1.144 234 36 1.144 23218
50 1.144 234 36 1.144234 34
55 1.144 234 36 1.144234 16
60 1.144234 36 114423422

ties associated with a less than exponential fall off of the
potential at large distances, but have no measurable effect on
the cross section.

We do not expect this remedy to come without a price.
It’s obvious that the basis set one chooses must have ele-
ments that extend beyond the complex turning point Ry; if
not, the eigenvalues of H ¢ would effectively be real and Eq.
(29) would not yield a sensible result. Even for a short-
ranged potential then, we expect that a larger number of
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FIG. 1. Unitarity of the calculated S matrix
(S=e%% for s-wave scattering by an exponential
potential at £k=0.55. Upper curve is for smooth
scaling; lower curve is for exterior scaling.

5 10 15 20 25
number of basis functions

functions will be required to achieve a given level of accu-
racy with exterior scaling than with uniform scaling and that
the number of functions required will grow as R, increases.
We can recover Simon’s original exterior complex scaling
contour by letting h— 0 in Eq. (34), in which case ¢ changes
discontinuously at Ry. Equation (20b) can still be used to
define the kinetic-energy matrix, but analytic basis functions
will not give uniform convergence with this prescription
since the derivative of the wave function (with respect to
r) is discontinuous at Ry. However, the cusp discontinuity in
the wave function at the point R, that occurs with sharp
exterior scaling can be accommodated by using a nonana-
Iytic set of basis functions that are only defined on finite
intervals. The continuous variable r is replaced by a grid of
nodes 0<r;<r,<---<r,<, Finite element basis func-
tions ; ,(r) are defined to be identically zero outside a
given interval
Lim(r)=0 reflririg), i=l..,n. (38)
We use the label m to indicate the boundary conditions im-
posed on the basis functions at the nodes, for example, zero
or unity at the right or left end of the interval. The finite
element functions are then combined into a smaller set of
continuous basis functions on which the Hamiltonian is pro-
jected. To accommodate exterior scaling, we simply require
the point R to coincide with one of the nodes. To construct
the required Hamiltonian matrix elements, we have to con-
sider terms of the form

f:;.-_m(r)H(R(r))g,»_nmq(r)dr

Tr+1 dR

= 5i.j {,-_,,,(r)H(R(r)){,—_,,(r) 2’; d", (39)
rl

where, by construction, the point Ry never lies within the

interval [r;,r;,;] and, hence, R(r) is always smooth over

the integration range. To underscore the fact that the finite

element basis functions depend explicitly on the interval
boundaries, we write them as {; (r)=f;(r,r;,r;+1). In our
implementation of the method, we used Hermite interpolat-
ing polynomials f;(r,r;,r;i+1), which are uniquely defined
on the interval [;,r;; ] from the conditions
dk
E:Efj(r7ri1ri+l)=8j.k7 r=r;

k

Ek'fj(r”'i’riﬂ):(), T=Tis)- (40)

For these functions, there is a simple proportionality between
fj(rvriari+l) and fj(R(r),R(ri)’R(rH- 1)), where R(r) is
any linear function of r. Since the exterior scaling contour is
a linear transformation on r, we can thus write

f:z,-,,,.(r)mk(r));,-_n(r)qmdr« 5

R(ris1)
XI ) fm(R(r),R(ri)9R(ri+l))

R(r;

XHR(r)fo((r),R(r),R(ris1))dR.  (41)
This relation is remarkable for two reasons. Firstly, it shows
that the finite elements naturally scale onto the rotated con-
tour and thus can handle any step discontinuity in the wave
function at the point Ry. Moreover, if analytic forms are
available for the matrix elements for real intervals, then the
right-hand side of Eq. (41) shows that those same formulas,
evaluated for complex nodal points, give the correct values
for the matrix elements of the Hamiltonian on the complex
part of the contour. This would not be true if the tumning
point R fell between two nodes. It is important to bear in
mind that the identity expressed in Eq. (41) does not in any
sense represent a contour distortion of the integral defined in

Eq. (39).




V. EXAMPLES

In this section we will illustrate some of the ideas we have
outlined with several numerical examples. We will first re-
port the results of calculations using analytic basis functions
on a smoothly scaled contour. To examine questions of con-
vergence, it is convenient to work with a set of L? functions
that can be systematically increased toward completeness
without running into problems of numerical linear depen-
dence. We chose the set of functions

)\3/2
Xan(r)= [ r D 2)T re")"ﬂLﬁ()\r), (42)

where Lﬁ()\r) is an associated Laguerre polynomial. These

functions are orthonormal on [0,5] and give simple analytic
expressions for matrix elements of the s-wave kinetic energy

o0 d2
Tm,nE '—%f Xm,)\(r) d_z' Xn,x(")dr
0 r

2m3+9m*+13m+6)
12J(n+1)(n+2)(m+1)(m+2) |
43)

=x2[ = S nl8+

These analytic formulas can even be used to simplify the
evaluation of matrix elements carried out on a complex con-
tour where numerical quadrature is required, i.e., where we
use

f Xma(NHRI) X (r)g(r)dr

-§; XmaA(FDHRUNDXan(rda(rdw;.  (44)

We can make use of the fact that g(r)=e'? for r>Ro+h to
simplify evaluation of the overlap and kinetic-energy matrix
elements. In the case of the overlap matrix, for example, we
write

f:Xm,x(f)Xn,x(r)Q(f)df
Ro+h . )
=j x,,,x(r)x,,,)‘(r)q(r)dr+e‘¢[J Xm(T)
0 1]
Ro+h
xXn,)\(r)dr— fo Xm,x(’)Xn,x(r)d"]

‘“e""'ﬁm.ﬁ; XA Xu (r)a(r) —e)w;,
@5)
where the quadrature points only cover the interval [0,R,
+h\%}e first considered s-wave scattering from the short-

range potential

V(r)=—e"" (46)

TABLE II. Phase shift for s-wave scattering by truncated long
range potential. N refers to the number of Laguerre-type functions
used in a smooth exterior scaling calculation. See text for basis set
and contour parameters.

