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ABSTRACT
The hazard model described in this paper is
designed to accept data over the Internet
from distributed databases. A hazard object
template is used to ensure that all necessary
descriptors are collected for each object.
Three methods for combining the data are
compared and contrasted. Three methods are
used for handling the three types of interac-
tions between the hazard objects.

INTRODUCTION
One of the major concerns of the Federal
Aviation Administration (FAA) is creating
and maintaining safe operating conditions
for the airlines and the flying public. Recent
events have prompted more rigorous analy-
sis of hazards and their impact on airline
safety, This paper describes a model that is
intended to aid FAA inspectors in the detec-
tion and analysis of aviation-related hazards.
However, the modeling technique is general
and our results should have an intuitive and
straightforward interpretation for users in
most fields.

Currently, information on conditions present
in the environment is gathered and stored in
various databases. We intend to extract ap-
propriate data from these databases and feed
the data directly into the model for compu-
tation. An indirect goal of using such a
model is determining which data are benefi-
cial in assessing the impact of hazards on
airline safety, i.e., the model can help decide
where to allocate resources so that pertinent
data are collected and fkivolous data are re-
jected.
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Another advantage in using such a model is
that hazards can be quickly identified, de-
scribed, categorized and archived for fiture
reference. This provides a basis for which a
consensus among experts can be attained.
Thus, ambiguity associated with interpreting
attributes of the hazards will be reduced, if
not eliminated. In order to ease the archiving
process we have defined a convenient for-
mat, called a Hazard Object, in which all
necessary information can be captured. We
will introduce the concept of hazard objects
in a later section and explain how they are
usefid in evaluating hazardous conditions.

THE HAZARD MODEL “
The structure of the Hazard Model is much
like a traditional Systems Engineering
tradeoff analysis (see
http://www.sie. arizona.edu/sysengr/pinewoo
d/ for an example). Related individual haz-
ards are grouped into categories, whose cu-
mulative relevance spans the space in which
hazards may occur. Possible categories are
Human Factors, Physiology, Weather, etc.
Within each main category are the individ-
ual hazards that act as subfigures of merit in
the tradeoff study analogy. The scores for
each hazard are rolled up to form a score for
their respective main category. Similarly, -
the scores for the main categories are com-
bined to generate the overall score, called
the Hazard Index, which fimctions as a nu-
merical designation indicating how hazard-
ous the situation is. A fragment of our model
is shown in Table 1.

1



DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.
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Table 1. Fragment of Sample Hazard Index Calculations
Figure of Merit Input Score Weight Score

value times
weight

1. Human Performance 0.34 0.76 0.50 0.38

2. Environment 0.87 0.96 0.50 0.48

2.1 Weather A

Qualitative Normalized Input Scoringfunction Score Score
weight weight value times

weight

2.1.1 Air 10 0.50 120”F 0.98

LI

0.98 0.49
Temperature

120

2.1.2 Visibility 5 0.25 1 Mile

PL

0.50 0.13
.0.5

1

2.1.3 Relative 5 0.25 100% 1.0

El

1.00 0.25
Humidity

100

Sum ~ < 0.87 v

Hazard Index 0.86

.

.
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This hierarchical partitioning of the hazards
allows us to evaiuate contributions of the
individual hazards to the main category and
each main category to the overall hazard as-
sessment. The hierarchical structure also
helps in dealing with dependence issues
between hazards. Since hazards in a main
category are intrinsically related, depend-
ence between them remains isolated in that
specific category and will not directly affect
the overall evaluation.

HAZARD OBJECTS
Figure 1 shows an example of a hazard ob-
ject that we will use to describe the details
of hazard objects.

First, we give the hazard a descriptive Title
so itcan be easily and unmistakably identi-
fied. In this case, we are attempting to model
the effects of “Pilot Recurrent Training” on
safety. The next entry contains a Description
of the hazard. This was done to ensure a
consistent definition for each hazard. The
Units of measure are included to indicate
how the quantity is to be measured and how
it is presented in graphical representations,
such as scoring fimction charts. In this ex-
ample, we chose to define the units of meas-
ure to be the number of hours of recurrent
training in the current year.

The scoring function is given next as a chart
on the hazard object as shown in Figure 1.
Scoring functions (Wymore, 1993) are used
to subjectively ascertain the severity of a
hazard given the state of nature. Specific
data on each identified hazard object is input
into the scoring fimction and a score is given
as output. Other facets of the Hazard Model
then use these scores to generate an overall
appraisal of the situation.

