

Evaluation of Feeds for Melt and Dilute Process Using an Analytical Hierarchy Process

by

J. F. Krupa

Westinghouse Savannah River Company

Savannah River Site

Aiken, South Carolina 29808

H. Peacock

W. Bickford

H. Brooks

W. Swift

T. Adams

RECEIVED
QST-1
APR 13 2000

DOE Contract No. **DE-AC09-96SR18500**

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

**EVALUATION OF FEEDS FOR MELT AND DILUTE
PROCESS USING AN ANALYTICAL HIERARCHY
PROCESS (U)**

February 2000

UNCLASSIFIED

**DOES NOT CONTAIN UNCLASSIFIED
CONTROLLED NUCLEAR
INFORMATION**

ADC/Reviewing Official: Randy L. Collins ADD
Date: March 1, 2000

Westinghouse Savannah River Company
Savannah River Site
Aiken, SC 29808

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, phone: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: <http://www.ntis.gov/ordering.htm>

Available electronically at <http://www.doe.gov/bridge>
Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062, phone: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

**EVALUATION OF FEEDS FOR MELT AND DILUTE
PROCESS USING AN ANALYTICAL HIERARCHY
PROCESS (U)**

SITEWIDE INTEGRATION & PROGRAM DEVELOPMENT DIVISION:

AUTHOR: J. F. KRUPA

APPROVED BY:

**R. E. MEADORS, MANAGER
STRATEGIC PLANNING AND INTEGRATION DEPARTMENT
WESTINGHOUSE SAVANNAH RIVER COMPANY**

February 2000

**Westinghouse Savannah River Company
Savannah River Site
Aiken, SC 29808**

**PREPARED FOR THE U. S. DEPARTMENT OF ENERGY UNDER CONTRACT
DE-AC09-96SR18500**

CONCURRENT SIGNATURES OF TEAM MEMBERS

Harold Peacock, Ph.D.
Advisory Engineer
Materials Application and
Corrosion
Technology
Savannah River Technology
Center

Date

Helen Brooks
Program Manager,
Alternative Technologies
Spent Fuel Storage Division

Date

Joseph F. Krupa
Principal Technical Advisor,
Strategic Planning and
Integration
Sitewide Integration &
Program Development
Division

Date

William F. Swift
Manager, Alternative
Technologies
Spent Fuel Storage Division

Date

Wade E. Bickford
Senior Advisory Engineer
Strategic Planning and
Integration
Sitewide Integration &
Program Development
Division

Date

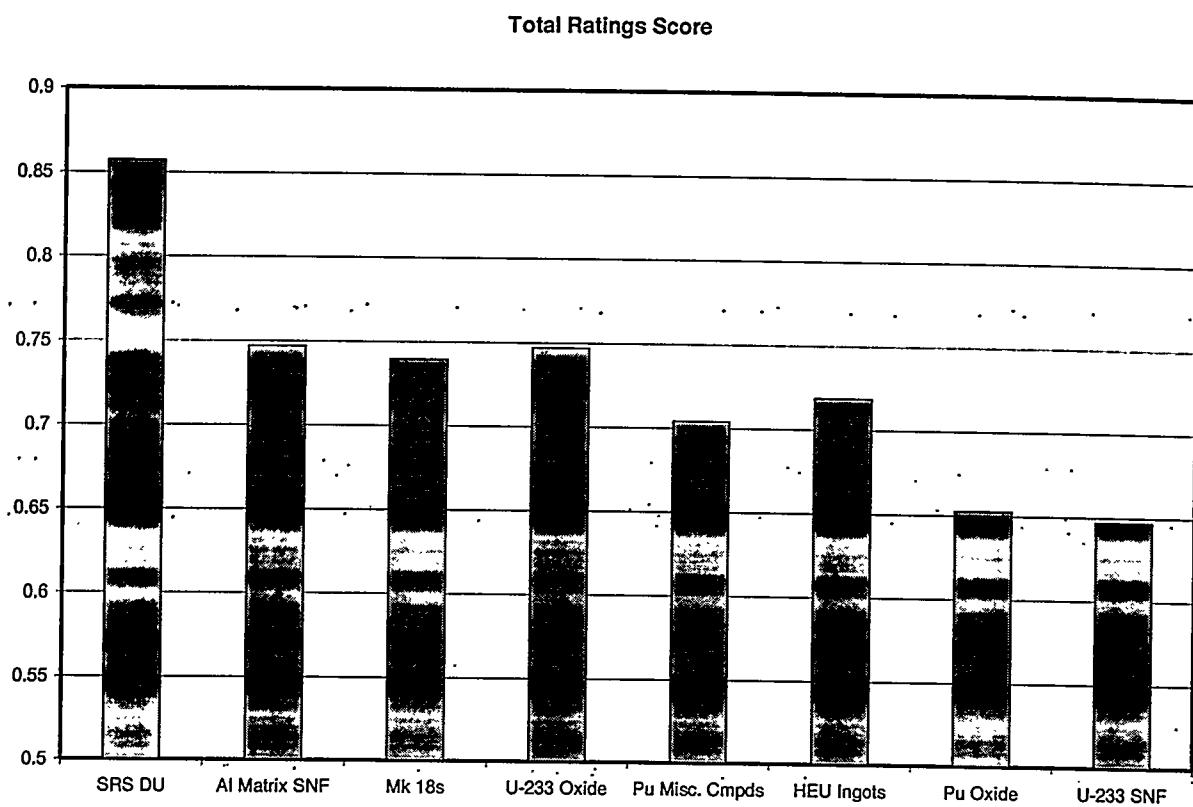
Thad Adams, Ph.D.
Senior Engineer
Materials Application and
Corrosion
Technology
Savannah River Technology
Center

Date

LIST OF ACRONYMS

AHP	Analytic Hierarchy Process
DDIS	(Mined Geologic Disposal System) Draft Disposability Interface Specification
DOE	Department of Energy
DU	Depleted Uranium
DWPF	Defense Waste Processing Facility
EBR	Experimental Breeder Reactor
EIS	Environmental Impact Statement
ES&H	Environmental, Safety, & Health
FRR	Foreign Research Reactor
HFIR	High Flux Isotope Reactor
HLW	High Level Waste
LEU	Low Enriched Uranium
LLW	Low Level Waste
MGDS	Mined Geologic Disposal System
NRC	Nuclear Regulatory Commission
NWPA	Nuclear Waste Policy Act
O&M	Operations & Maintenance
PWF	Primary Waste Form
QA	Quality Assurance
ROD	Record of Decision
RRTT	Research Reactor (Spent Nuclear Fuel) Task Team
S&S	Safeguards & Security
SC	South Carolina
SNF	Spent Nuclear Fuel
SRS	Savannah River Site
TPC	Total Project Cost
TSF	Treatment and Storage Facility
WSMS	Westinghouse Safety Management Solutions
WSRC	Westinghouse Savannah River Company

EXECUTIVE SUMMARY


The Analytical Hierarchy Process using a ratings methodology was used to rank potential feed candidates for disposition through the Melt and Dilute facility proposed for disposition of Savannah River Site aluminum-clad spent nuclear fuel. Because of the scoping nature of this analysis, the expert team convened for this purpose concentrated on technical feasibility and potential cost impacts associated with using melt and dilute versus the current disposition option.

Some of the materials have currently defined disposition paths, however, significant costs are involved in their implementation. A number of plutonium scrap materials were determined to be attractive candidates, for which a significant and costly immobilization program has been developed. Melt and dilute may provide an alternative that meets some expressed concerns about the immobilization waste form, since the plutonium would be homogeneously dispersed throughout the melt and dilute product and thus significant processing and shielding capability would be required to recover plutonium. This alternative needs additional examination as a potential backup technology that could result in substantial cost avoidance.

Depleted, low enriched, and natural uranium are obvious feeds for the process for use in diluting high enriched to enrichments that are not weapons capable. Melt and dilute is also an obvious alternative for off-spec HEU should current negotiations with TVA reach an impasse.

Finally, the melt and dilute waste form is also a possibility for miscellaneous higher isotopes because of their small quantity.

Figure E-1 illustrates the ratings for the range of recommended candidates.

Figure E-1. Ratings of Selected Recommended Candidates

INTRODUCTION

Initiation of Task

WSRC was requested¹ to evaluate whether nuclear materials other than aluminum-clad spent nuclear fuel should be considered for treatment to prepare them for disposal in the melt and dilute facility as part of the Treatment and Storage Facility (TSF) currently projected for construction in the L-Reactor process area. Spent Fuel Storage Division convened a number of experts on the melt and dilute technology, the TSF project, and nuclear materials at Department of Energy sites to develop an evaluation approach and a path forward. A preliminary evaluation of illustrative candidate materials was determined to be an appropriate first step to respond to this request.

The decision analysis process used to develop this analysis considered many variables and uncertainties, including repository requirements that are not yet finalized. This report documents results of the decision analysis.

Background

The Record of Decision for the Environmental Impact Statement on the Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) directed the DOE to implement alternative treatment and packaging technologies that could be utilized in place of conventional chemical processing to achieve safe and cost effective interim storage and ultimate disposal.

For the last three years, WSRC has been evaluating two candidate SNF disposal methodologies, melt and dilute, and direct disposal, both options being co-disposed with HLW glass canisters as alternatives to conventional processing. In the Spring of 1998, WSRC completed an analysis of the merits of the two technologies at the request of DOE-SR. Based on that analysis, which used an analytical hierarchy process, WSRC recommended that, between these two options, the melt and dilute process be used for aluminum-clad SNF disposition. The description below of the envisioned melt and dilute process is excerpted from that study².

Melt & Dilute Technology Description

In the melt and dilute technology, the SNF will be melted in a furnace. Depleted uranium and aluminum (as needed to control the metallurgy and process temperature) will be added to the melt in order to reduce the ²³⁵U enrichment to below 20%, the level required to be treated as low enriched uranium (LEU). If required, neutron absorber materials will also be added to the melt to minimize the potential for long-term criticality in the repository. The melt will be solidified and placed in a steel canister. Several ingots may be stacked in each canister. The canister will then be back-filled with helium, sealed, and temporarily stored at SRS in concrete storage modules.

The canisters will ultimately be shipped to a federal geologic repository for final disposal with glass high level waste (HLW) canisters produced in the Defense Waste Processing Facility. The melting process will cause volatilization of some fission products. Those gases will be collected and processed onsite as either HLW or low level waste (LLW), with the exception of minimal quantities of noble gases such as krypton which will be released to the facility stack. A flow diagram of the process is shown in Figure 1.

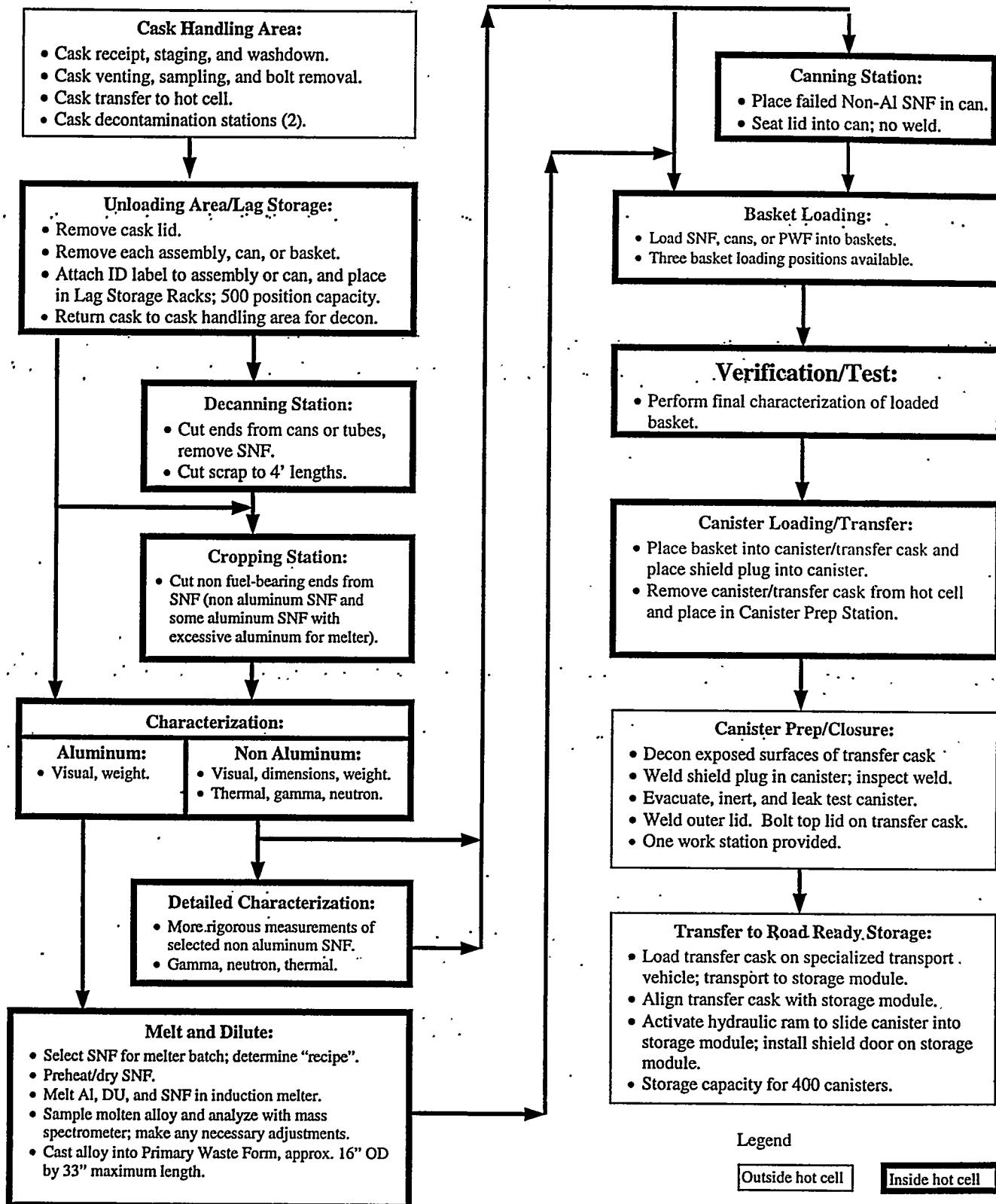


Figure 1. Facility Process Flow Diagram, Melt & Dilute

DISCUSSION

Analytic Hierarchy Process

The decision process for evaluating the suitability of melt and dilute process facilities for disposition of materials was structured using the Analytic Hierarchy Process (AHP). Expert ChoiceTM decision support software, which has as its basis the Analytical Hierarchy Process, was utilized to help record and document the expert rankings developed in this analysis of the application of melt and dilute technology to alternate feed streams. AHP enhances decision making by providing a logical framework in which all elements of a decision can be defined, organized, and carefully evaluated. AHP as a mathematical methodology for measurement and decision making was developed by Dr. Thomas L. Saaty more than 20 years ago to deal with problems that had both objective and subjective components.