N Ro=25 Ro=35
£=0.15
10 —0.010 800 94 —0.000 000 15
20 —0.069 561 68 ~0.164 917 53
30 —0.060 820 42 —0.061 410 67
40 —0.060 917 40 —0.060 926 53
50 —0.060 944 40 —0.061 02523
60 —0.060 945 59 —0.061 03083
70 —0.060 945 56 ~0.061 03078
80 —0.060 945 58 ~0.061 03078
90 —0.060 945 59 —0.061 03079
100 —0.060 945 59 —0.061 030 78
k=035
10 —0.000384 21 —0.000 000 01
20 —0.099 657 09 —0.037 669 36
30 —0.100 319 07 —0.100 177 26
40 —0.100336 19 —0.100 404 43
50 —0.100 336 28 ~0.100411 17
60 —0.100 336 39 —0.100 41098
70 —0.100 336 48 ~0.10041097
80 —0.100 336 48 —~0.10041097
90 —0.100 336 48 —0.100 411 06
100 —0.100 336 49 —0.100411 09
k=055
10 —0.000 361 34 —0.000 000 01
20 —0.132 563 05 —0.043 01391
30 —0.118 845 09 —0.114 73708
40 —0.118 665 69 —0.118 511 86
50 —0.118 658 89 —0.118 669 29
60 —0.118 658 68 —0.118 689 69
70 —0.118 658 54 —0.118 691 13
80 —0.118 658 59 —0.118 691 33
9 —0.118 658 57 —0.118 691 37
100 —0.118 658 56 —0.118 69129

and compared the results obtained from uniform complex
scaling, i.e., H(r)—H(re'?), with smooth exterior scaling
H(r)—H(R(r)). The contour used the polynomial switch-
ing function described in Sec. IV. For these calculations, we
chose Rp=20.0 and #=4.0. The Laguerre scale factor X was
set to 2.0 and the rotation angle was 30° for both sets of
calculations. Table I shows the behavior of the s-wave phase
shift (defined here as the phase of the calculated T matrix)
for several values of k. The convergence is faster with uni-
form scaling than with smooth exterior scaling, as we con-
jectured, because with smooth exterior scaling one first needs
to span the region from the origin to R before one begins to
see convergence. This can be seen in Fig. 1, which compares
uniform and smooth exterior scaling for k=0.55. The mea-
sure of convergence for this comparison is the unitarity of
the S matrix (S=¢%%), which is computed from the T ma-
trix as S=1+2iT.

The next case we consider is s-wave scattering from the
long-range potential
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FIG. 2. Unitarity of the calculated S matrix
(S=e%?) for s-wave scattering by a long-range
potential at k=0.55. The divergent upper curve is
for a potential which is not truncated on the com-
plex part of the integration contour.

5 10 15 20 25 30 35 40 45
number of basis functions
V(iry=—~+7——==, 47
=T @)

for which uniform complex scaling diverges. We again stud-
ied convergence with the smooth exterior scaling transforma-
tion, this time zeroing the potential beyond Ry—h, where the
contour begins to turn off the real axis. Results are shown in
Table II for several k values and two different values of
Ry. All other parameters of the contour and basis are the
same as in the preceding case. The rate of convergence is
similar to what was found with the exponential potential, but
the converged phase shifts show a slight dependence on
Ry, reflecting their dependence on the point beyond which
the potential is truncated. For comparison, we also show, in
Fig. 2, the results of a calculation in which the long-range
potential is not truncated. It is noteworthy that calculations
using the untruncated potential can provide useful results for
a range of basis set values, before they ultimately begin to
diverge.

We also implemented sharp exterior scaling in a finite
element basis of fifth-order Hermite interpolating polynomi-
als. In each interval [r;,r;+;], we can uniquely define six
independent polynomials P; /(r) and Q; ;(r), j=0,1,2 from
the conditions

%
o P;i(r)=28;,

& , J.k=0,1,2
d_rEPj.i(ri-l-l):O

3
arr Qj,i("i+1)=5j,k

k ’ j7k=07112 (48)

P Q;i(r)=0

The explicit formulas for the P;; are

3 2
r—riy I'—ris) F—riy)
Po(r =( - )[6( ) —15( )+10],
0i(r) Ti= T+ Ti=Ti+1 ri—Ti+)
2 2
r=ris F—riv1
Pl.i(r)=(ri+1—ri)(r__r‘_+l) [3(,,._;_“)
1 1 I :
r—r;
_7(__'1)4.4]’
i~

— 3[f ey
sz(r)=%(ri_ri+1)z(r rlﬂ) {(l‘ rlﬂ)—l],

TiTTis1 Fi~Ti+1
9)

for ri<r<r;;; and zero elsewhere. The functions Q;; are
obtained by interchanging r; and r;,, in the formulas for
Pj;.

We can use these polynomials to define three basis func-
tions at each node r; which span the interval [r;_,r;4,],
and have vanishing value, first and second derivative at the
end points. The basis functions are defined as

X, il(r) =P (r)+Q;i-1(r)) (50)

and are plotted in Fig. 3. It is obvious from Eq. (49) that the
basis functions defined in Eq. (50) scale onto the contour as
described in Sec. IV. In particular, at the point r;=R,, we
see that

Iim(Xj,i(RO'*'e)=(ei¢)ij.i(R0_8))- (51)

£—0

Thus the function y,; guarantees continuity of the wave
function at r;=R,, while x,; and x,; impose the proper
discontinuity conditions on the first and second derivatives,
respectively. To impose boundary conditions that the wave
function vanish at the origin and last grid point, we simply
omit the functions x,; and oy and remove P;; and Q; v,
Jj=1,2 from the definition of the basis functions.



FIG. 3. Basis functions for finite element calculations. Upper
panel: x;jo; center panel: x;,; lower panel: x;,. See text for
definition of the functions.

The exterior scaled finite element method was also ap-
plied to the long-range potential problem previously consid-
ered. For these calculations, the grid points were evenly
spaced from 0 to ry=100 with R, fixed at 25 and the rota-
tion angle was set at 20°. Once again, the potential was set
equal to zero along the complex portion of the contour. Table
III shows the behavior of the computed phase shifts at sev-
eral energies as a function of the grid spacing. Evidently, the
method converges very rapidly.

VII. DISCUSSION

We have shown that, with exterior complex scaling, we
can answer the question posed by the title of this paper in the
affirmative. Exterior complex scaling was originally intro-
duced as a generalization of uniform complex scaling to deal
with potentials that suffered interior nonanalyticities, but
were analytic outside a sphere of finite radius. What we have
shown is that by making this radius large enough so that the

TABLE III. Phase shift for s-wave scattering by truncated long-
range potential. Results from exterior scaling calculations using fi-
nite elements.