The scoring fimction chart is set up such that
the input values (in the units of measure de-
fined earlier) are displayed along the hori-
zontal axis, and the output value (always
between Oand 1) is presented along the ver-
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tical axis. The function itself is defined so
that the more hazardous the input value, the
higher the output score will be. This is ap-
parent fi-om looking at the example shce as
the number of recurrent training hours in the
current year diminishes, a higher score is
output indicating a greater hazard.

A researcher will poll experts in the field
where the hazard applies to get appropriate
units of measure, reasonable ranges for input
values, the scoring function shape and other
characteristics of the scoring fbnction. This
captures the experts’ perception concerning
the hazard. There has been extensive re-
search in developing a robust array of
mathematical equations to represent scoring
functions usefi.d in such characterization.
Examples of this will be given later.

The Category field initiates the hierarchical
decomposition process. Categories are the
largest subdivisions in the hazard space. It is
here where we group hazards of similar
characteristics such as environment-related
hazards or human performance issues, etc.
The Recurrent Training Hazard Object falls
under the main category Human Performa-
nce. Next, we have the subcategory field
that Iirther breaks
finer granularity.

the categories down into
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Hazard Object

Title:

Description:

Pilot Recurrent Training

The number of hours the pilot has spent in flight
training in aircraft and approved simulators
concerning specified maneuvers and procedures
(e.g., CRM, wind shear, etc.)

Units: Hours in Current Year

1

0.8

0,6

0.4

0.2

0

Pilot Recurrent Training

Hours in Current Year

Category: Human Performance

Subcategory: Training

Phase of Flight: All

Interactions: NIA

Qualitative Weight: 6

Default Input Value: 5 hours in current year

FAR: 121.427

Aircraft Specific? Yes

Source of Data: Human Resources

Ownec Paul Werner

Date Approved: 3 Sept. 1999, Meeting, The University of Arizona

Notes: Regulatory minimum =25 hours per year

Figure 1. An example of a hazard object.
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For example, in the Human Performance
category, we may include subcategories
such as Psychology, Physiology, Communi-
cation etc. Recurrent training is part of the
Training subcategory of Human Perform-
ance in the above example. We include a
field called Wmse of Flight because most
hazards are most important during specific
phases of flight, such as takeoff or taxiing.
Thus, when a new hazard object is defined,
the researcher must consider the interaction
between the hazard and the phases of flight.
In the example, we decided that all phases of
flight are affected by training. Therefore, we
entered “All” in the Phase of Flight field.

A more general field called Interactions al-
lows the researcher the freedom to document
all other interactive phenomena that tran-
spire between hazards. An example of this
would be the interaction between air tem-
perature and relative humidity. This interac-
tion exists because the relative humidity
does not become a hazard unless (A) the air
temperature is cold enough to (1) cause ic-
ing (either on aircraft or on the ground), (2)
impact radio communications, (3) reduce
radar and laser propagation, or (4) decrease
visibility, or (B) the air temperature is hot
enough to adversely affect aircraft perform-
ance,

Next, we include a Qualitative Weight field.
The qualitative weight is a numerical entry
given by experts indicating how much the
expert believes the hazard effects safety.
The qualitative weight is a value between 1
and 10, with a 1 meaning the hazard is
minimally detrimental to system safety and a
10 denoting that if the hazard is present, it
can severely impact system safety. In the
example, we have assigned a qualitative
weight of 6 for the hazard, indicating that
the hazard rates 6 out of 10 in overall conse-
quence on airline safety.

The Default Input Value field helps handle
missing data. If there are inconclusive or

missing data, or if good guesses for the in-
puts are not available, the Hazard Model
will automatically revert to the default val-
ues. In most cases, we have set up the de-
fault values to be nearly the worst possible.
This was done in part to motivate the acqui-
sition of the necessary data, and also to
promote a “better safe than sorry” safety
philosophy. In the example, the default-
input value was chosen to be 5 hours in the
current year. This is a low value that gener-
ates an undesirable score for the hazard.

Links between hazards and the Federal
Aviation Regulations (FAILs) will be usefbl
in providing a solid reference to the hazards
and recognized mitigation procedures.
Therefore, we have included a Ffi field for
the particular hazard. If there is a FAR re-
lating to the hazard, it should be listed here.
If there is no FAR pertaining to the hazard,
then this might spur an investigation as to
why and whether one should be created.
This cross-referencing between the FAILs
and the hazards will reinforce the connection
between regulations put in place to eliminate
or mitigate hazards and the hazards them-
selves. It will also be usefid in uncovering
inadequacies in the FARs. Such is the case
when a hazard is identified that is not at-
tended to in the regulations.