As Dr. Saaty notes in his book *Decision Making for Leaders*³ "In solving problems by explicit logical analysis, three principles can be distinguished: the principle of constructing hierarchies, the principle of establishing priorities, and the principle of logical consistency. These natural principles of analytic thought underlie the AHP." He goes on to say "In utilizing these three principles, the AHP incorporates both the qualitative and the quantitative aspects of human thought: the qualitative to define the problem and its hierarchy, and the quantitative to express judgments and preferences concisely. The process itself is designed to integrate these two properties."

The AHP depends on imagination, experience, and knowledge to structure the hierarchy of a problem and on logic, intuition, and experience to provide judgments. It provides a framework for connecting elements of one part of a problem with those of another to obtain the combined outcome. AHP provides a process for identifying, understanding, and assessing the interactions of a system as a whole.

Most people cannot deal with more than seven decision considerations at a time. AHP deals with this cognitive limitation by subdividing the decision into logical groupings of decision criteria in a hierarchy. Influence in this hierarchical structure is distributed downward. The top level, or goal, has the greatest importance (or priority) and thus has a value of one. This value is apportioned among the elements in the second level, and the values of each of these in turn is apportioned among those of the third level, and so-on to the lowest-level objectives/criteria. These objective/criterion priority values are derived by the ECProTM program⁴ based upon pair-wise comparisons of the objectives at each of the model nodes^a.

In a situation where there are multiple candidates to be evaluated, like the nuclear materials in this study, the lowest level of the hierarchy is used to develop a rating scale, using pair-comparisons. Candidates are then evaluated as to which description most accurately describes their relationship to the bottom-most criteria. From this, a total score is derived that allows ranking the candidate materials against the goal of using melt and dilute technology for their disposal.

An important aspect of using the AHP ratings methodology to evaluate materials, was the discussion of attributes and development of consensus among the participants.

^a The elements of a decision are represented by nodes. A node may represent an objective, a criterion, a subcriterion, an uncertainty (scenario), an alternative, (etc.). ECProTM for Windows, User Manual page 345.

Creation Of Team

A team of materials experts from the Savannah River Technology Center, operations and project experts from Spent Fuel Storage Division, and nuclear materials disposition experts from Strategic Planning and Integration Department comprised the evaluation team. Appropriate management input was solicited during the evaluation as it progressed.

Biographical information for each of the team members is provided in Appendix A.

Assumptions

The following assumptions were used during the evaluation.

- An illustrative group of materials would suffice for this evaluation to show proof of principle for the attractiveness of melt and dilute as a disposal path for materials.
- Although health, safety, and the environment are pre-eminent concerns, they were not included in this analysis because they did not have a differentiating impact on the SNF alternatives decision. Neither WSRC nor DOE intends to build or operate facilities that would have a negative impact on worker or public safety and health or the environment. Rather, these variables would be reflected in costs required to modify the baseline melt and dilute facility to handle new feed materials.
- The impact of Non-governmental Organizations (NGOs) in the Spent Fuel Alternatives study was found not to be decisional in the final analysis. They were not considered in this study.
- Since there is no melt and dilute facility, modifications which might suggest construction of a Greenfield facility rather than use of the L-Reactor Process Building were considered. The impact would be taken up in cost effected criteria.

Decision Objectives

The overall goal of the study was to select potential candidates for disposal via melt and dilute technology. Using the first basic function of AHP, that of structuring complexity, the team identified a number of primary objectives that, if satisfied, would achieve this goal. To this end, the team agreed that the best candidate materials would meet the following objectives:

1. Be most compatible with the melt and dilute process as it is currently conceived;
2. Result in a waste form that was acceptable at its ultimate disposition point;
3. Had low implementation cost and high potential programmatic savings;
4. Was compatible with current transportation, packaging, and storage;
5. Required the least amount of technical development for the process and the final waste form.

With these primary objectives in mind, the team then identified 17 supporting decision criteria against which the candidate materials could be evaluated. These elements were then organized into a hierarchy structure that formed the basis for the team's decision analysis model.

Criteria Descriptions

The 17 supporting criteria developed to meet the primary decision objectives are provided below. For each of the criteria considered and selected for inclusion in the decision analysis model, a 'Criterion Definition' is provided along with justification for its inclusion. 'Criterion Definitions' were also developed for each of the five primary decision objectives to facilitate the generation of supporting decision criteria. The overall assessment of the importance of the five primary objectives is shown below in Figure 2. Note that an inconsistency ratio below 0.1 indicates an adequately consistent set of pair-wise comparisons.

Develop a ratings for attractiveness for using melt and dilute

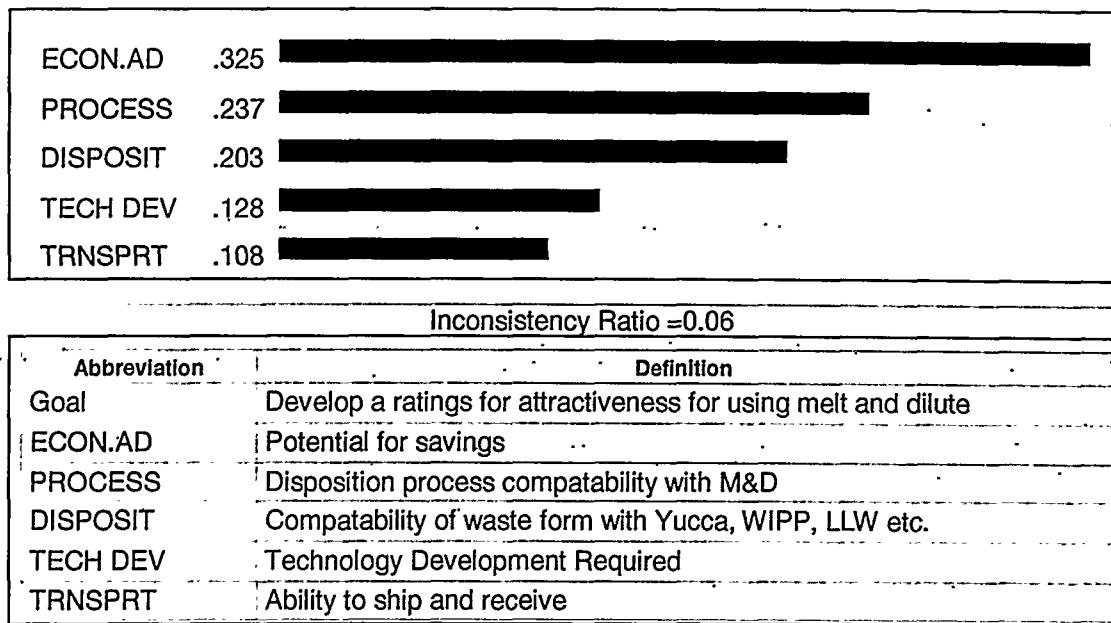


Figure 2. Summary Importance of the Five Evaluation Criteria

Compatibility with Melt and Dilute

Material attractiveness was considered to be affected by the degree which they could be accommodated in the proposed melt and dilute facility (either as envisaged in the L-Reactor process room or in a new Greenfield facility). Criteria that contributed to material attractiveness included the following:

1. Feed composition. Materials whose composition was well known was judged to be more attractive than materials with less well characterized or unknown provenance. Poorly characterized materials would require characterization before introduction into the process with concomitant increase in cost and/or dose to personnel.
2. Temperature. Materials that could be processed at or below the currently planned 850°C operating temperature were judged to be more attractive than materials which required higher temperatures to successfully prepare for disposition.
3. Off-gas Requirements. Materials which had the same or lower (because of low volatile fission product inventory, e.g., iodine-129 or cesium-137) were judged as more attractive than those which had higher volatile fission product content.
4. Material Compatibilities. Those materials that could be treated in a steel crucible were considered to be more attractive for melt and dilute processing than those that required more exotic types of crucibles.
5. Alloy Composition. Those materials whose disposition alloy was similar to the eutectic U/Al alloy proposed for melt and dilute were judged to be more attractive than more complex materials that required new or yet to be determined alloys for effective disposition.
6. Pretreatment Requirements. Some materials would require pretreatment before introduction into the melt and dilute system, either size reduction, as in the case of fuel rods or conversion to solids in the case of solution. Lower levels of pretreatment were seen as more attractive.

Compatibility of the Waste Form Produced with Disposition in the Mined Geologic Disposal System (MGDS), WIPP or Burial at the NTSI.

7. Path Availability. Materials with currently defined disposition paths, including an available operating facility and adequate funding, were seen as less attractive than those where a disposition path was yet to be determined.
8. Attractiveness of Melt and Dilute Wasteform. Material attractiveness for this criteria was determined by the judgement of how difficult it would be to qualify a melt and dilute type of waste form for the proposed disposition site.

Economic Advantage of Disposition Through the Melt and Dilute Facility

9. Implementation Cost. Those materials which required little in the way of implementation cost, e.g., only operating cost or minimal capital cost, were seen as more attractive than materials that required major capital investment or design alterations for the melt and dilute facility.

10. Cost Savings. If disposition through melt and dilute would result in a significant capital or operating savings, it was seen to be attractive.
11. Quantity. The quantity of material was a complex criteria. Very small quantities offered the potential of minimal impact on the facility, whereas significant quantities offered the potential of savings through long term continuous operation on a single feed.

Transportation Impacts Including Consideration of the Ease of Shipping, Receiving, Packaging and Storage.

12. Receiving. Availability of facilities for receiving materials made them more attractive for melt and dilute processing.
13. Shipping. Availability of shipping casks or packages and facilities for shipment made materials more attractive.
14. Packaging. If a material was already packaged or ready for shipment, it was seen as more attractive than materials that required packaging.
15. Storage. Material already possessing on-site storage or that required minimal changes to allow storage of the final waste form was seen as more attractive.

Technology Development Required

16. Processing Development. Material that fit within current processing development or existing processing experience was seen as more attractive than materials that would require additional process development.
17. Waste Form Development. If a materials waste form was bounded by current testing or required minimal modifications it was seen as more a more attractive candidate.

Summary of Criteria Priorities

After all objectives and associated criteria were evaluated for importance at each of the model nodes, the overall results were synthesized using the ECP*Pro*TM program. Table 1 below provides a prioritized summary of all objectives/criteria and their relative overall importance (global priority) in selecting the preferred alternative. Note that these data are arranged in the model hierarchy levels, and within those levels, are listed according to the priority of the individual criteria.

OBJECTIVES	CRITERIA	OBJECTIVES	CRITERIA
Econ. Ad. = .325	Economic Advantage	Disposition = .203	
	Savings = 0.154		Attractiveness = 0.138
	Implementation Cost = 0.109		Path Availability = 0.066
	Quantity = 0.062		
		Tech Dev = .128	Technology Development required
			Waste Form = 0.077
Process = .237	Compatibility with Melt and Dilute process		Processing = 0.051
	Feed = 0.065		
	Material Complement = 0.042	Transportation = .108	Transportation Impacts
	Offgas = 0.039		Receiving = 0.035
	Temperature = .035		Packaging = 0.03
	Pretreatment = 0.030		Storage = 0.023
	Alloy = 0.025		Shipping = 0.018

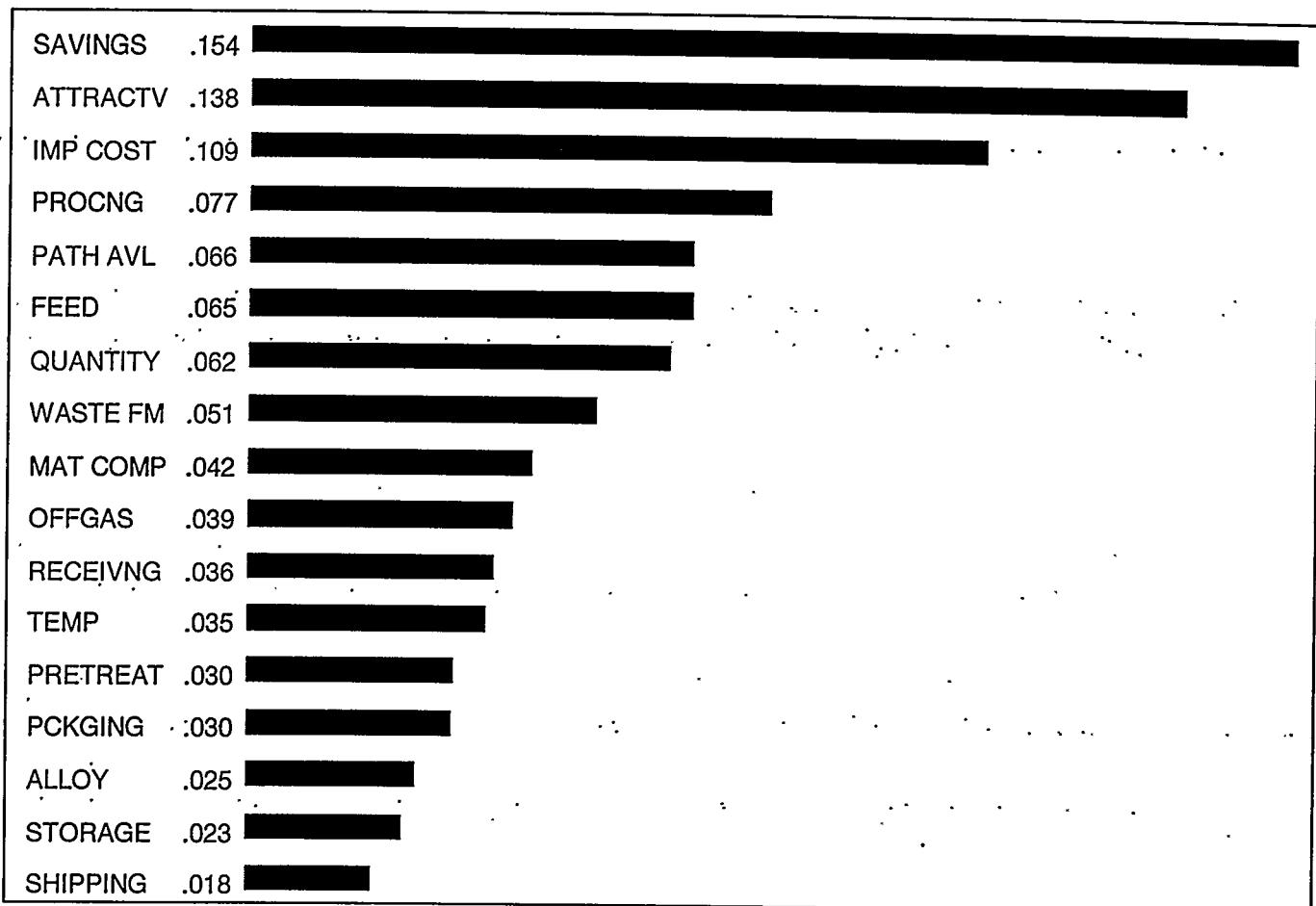

Table 1. Summary of Objective/Criterion Priorities (Global)

Figure 3 below provides a prioritized summary of the overall importance (or global priority) of all of the criteria. This list is significant in that suitability of candidate materials was judged directly against these criteria. Note that economic advantages accounts for about 1/3 of the importance in the decision, and that the first six criteria (potential for savings, attractiveness of the waste form, implementation cost) account for approximately 61% of the importance in the determination of the attractiveness of materials for melt and dilute treatment..