Nodal spacing k=035 k=0.55
125 —=0.099 959 82 —0.104 554 62
5.0 —0.100403 13 —0.118 68040
20 —0.100394 47 —0.118 67591
1.0 —0.100 391 89 —0.118 67324
0.5 —0.100 396 82 —0.118673 16
0.25 —0.100 396 82 —0.118 673 16

potential can be truncated at this distance without physical
consequence, then exterior scaling can be implemented in an
L? basis and provides a method for solving the full scattering
problem without explicitly enforcing asymptotic boundary
conditions, even in cases involving long-range potentials
where uniform scaling diverges. For analytic basis functions,
we use smooth exterior scaling to assure uniform conver-
gence; for sharp exterior scaling, finite element basis sets can
be employed. These developments allow the method to be
applied to the kinds of nonresonant scattering problems en-
countered in atomic and molecular physics. The fact that the
interaction region is represented in real coordinates also ob-
viates the need for the mixtures of real and complex basis
functions that have previously been used to treat many-
electron systems. We can also show that the present devel-
opment allows us to make contact with other formulations of
scattering in which cross sections are evaluated by calculat-
ing the flux through a surface outside the interaction region.
This will be the subject of another study.
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Appendix C

Finite Difference Formulas

Using finite difference approximations of derivatives has the advantage of produc-
ing very sparse matrices whose matrix elements are trivial to evaluate. Additionally,
finite difference is one of the few numerical methods than can handle a non-analytic
exterior complex scaling contour such as the one defined in Equation 3.12. Seven-
point finite difference approximations of the second derivative give significantly more
accurate solutions than the standard three-point formulas, particularly when multiple
grid spacings and/or exterior complex scaling are used. Formulas for three, five and
seven-point finite difference approximations are listed in this appendix. Derivations
of just the three-point formulas are presented to illustrate the general procedure for
generating finite difference formulas and applying them to exterior complex scaling.

C.1 Uniform grid spacing

Consider an evenly spaced grid with grid points z,, = nh where h is the spacing
between grid points. Let f, be the values of some function f(z) such that f, = f(z,).
Now suppose we wish to approximate f¥ = £ f (2)lg=s,, the second derivative of
f at the point z,. The values of f(z) at the grid points on either side of z, can be

expressed with a Taylor series in terms of f(z) and its derivatives evaluated at z,.
i Loz Los | 14 e
fn:i:1=fnihfn+§h fn :I:Eh f'n, +2_4‘h fn + ... (C’l)

When the Taylor series expansions of f,y; and f,_; are added together the first
derivative terms cancel.

" 1 .
Fot + fary = 2fn+ B2+ B (G:2)

Equation C.2 can be rearranged to give a formula for f¥ that uses the function value
at three grid points (f,—1, f, and fy41) as well as higher derivatives evaluated at z,.

L

2 riv
S+ (C.3)

fB= % (=2fn+ fas1) —
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R fat = error term
fo-1—2fn + fot1 ﬁhzf,if
_%fnﬁ + %fn—l - %fn =+ %fn+1 — ﬁfm-z %h“f}{i
Bfa1— 3o+ $far + $fnte — S s Lh3fY

o fnos — %fn-a + 31— B+ i o — 2 frg2 + & futs 5898 o

Table C.1: Finite difference formulas for evenly spaced grids.

Equation C.3 is a three-point formula for the second derivative with a leading error
term that is second order in the grid spacing h. By following the same procedure, but
using more grid points on either side of z,, we can derive more accurate formulas for
the second derivative. A five-point formula with fourth order error and a seven-point
formula with sixth order error are listed in Table C.1. An “asymmetric” five-point
formula is also given in Table C.1. This formula is used for grid points adjacent to
the boundary i.e., n = 1, (see Figure 3.3) and approximates the second derivative to
third order in the grid spacing h.

C.2 Two different grid spacings

The formulas in Table C.1 require that the grid be evenly spaced. In practice, we
may wish to use different spacings in different regions of the grid. Suppose that a grid
consists of two different grid spacings g and A with a uniform spacing of g to the left
of the point z, and a uniform spacing of A to the right of the point z,. For any grid
point z, where n # p we can use the formula in Equation C.3 with grid spacing g for
n < p and grid spacing h for n > p. However, we need a new formula to approximate
the second derivative at the interface point z,,.

Consider the Taylor series expansions for f,;; and f,—; about the point z,.

i 1 .. 1
for1 = fp+hfi+ §h2f;’ + gh"’f;“ + ...
. 1 . 1
fort = fo—gfi+ 592]‘;’ - gg3f;" + ... (C.4)

We now add these two formulas together after multiplying each by the appropriate
grid spacing such that the first derivative terms cancel.

hfp-1+ gfpi1 = (g +h)fp+ %gh(g +h) - %gh(f — B [+ . (C.5)

As before we rearrange to get a formula for f;". Now the first nonzero higher derivative




n=p—1 n==y n=p+1
f _1 h(2h—34q) —2h2
n—2 39(3g+h) 29°(2g+h)(g+h) | g(g+h)(g+2Rh)(g+3h)
f 3g+h 4h(3g—h h+3g
n—1 92(2g-+h) 92(9+2h)(g+h) 3gh?
£, —(23g+2h) 2h2+29%—9gh —(3h+29)
g%(g+h) 29%h? h%(g+h)
f g+3h 49(3h—g 3htg
ntl 3g%h h2(h+29)(g+R) h2(2h--g)
f —242 9(29—3h) e
n+2 |\ R{g+h)(R+29)(h+39) | 2R%(2h+g)(g+h) 3h(3h-+g)
error 59 hfY_y T=gh(g — R)f2 | ah*(g— h)f2

Table C.2: Five-point finite difference formulas for the “interface” between two dif-
ferent grid spacings. Special formulas are needed for the second derivative at the
interface point z, as well as the point on either side. The three columns of the table
give the coefficients needed to approximate f% forn=p—1,n=pandn=p+1.

term is fi# rather than f% so the leading error term is first order in (g — h).

. 2 1
» = FACEY)] (hfp—1— (g + h)fp + gfpt1) + g(g —h)fp + -

It is generally true that finite difference formulas that straddle two regions of
different grid spacings will be less accurate by one order than their uniform grid
counterparts. For the three-point approximations we need a special formula only for
the derivative at x,. The five and seven-point approximations sample from a wider
area so they require special formulas for one and two points, respectively, on either
side of the interface point z,. Special formulas for five-point approximations near an
interface are listed in Table C.2 and the seven-point formulas are listed in Table C.3.