The next field, Aircraft SpecZfic? is a yes/no
question used for indicating whether a haz-
ard is specific to certain aircraft. Some haz-
ards are common to all aircraft while some
concern specific aircraft. This field will al-
low the researcher to illustrate such dis-
crimination. In the example, it seems
reasonable that pilot recurrent training may
very well relate to the specific aircraft the
pilot flies, and therefore will receive a “yes”
in the “Aircraft Specific?” field.

The inputs for the scoring fictions will be
collected from numerous sources, so it is
important to state where the data will come
from. Therefore, we have provided a field,
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Source oflkta. Examples of entries to this
field could be databases, experts, reports,
etc.

The owner of a hazard object is the person
or group ultimately responsible for ensuring
the accuracy and correctness of the informa-
tion presented in a hazard object. The Owner
field is provided so that if there are any dis-
crepancies, questions or updates for infor-
mation on the hazard object, the responsible
party can be contacted. Typical entries here
will include a name and telephone number.

The Date Approved field is self-
explanatory. This field will also reference
the source of the expertise: For example it
will state whether the information in a haz-
ard object came from a FAR, a book, one
expert, two experts, a consensus of experts,
a specific meeting, etc., along with the
physical location when the decision was
made. In this case, the Hazard Object was
created during a meeting at The University
of Arizona on September 3, 1999.

Finally, the Notes field is included to catch
any information not addressed in the other
fields. This may include explanations for
information or special cases.

METHODS FOR COMBINING DATA
In this section, we explore three different
methods for combining data to calculate the
Hazard Index, which is a single numerical
designation representing the state of system
safety. The combining techniques described
here are used at all levels of the system de-
composition. At the lowest level when we
are dealing with individual hazard objects,
the scores are derived from the scoring
fimction for each hazard object and the
weights are based on expert opinion. These
scores are used to comprise the hazard’s
subcategory score.

When we move to the next
dealing with main categories
no longer directly derived
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fimctions, but are taken as the scores for
each of the subcategories contained in the
main category. The weights at this level may
be evenly divided between the main catego-
ries unless there are obvious reasons to con-
sider some main categories more significant
than others. So again, the weights are based
on expert opinion. Combining the data at
this level yields the Hazard Index. The three
data-combining methods are outlined next.

Linear Combination
The linear method of combining data is the
simplest method of the three. It is useful
when the output is not computed until the
whole data set is available and when missing
data are unlikely. The data combining proc-
ess is as follows: Suppose there are n rea-
sonably independent constituents to be
combined. We assign a qualitative weight to
each of the n constituents and then normali-
ze the weights so they add up to 1. The
score (valued from O to 1) associated with
each constituent is then multiplied by the
corresponding weight. The final result is the
summation of the weight-times-score for
each element. This process is commonly
used, for example, when computing a grade
point average for a student at a university.
This technique is shown in Table 1.

The equation defining the process mathe-
matically is given as

f=~ Wi” Xi,

i=l

where n is the total number of elements to
be combined, wi represents the normalized
weight and xi represents the score for the ith
constituent. An extensive example of such
rolling-up of figures of merit is given at
http:llwww.sie.arizona.eduhysengrlpinewoo
d.

Soft Aggregation
Arlin Cooper of Sandia National Labs de-
veloped the soft aggregation method dis-
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cussed in this section (Cooper, 1999). The
application of soft aggregation techniques is
effective when incorporating uncertainty
into the models and when the output is to be
updated with each new input.

The soft aggregation model presented here
attempts to combine information nonlinearly
to obtain a single numeric output that char-
acterizes the state of system attribute(s) (in
this case the system attribute is safety). In
particular, the aggregation is accomplished
by utilizing an exponential combining fi.mc-
tion, The exponential technique was favored
in part since the collective effects of com-
bining such measures responds less and less
to additional inputs, hence the name “soft
aggregation”.

The original model incorporates two fami-
lies of information, those that lead to an in-
crease in safety and those that lead to a
decrease in safety. In this model, we only
consider those that increase hazards, and
thus decrement safety.

The fi.mction that serves our needs for a soft
aggregation calculi is given as

The wi indicate weights between Oto 1 that
suggest the significance of the measure with
respect to increases in the overall hazard
level for the situation. The xi are “scores”
affiliated with the ith hazard. The k is a
scaling constant used to fiu-ther manipulate
the results to match the requirements neces-
sary for accurate evaluation. If k=l the out-
put of this model will range Oto 0.63.

CertaintyFactors
Certainty Factors (CFS) have been used suc-
cessfully in the expert system arena for
many years (Buchanan and Shortliffe,
1984). The underlying theory surrounding
CFS is based on probability theory and has
survived thorough mathematical scrutiny.
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Thus a vast knowledge base has developed
for CFS, and a great deal is lmown about
their properties and uses. As in the soft ag-
gregation technique, the CF method is usefil
when the output is incrementally updated
with each input and may also be used effec-
tively when missing data or uncertain data
cannot be avoided.