Team scores were developed for each of the criteria by taking the geometric mean of Team responses and calculated the distribution using EC Pro software. The geometric mean was used because it centers on one rather than zero, so that opposite but equal views would cancel out. The geometric mean was also conservative in that it can be shown that the geometric mean is less than or equal to the arithmetic mean, tending to damp out strong responses. Details of the criteria evaluations are given in Appendix B.

Development Of The Ratings Scheme

In order to use the criteria above for a ratings scheme, a set of descriptors was developed for an ordinal scale for each of the criteria. These descriptors were then pair-wise compared using the Team geometric mean as above and EC Pro software. Details of the ratings evaluation are shown in Appendix C.

Develop a ratings for attractiveness for using melt and dilute**Synthesis of Level 2 Nodes with respect to GOAL**
Distributive Mode**Figure 3. Relative Weights of Criteria**

Abbreviation	Definition
SAVINGS	Potential savings of using M&D
ATTRACTV	Attractiveness of waste form; ease of certification
IMP COST	Cost to implement
PROCNG	Additional process R&D required.
PATH AVL	Availability of current disposition path
FEED	Knowledge of feed composition
QUANTITY	Quantity of material to be processed (months)
WASTE FM	Additional waste form R&D required.
MAT COMP	Compatibilities of materials with equipment
OFFGAS	Offgas treatment required
RECEIVNG	Ability to receive material
TEMP	Process Temperature required
RECEIVNG	Ability to receive material
PATH AVL	Availability of current disposition path
PCKGING	Shipping preparations required.
ALLOY	Composition of final waste form (alloy?)
WASTE FM	Additional waste form R&D required.
STORAGE	Material storage availability
SHIPPING	Ability to ship out material

Table 2. Definitions for Criteria Abbreviations

Materials To Be Evaluated

This evaluation used primarily the three sources cited below to produce a list of potential candidate materials for screening, as summarized in Table 3. This materials list is not considered an exhaustive list, as DOE has an ongoing Stewardship program that continues to refine site material holdings and the status of their disposition paths.

- In 1998, DOE/EM sponsored the Nuclear Materials Stewardship Program. This program examined the inventory of surplus materials across the Complex, and evaluated current and proposed disposition paths with respect to technical maturity, cost, schedule, and ES&H variables. Nuclear material management plans were produced for plutonium and special transuranics (i.e., Np-237, Pu-238, Am-242, Pu-242), uranium (HEU, LEU, NU, DU, U-233), thorium, and sources, standards, and samples.
- In 1999, DOE also performed a canyon utilization study. This was in response to a concern expressed by the Defense Nuclear Facility Safety Board that the canyons not be shut down prematurely while materials needing their capabilities remained in DOE inventories. This study

swept the Complex to identify materials that may need canyon processing for stabilization or recovery.

- Finally, the DOE National Spent Nuclear Fuel program maintains a list of irradiated fuel and targets remaining in inventory across the complex.

The broad categories of material examined thus include uranium (HEU, LEU, NU, DU, U-233), plutonium (Pu-238, Pu-239), higher transuranics (Am-241 samples and standards, Am/Cm solutions, Am/Cm targets), and spent nuclear fuel (11 types, including SS-clad oxides, Zr-clad, metal fuels, graphite, etc.).

HEU	#	KgU	Description
Off Spec HEU	1851	XXXX	Tubes and Assemblies (Mk-22s)
Off Spec HEU	5851	XXXX	Ingots and Billets
Misc Stds (K)	320	30.8	Standards, Mound plates, PNNL Plates, Slightly Irradiated fuel
Off Spec HEU		1700	Idaho oxide
Off Spec HEU		10000	ORNL off spec metal
Off Spec HEU		500	Hanford
Off Spec HEU		9500	SRS Solutions
Total		XXXX	
LEU	Items	MTU	
SRS			
M Area U metal		0.1	
Recovered oxides		95.6	
Vitrified waste		3.4	
Non-SRS irradiated Al based fuel		0.4	
SS & Zr fuel/targets		8	
Fernald			
Chips in concrete	1	0.005	
Rockwell spills	7	0.527	
Misc Metal(dissolution)	149	32.047	
Misc Metal(oxidation)	1	0.014	
Misc Metal Recovery?	2	3	
Historical metal	5	0.146	
NU		MTU	
SRS			
Bare NU metal		35.4	
Pu Scrap		0.2	
Discardable material		0.007	
Inactive samples		0.11	

Table 3. Melt and Dilute Feed Candidates

DU		MTU	
SRS			
DU/Al powder/castings		0.6	
Bare DU metal		938.2	
Canned DU metal		1652.5	
DU Solutions		236.9	
DU Oxides		19428.1	
Sludge & filter cake		25.2	
Samples/stds		1.5	
EBR-II		16.7	
SS/Zr Fuel/targets		0.1	
Pu/DU oxide fuel rods		1.7	
Pu scrap		0.205	
Lab Solutions		0.005	
Discardable Material		0.001	
Fernald	Items	MTU	
Chips in concrete	1	0.009	
Lead contaminated	29	4.175	
Nonburnable metal	1	0.042	
Rockwell spills	17	3.063	
Misc Metal (dissolution)	234	89.025	
Misc. Metal oxidation	18	3.183	
Scrap UO ₂ pellets	23	2.186	
Historical Materials	2	0.027	
U-233	Items	Kg U-233	
U-233	1505	790.7	Total U is 1801 kg
U-233/SNF		1106.1	Miscellaneous forms including carbide and MSRE recovery material
Pu-238 scrap			Various purities, lower than "fuel grade" for RTGs
		Kgs	
Np237 Scrap		100's	Currently as solution, planned to convert to oxide
	#	Kgs	
Pu-239	Items		
Pits	####		
Metal and Alloy	4559		
U/Pu/Zr Casting Scrap	485		
Mixed Oxide Slugs	179		
Oxide Powder	9707		
Pu/U oxide	277		
Pu scrap misc	3341		
ZPPR plates	42412		Alloy
Samples/Std	5		
Combustibles	2452		
Misc. Compounds	8999		
Ash	9171		
Chlorides, fluorides etc	7119		
Pu/EU metal	191		
Am 241 samples/stds			
Am 243 oxide			Currently tank 17.1 solution
Cm 244 solution			Currently tank 17.1 solution

Table 3. Melt and Dilute Feed Candidates (Continued)

Mk 18s			Am/Cm/Pu-244 in aluminum
Spent Fuel	MTU	Total Mass	
Oxide-Commercial		165.5	SST or Zr Clad LEU
Oxide-Research		191.2	SST/Zr Clad HEU/MEU, MOX
Oxide, U/Th		124.6	SST or Zr Clad HEU/MEU/LEU
Oxide Disrupted TMI		331	U Oxide failed or declad., (LEU), TMI-2
Metal(U,U-Mo)/Na		120.4	Na bonded SST clad , HEU/MEU/LEU/DU (fermi blankets)
Metal U-Zr		0.1	Zr Clad HEU/MEU/LEU/DU
Al-clad U metal		3534	LEU (SPR), EBRII
Al Matrix		512.2	U metal, oxide, silicide (19-93%)
Graphite		371	U/Th carbide (HEU)
Misc Other		33.9	U-Zr-Hx, sST/Incoloy Al Clad HEU/MEU triga fuels
Misc Other (failed)		12	U oxide failed, HEU/MEU (SST/Zr), U carbide (non-graphite), misc unknown
Irradiated Reactor Parts			

Table 3. Melt and Dilute Feed Candidates (Continued)

Results Of Analysis

With all criteria priorities and the ratings scheme defined by the team, materials were rated using the ECPro™ program to derive an overall rating for each material. Summary results from this evaluation are summarized in Table 4. Details of the analysis are given in Appendix D for all the materials. It should be noted that some candidate materials were not evaluated as the team determined they were not suitable candidates (e.g., DU chips in concrete).

Materials in Table 4 seem to group into three natural groups. Those with the highest rating, highlighted in dark gray, have ratings between 0.65 and 0.86. Since the rating of Al-matrix fuel slated for disposition in the melt-dilute facility is 0.752, these materials appear to be good candidates for disposition through that facility.

The second group, highlighted in light gray, has ratings from 0.65 to 0.55. These materials are less attractive but possible candidates. It may be that in doing process R&D for some of these materials, that some questions may be resolved that make them more attractive.

The first two groups include most of the plutonium materials currently scheduled for preparation for disposition in the new immobilization facility. Since this new facility represents a capital expenditure in excess of half a billion dollars, the use of melt and dilute for disposition of plutonium materials in lieu of immobilization deserves serious consideration. This kind of process also would make a homogeneous material meeting the original "Spent Fuel Standard" envisaged for plutonium disposition in the MGDS.

The third group, with a rating below 0.55, is significantly less attractive than the two above. The three groups can be seen visually in Figure 4.

Note that a number of uranium items scored highly in this rating. The melt-and-dilute process is essentially designed to use such material as an isotopic diluent for the Al/HEU spent fuel, and as expected would receive a high rating against the criteria used. For example scrap aluminum, if scored, would likewise be expected to receive a 'high' total score.

The ranking of score must then be tempered with the consideration of cost and 'risk' associated with continued storage of the material in its current form. For LEU/NU/DU metal or oxides, the materials are stable and have low associated health and safety concerns and minimal annual storage costs. DU, NU, and LEU are also often amenable to disposal as low level waste (e.g., at the Nevada Test Site). Processing such materials in a melt-and-dilute facility in amounts beyond those needed for isotopic dilution of HEU, although highly compatible, could actually increase the costs associated with disposition. A more detailed economic analysis of LEU/NU/DU items on a case-by-case basis would thus be required to determine costs of continued storage or processing for disposal as low level waste in its current form, versus processing in the melt-and-dilute facility, storage, and eventual permanent disposal.

Material	Total	Material	Total
SRS DU discardable material	0.8571	Pu/U oxide	0.6526
SRS DU Samples & Standards	0.8571	U-233/SNF	0.6469
Pu/EU metal	0.8207	Cm 244 solution	0.6457
SRS M Area U metal LEU	0.8196	Am 243 oxide	0.6457
SRS Recovered oxides LEU	0.7994	Am 241 samples/stds	0.6457
FMPC Misc DU metal (oxidation)	0.7994	Pu Mixed Oxide Slugs	0.6442
Plates, HEU Slightly irradiated	0.7980	Pu scrap misc	0.6441
SRS DU lab solutions	0.7967	Pu Ash	0.6424
SRS DU Oxides	0.7694	ZPPR plates	0.6288
Pu-238 scrap	0.7690	U/Pu/Zr Casting Scrap	0.6200
FMPC DU historical materials	0.7674	FMPC Rockwell spills LEU	0.5915
SRS EBR-II (DU)	0.7636	FMPC Misc LEU	
Al-clad U metal SNF	0.7636	Metal(dissolution)	0.5915
SRS Bare DU metal	0.7568	HEU SRS Solutions	0.5812
SRS Canned DU metal	0.7568	SRS NU (Pu) Scrap	0.5742
HEU-Tubes and Assemblies (Mk-22s)	0.7549	Pu Chlorides, flourides etc	0.5658
Al Matrix SNF	0.7472	SRS DU Sludge and Filter	
FMPC Misc Metal(oxidation) LEU	0.7441	Cake	0.5653
Mk 18s	0.7398	Pu Combustibles	0.5517
HEU ORNL off spec metal	0.7337		
SRS BARE NU Metal	0.7319	FMPC DU SS/Zr fuel/targets	0.5394
SRS NU inactive samples	0.7248	SRS Pu/DU Oxide fuel rods	0.5394
U-233 (canned oxide)	0.7242	Np 237 scrap	0.5167
Metal and Alloy	0.7236	SRS Pu/DU scrap	0.4890
HEU Ingots. and Billets..	0.7167	FMPC DU Nonburnable metal	0.4706
FMPC Scrap DU oxide pellets	0.7162	Pu-239 Pits	0.4574
SRS NU Discardable Material	0.7134	FMPC DU lead contaminated	0.4097
SRS DU/Al powder castings	0.7089	Metal U-Zr SNF	0.3382
SRS DU Solutions	0.7068	Metal(U,U-Mo)/Na SNF	0.3382
Pu Misc. Compounds	0.7041	Oxide-Research SNF	0.3103
HEU Idaho oxide	0.6939	Oxide-Commercial SNF	0.3050
FMPC Misc Metal Recovery? LEU	0.6876	Oxide Disrupted TMI SNF	0.2705
FMPC DU Rockwell spills	0.6856	Oxide, U/Th SNF	0.0000
FMPC Misc DU metal (dissolution)	0.6752	FMPC Chips in concrete LEU	0.0000
Pu Oxide Powder	0.6735	SRS Vitrified waste LEU	0.0000
Pu Samples/Std	0.6708	FMPC DU chips in concrete	0.0000
HEU Hanford	0.6633	Graphite SNF	0.0000
		Misc Other SNF	0.0000
		Misc Other (failed)	0.0000
		Irradiated Reactor Parts	0.0000

NOTE: NR indicates Not Rated.