(C.6)

C.3 Application to exterior complex scaling

Applying the finite difference formulas to exterior complex scaling is straight-
forward. The same formulas are used but grid spacings in the region where the
coordinates are complex are multiplied by € where 7 is the complex scaling angle.
In the cases where the finite difference formulas straddle the complex scaling point Ry
some of the grid “spacings” will be real and some will be complex. This means that
even for an evenly spaced grid the specialized finite difference formulas in Equation
C.6 or in Tables C.2 and C.3 are necessary for implementing exterior complex scaling.
Finite difference is well-suited to handle the non-analyticity of the exterior complex
scaling contour provided that Ry is one of the grid points. The transition from a real
to a complex grid at Ry does mean that the error in the finite difference formulas
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n=p-—2 n=p-1 n=p n=p+1 n=p+2
f 1 392 +3gh—2h2 2(119~9h)h? h3(59—h) 8ht
n-3 159(5g+h) 249%(2g-+h)(4g+h) 99%(9+h)(39+h)(39+2h) 19%(9+h)(2g-+h)(g-+2h)(3h+29) 9(9+h)(2h+9)(8h+9)(4h-+g)(5h+9)
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2(79+2h) 13¢24-21gh-4-2h2 6(119—5h)h? 2292+159h—h? Sh4dg
fa-1 39%(3g-+h) 49%(9+h)(29-+h) 9%(g+h)(g+2h)(g+3R) 24g*h 3h*(g+h)
f ~(84g+15h) —(992-+30gh-+10A?) 3692 —121gh-+36h? —(9/2+30gh-+1092) —(34h+159)
n 692(29+h) 39%(g+-h)(g-+2h) 1892h2 3h?(g+h)(h+2g) 6h2(2h-g)
f, 5q-+4h 22h%4+15hg—g? 692(11h~5 13h24-219h+-292 2(7h+2g)
n+1 392(g+h) 2492h? h2(g+h)(29+h)(3g+h 1h%(g+h)(2h+g) 3hZ(3h+g)
f —(4g-+5h) —29%(10h—g) —39%(11h—89) —(5h®+6gh—2g2 —(8h+
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f 8g* 93(5h—9) 292(11h—99) 3h243gh—2g2 1
n+3 R{g+h)(29+1)(3g-+h)(3g+N)(5g+h) % (g+h)(29+h)(g+2R)(3g+2h) 9h%(g+r)(g-+3h)(2g-+3h) —i_‘q‘j_‘q_jm ©h+9)(4h+g 15h(5htg)
-1 4 i -1 .3 i | =11 252 i 1 13 i 174 ii
error 9 (9 — R)RE 25209° (79 + 10h) (g — R) 3 | T39°R* (g — R)F3¥ | e55h°(10g + Th)(h — g) £ sl (b —9) 3"

Seven-point finite difference formulas for the “interface” between two different grid spacings. Special formulas are needed
for the second derivative at the interface point z, as well as two points on either side. The five columns of the table give

the coefficients needed to approximate fi forn=p+2,n=p+1and n=p.
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Solution to Analytic Test Problem Error in Finite Difference Solutions
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Figure C.1: On the left is the analytic function given in Equation C.7 evaluated on a
grid that is complex beyond Ry = 20a, with a scaling angle of 30°. On the right is the
numerical error in wave functions calculated by solving Equation C.8 using 3-point,
5-point and 7-point finite difference formulas. In this example the grid spacing was
0.05ay between r = 0 and r = 5ayp, 0.2a9 between r = 5a¢ and 7 = 25a4, and 0.5a,
beyond r = 25a,.

will be larger than for a real, uniformly spaced grid. For this reason, the higher-order
seven-point finite difference formulas should be used.

C.4 Analytic example

We can test finite difference applied to exterior complex scaling by solving an
inhomogeneous differential equation that is similar to a one-dimensional scattered
wave equation but has a known analytic solution.

p(r) = (1—eor) fr (C.7)

The function defined in Equation C.7 is an outgoing radial wave similar to a scattered
wave for one-dimensional potential scattering such as the examples in Appendix A. It
is a solution to an inhomogeneous differential equation of the form (f{ — E) P(r) =
x(r) with an attractive exponential potential.

2
% (——d—Q— — o™ — k2> h = <%—e‘°" - 2z'ozk) e~orelkT (C.8)
The exact solution to Equation C.8, evaluated on a contour that is complex beyond
Ry = 20ay, is shown in the left panel of Figure C.1. In this example k = a = 1lag*
and the complex scaling angle is 30°. The grid extends to 40ap which is far enough
that 1 is effectively zero at the end of the grid.
Most of the grid has a grid spacing of 0.2ay which is sufficient to describe an
oscillatory function with this wavelength. A much smaller grid spacing of 0.05a, is
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used for small . The smaller grid spacing is unnecessary for this example but it is
needed when Coulomb potentials are involved. For large r at some distance beyond
the scaling point Ry the wave function is sufficiently damped that representing it
accurately is unnecessary so we can use a larger grid spacing of 0.5a¢ at the large r
end of the grid. The numerical errors in the calculated solutions for three, five and
seven-point finite difference formulas are shown on the right in Figure C.1. The effect
of using higher-order finite difference formulas is clearly evident. In particular, using
a higher-order formula makes the calculated solution more accurate on the real part
of the grid even if there is little or no improvement in the solution on the complex
part of the grid.



Appendix D

LU Factorization of Sparse
Matrices Using SuperLU

The finite difference matrix representations of the Hamiltonian consist mostly of
matrix elements that are zero. We can greatly improve the computational efficiency
of the methods for solving the scattered wave equation by taking advantage of the
sparsity of the matrices. Packed array storage schemes for sparse matrices minimize
the amount of memory required to store a sparse matrix. Specialized routines for
maftrix operations involving sparse matrices minimize the number of required floating
point operations. An essential component to the completion of the calculations for
this thesis was a software package called SuperL'U which solves a matrix equation for
a sparse matrix very efficiently by LU factorization.

D.1 Two-dimensional finite difference matrices

Only a small fraction of the matrix elements in the finite different matrix represen-
tation of the Hamiltonian are nonzero. The sparsity structure for the two-dimensional
Temkin-Poet matrices are shown in Figure D.1. Each row or column corresponds to
a particular point on the grid. The same number of grid points is used for both radial
coordinates so the dimension of the matrix is N = ng with the wave function rep-
resented by an array of N numbers corresponding to the value of the wave function
at each grid point. Potentials are represented by matrices whose diagonal matrix
elements are the values of the potential at each grid point and whose off-diagonal
matrix elements are zero. The finite difference formulas link each grid point to one
or more neighboring grid points on all sides.