The initial CF data points are derived from
the weights and scores for the hazard objects
as follows: CFi = wi*xi, where wi is the
normalized weight and xi is the score (output
of the scoring function) corresponding to the
ith hazard object. The CFS for the hazard
objects are then combined to create a score
for the associated subcategory. When we
move to the next level up, the x~s and wfs
become the weights and scores for the sub-
categories, and are combined to form a main
category score.

An advantage to using CFS is that the
weights do not have to be normalized. This
means each time a new constituent is intro-
duced, be it a new hazard object, subcate-
gory, or main category, it is not necessary to
re-normalize the weights. This artifact eases
necessary computation consideration and
resources.

The recursive formula for computing CFS is
given as:

c..A=regate= cFo[d + (l-CFol~ *CFN.V,

where CFNCWis the certainty factor for the
new piece of evidence to be combined with
the existing set and CFolij represents the CF
for the existing data set. CFA~ge~ateis the o
cumulative outcome fi-om combining the
data. At the h@est level, this becomes the
Hazard Index. In our system, the CFS are
restricted to the range [0, 1].

In this project we evaluate two-dozen case
studies with these three techniques and we
show the differences and similarities.
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INDEPENDENCE & INTERACTIONS
As an example of independence and interac-
tions, consider modeling the hunting be-
havior of lions in Aiiica. First, consider
independence. It would be incorrect to use
both weight and sex of the lions to predict
success, because these measures are depend-
ent.

Next, consider interactions. If one lion
chases a Thompkins Gazelle, it has a one in
eight likelihood of catching the gazelle. If
another lion chases another gazelle, it has a
one in eight likelihood of catching it. We
expect a linear addition for the two hunting
sprints, which gives a one in four likelihood
of success. Now consider two lions simultan-
eously chasing one gazelle. They have a
one in two likelihood of catching it. Coop-
eration gives a greater likelihood of success
than linear addition. Next, suppose a cheetah
is chasing a gazelle and a lion joins in the
chase. The likelihood of success becomes
about one in twelve. Interference decreases
the likelihood of success below that of linear
addition.

In terms of hazards when the effect of two
hazards is greater than that obtained by lin-
ear addition, such as mixing Clorox and Sani
Flush producing chorine gas, we call the ef-
fect an ampll~ing interaction. When the ef-
fect of two hazards is less than that obtained
by linear addition, such as the presence of
flammable liquids and a temperature below
freezing, we call the effect an attenuating
interaction.

When selecting components for the hazard
model, the components should be as inde-
pendent as possible. It is more difficult to
analyze systems when the metrics depend on
one another. However, when analyzing
complex systems this is almost unavoidable.

In the Hazard Model, we have dealt with the
interaction issue in two ways. For attenuat-
ing interactions, the final score for the first
measure is the product of the original score

for the first measure and the score for the
second. This technique allows us to model
phenomena where if one constituent of the
interactive relation is close to zero, then the
hazard is close to zero. A good example is
the relative humidity – air temperature inter-
action. If the temperature is below freezing,
then high humidity increases the chance of
icing and therefore increases the hazard.
However, at 70°F high humidity is no haz-
ard at all.

Ampli&ng interactions involves metrics in
which there is a synergistic effect. That is,
when two metrics are present the hazard
from the combination is greater than the
hazard resulting from the linear sum of the
two metrics. For such ampli~ng interac-
tions we use an equation from reliability
theory: Hov~~ll= I-[(l-HI)(l-Hz)]. In this
equation, Hov~nll represents the resulting
score after the interaction effect has been
accounted for. H1 and H2 are the original
scores for the first and second hazards, re-
spectively. This equation gives us the syner-
gistic effect desired. An example of an
amplifying interaction is consumption of
alcohol and barbiturates. The combined ef-
fect of the alcohol and barbiturates is greater
than the effects modeled by the linear sum.
Another example is chopsticks: a pair of
chopsticks performs much better than the
linear sum of two individual chopsticks.

CONCLUSIONS
The hazard object template presented in this
paper would be a good template to use in
any database. The field for Units is particu-
larly important: it may seem obvious, but
experience has shown that it is easy to omit.
We showed three methods for combining the
data. In the final paper, we will have ex-
perimental results comparing these three
techniques. It is hard for humans to deal
with interactions between objects. But it is
easy for computers to do so. We have pre-
sented three types of interactions: linear ad-
dition, ampli&ing and attenuating. We gave
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examples of each and presented a mathe-
matical treatment of each.
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