Table 4. Final Ratings Totals for Materials Evaluated

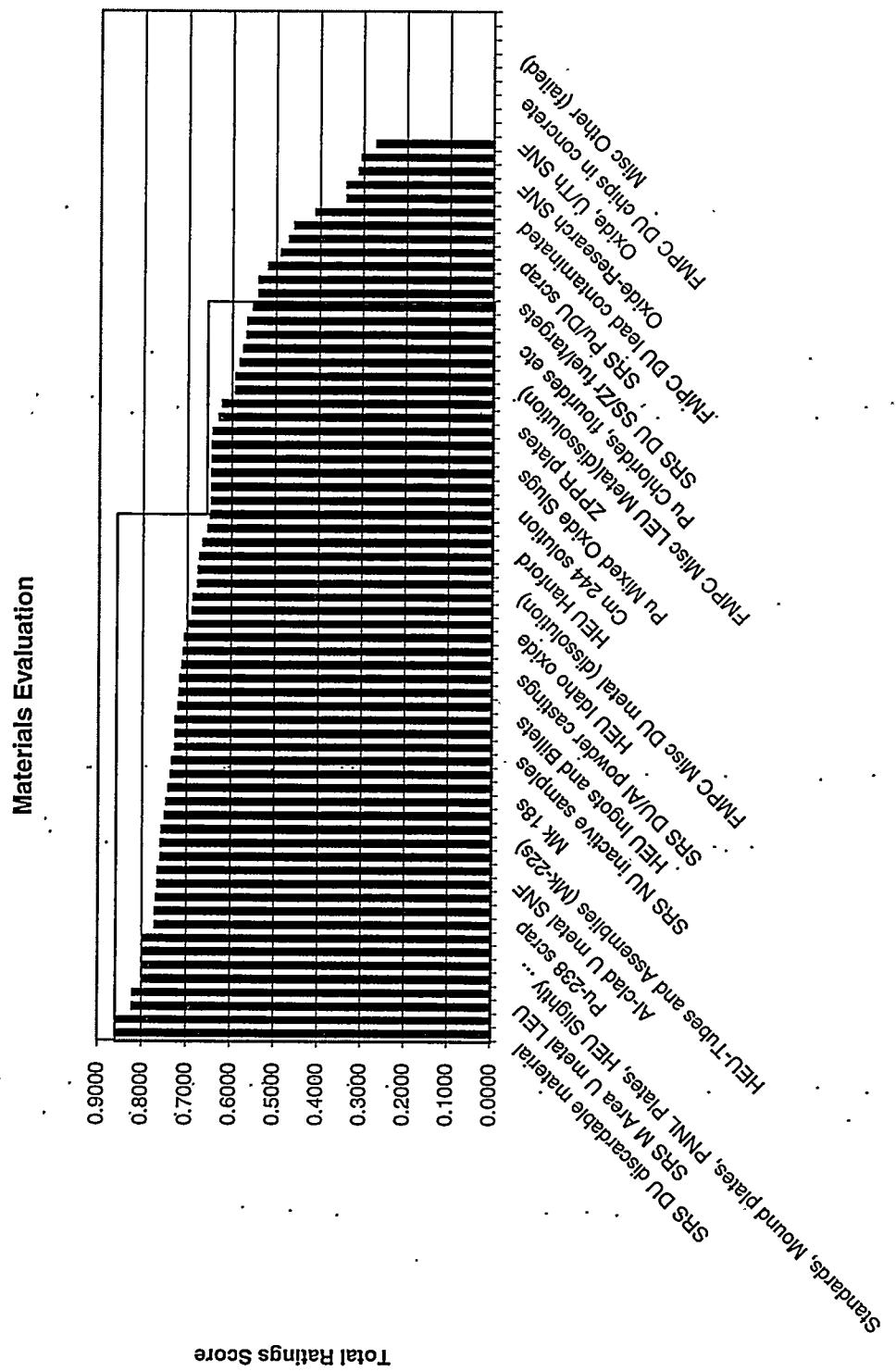


Figure 4. Summary Ratings

This page intentionally left blank

CONCLUSIONS

The melt and dilute facility represents an opportunity for disposition of a number of materials other than the Al matrix SNF for which it is intended. Although some materials on this list currently have planned dispositions, in a number of cases, melt and dilute represents a lower cost alternative.

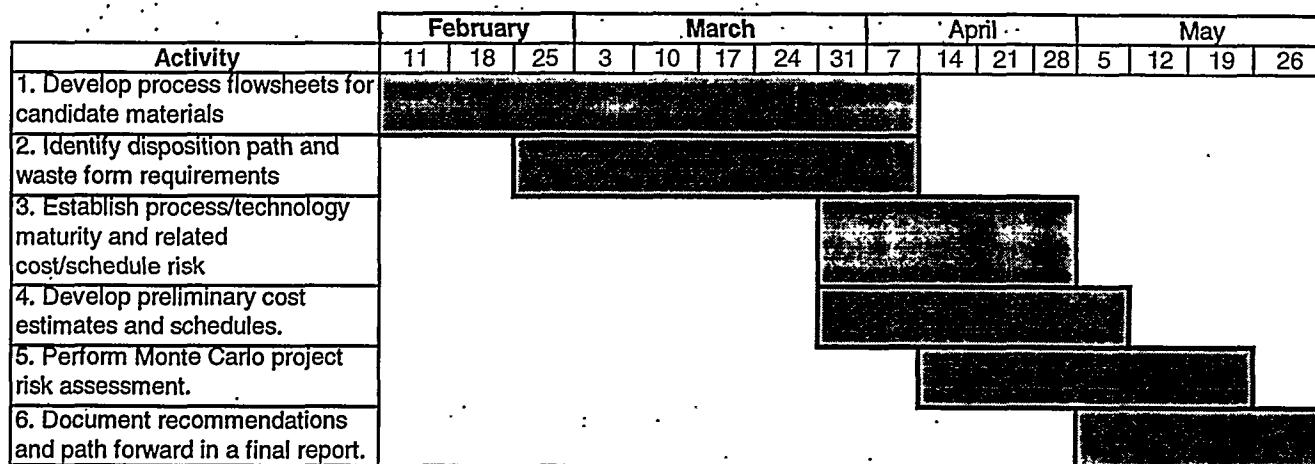
This is especially true for miscellaneous plutonium materials currently slated for immobilization in a ceramic. Melt and dilute provides an alternative that, if combined with melt and dilute of Al-matrix fuel, could produce a waste form that would not require expensive new facilities (for immobilization and removal of cesium from SRS salt waste). This alternative would be at least as unattractive from a radiation and processing perspective as plutonium in commercial spent fuel.

Depleted uranium metal is the material of choice for operation of the melt and dilute facility, to be used for isotopic dilution of HEU in the U/Al spent fuel. As expected, DU metal and to a lesser degree oxides are highly compatible with the melt and dilute process and thus scored highly in this analysis due to high material compatibility. The same observation applies to NU and LEU.

However, the bulk of these materials as metal or oxides are stable and represent a very low risk and cost for continued storage. Also, DOE has not yet made a determination with regard to declaring inventories surplus to future use. If disposal becomes an option at some time in the future, packaging for disposal as low level waste (e.g., to the Nevada Test Site) has historically been a relatively low cost disposition path. As a result the economics of using a melt and dilute facility solely for processing LEU/NU/DU beyond that required for isotopic blend down of HEU in fuels could not likely be justified. The relatively high scores assigned to such materials relative to the criteria used in this analysis must be tempered by this economic reality.

Melt and dilute also provides a method for disposition of off-spec HEU materials should current negotiations with the Tennessee Valley Authority become unfruitful which would allow disposition of this material at 1% U-235 at moderate (operating only) cost.

It is also important to note that some materials appear to be very unattractive vis a vis the melt and dilute process. It is important that the Department of Energy follow through on development of disposition paths for these materials.


PATH FORWARD

The following Phase II activities complete the requested assessment of the use of melt and dilute facility for the disposition of other materials:

1. Develop process flow sheets for each of the group one materials. Consider RCRA materials issues if applicable, waste streams and interim storage.

2. Identify disposition paths for waste forms following M-D treatment, i.e., LLW, WIPP or MGDS and feasibility of obtaining waste form qualification.
3. Develop preliminary cost estimates and schedules.
4. Develop Monte Carlo risk analysis for implementation for recommended candidates.
5. Develop a final recommendation and path forward for recommended candidates in the form of a final report.

A proposed schedule is shown below:

Figure 5. Proposed Phase II Schedule

REFERENCES

- ¹ G. Rudy to J. J. Buggy, letter, "Path Forward on Alternative Technology", dated September 7, 1999.
- ² E. W. Zimmerman, Spent Nuclear Fuel Alternative Technology Decision Analysis, U-ESR-G-0004, Rev.0, June 28, 1998.
- ³ Dr. Thomas L. Saaty. *Decision Making for Leaders*. RWS Publications, Pittsburgh, PA 15213 (1995).
- ⁴ Faith Giglio. *ECpro for Windows, Decision Support Software User Manual*. Expert Choice, Inc., Pittsburgh, PA 15213 (1995).

APPENDICES

Appendix A: CURRICULA VITAE.....	A-1
Appendix B: EVALUATIONS FOR CRITERIA IMPORTANCE.....	B-1
Appendix C: RATINGS EVALUATIONS FOR MATERIALS	C-1
Appendix D: RATINGS OF MATERIALS.....	D-1

APPENDIX A

CURRICULA VITAE

This page intentionally left blank

Harold B. Peacock, Jr., Ph.D.

Harold Peacock holds a B.S. degree in Mechanical Engineering and a M.S. degree in Metallurgy from the Georgia Institute of Technology. He received a Ph.D. degree in Metallurgical Engineering from the University of Tennessee. He has 30 years experience in R&D in the area of technology development.

Dr. Peacock is an Advisory Engineer at the Savannah River Technology Center and has published over 75 papers in journals and conference proceedings. He holds one U.S. patent in solid state welding. He developed a powder metallurgical process for blending and isostatically compacting powders for extrusion billet cores as well as methods for extrusion of SRS reactor fuel tubes. He was principal investigator in the development of (1) long-term corrosion testing of aluminum alloys at high temperature and humidity conditions, (2) solid state welding of depleted uranium slugs for plutonium production, and (3) design and fabrication of targets for the accelerator production of tritium at Los Alamos. He is currently responsible for the development of the melt-dilute technology for treatment of aluminum-base research reactor spent nuclear fuel.

He is a member of the ASM International (ASM) and the Society of Engineering Mechanics (SEM), and has served as program Chairman for the ASM Society's Savannah River local chapter. He has taught mechanical and metallurgical engineering courses at Universities for the past 15 years.

Thad Adams, Ph.D.

Dr. Thad Adams received his M.S. (1994) and Ph.D. (1997) from the University of Florida in Materials Science and Engineering. Prior to this, his B.S. degree (1991) was earned from the University of Tennessee. His studies have concentrated on the liquid metal corrosion/embrittlement, advanced nuclear fuel development, phase transformations and microstructural evolution in advanced materials.

Additionally, Dr. Adams has worked in the areas of materials processing, metallic glasses, thin films, and temperature gradient zone melting. He has also performed fundamental thermodynamic modeling of advanced materials system with respect to phase formation and binary and ternary equilibrium and metastable phase diagrams. Dr. Adams has extensive knowledge of materials characterization techniques including SEM, EDAX/WDAX, TEM, XRD, Hi-Temp XRD, DSC, DTA, TGA. Dr. Adams has given numerous technical presentations and has published 10 technical papers in journals and conference proceedings. For the past two years, he has held the position of senior engineer at WSRC, where he leads the development effort for spent nuclear fuel alternative disposal technology (SNFADT).

Helen Brooks

Ms. Brooks received a B.S. degree in Chemical Engineering from Tennessee Technological University and a Masters in Environmental Engineering from Auburn University. She has 11 years experience at Savannah River Site primarily associated with nuclear production reactor operations and spent nuclear fuel receipt engineering. Ms. Brooks has held positions in reactor operations supervision and management, heavy water operations, and fuel receipt engineering. In her current assignment, Ms. Brooks is responsible for the management of the Alternate Technology Program that includes validation of the melt-dilute technology and qualification of the waste form for the repository.

Joseph F. Krupa

M.E. Ch. E. University of Idaho

M.Sc. in Chemistry, University of California Berkeley -- (AEC fellowship in Nuclear Science and Engineering

B.Sc. in Chemistry, U.S. Air Force Academy, CO

Mr. Krupa has over 26 years experience in the nuclear field. He started his career performing radiochemical analyses as a Nuclear Research Officer in the U.S. Air Force. He then spent 10 years at the Idaho Chemical Processing Plant performing studies of actinide removal from spent fuel waste using bidentate phosphorous ligands. He was the lead for a NRC funded experimental program to evaluate post-accident (nuclear) radio-iodine sampling and measurement equipment.

He developed Fluorinel Dissolution Process reagent addition computer programs for which he was awarded George Westinghouse bronze award in 1985. He was a key player in the successful modification and implementation of the Fluorinel Process for Naval Fuel dissolution including developing analytical methods for process control, modeling of process dissolution criticality permitting deletion of a major system, operating the Fluorinel Dissolution Pilot Plant and acting as a startup engineer for the Fluorinel Dissolution hot startup.

From 1987-1992, he was a Nuclear Engineer for the Department of Energy's Savannah River Operations Office. During his tenure, he acted as DOE Nuclear Materials Manager; coordinated and reviewed technical planning studies on nuclear materials disposition, transportation and capital asset management, and participated in task forces on capital asset management, reconfiguration siting, and plutonium discard limits.