All of the nonzero off-diagonal elements of the Hamiltonian matrix are due to
the finite difference formulas. The number of nonzero elements for any row of the
matrix is determined by the number of points used in the two-dimensional finite
difference stencil (see Figure 3.3) centered at the grid point corresponding to that
row. The low-order finite difference matrix, based on three-point formulas, has at
most five nonzero matrix elements on each row and the high-order matrix, based on
seven-point formulas, is limited to 13 nonzeros per row. Rows of the matrix that
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low-order finite difference matrix high—order finite difference matrix

24 E - 24y, ™.

48 % . ] 48 2
i N
N

144 > 144
0 24 48 72 96 120 144 0 24 48 72 . 96 120 144
672 nonzero matrix elements 1560 nonzero matrix elements

“,

Figure D.1: Sparsity structure of the finite difference matrix representations of the
two-dimensional Hamiltonian in the Temkin-Poet model. On the left is the low-order
matrix which uses 3-point formulas for the second derivates. On the right is the
high-order matrix which uses 7-point formulas. These examples are very small (144
total gridpoints extending only to 2ag) so that the basic structure can be seen.

correspond to points near an edge of the grid will have fewer nonzero elemnts. The
total number of nonzero matrix elements is given in Equation D.1.

ng(ng + 2ny(2n, — 2)) 3-point formulas

ng(ng + 6ny(2n, — 4)) 7-point formulas (D-1)

number of nonzeros = {

Both matrices pictured in Figure D.1 have a very particular structure. The two-
dimensional grid points are ordered such that the grid points for a fixed r, are con-
tiguous. Each of the ny groups of n, fixed r, points is ordered from smallest 75 to
largest . Within each group the points are ordered from smallest 7; to largest r;.
Finite difference formulas in r; connect neighboring points in r;. These fill out the
seven inner-most diagonals for the high-order matrix and the three inner-most diag-
onals for the low-order matrix. Neighboring points in 75 are n, apart in the matrix
ordering so the 73 finite difference formulas form nonzero diagonals at n, intervals.

The low-order matrix has nonzeros on the three inner diagonals and on the n;"
super and sub-diagonals with an overall bandwidth of 2n, —1. The high-order matrix
has nonzeros on the seven inner diagonals and at three super and sub-diagonals at
strides of ny with an overall bandwidth of 7n, — 1. The notch visible in the 3n§"
super-diagonal is due to using five-point finite difference formulas for grid points that
are two points from the edge. There are no “missing” super-diagonals for the grid
points right next to the edge because a “lop-sided” five-point formula was used. This
same feature exists on the inner diagonals which also have a segmented appearance
marking the separations between groups of fixed 7, points.




D.2 Storing sparse matrices

We substantially reduce the amount of computer memory used to store a sparse
matrix by storing only the nonzero matrix elements. A sparse matrix is stored in
an array of length nnz where nnz is the number of nonzero matrix elements. The
number of nonzero elements scales linearly with the dimension of the matrix N (less
than 5N for the low-order and 13NN for the high-order matrices) compared with N?
total matrix elements so the savings in memory increases rapidly with matrix size.

The cost of this savings is that row and column index information for each nonzero
matrix element must also be stored. The simplest way to do this would be to also
store two arrays of length nnz for the row and column indices of each nonzero ma-
trix element. We can achieve a further savings in memory by using a packed storage
scheme. Row indices are still stored in a length nnz array, but column index in-
formation is stored implicitly by requiring that all nonzero matrix elements from a
particular column be stored together. An array of length N+ 1 denotes the beginning
and end of each column’s group of matrix elements. A simplistic algorithm for stor-
ing a matrix in this way is provided on page 111. That algorithm is for illustrative
purposes only and should never be used in practice because it is extremely inefficient.

The sparse matrix storage scheme also provides for a significant savings in com-
puter time by reducing the number of floating point calculations required to perform
matrix operations. For instance, a matrix-vector multiply involving a dense matrix
of order N requires N? individual multiplications. If the matrix is sparse then we
can eliminate all of the mulitplications for matrix elements that are zero so that only
nnz individual multiplications are required. In cases like the finite difference matri-
ces where the number of nonzero elements per row is fixed the cost of matrix-vector
multiplies is linear rather than quadratic in N. This fact is very important when
iterative methods are used for solving large matrix equations.

D.3 LU factorization of sparse matrices

Gaussian elimination is the canonical method for solving a matrix equation of the
form Ax = b. The majority of the operations in Gaussian elimination depend only
on the matrix A and not on the righthand side b. These operations turn out to be
identical to factoring the matrix into the product of an upper-triangular matrix U
and a lower-triangular matrix L so that A = LU. LU factorization algorithms solve
linear matrix equations by first factoring the matrix into its L and U factors and
then solving two linear equations with the triangular matrices L and U.

The factorization step ‘accounts for the vast majority of the required calculations.
Assuming no sparsity in the matrix A, the number of operations in the factorization
step scales like N® while those for the triangular solves scale like N2. The advantage
of LU factorization comes in to play when linear equations with the same matrix A.
must be solved many times. The LU factors can be reused each time so that the cost
of solving linear equations with the same matrix multiple times is relatively low.

Writing LU factorization algorithms for sparse matrices is very difficult because
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o sum of LU factors for low-order matrix . sum of LU factors for high—order matrix
24} ' 24
48F 48
72F 72
96t 96t
120} 120}
144 144
0 24 48 72 96 120 144 0 24 48 72 96 120 144

3334 nonzero matrix elements 8699 nonzero matrix elements

Figure D.2: Sparsity structure of the LU factors of the matrices in Figure D.1. The

factors U and L are upper and lower-triangular matrices, respectively. The sparsity
of the sum L + U is shown here.

the I and U matrices will not have the same sparsity structure as A. In general, the
combination of L and U will have many more nonzero matrix elements than A. Figure
D.2 shows the sparsity structure of L + U for both matrices pictured in Figure D.1.
Basically, factorization has filled in all of the zeros between the outermost nonzero
diagonals. This is typical of the “fill” that occurs in LU factorization. Storing the
LU factors requires significantly more computer memory for the high-order than for
the low-order finite difference matrix.

Currently, the only available software package that can LU factor a sparse matrix
with complex matrix elements is SuperLU [19] written by Xiaoye “Sherri” Li. This
package takes a matrix stored in the packed array storage scheme described previously
and decomposes it into its L and U factors that are also stored as sparse matrices.
It then performs triangular solves with these factors to solve the original matrix
equation. SuperLU is parallelized so that it can simultaneously utilizes several CPUs
on a massively parallel computer. Also, SuperLU includes a re-ordering step which
permutes the matrix A in such way as to reduce the amount of storage required for

the LU factors. Some time and memory usage information with the two types of
finite difference matrices are listed in Figure E.1.




Simplistic Algorithm for Storing a Spérse Matrix

N = dimension of matrix
dimension of storage arrays:

(integer nnz is the number of nonzero matrix elements)
integer rowind(1l:nnz)
integer colptr(0:N)
complex values(1:nnz)

nz =0

calpin(©) = {

forj=1toN
colptr(§) =0
fori=1toN
compute A (3, )
if abs(A(,45)) > 0 then
nnz = nnz + 1

1 one-based indexing
0 zero-based indexing

values(nnz) = A(%, j)
i one-based indexing
it — 1 =zero-based indexing
colptr(j) = colptr(j) + 1
endif
end
colptr(j) = colptr(j) + colptr(j — 1)

rowind(nnz) = {

end

Figure D.3: SuperLU uses a packed storage scheme that stores only the nonzero
elements of a matrix. This simplistic algorithm will create the appropriate packed
storage structure for any matrix. It is extremely inefficient because it loops over every
matrix element (including those that are zero) and is provided for illustrative purposes
only. In practice, the loop structure should be designed so that the algorithm tests
only those matrix elements which are expected to be nonzero.
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Appendix E

Conjugate Gradient Squared
Iterative Algorithm

The conjugate gradient squared (CGS) iterative algorithm was used to solve the
linear equations arising from the scattered wave equation. Iterative algorithms at-
tempt to arrive at a solution to a linear system Ax = b using a series of matrix-vector
multiplies rather than by using a “direct” method such as Gaussian elimination. If an
iterative algorithm converges for some matrix A then it may require significantly less
computer time and memory than do direct methods. However, iterative algorithms
are guarunteed to converge to the solution only for certain special cases. For “ill-
conditioned” matrices, such as those produced by exterior complex scaling, another
matrix M is needed as a “pre-conditioner” to make iterative algorithms converge.

E.1 Convergence of iterative algorithms

The measure of an iterative algorithm’s effectiveness is the rate at which it con-
verges (assuming that it does converge) to the correct solution. Let x® be the ap-
proximate solution vector computed in the i** iteration. To measure how close x(® is
to the exact solution we substitute it for x in the system of equations b — Ax = 0.
The norm of the residual r® = b — Ax® will be zero if x is the exact solution.

)

error = | = “b — Ax® (E.1)

The rate of convergence is then the rate at which lr(i) " approaches zero. Iterative
algorithms are preferable to Gaussian elimination if they converge and the rate of
convergence is reasonably fast.

For a system of N linear equations the number of numerical operations required
for a matrix-vector multiply scales as N? while Gaussian elimination scales as N3.
Thus, if the number of matrix-vector multiplies required for the iterative solution does
not increase significantly with increasing IV then it is guarunteed that for sufficiently
large N an iterative algorithm will take less time than Gaussian elimination. The
time savings are even more significant if the matrix is sparse i.e., most of the matrix



elements are zero. Calculating the matrix-vector product Ax for a sparse matrix A
requires many fewer numerical operations. In the case of a finite difference matrix, the
number of nonzero matrix elements per row is fixed and the matrix-vector multiply
scales linearly with N. ‘

Krylov subspace methods are a class of iterative algorithms designed to rapidly
converge to a solution. The most efficient and best understood of these algorithms is
the conjugate gradient (CG) method (see, for example, reference [16] section 6.6.3).
The CG method is guarunteed to converge only for symmetric, positive definite ma-
trices. The finite difference matrix representation of (E — H) with exterior complex
scaling is complex non-symmetric and non-Hermitian. There are several Krylov sub-
space methods designed for this more general class of matrices. Whether or not
these methods work for a particular matrix and how fast they converge depends on
the eigenvalue spectrum of the matrix and cannot, in general, be predicted. If the
spectrum covers a large region in the complex plane then an iterative algorithm will
converge slowly or possibly not at all. Such a matrix is said to be “ill-conditioned”.

E.2 Pre-conditioners

If a matrix A is ill-conditioned then an iterative algorithm might be made to
converge or to converge more rapidly by using a “pre-conditioner” matrix M chosen
so that the matrix product M~'A is better conditioned than the matrix A. The
solution to Ax = b is then obtained by instead solving the pre-conditioned equation
M-'Ax = M™!b. Within the algorithms the pre-conditioner is actually applied
by solving linear equations with the matrix M rather than A. In order for a pre-
conditioned iterative algorithm to still be preferable to Gaussian elimination it is
necessary that solving linear systems with the matrix M require significantly fewer
computations than solving linear systems with A. We can see how this works by
looking at a very simple (not a Krylov subspace method) iterative algorithm.

In this simple example we start with an initial guess of zero i.e., x(® = 0. At each
iteration we update the approximate solution vector by adding the residual vector.

xHD = 3@ 4 £ = p 4 (1 - A)x® (E-2)

In this case we can write down an exact algebraic expression for the i** solution vector
and the i residual vector. _ .
rd = (1 - A)b (E.3)

Clearly this algorithm will converge if and only if the eigenvalues of A lie inside a unit
circle centered at 1. To remove this restriction we instead solve the pre-conditioned
equation M~'Ax = M~'b. By appropriate substitution into Equation E.3 we directly
write down an algebraic solution for the ** residual vector in this case.

r® = (1-M™A) M (E.4)

Now the requirement for convergence is that the eigenvalues of the matrix product
M™LA lie within a unit circle centered at 1. In other words, we require that M =~ A.
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The degree to which M approximates A determines the rate of convergence of the
simple algorithm. If M were exactly equal to A then the algorithm would converge
in just one iteration, but it would reduce to a direct solution of the original matrix
equation so no savings in time or memory would have been achieved. The goal is to
find a pre-conditioner M that produces a reasonable rate of convergence but for which
solving linear systems with M is substantially easier than solving linear systems with
A. For Krylov subspace methods the effect of the pre-conditioner is more complicated,
but the basic ideas are the same. In general, choosing M to approximate A is one
way, but not the only way, to form a pre-conditioner.