Mr. Krupa has, as a Principal Technical Advisor for Westinghouse Savannah River Company, published two studies of Al-clad spent fuel options to support Department of Energy Environmental Impact Statement Records of Decision. The latest study also provides cost and schedule information for a study of the non-proliferation impacts of spent fuel reprocessing. He has co-authored studies of life-cycle costs for spent fuel disposition with criticality prevention, SRS spent fuel storage, SRS plutonium discard limit implementation, SRS nuclear materials disposition and complex-wide nuclear material disposition issues.

He is active in the American Chemical Society (30 years) and American Nuclear Society, and has served as the Chairman of the American Chemical Society's Savannah River Local Section. He is also a member of the International Council of Systems Engineers (INCOSE) and the American Society for Engineering Management.

William F. Swift

Mr. Swift received his B.S. in Chemical Engineering from the University of Notre Dame. He has 18 years experience at Savannah River Site primarily associated with nuclear production reactor engineering. Mr. Swift has held engineering assignments in day-to-day operations, reactor components support, long-range planning and capital project development. He has also held engineering management assignments in systems engineering, as the engineering representative to the joint test group and for development of capital projects. Mr. Swift has also held positions as manager of solid waste engineering support and as manager of the site geotechnical groundwater modeling group. In his current assignment, Mr. Swift is responsible for supporting development of alternative technologies for disposition of spent nuclear fuel and development of a project to implement the chosen technology.

Wade E. Bickford

Wade Bickford is a Senior Consulting Engineer working for Westinghouse in the Strategic Planning and Integration Department at the Savannah River Site. He has over 25 years experience in nuclear design and safety in the DOE complex. At the Pacific Northwest National Laboratory at Hanford, Mr. Bickford rose to the position of Senior Scientist in fusion research, and later transitioned to nuclear reactor safety, and advanced nuclear concepts development. In 1988, Mr. Bickford accepted a position in the Reactor Physics group at the Savannah River Site for work on a new production reactor. During this period, he was the site representative to national technical working groups on facility design and thermal hydraulics, as well as task manager and technical contributor for reactor safety analysis and engineering studies to support environmental documentation. This diverse background led to a position in site planning in 1992, where he has supported site and national planning efforts for transition of DOE to post-Cold War missions. Wade Bickford received his undergraduate degree in Mathematics from Washington State University, and was elected to the Phi Beta Kappa honorary. He received his M.S. degree in Nuclear Engineering from the University of Washington. He is also a licensed Professional Engineer (Mechanical).

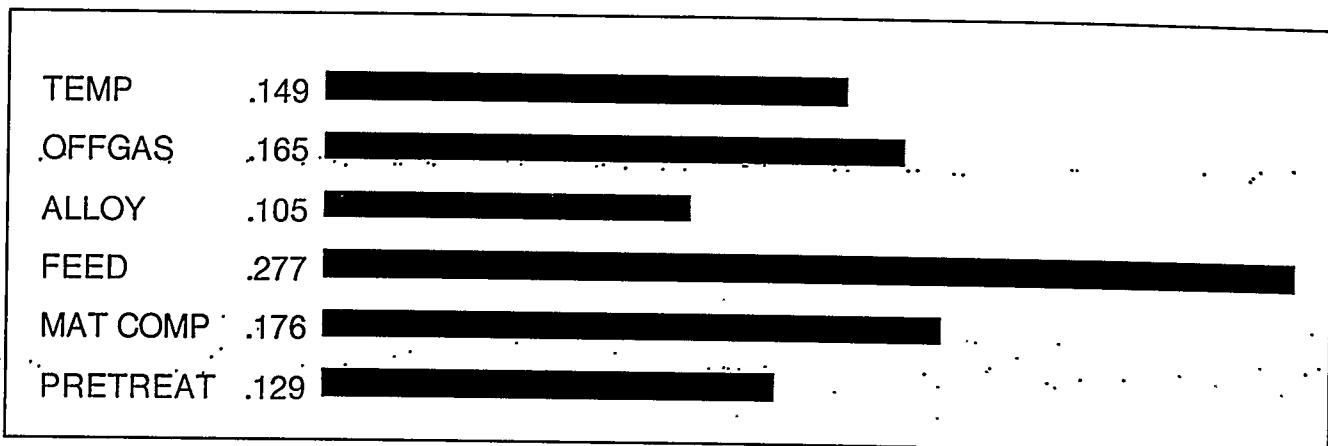
This page intentionally left blank

APPENDIX B
CRITERIA EVALUATION

The table below indicates the raw scores and geometric means for the model criteria.

		Adams	Krupa	Bickford	Peacock	Swift	Brooks	G.M.	1/G.M.
Disposition Compatibility	Process	5.000	0.333	0.167	7.000	6.000	4.000	1.897	
Economic Advantage	Process	0.500	0.250	0.143	1.000	0.500	0.333	0.379	2.637
Transportation	Process	4.000	3.000	5.000	5.000	3.000	1.000	3.107	
Tech Development	Process	1.000	4.000	1.000	5.000	1.000	0.250	1.308	
Economic Advantage	Disposition Compatibility	3.000	0.333	4.000	2.000	0.200	0.200	0.827	1.209
Transportation	Disposition Compatibility	5.000	3.000	6.000	5.000	1.000	0.500	2.466	
Tech Development	Disposition Compatibility	2.000	3.000	5.000	1.000	0.500	1.000	1.570	
Transportation	Economic Advantage	5.000	5.000	3.000	0.250	3.000	3.000	2.351	
Tech Development	Economic Advantage	1.000	4.000	3.000	4.000	2.000	1.000	2.140	
Tech Development	Transportation	5.000	1.000	1.000	1.000	1.000	1.000	1.308	

Offgas	Temperature	0.333	3.000	0.333	8.000	2.000	0.250	1.049	
Alloy composition	Temperature	1.000	3.000	0.333	9.000	2.000	1.000	1.619	
Feed Knowledge	Temperature	0.333	3.000	0.200	0.200	0.250	0.167	0.344	2.904
Material Compatibility	Temperature	1.000	1.000	0.200	6.000	0.500	0.333	0.765	1.308
Pretreatment requirements	Temperature	0.333	5.000	0.333	6.000	0.500	11.000	1.624	
Alloy composition	Offgas	5.000	3.000	2.000	0.167	2.000	6.000	1.979	
Feed Knowledge	Offgas	3.000	3.000	0.250	0.143	0.250	1.000	0.657	1.522
Material Compatibility	Offgas	3.000	1.000	0.250	0.200	1.000	0.500	0.649	1.540
Pretreatment requirements	Offgas	3.000	5.000	0.250	6.000	1.000	0.500	1.497	
Feed Knowledge	Alloy Composition	0.333	0.500	0.250	1.000	0.250	4.000	0.589	1.698
Material Compatibility	Alloy Composition	1.000	0.500	0.200	4.000	0.500	0.200	0.585	1.710
Pretreatment requirements	Alloy Composition	0.333	3.000	0.200	5.000	0.500	0.500	0.794	1.260
Material Compatibility	Feed Knowledge	3.000	1.000	0.200	6.000	3.000	1.000	1.487	
Pretreatment requirements	Feed Knowledge	4.000	3.000	2.000	1.000	3.000	3.000	2.449	
Material Compatibility	Pretreatment requirements	0.333	1.000	1.000	1.000	1.000	1.000	0.833	1.201


		Adams	Krupa	Bickford	Peacock	Swift	Brooks	G.M.	1/G.M.
Attractiveness of Waste Fm	Availability of current path	0.333	0.333	1.000	0.200	0.200	3.000	0.487	2.054

Potential Cost Savings	Cost to Implement	1.000	0.333	0.167	1.000	1.000	4.000	0.778	1.285
Quantity of Material	Cost to Implement	3.000	4.000	7.000	0.333	1.000	0.500	1.552	
Quantity of Material	Potential Cost Savings	3.000	5.000	7.000	7.000	1.000	0.500	2.676	

Shipping	Receiving	4.000	1.000	4.000	5.000	1.000	4.000	2.615	
Packaging	Receiving	4.000	0.333	1.000	0.200	1.000	4.000	1.011	0.989
Storage	Receiving	4.000	2.000	0.333	1.000	1.000	3.000	1.414	
Packaging	Shipping	1.000	0.333	0.333	4.000	1.000	0.500	0.778	1.285
Storage	Shipping	0.333	1.000	0.333	5.000	1.000	0.500	0.808	1.238
Storage	Packaging	1.000	4.000	0.333	6.000	1.000	1.000	1.414	

Processing	Waste Form	1.000	2.000	5.000	4.000	1.000	0.333	1.540	
------------	------------	-------	-------	-------	-------	-------	-------	-------	--

Develop a ratings for attractiveness for using melt and dilute

Inconsistency Ratio =0.03

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
PROCESS	Disposition process compatibility with M&D
TEMP	Process Temperature required
OFFGAS	Offgas treatment required
ALLOY	Composition of final waste form (alloy?)
FEED	Knowledge of feed composition
MAT COMP	Compatibilities of materials with equipment
PRETREAT	Levels of pretreatment required

Develop a ratings for attractiveness for using melt and dilute

PATH AVL	.323	[REDACTED]
ATTRACTV	.677	[REDACTED]

Inconsistency Ratio =0.0

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
DISPOSIT	Compatibility of waste form with Yucca, WIPP, LLW etc.
PATH AVL	Availability of current disposition path
ATTRACTV	Attractiveness of waste form; ease of certification

Develop a ratings for attractiveness for using melt and dilute

IMP COST	.334	[REDACTED]
SAVINGS	.474	[REDACTED]
QUANTITY	.192	[REDACTED]

Inconsistency Ratio =0.01

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
ECON.AD	Potential for savings
IMP COST	Cost to implement
SAVINGS	Potential savings of using M&D
QUANTITY	Quantity of material to be processed (months)

Develop a ratings for attractiveness for using melt and dilute

RECEIVNG	.336	[REDACTED]
SHIPPING	.171	[REDACTED]
PCKGING	.281	[REDACTED]
STORAGE	.212	[REDACTED]

Inconsistency Ratio =0.02

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
TRNSPRT	Ability to ship and receive
RECEIVNG	Ability to receive material
SHIPPING	Ability to ship out material
PCKGING	Shipping preparations required.
STORAGE	Material storage availability

Develop a ratings for attractiveness for using melt and dilute

PROCNG	.600	[REDACTED]
WASTE FM	.400	[REDACTED]

Inconsistency Ratio =0.0

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
TECH DEV	Technology Development Required
PROCNG	Additional process R&D required.
WASTE FM	Additional waste form R&D required.

APPENDIX C
RATINGS EVALUATIONS FOR MATERIALS

Scale pair-wise comparisons are given by evaluator in the table below.

Evaluator	Adams	Peacock	Swift	Bickford	Brooks	Krupa	GM	1/GM
Temp								
850 vs 1200	0.25	0.166667	0.2	0.166667	0.25	0.2	0.20274	4.932424
850 vs 1400	0.142857	0.142857	0.142857	0.142857	0.166667	0.142857	0.146575	6.822448
850 vs >1400	0.111111	0.111111	0.111111	0.125	0.125	0.111111	0.11556	8.653497
1200 vs 1400	0.333333	0.2	0.333333	0.166667	0.333333	0.2	0.250471	3.992478
1200 vs >1400	0.2	0.125	0.2	0.142857	0.2	0.142857	0.165311	6.04922
1400 vs > 1400	1	0.2	0.333333	0.166667	0.5	0.2	0.32183	3.107233
Offgas								
No-P vs ONEHEPA	0.333333	0.25	0.5	0.25	0.25	0.2	0.28365	3.525469
No-P vs M&DSYS	0.25	0.2	0.5	0.2	0.2	0.142857	0.228639	4.373707
No-P vs SAND	0.142857	0.25	0.25	0.166667	0.125	0.111111	0.16566	6.036478
ONEHEPA vs M&DSYS	0.5	0.333333	0.5	0.25	0.5	0.333333	0.389136	2.569797
ONEHEPA vs SAND	0.142857	0.2	0.25	0.2	0.2	0.166667	0.190384	5.252546
M&DSYS vs SAND	0.333333	0.333333	0.2	0.25	0.333333	0.25	0.278136	3.595359
Alloy								
Compat vs Marg Dep	1	0.5	0.25	0.25	0.5	0.333333	0.416342	2.401874
Compat vs Sig Dep	0.5	0.25	0.142857	0.2	0.2	0.2	0.228639	4.373707
Compat vs New Mat	0.2	0.166667	0.333333	0.166667	0.142857	0.142857	0.18319	5.458814
Marg Dep vs Sig Dep	0.5	0.5	0.166667	0.25	0.333333	0.333333	0.324027	3.086164
Marg Dep vs New Mat	0.2	0.333333	0.166667	0.2	0.142857	0.2	0.199735	5.006645
Sig Dep vs New Mat	0.2	1	0.5	0.25	0.25	0.333333	0.357377	2.798166
Feed								
WELLCHAR vs. Proc. Kno	1	0.333333	0.333333	0.25	0.333333	0.333333	0.381571	2.620741
WELLCHAR vs. Mat Des	0.25	0.2	0.2	0.2	0.25	0.2	0.215443	4.641589
WELLCHAR vs UK	0.142857	0.166667	0.142857	0.166667	0.142857	0.125	0.14708	6.799043
Proc Kno vs. Mat Des	0.333333	0.25	0.333333	0.333333	0.5	0.25	0.324027	3.086164
Proc Kno vs. UK	0.142857	0.25	0.2	0.25	0.2	0.142857	0.192586	5.192494
Mat Des vs. UK	0.2	0.166667	0.333333	0.333333	0.25	0.333333	0.259962	3.846722
Mat Comp								
Current vs Graphite	1	0.333333	0.5	0.142857	0.333333	0.333333	0.371893	2.688945
Current vs. Nitride	0.333333	0.25	0.25	0.125	0.166667	0.2	0.210422	4.752354
Graphite vs. Nitride	0.333333	0.2	0.333333	0.142857	0.25	0.333333	0.253368	3.946832
Pretreat								
No-P vs Min-P	1	0.333333	0.333333	0.25	0.5	0.333333	0.408248	2.44949
No-P vs Sig-P	0.25	0.25	0.166667	0.2	0.25	0.166667	0.210422	4.752354
Min-P vs Sig-P	0.5	0.2	0.333333	0.25	0.333333	0.25	0.297582	3.360421