E.3 Conjugate gradient squared for ECS

The eigenvalue spectrum of an exterior complex scaled Hamiltonian populates
much of the lower half of the complex plane. Thus, the matrix representation of
(E - H ) is very ill-conditioned and finding an iterative method that will solve the
scattered wave equation involves testing various algorithms and pre-conditioners to
see which converge. Various iterative algorithms were tested with one-dimensional
potential scattering problems such as those in Appendix A. Exterior complex scaled
finite difference matrices for a one-dimensional problem are relatively simple and
small but they are ill-conditioned in the same manner as the Temkin-Poet matrices
of Chapter 3 and the electron-Hydrogen matrices of Chapter 5.

Every known iterative algorithm failed to converge for these test problems without
pre-conditioning. Furthermore, all pre-conditioners created by standard methods in
numerical linear algebra failed to cause any of the iterative algorithms to converge.
The only successful pre-conditioner was the low-order finite difference matrix repre-
sentation of the same operator. Using the low-order matrix as a pre-conditioner for
solving the high-order matrix equation caused a few of the Krylov subspace methods
(CGS, Bi-CGStab, and GMRES) to converge.

All had about the same stability and convergence rate when using this pre-
conditioner. In fact, this pre-conditioner caused even the simple iterative algorithm
in the previous section to converge, although much more slowly than the Krylov sub-
space methods. The CGS algorithm, given in Figure E.2 on page 116, was chosen
because it required the least amount of computer memory to implement.

Solving the scattered wave equation (Equation 3.5) for the Temkin-Poet model
problem is a more concrete and pertinent example. Let the matrix A represent
the two-dimensional operator (E - H using “high-order”, 7-point finite difference
formulas for the second derivatives and let the matrix M be the “low-order”, 3-point
finite difference representation of the same operator. The driving vector b is the
function (fI - E') ). evaluated on the grid. The vector x will be the scattered wave

¥fp on the grid, we’ll choose (9 = 0 as the starting guess for the iterative algorithm.

As shown in Figure E.1, the rate of convergence for the algorithm in Figure E.2
applied to the Temkin-Poet mode is fairly rapid and well-behaved. Each CGS itera-
tion requires two matrix-vector multiplies with the matrix A and two applications of
the pre-conditioner M. The matrix-vector multiplies were performed without explic-




Iterative Algorithm

Converge of CGS Algorithm for Temkin-Poet

10 factorization time: 379.4 seconds
1414 eViincident énergy single solve. time: 5.51 seconds
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Figure E.1: Convergence of the CGS algorithm for the Temkin-Poet model for three
grids which are real out to different values of Ry is shown on the left. The time
required for the Ry = 70qp calculation on a 332Mhz Power2 CPU is shown on the
top right. In this case, the grid extends to 95ay and the total number of grid points
(and matrix dimension) is 114,244. The pre-conditioner is applied by first factoring
the matrix M and then solving with the LU-factors twice in each CGS iteration. So,
the total number of solves is twice the number of iterations. The time required to
factor the matrix A and solve Ax = b directly is shown on the bottom right.

itly storing A. This provides a significant savings in memory compared to a direct
solution which requires enough memory to both store the matrix and perform Gaus-
sian elimination. Application of the pre-conditioner means solving linear equations
with the matrix M. Here we have no choice but to solve the system directly. This is
done via an LU-factorization (see Appendix D) of M. By saving the LU factors of
M repeated applications of the pre-conditioner are fairly inexpensive.

For comparison, the time required for a direct solution via an LU-factorization of
A is also shown. In this example the iterative solution took 31% of the time that the
direct solution did. This is because the factorization of M takes significantly less time
than does the factorization of A. A single solve using the LU factors takes much less
time for M than for A. However, the total time spent in the CGS algorithm after
the LU-factorization of M is larger than the solve time using the LU factors of A.
This means that if many solutions to an equation of the form Ax = b are required
then the iterative algorithm is actually more time consuming than direct solution.
However, there is still a significant savings in memory using the iterative algorithm.
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Preconditioned Conjugate Gradient Squared Method

Start with initial guess x(®

Compute r® =b — Ax©®

for ¢ = 1 to max_iterations
pi—1 = bTrl-1)

if p;_; = 0 method fails

ifi =1 then
) = 10
p =
else

Bi—1 = Pz‘—1/Pi—2
u(i) — r(i-l) + ;Bi—lq(i_l)

p® =u® 4+ 8,_, (q(z‘—l) + B 1p(i—1))

endif

solve Mp = p®®
v=Ap

o; = pi1 /b7

q® = u® — o5

solve Mi = u® 4 g
x@ = x0-1 1 ;i

& =p— Ax®

error = [|r@||

if error < tolerance exit

end

Figure E.2: The preconditioned conjugate gradient squared algorithm based on the
one given in Templates for the Solution of Linear Sytems [4], page 26. The arbitrary
vector T in [4] is defined here to be the driving term b. Also the full residual r® is
computed in each iteration rather than updating the previous residual.




Appendix F

Expansions in Spherical Harmonics

The calculations described in this dissertation all involved partial wave expansions
of wave functions in terms of spherical harmonics. Some properties of both the ordi-
nary and coupled spherical harmonics that are important to the derivations presented
in the preceding chapters are given in this appendix.

F.1 Spherical Harmonics

One-electron functions are expanded in terms of ordinary spherical harmonics Y,
defined in Equations F.1 and F.2 where the P/ are associated Legendre functions.

Yim(6,8) = (—1)™ [ BEm pm(cos g)eimé im0 (F.1)

Yim(6,¢) = (=1)™Y[_1(0, ) (F.2)

The Yim(6,$) are orthonormal functions of the usual spherical polar angles § and
¢ and are eigenfunctions of the total angular momentum quantum number [ and its
projection m along the z axis.

V0, 0) = (1) - 1 070D Yim0.) (R3)

Two-electron functions are expanded in terms of coupled spherical harmonics
VLY (01, ¢1, 02, ¢2) that are functions of two spherical polar angles for each electron.

yll]_,% (91’ ¢17 027 ¢2) = Z (lllZmlmZILM)Yl1m1 (017 ¢1)Yl2m2 (027 ¢2) (F-4)

mi,m2

The Y[4f can be written as a finite sum of products of Y m, as shown in Equation F 4,
where the (Llamime|LM) are the well-known Clebsch-Gordan coefficients. Procedures
for calculating Clebsch-Gordan coefficients can be found in standard references such
as Messiah [21] and Zare [39].

From Equation F.4, it is obvious that the VX% are eigenfunctions of the individual

angular momenta /; and I for each electron. Clebsch-Gordan coefficients are real
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numbers chosen so the yﬂg are also orthonormal eigenfunctions of the total angular
momentum L of the two-electron system and its projection M along the z axis.

UL M|y LM) = 6 4,6 1,61 1000 01 (F.5)

The orthonormality of the yﬁ% is expressed in Equation F.5 using Dirac braket no-
tation with the scalar product denoting integration over all four angular coordinates.

Clebsch-Gordan coefficients are zero unless m; + my = M. So, the double sum
over m; and mgy in Equation F.4 could be rewritten as a single sum over either m;
or my. Also, only terms for which |m;| < I; and |my| < I, are nonzero. These
restrictions can be used to specify the summation limits.

In this dissertation only M = 0 partial waves were necessary. For these coupled
spherical harmonics the expansion in Equation F.4 can be simplified.

VE, (01, 81,02, 82) = (wtom-miLat)Y 11 (01, 61) Y1 —m (B2, B2) (F.6)

The limits in the summation over m in Equation F.6 are +min(l;,l). We can see
the cylindrical symmetry in an M = 0 system (such as an electron scattering from a
spherically symmetric target) by using the explicit forms for the Y, ,, from Equations
F.1 and F.2 in Equation F.6. Dependence on the azimuthal angles ¢, and ¢, in the
" term simplifies to €™ where A¢ = ¢, — ¢5. The V£, are not functions of the
¢1 and ¢, independently. Instead, they are functions of the relative angle Ag.
Clebsch-Gordan coefficients obey the following symmetry relation with respect to
interchange of the single-particle quantum numbers.

(hilomima|LM) = (— 1)l1+l2+L (lalymomi|LM) (F.7)

An important symmetry relation for the yl 1, follows immediately from Equation F.7
and the expansion in Equation F.4.

ll,lz (92, ¢27 01, ¢1) = ( )ll+12+LylL2,,ll (91, ¢1) 92) ¢2) (F8)

When the sum I, + Iy + L is even the Y are said to have even parity and when
it is odd they are said to have odd parity. This property is important because only
partial waves with the same parity will be coupled by the two-electron potential.

F.2 Two-Electron Potential

Of particular relevence to the topic of this dissertation are matrix elements of the
two-electron potentlal -— - between two y,l I

2

= lll’l’LO) / / yE, (1)

47 4

2
— 7|

These form the two-dimensional potentials in the coupled equations (Equation 5.6)
and are functions of the radial coordinates r; and ry. Formal expressions were worked
out by Percival and Seaton [24] and are also given in Application 4 of Zare [39].

<l1l2L0| yl/ A (7'1, Tg)d’f'ldT'g (Fg)




Der1v1ng formulas for these matrix elements can be done using an expansion of
ﬁ that makes use of the spherical harmonic addition theorem.
e2 2 )\ A A . '
= —1)Y ) —o (1) Y (7" F.1
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The radial dependence is then contained in the non-analytic factors ;Tﬁ where rs is

>
the larger and 7. is the smaller of r; and 7. From Equation F.10 it is clear that the
matrix elements have the following form, previously given in Equation 5.5.

e2 /\
(lllzLOlm—_lelll L0>_ 22 1l2llll A-i-l (Fll)

The values of A over which the ClL;)‘l, y, are nonzero range from max (|l — &, |l2 — 13))
to min ((I; + 1), (I + 1)). Specifically, the Cz it are equal to the following integral.

lllzl' I — Z ( l)q// i, l2 Tl’712)*Y)\a—¢1(7?1)Y)\,q(7?2)yll’:?l'2 (fhli:?)dfldlf‘? (F12)

g=—2 4dr 4

This integral can be expressed in terms of Clebesch-Gordan coefficients and the
so-called Racah coefficients [24]. These formulas will not be given here, but one
consequence of the Clebesch-Gordan factors involved is that matrix elements between
y,l 1, of different parity (see Equation F.8) are zero. For this reason, there is no
coupling between partial waves of different parity. One special case where we can
easily evaluate Equation F.11 is when all quantum numbers are zero. This gives the
two-electron potential used in the Temkin-Poet model.

000|——10000) = & F.13
(0 |m| )—r— (F.13)
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F.3 Partial wave expansions

We use the various spherical harmonics for partial wave expansions of the wave
functions. The multipole expansion of a plane wave is expanded in terms of the
ordinary spherical harmonics.

Jl( 7)

e — S i ) () (F.14)
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The j, are regular Riccati-Bessel functions. By choosing the momentum vector to be
along the z axis, only terms for which m = 0 are included in the expansion.

Next we will consider the type of partial wave expansion needed for the “initial
state” W) (71,7) defined in Equation 2.5. This wave function is made of two terms
with the form etki%1 f(ry) where f has no angular dependence. To expand a function
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like this, it is necessary to evaluate Clebsch-Gordan coefficients for the cases where
either [; or [, is equal to L and the other is zero.

(LOMO|LM) = (OLOM|LM) = 1 (F.15)

An immediate consequence of Equation F.15 is that the Y277 with either [; or I equal
to L have a very simple form.

VEG (L ) = You () Yoo (Re)  YVEY (1, 72) = Yoo (1) Yia (72) (F.16)
Since Yoo(0, ¢) = —= we can write f(r) = v4rf(r)Yo,(0, ¢). Using Equations

F.16 and F.14 it is tr1v1a1 to write down the partial wave expansion of e**i% f(ry) in
terms of coupled spherical harmonics.

e*i71 f (1y) Zz 4n\/(2L+1) JL( : 1)f( ) VEQ (71, 72) (F.17)

Only M = 0 terms are included in Equation F.17 because only m = 0 terms exist
in the multipole expansion of the plane wave and in the function f(r). This basic
derivation leads directly from the definition of \Ilgi in Equation 2.5 to its partial wave
expansion in Equation 5.2.

One feature of Equation F.17 is that it contains only terms with even parity
(Lb+lk+L=L+0+L=2L). Since the two-electron potential only couples partial
waves with the same values of L and M and the same parity the scattered wave ¥, will
contain only terms with the parity and values of L and M that exist in the expansion
of \Ilgi. For this reason, the partial wave expansion of U7, in Equation 5.3 contains
only terms with M = 0 and for which [; + [ + L is an even integer. Consequently,
the symmetry relation given in Equation 5.8 for the partial wave radial functions in
the expansion of UZ, follows directly from Equation F.8.