Evaluator	Adams	Peacock	Swift	Bickford	Brooks	Krupa	GM	1/GM
Path Avl								
Defined vs. Available	1	5	2	4	1	4	2.329986	
Defined vs. Proposed	3	6	3	5	2	6	3.846722	
Defined vs Undef	5	7	4	6	4	8	5.473161	
Available vs Proposed	4	3	2	5	2	4	3.140836	
Available vs. Undef	5	4	3	6	4	6	4.529869	
Proposed vs. Undef	5	4	2	5	3	4	3.659052	
Attractiv								
Similar vs. Sim-Mod	1	0.25	0.5	0.25	1	0.333333	0.467328	2.139826
Similar vs. Sig Eff	0.2	0.2	0.2	0.333333	0.25	0.142857	0.213699	4.679487
Sim-Mod vs Sig Eff	0.2	0.2	0.25	0.25	0.2	0.2	0.215443	4.641589
Imp Cost								
Opsonly vs MinorCap	0.5	0.5	0.5	0.166667	1	0.333333	0.43679	2.289428
Opsonly vs SigCap	0.25	0.333333	0.25	0.2	0.333333	0.2	0.255436	3.914868
Opsonly vs MajCap	0.142857	0.333333	0.166667	0.25	0.166667	0.111111	0.182332	5.484504
MinorCap vs SigCap	0.333333	0.5	0.333333	0.2	0.333333	0.25	0.312197	3.203101
MinorCap vs MajCap	0.2	0.25	0.2	0.25	0.2	0.166667	0.208995	4.784797
SigCap vs MajCap	0.333333	0.5	0.25	0.25	0.25	0.25	0.294398	3.396763
Savings								
MINRS AV vs MODSAV	1	2	3	7	2	2	2.34901	
MINRS AV vs SIGSAV	4	3	4	8	4	4	4.279653	
MINRS AV vs MAJS AV	7	4	6	9	6	6	6.156148	
MINRS AV vs MAXSAV	9	4	8	9	8	9	7.559526	
MODSAV vs SIGSAV	3	2	3	7	3	2	3.018239	
MODSAV vs MAJS AV	5	3	5	8	5	5	4.966097	
MODSAV vs MAXSAV	9	4	7	9	7	8	7.089874	
SIGSAV vs MAJS AV	3	2	3	8	3	4	3.464102	
SIGSAV vs MAXSAV	5	3	5	9	6	6	5.361885	
MAJS AV vs MAXSAV	6	2	2	8	6	5	4.233866	
Quantity								
INSIG vs MINOR	1	0.5	0.333333	0.2	1	0.333333	0.472382	2.116933
INSIG vs MODERATE	3	0.333333	0.2	0.166667	2	0.2	0.486956	2.053573
INSIG vs SIGNIF	3	0.25	0.142857	0.142857	3	0.166667	0.443921	2.252652
MINOR vs MODERATE	1	0.5	0.5	0.166667	1	0.5	0.524558	1.906369
MINOR vs SIGNIF	3	0.333333	0.25	0.142857	2	0.25	0.511252	1.955981
MODERATE vs SIGNIF	0.333333	0.5	0.5	0.166667	2	0.333333	0.458243	2.182247
RECEIVNG								
Cur. REC. vs REC MOD	0.333333	0.333333	0.5	0.25	0.25	0.25	0.308857	3.237741
CUR REC vs NOREC	0.2	0.2	0.25	0.2	0.166667	0.142857	0.190384	5.252546
RECMOD vs NOREC	0.333333	0.25	0.333333	0.25	0.333333	0.2	0.278136	3.595359
SHIPPING								
SHIPCUR vs SHIP. INC	0.333333	0.5	0.333333	0.25	0.333333	0.333333	0.339941	2.941683
SHIPCUR vs SHIP. UN	0.2	0.25	0.2	0.2	0.2	0.2	0.207578	4.817462
SHIP. INC vs SHIP. UN	0.333333	0.5	0.333333	0.25	1	0.333333	0.408248	2.44949
PCKGING								
PACKAGED vs PACK REQ	0.333333	0.5	0.333333	0.333333	0.5	0.5	0.408248	2.44949
PACKAGED vs FAC REQ	0.2	0.333333	0.166667	0.25	0.25	0.2	0.227568	4.39429
PACKAGED vs NOT DET	0.142857	0.25	0.111111	0.2	1	0.142857	0.22	4.545463
PACK REQ vs FAC REQ	0.2	0.333333	0.25	0.25	2	0.25	0.357377	2.798166
PACK REQ vs NOT DET	0.2	0.333333	0.166667	0.2	2	0.166667	0.3008	3.324469
FAC REQ vs NOT DET	0.5	0.25	0.333333	0.25	3	0.2	0.429187	2.329986
STORAGE								
STG AV vs MIN MODS	1	0.333333	0.5	0.25	1	0.333333	0.49028	2.039649
STG AV vs MAJ MODS	0.2	0.2	0.25	0.2	4	0.166667	0.331759	3.014233
MIN MODS vs MAJ MODS	0.2	0.333333	0.333333	0.25	2	0.25	0.374929	2.667168
PROCNG								
NOPRRR&D vs MOD R&D	0.333333	0.5	0.333333	0.166667	0.333333	0.5	0.339941	2.941683
NOPRRR&D vs MAJ R&D	0.25	0.25	0.166667	0.142857	0.2	0.25	0.205085	4.876032
MOD R&D vs MAJ R&D	0.333333	0.5	0.333333	0.166667	0.333333	0.5	0.339941	2.941683
WASTE FM								
NOWR&D vs MODWR&D	0.333333	0.333333	0.333333	0.166667	0.333333	0.5	0.317728	3.147345
NOWR&D vs MAJWR&D	0.2	0.5	0.166667	0.142857	0.2	0.25	0.221796	4.50865
MODWR&D vs MAJWR&D	0.2	0.333333	0.333333	0.166667	0.333333	0.5	0.291797	3.42704

Develop a ratings for attractiveness for using melt and dilute

850C	.642	[REDACTED]
1200C	.228	[REDACTED]
1400C	.087	[REDACTED]
>1400C	.043	[REDACTED]

Inconsistency Ratio =0.09

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
PROCESS	Disposition process compatibility with M&D
TEMP	Process Temperature required
850C	At or below 850C
1200C	850-1200C
1400C	1200-1400C
>1400C	Greater than 1400C

Develop a ratings for attractiveness for using melt and dilute

NO-P	.561	
ONEHEPA	.250	
M&DSYS	.133	
SAND	.056	

Inconsistency Ratio =0.07

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
PROCESS	Disposition process compatibility with M&D
OFFGAS	Offgas treatment required
NO-P	No Pretreatment required
ONEHEPA	Single HEPA system
M&DSYS	HEPA plus zeolite (M&D system)
SAND	Sand filter required

Develop a ratings for attractiveness for using melt and dilute

COMPAT .516

MARG DEP .295

SIG DEP .125

NEW MAT .063

Inconsistency Ratio =0.04

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
PROCESS	Disposition process compatibility with M&D
ALLOY	Composition of final waste form (alloy?)
COMPAT	Essentially the same as current U/AI
MARG DEP	Marginal departure from current composition
SIG DEP	Significant departure from current composition
NEW MAT	Completely new material

Develop a ratings for attractiveness for using melt and dilute

WELLCHAR .528

PROC KNO .297

MAT DES .122

UK .052

Inconsistency Ratio =0.07

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
PROCESS	Disposition process compatibility with M&D
FEED	Knowledge of feed composition
WELLCHAR	Feed well characterized
PROC KNO	Process knowledge of feed available
MAT DES	Material has a description, some uncertainty
UK	Material composition substantially unknown

Develop a ratings for attractiveness for using melt and dilute

CURRENT	.608	
GRAPHITE	.295	
NITRIDE	.097	

Inconsistency Ratio =0.07

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
PROCESS	Disposition process compatibility with M&D
MAT COMP	Compatibilities of materials with equipment
CURRENT	Steel crucible adequate
GRAPHITE	Requires graphite crucible
NITRIDE	Requires silicon nitride or more exotic crucible

Develop a ratings for attractiveness for using melt and dilute

NO-P	.598	[REDACTED]
MIN-P	.297	[REDACTED]
SIG-P	.104	[REDACTED]

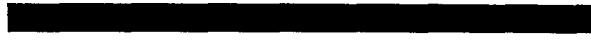
Inconsistency Ratio =0.03

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
PROCESS	Disposition process compatibility with M&D
PRETREAT	Levels of pretreatment required
NO-P	No Pretreatment required
MIN-P	Minimal pretreatment (some sorting, minor size reduction)
SIG-P	Significant pretreatment required.(compaction/cutting)

Develop a ratings for attractiveness for using melt and dilute

DEFINED .069 [REDACTED]

AVAILABL .115 [REDACTED]


PROPOSED .245 [REDACTED]

UNDEF .571 [REDACTED]

Inconsistency Ratio =0.06

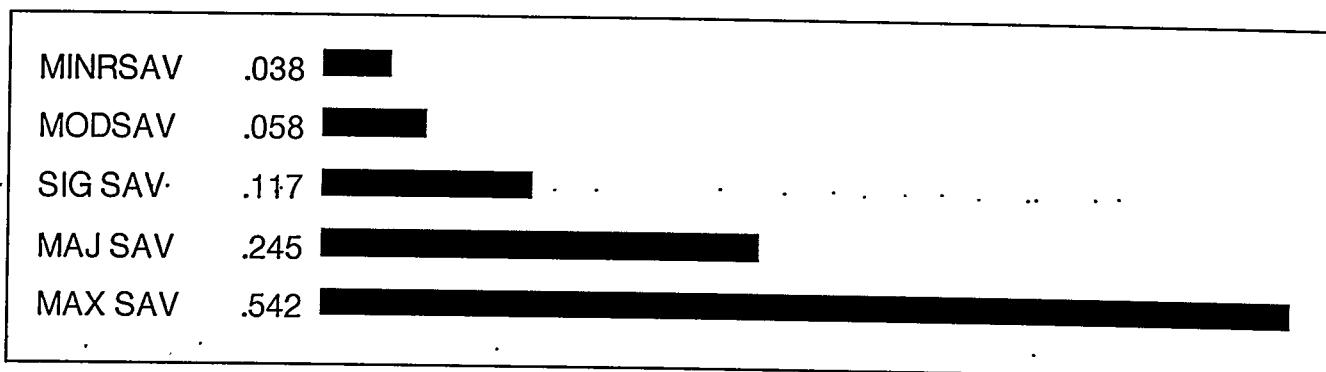
Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
DISPOSIT	Compatability of waste form with Yucca, WIPP, LLW etc.
PATH AVL	Availability of current disposition path
DEFINED	Path currently defined, available and funded
AVAILABL	Path defined and available, not currently funded
PROPOSED	path developed, facilities and or funding not available
UNDEF	Path not currently defined (TBD)

Develop a ratings for attractiveness for using melt and dilute

SIMILAR	.564	
SIM-MOD	.342	
SIG EFF	.094	

Inconsistency Ratio =0.06

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
DISPOSIT	Compatibility of waste form with Yucca, WIPP, LLW etc.
ATTRACTV	Attractiveness of waste form; ease of certification
SIMILAR	Very similar to M&D form or no issues
SIM-MOD	Similar with minor modifications to testing
SIG EFF	Requires significant waste form qualification effort


Develop a ratings for attractiveness for using melt and dilute

OPSONLY	.505	[REDACTED]
MINORCAP	.303	[REDACTED]
SIGCAP	.131	[REDACTED]
MAJCAP	.061	[REDACTED]

Inconsistency Ratio =0.06

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
ECON.AD	Potential for savings
IMP COST	Cost to implement
OPSONLY	Operating costs Only
MINORCAP	Minor Capital (<\$10M) required
SIGCAP	Capital cost (\$10M<X<\$100M)
MAJCAP	Greater than \$100M Capital required

Develop a ratings for attractiveness for using melt and dilute

Inconsistency Ratio=0.08.

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
.ECON.AD	Potential for savings
SAVINGS	Potential savings of using M&D
MINRSAV	<\$10M savings
MODSAV	Savings \$10M<X<\$50M
SIG SAV	Savings \$50M<X<\$100M
MAJ SAV	Savings \$100M<X<\$500M
MAX SAV	>\$500M savings

Develop a ratings for attractiveness for using melt and dilute

INSIG	.408	
MINOR	.266	
MODERATE	.198	
SIGNIF	.129	

Inconsistency Ratio =0.04

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
ECON.AD	Potential for savings
QUANTITY	Quantity of material to be processed (months)
INSIG	<1 Month processing
MINOR	Process Time = 1 Month <X< 6 Months
MODERATE	Processing Time 6 Months<X<12 Months
SIGNIF	Greater than 12 Months processing required

Develop a ratings for attractiveness for using melt and dilute

CUR.REC.	.645	[REDACTED]
REC.MOD	.261	[REDACTED]
NOREC	.094	[REDACTED]

Inconsistency Ratio =0.06

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
TRNSPRT	Ability to ship and receive
RECEIVNG	Ability to receive material
CUR.REC.	Receiving capability current
REC.MOD	Receiving requires mods
NOREC	No Receiving capability

Develop a ratings for attractiveness for using melt and dilute

SHIPCUR .635

SHIP.INC .248

SHIP. UN .117

Inconsistency Ratio =0.01

Abbreviation**Definition**

Goal Develop a ratings for attractiveness for using melt and dilute

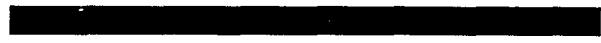
TRNSPRT Ability to ship and receive

SHIPPING Ability to ship out material

SHIPCUR Shipping currently available (including cont.&certs)

SHIP.INC Shipping incomplete-needs containers or certs

SHIP. UN Neither containers nor certificantions available


Develop a ratings for attractiveness for using melt and dilute

PACKAGED	.515	[REDACTED]
PACK REQ	.274	[REDACTED]
FAC REQ	.130	[REDACTED]
NOT DET	.082	[REDACTED]

Inconsistency Ratio =0.04

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
TRNSPRT	Ability to ship and receive
PCKGING	Shipping preparations required.
PACKAGED	Material is packaged for shipping
PACK REQ	Packaging is required
FAC REQ	Packaging facilities required
NOT DET	Packaging requirements not determined

Develop a ratings for attractiveness for using melt and dilute

STG AV	.531	
MIN MODS	.323	
MAJ MODS	.146	

Inconsistency Ratio =0.04

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
TRNSPRT	Ability to ship and receive
STORAGE	Material storage availability
STG AV	Storage currently available with adequate capacity
MIN MODS	Minor new storage (minor mods or schedule mgmt)
MAJ MODS	Major new storage required

Develop a ratings for attractiveness for using melt and dilute

NOPRR&D	.632	
MOD R&D	.261	
MAJ R&D	.108	

Inconsistency Ratio =0.03

Abbreviation	Définition
Goal	Develop a ratings for attractiveness for using melt and dilute
TECH DEV	Technology Development Required
PROCNG	Additional process R&D required.
NOPRR&D	No Processing R&D required (in scope of current pgm)
MOD R&D	Moderate Process R&D required
MAJ R&D	Major process R&D required

Develop a ratings for attractiveness for using melt and dilute

NOWR&D .627

MODWR&D .268

MAJWR&D .105

Inconsistency Ratio =0.08

Abbreviation	Definition
Goal	Develop a ratings for attractiveness for using melt and dilute
TECH DEV	Technology Development Required
WASTE FM	Additional waste form R&D required.
NOWR&D	No additional Waste Form R&D Required
MODWR&D	Moderate Waste form R&D required
MAJWR&D	Major Waste form R&D required, New

APPENDIX D
MATERIALS RATINGS

This page intentionally left blank

E:\MELT_P-1\ECPROS-1\M&DCAN1

ITEM	DESCRIPTION	TOTAL	PROCESS TEMP	OFFGAS	ALLOY	FEED	MAT COMP	PRETREAT
1	Alternatives		.0352	.0391	.0248	.0655	.0417	.03051
11	SRS DU discardable material	0.857 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
12	SRS DU Samples & Standards	0.857 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
13	Pu/EU metal	0.821 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
14	SRS M Area U metal LEU	0.820 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
15	SRS DU lab solutions	0.797 850C	NO-P	COMPAT	WELLCHAR	CURRENT	MIN-P	
16	SRS Recovered oxides LEU	0.799 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
17	FMPC Misc DU metal (oxidation)	0.799 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
18	Standards, Mound plates, PNNL Plates, HEU	0.798 850C	ONEHEPA	COMPAT	WELLCHAR	CURRENT	NO-P	
19	SRS DU Oxides	0.769 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
20	SRS EBR-II (DU)	0.764 850C	M&DSYS	COMPAT	WELLCHAR	CURRENT	NO-P	
21	Al-clad U metal SNF	0.764 850C	M&DSYS	COMPAT	WELLCHAR	CURRENT	NO-P	
22	Pu-238 scrap	0.769 850C	ONEHEPA	MARG DEP	WELLCHAR	CURRENT	NO-P	
23	FMPC DU historical materials	0.767 850C	NO-P	COMPAT	WELLCHAR	CURRENT	MIN-P	
24	SRS Bare DU metal	0.757 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
25	SRS Canned DU metal	0.757 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
26	Al Matrix SNF	0.747 850C	M&DSYS	COMPAT	WELLCHAR	CURRENT	NO-P	
27	FMPC Misc Metal(oxidation)	0.744 850C	NO-P	COMPAT	PROC KNO	CURRENT	NO-P	
28	SRS NU Inactive samples	0.725 850C	NO-P	COMPAT	WELLCHAR	CURRENT	MIN-P	
29	Mk 18s	0.740 850C	M&DSYS	COMPAT	WELLCHAR	CURRENT	NO-P	
30	HEU-Tubes and Assemblies (Mk-22s)	0.755 850C	NO-P	COMPAT	WELLCHAR	CURRENT	MIN-P	
31	FMPC Scrap DU oxide pellets	0.716 850C	NO-P	COMPAT	PROC KNO	CURRENT	MIN-P	
32	HEU ORNL off spec metal	0.734 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
33	SRS BARE NU Metal	0.732 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
34	Metal and Alloy	0.724 850C	ONEHEPA	COMPAT	WELLCHAR	GRAPHITE	NO-P	
35	SRS DU/Al powder castings	0.709 850C	NO-P	COMPAT	PROC KNO	CURRENT	MIN-P	
36	U-233 (canned oxide)	0.724 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
37	SRS DU Solutions	0.707 850C	NO-P	COMPAT	WELLCHAR	CURRENT	SIG-P	
38	Pu Misc. Compounds	0.704 850C	ONEHEPA	COMPAT	PROC KNO	CURRENT	MIN-P	
39	SRS NU Discardable Material	0.713 850C	NO-P	COMPAT	MAT DES	CURRENT	NO-P	
40	HEU Ingots and Billets	0.719 850C	NO-P	COMPAT	WELLCHAR	CURRENT	NO-P	
41	Pu Oxide Powder	0.673 850C	ONEHEPA	MARG DEP	WELLCHAR	GRAPHITE	MIN-P	
42	FMPC Misc Metal Recovery?	0.688 850C	NO-P	MARG DEP	PROC KNO	CURRENT	MIN-P	
43	HEU Idaho oxide	0.694 850C	ONEHEPA	MARG DEP	WELLCHAR	CURRENT	NO-P	
44	FMPC DU Rockwell spills	0.686 850C	NO-P	COMPAT	PROC KNO	CURRENT	NO-P	
45	Pu Samples/Stds	0.671 850C	ONEHEPA	MARG DEP	WELLCHAR	CURRENT	MIN-P	
46	Pu/U oxide	0.653 850C	ONEHEPA	MARG DEP	WELLCHAR	GRAPHITE	MIN-P	
47	FMPC Misc DU metal (dissolution)	0.675 850C	NO-P	COMPAT	PROC KNO	CURRENT	NO-P	

E/MELT_D-1ECPROS-1M&DCAN1

		PROCESS TEMP	OFFGAS	WELL CHAR	GRAPHITE	MIN-P
		TOTAL	ALLOY	EEDEP	MAT COMP	PRETREAT
587	Pu scrap misc	0.644 850C	ONEHEPA	MARG DEP	WELLCHAR	MIN-P
588	HEU Hanford	0.653 850C	NO-P	COMPAT	WELLCHAR	NO-P
589	ZPPR plates	0.629 850C	ONEHEPA	SIG DEP	WELLCHAR	MIN-P
590	Pu Mixed Oxide Slugs	0.644 850C	ONEHEPA	MARG DEP	GRAPHITE	MIN-P
591	U-238/SNF	0.647 850C	M&DSYS	COMPAT	WELLCHAR	NO-P
592	Pu Ash	0.642 850C	ONEHEPA	MARG DEP	MAT DES	CURRENT
593	Cm 244 solution	0.646 850C	ONEHEPA	MARG DEP	MAT DES	CURRENT
594	Am 243 oxide	0.646 850C	ONEHEPA	MARG DEP	MAT DES	CURRENT
595	Am 241 samples/sds	0.646 850C	ONEHEPA	MARG DEP	MAT DES	NO-P
596	U/Pu/Zr Casting Scrap	0.620 1200C	ONEHEPA	MARG DEP	PROC KNO	MIN-P
597	FMPc Rockwell spills LEU	0.592 850C	NO-P	MARG DEP	PROC KNO	MIN-P
598	FMPc Misc LEU Metal(dissolution)	0.592 850C	NO-P	MARG DEP	PROC KNO	MIN-P
599	HEU SRS Solutions	0.581 850C	ONEHEPA	COMPAT	WELLCHAR	SIG-P
600	SRS NU (Pu) Scrap	0.574 850C	ONEHEPA	MARG DEP	PROC KNO	CURRENT
601	Pu Chlorides, fluorides etc	0.566 850C	ONEHEPA	MARG DEP	MAT DES	NO-P
602	Pu Combustibles	0.552 850C	ONEHEPA	COMPAT	MAT DES	SIG-P
603	SRS DU Sludge and Filter Cake	0.565 850C	ONEHEPA	MARG DEP	MAT DES	MIN-P
604	SRS DU SS/Zr fuel/targets	0.539 1200C	M&DSYS	SIG DEP	WELLCHAR	MIN-P
605	SRS Pu/DU Oxide fuel rods	0.539 1200C	M&DSYS	SIG DEP	WELLCHAR	MIN-P
606	Np 237 scrap	0.517 850C	ONEHEPA	MARG DEP	WELLCHAR	CURRENT
607	SRS Pu/DU scrap	0.449 1200C	M&DSYS	SIG DEP	MAT DES	GRAPHITE
608	FMPc DU Nonburnable metal	0.471 1200C	M&DSYS	SIG DEP	MAT DES	GRAPHITE
609	Pu-239 Pits	0.457 850C	ONEHEPA	COMPAT	WELLCHAR	MIN-P
610	FMPc DU lead contaminated	0.410 850C	M&DSYS	SIG DEP	MAT DES	CURRENT
611	Metal U-Zr SNF	0.338 1200C	SAND	SIG DEP	WELLCHAR	GRAPHITE
612	Metal(U,Mo)/Na SNF	0.338 1200C	SAND	SIG DEP	WELLCHAR	GRAPHITE
613	Oxide-Research SNF	0.310 1400C	SAND	MARG DEP	WELLCHAR	SIG-P
614	Oxide-Commercial SNF	0.305 1400C	SAND	MARG DEP	WELLCHAR	SIG-P
615	Oxide Disrupted TMI SNF	0.270 1200C	SAND	MARG DEP	MAT DES	GRAPHITE
616	Oxide, U/Th SNF	0.000				SIG-P
617	FMPc Chips In concrete LEU	0.000				
618	SRS Vitrified waste LEU	0.000				
619	Misc Other SNF	0.000				
620	FMPc DU chips In concrete	0.000				
621	Graphite SNF	0.000				
622	Misc Other SNF	0.000				
623	Misc Other (failed)	0.000				
624	Irradiated Reactor Parts	0.000				

Process	Offgas	Alloy	Feed	Mat Comp	Pretreat
Process Temp					
Total					
0.000	0.0391	0.048	0.0655	.0417	0.0303
Alternatives					

E:\MELT_D-1\ECPROS-1\M&DCAN1

	Alternatives	TOTAL	DISPOSIT- PATH AVE	ATTRACTV	ECON. AD - IMP. COST	SAVINGS	QUANTITY	TRNSPRTS RECEIVING
1	SRS DU discardable material	0.857 UNDEF	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
2	SRS DU Samples & Standards	0.857 UNDEF	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
3	Pu/EU metal	0.821 PROPOSED	SIM-MOD	OPSONLY	MAX SAV	MODERATE	REC.MOD	
4	SRS M Area U metal LEU	0.820 PROPOSED	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
5	SRS DU lab solutions	0.797 UNDEF	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
6	SRS Recovered oxides LEU	0.799 DEFINED	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
7	FMPC Misc DU metal (oxidation)	0.799 DEFINED	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
8	Standards, Mound plates, PNNL Plates, HEU	0.798 PROPOSED	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
9	SRS DU Oxides	0.769 UNDEF	SIMILAR	OPSONLY	MINRSAV	SIGNIF	CUR.REC.	
10	SRS EBR-II (DU)	0.764 PROPOSED	SIMILAR	OPSONLY	MODSAV	MODERATE	CUR.REC.	
11	Al-clad U metal SNF	0.764 PROPOSED	SIMILAR	OPSONLY	MODSAV	MODERATE	CUR.REC.	
12	Pu-238 scrap	0.769 UNDEF	SIMILAR	OPSONLY	MINRSAV	INSIG	REC.MOD	
13	FMPC DU historical materials	0.767 UNDEF	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
14	SRS Bare DU metal	0.757 DEFINED	SIMILAR	OPSONLY	MINRSAV	SIGNIF	CUR.REC.	
15	SRS Canned DU metal	0.757 DEFINED	SIMILAR	OPSONLY	MINRSAV	SIGNIF	CUR.REC.	
16	Al Matrix SNF	0.747 PROPOSED	SIMILAR	OPSONLY	MINRSAV	SIGNIF	CUR.REC.	
17	FMPC Misc Metal(oxidation)	0.744 PROPOSED	SIMILAR	OPSONLY	MINRSAV	INSIG	REC.MOD	
18	SRS NU Inactive samples	0.725 DEFINED	SIMILAR	OPSONLY	MINRSAV	INSIG	CUR.REC.	
19	Mk 18s	0.740 PROPOSED	SIMILAR	OPSONLY	MODSAV	INSIG	REC.MOD	
20	HEU-Tubes and Assemblies (Mk-22s)	0.755 PROPOSED	SIMILAR	OPSONLY	SIG.SAV	SIGNIF	CUR.REC.	
21	FMPC Scrap DU oxide pellets	0.716 DEFINED	SIMILAR	OPSONLY	MODSAV	INSIG	CUR.REC.	
22	HEU ORNL off spec metal	0.734 DEFINED	SIMILAR	OPSONLY	MINRSAV	SIGNIF	CUR.REC.	
23	SRS BARE NU Metal	0.732 PROPOSED	SIMILAR	OPSONLY	MINRSAV	MODERATE	REC.MOD	
24	Metal and Alloy	0.724 PROPOSED	SIM-MOD	MINORCAP	MAX.SAV	SIGNIF	REC.MOD	
25	SRS DU/Al powder castings	0.709 PROPOSED	SIMILAR	OPSONLY	MINRSAV	MINOR	CUR.REC.	
26	U-233 (canned oxide)	0.724 PROPOSED	SIMILAR	OPSONLY	MINRSAV	MODERATE	REC.MOD	
27	SRS DU Solutions	0.707 PROPOSED	SIMILAR	OPSONLY	MINRSAV	SIGNIF	CUR.REC.	
28	Pu Misc. Compounds	0.704 UNDEF	SIM-MOD	MINORCAP	MAX.SAV	MODERATE	REC.MOD	
29	SRS NU Discardable Material	0.713 PROPOSED	SIMILAR	OPSONLY	MINRSAV	INSIG	REC.MOD	
30	HEU Ingots and Billets	0.719 AVAILBL	SIMILAR	OPSONLY	MINRSAV	SIGNIF	CUR.REC.	
31	Pu Oxide Powder	0.673 PROPOSED	SIM-MOD	MINORCAP	MAX.SAV	MINOR	REC.MOD	
32	FMPC Misc Metal Recovery?	0.688 PROPOSED	SIMILAR	OPSONLY	MINRSAV	MINOR	REC.MOD	
33	HEU Idaho oxide	0.694 UNDEF	SIMILAR	OPSONLY	MODSAV	MODERATE	REC.MOD	
34	FMPC DU Rockwell spills	0.686 UNDEF	SIMILAR	OPSONLY	MINRSAV	MINOR	REC.MOD	
35	Pu Samples/Stds	0.671 PROPOSED	SIM-MOD	OPSONLY	MINRSAV	INSIG	REC.MOD	
36	Pu/U oxide	0.653 PROPOSED	SIM-MOD	MINORCAP	MAX.SAV	SIGNIF	REC.MOD	
37	FMPC Misc DU metal (dissolution)	0.675 UNDEF	SIMILAR	OPSONLY	MINRSAV	MODERATE	REC.MOD	

E:\MELT_D-1\ECPROS-1\M&DCAN1

			DISPOSIT	ATTRACTV	ECON AD -	SAVINGS	QUANTITY	TRNSPRT -
			TOTAL	IMPACT	IMP COST	IMP SAV	IMP QTY	RECEIVING
	Alternatives		0.6561	1378	1085	1539	.0622	0361
38	Pu scrap misc	0.644 PROPOSED	SIM-MOD	MINORCAP	MAX SAV	SIGNIF	REC.MOD	
39	HEU Hanford	0.663 PROPOSED	SIMILAR	OPSONLY	MODSAV	Moderate	REC.MOD	
40	ZPPR plates	0.629 PROPOSED	SIM-MOD	SIGCAP	MAX SAV	SIGNIF	REC.MOD	
41	Pu Mixed Oxide Slugs	0.644 PROPOSED	SIM-MOD	MINORCAP	MAX SAV	MINOR	REC.MOD	
42	U-233/SNF	0.647 PROPOSED	SIMILAR	OPSONLY	MINRSAV	MINOR	REC.MOD	
43	Pu Ash	0.642 UNDEF	SIM-MOD	MINORCAP	MAX SAV	INSIG	REC.MOD	
44	Cm 244 solution	0.646 UNDEF	SIM-MOD	OPSONLY	MINRSAV	INSIG	CUR.REC.	
45	Am 243 oxide	0.646 UNDEF	SIM-MOD	OPSONLY	MINRSAV	INSIG	CUR.REC.	
46	Am 241 samples/stds	0.646 UNDEF	SIM-MOD	OPSONLY	MINRSAV	INSIG	CUR.REC.	
47	U/Pu/Zr Casting Scrap	0.620 UNDEF	SIM-MOD	MINORCAP	MAX SAV	Moderate	REC.MOD	
48	FMPC Rockwell spills LEU	0.592 PROPOSED	SIMILAR	MINORCAP	MINRSAV	INSIG	REC.MOD	
49	FMPC Misc LEU Metal(dissolution)	0.592 PROPOSED	SIMILAR	MINORCAP	MINRSAV	INSIG	REC.MOD	
50	HEU SRS Solutions	0.581 PROPOSED	SIMILAR	SIGCAP	MODSAV	SIGNIF	CUR.REC.	
51	SRS NU (Pu) Scrap	0.574 PROPOSED	SIM-MOD	OPSONLY	MINRSAV	INSIG	REC.MOD	
52	Pu Chlorides, flourides etc	0.566 UNDEF	SIM-MOD	SIGCAP	MAX SAV	MINOR	REC.MOD	
53	Pu Combustibles	0.552 UNDEF	SIM-MOD	MINORCAP	SIG SAV	Moderate	REC.MOD	
54	SRS DU Sludge and Filter Cake	0.565 UNDEF	SIM-MOD	MINORCAP	MINRSAV	MINOR	CUR.REC.	
55	SRS DU SS/Zr fuel/targets	0.539 PROPOSED	SIM-MOD	MINORCAP	MINRSAV	INSIG	CUR.REC.	
56	SRS Pu/DU Oxide fuel rods	0.539 PROPOSED	SIM-MOD	MINORCAP	MINRSAV	INSIG	CUR.REC.	
57	Np 237 scrap	0.517 UNDEF	SIM-MOD	MINORCAP	MINRSAV	Moderate	REC.MOD	
58	SRS Pu/DU scrap	0.489 PROPOSED	SIM-MOD	MINORCAP	MINRSAV	INSIG	CUR.REC.	
59	FMPC DU Nonburnable metal	0.471 UNDEF	SIM-MOD	MINORCAP	MINRSAV	INSIG	REC.MOD	
60	Pu-239 Pits	0.457 PROPOSED	SIM-MOD	MINORCAP	MODSAV	SIGNIF	NOREC	
61	FMPC DU lead contaminated	0.410 UNDEF	SIG EFF	MINORCAP	MINRSAV	MINOR	REC.MOD	
62	Metal U-Zr SNF	0.338 PROPOSED	SIM-MOD	SIGCAP	MINRSAV	Moderate	NOREC	
63	Metal(U,U-Mo)/Na SNF	0.338 PROPOSED	SIM-MOD	SIGCAP	MINRSAV	Moderate	NOREC	
64	Oxide-Research SNF	0.310 PROPOSED	SIM-MOD	MAJCAP	MINRSAV	SIGNIF	NOREC	
65	Oxide-Commercial SNF	0.305 DEFINED	SIM-MOD	SIGCAP	MINRSAV	SIGNIF	NOREC	
66	Oxide Disrupted TMI SNF	0.270 PROPOSED	SIM-MOD	MAJCAP	MINRSAV	SIGNIF	NOREC	
67	Oxide, U/Th SNF	0.000						
68	FMPC Chips in concrete LEU	0.000						
69	SRS Vitrified waste LEU	0.000						
70	FMPC DU chips in concrete	0.000						
71	Graphite SNF	0.000						
72	Misc Other SNF	0.000						
73	Misc Other (failed)	0.000						
74	Irradiated Reactor Parts	0.000						

73 FMPC LEU chips in concrete

0.000

E:\MELT_D-1\ECPROS-1\M&DCAN1

			TOTAL	SHIPPING	PCKGING	STORAGE	TECH DEV	PROCNG	WASTE FM
1	Alternatives			0.0184	.0302	.0228	.0046	.0768	.0512
2	SRS DU discardable material	0.857	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
3	SRS DU Samples & Standards	0.857	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
4	Pu/EU metal	0.821	SHIP,INC	PACK REQ	MIN MODS	NOPRR&D	NOWR&D		
5	SRS M Area U metal LEU	0.820	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
6	SRS DU lab solutions	0.797	SHIPCUR	PACKAGED	STG AV	MOD R&D	NOWR&D		
7	SRS Recovered oxides LEU	0.799	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
8	FMPC Misc DU metal (oxidation)	0.799	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
9	Standards, Mound plates, PNNL Plates, HEU	0.798	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
10	SRS DU Oxides	0.769	SHIPCUR	PACKAGED	STG AV	MOD R&D	NOWR&D		
11	SRS EBR-II (DU)	0.764	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
12	Al-clad U metal SNF	0.764	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
13	Pu-238 scrap	0.769	SHIP,INC	PACK REQ	MIN MODS	NOPRR&D	NOWR&D		
14	FMPC DU historical materials	0.767	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D		
15	SRS Bare DU metal	0.757	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
16	SRS Canned DU metal	0.757	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
17	Al Matrix SNF	0.747	SHIPCUR	PACKAGED	STG AV	NOPRR&D	NOWR&D		
18	FMPC Misc Metal(oxidation)	0.744	SHIP,INC	PACK REQ	STG AV	NOPRR&D	NOWR&D		
19	SRS NU Inactive samples	0.725	SHIPCUR	PACK REQ	STG AV	MOD R&D	NOWR&D		
20	MK 18s	0.740	SHIP,INC	PACK REQ	MIN MODS	NOPRR&D	NOWR&D		
21	HEU-Tubes and Assemblies (Mk-22s)	0.755	SHIPCUR	PACKAGED	STG AV	NOPRR&D	MODWR&D		
22	FMPC Scrap DU oxide pellets	0.716	SHIPCUR	PACKAGED	STG AV	MOD R&D	NOWR&D		
23	HEU ORNL off spec metal	0.734	SHIPCUR	PACK REQ	MIN MODS	NOPRR&D	NOWR&D		
24	SRS BARE NU Metal	0.732	SHIP,INC	PACK REQ	MIN MODS	NOPRR&D	NOWR&D		
25	Metal and Alloy	0.724	SHIP,INC	PACK REQ	MIN MODS	NOPRR&D	NOWR&D		
26	SRS DU/AI powder castings	0.709	SHIPCUR	PACKAGED	STG AV	MOD R&D	NOWR&D		
27	U-233 (canned oxide)	0.724	SHIP,INC	PACK REQ	MAJ MODS	NOPRR&D	NOWR&D		
28	SRS DU Solutions	0.707	SHIPCUR	PACKAGED	STG AV	MOD R&D	NOWR&D		
29	Pu Misc. Compounds	0.704	SHIP,INC	PACK REQ	MIN MODS	MOD R&D	NOWR&D		
30	SRS NU Discardable Material	0.713	SHIP,INC	PACK REQ	MIN MODS	NOPRR&D	NOWR&D		
31	HEU Ingots and Billets	0.719	SHIPCUR	PACK REQ	STG AV	NOPRR&D	MODWR&D		
32	Pu Oxide Powder	0.673	SHIP,INC	PACK REQ	MIN MODS	MOD R&D	NOWR&D		
33	FMPC Misc Metal Recovery?	0.688	SHIP,INC	PACK REQ	MIN MODS	NOPRR&D	NOWR&D		
34	HEU Idaho oxide	0.694	SHIPCUR	PACKAGED	MIN MODS	MOD R&D	MODWR&D		
35	FMPC DU Rockwell spills	0.686	SHIP,INC	PACK REQ	STG AV	MOD R&D	MODWR&D		
36	Pu Samples/Stds	0.671	SHIP,INC	PACK REQ	STG AV	NOPRR&D	NOWR&D		
37	Pu/U oxide	0.653	SHIP,INC	PACK REQ	MIN MODS	MOD R&D	NOWR&D		
38	FMPC Misc DU metal (dissolution)	0.675	SHIP,INC	PACK REQ	STG AV	MOD R&D	MODWR&D		

E:\MELT D-1\ECPROS-1\M&DCAN1

ITEM	DESCRIPTION	QTY	SHIPPING	PCKGING	STORAGE	TECH. DEV/PROCNG	WASTE FM
	Alternatives	TOTAL	01845	.0302	0228	0768	0512
38	Pu scrap misc	0.644	SHIP. INC	FAC REQ	MIN MODS	MOD R&D	NOWR&D
39	HEU Hanford	0.663	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	MODWR&D
40	ZPPR plates	0.629	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	NOWR&D
41	Pu Mixed Oxide Slugs	0.644	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	MODWR&D
42	U-233/SNF	0.647	SHIP. INC	PACK REQ	STG AV	MOD R&D	MODWR&D
43	Pu Ash	0.642	SHIP. INC	PACK REQ	MIN MODS	MAJ R&D	MAJWR&D
44	Cm 244 solution	0.646	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D
45	Am 243 oxide	0.646	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D
46	Am 241 samples/stds	0.646	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D
47	U/Pu/Zr Casting Scrap	0.620	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	MODWR&D
48	FMPC Rockwell spills LEU	0.592	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	MODWR&D
49	FMPC Misc LEU Metal(dissolution)	0.592	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	MODWR&D
50	HEU SRS Solutions	0.581	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D
51	SRS NU (Pu) Scrap	0.574	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	MODWR&D
52	Pu Chlorides, flourides etc	0.566	SHIP. INC	PACK REQ	MIN MODS	MAJ R&D	MODWR&D
53	Pu Combustibles	0.552	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	NOWR&D
54	SRS DU Sludge and Filter Cake	0.565	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D
55	SRS DU SS/Zr fuel/targets	0.539	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D
56	SRS Pu/DU Oxide fuel rods	0.539	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D
57	Np 237 scrap	0.517	SHIP. INC	PACK REQ	STG AV	MAJ R&D	MAJWR&D
58	SRó Pu/DU scrap	0.489	SHIPCUR	PACKAGED	STG AV	MOD R&D	MODWR&D
59	FMPC DU Nonburnable metal	0.471	SHIP. INC	PACK REQ	MIN MODS	MOD R&D	MODWR&D
60	Pu-239 Pits	0.457	SHIP. UN	FAC REQ	MAJ MODS	MOD R&D	MODWR&D
61	FMPC DU lead contaminated	0.410	SHIP. INC	PACK REQ	STG AV	MAJ R&D	MAJWR&D
62	Metal U-Zr SNF	0.338	SHIP. UN	FAC REQ	MAJ MODS	MAJ R&D	MAJWR&D
63	Metal(U,U-Mo)/Na SNF	0.338	SHIP. UN	FAC REQ	MAJ MODS	MAJ R&D	MAJWR&D
64	Oxide-Research SNF	0.310	SHIP. UN	NOT DET	MAJ MODS	MAJ R&D	MAJWR&D
65	Oxide-Commercial SNF	0.305	SHIP. UN	NOT DET	MAJ MODS	MAJ R&D	MAJWR&D
66	Oxide Disrupted TMI SNF	0.270	SHIP. UN	FAC REQ	MAJ MODS	MAJ R&D	MAJWR&D
67	Oxide, U/Th SNF	0.000					
68	FMPC Chips in concrete LEU	0.000					
69	SRS Vitrified waste LEU	0.000					
70	FMPC DU chips in concrete	0.000					
71	Graphite SNF	0.000					
72	Misc Other SNF	0.000					
73	Misc Other (failed)	0.000					
74	Irradiated Reactor Parts	0.000					

Alternatives	0.00
TOTAL	
SHIPPING	
PACKAGING	
STORAGE	
TECHDEV	
PROTOTYPING	
WASTE FIRM	
.0512	
.0768	
.0228	
.0302	
.0118	
.0000	

This page intentionally blank