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Abstract
es~

In the current study, the generality of the key underpinnings of the Stochastic Finite Element (SFEM)

method is exploited in a nonlinear shock and vibration application where parametric uncertainty enters

through random variables with probabilistic descriptions assumed to be known. The system output is repre-

sented as a vector containing Shock Response Spectrum (SRS) data at a predetermined number of frequency

points. In contrast to many reliability-based methods, the goal of the current approach is to provide a means

to address more general (vector) output entities, to provide this output as a random process, and to assess

characteristics of the response which atlow one to avoid issues of statistical dependence among its vector
components.

Introduction

Consider a general framework for nondeterministic analyses, shown graphically in Fig. 1.
Here, M is an analytical model defining the map between input f and output u where, in
general, both M and f are nondetetministic entities. In addition, the model is assumed to
contain numerous parameters, some of which can only be quantified to within some level
of uncertainty. These will be denoted by an n -dimensional ~vector @. A reasonable
approach sufficient to address the uncertainty of the output, u, is to express it in a statisti-
cal form, E[g(u)], where E[=] is the operator of mathematical expectation and g(.) is an
appropriate deterministic function. Bearing in mind that issues relating to other sources of
uncertainty remain, the following defines the so-called uncertainty propagation problem,

E[g(u)] = E{ E[g(u)l@] } , (1)

where the goal is to determine the response statistics in terms of those of the input param-
eters.

Problem Formulation

The application under consideration is the penetration of a vehicle into a stratified soil
medium. A schematic of this system as it impacts a target is shown in Fig. 2, where v and
‘y are the velocity vector and impact angle of the system, respectively, taken to be deter-
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Figure 1. General framework for nondeterministic analyses.
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Figure 2.
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Problem formulation for the penetration system.

rninistic. A considerable amount of uncertainty exists, however, in the knowledge of a par-
ticular soil depth parameter D. In addition, the angle-of-attack CYis nondeterministic due
to uncertainty in the knowledge of the wind conditions. Hence, for this application
@ = {u D} ● !R2, where a and D were modeled as independent random variables, with
normal and Io,gnormal distributions, respectively.

The engineering question of interest is whether or not the internal components will survive
the shock environment induced by the penetration event. For historical reasons, the
response of interest is the shock response spectrum (SRS) of the acceleration of the cen-
troid of a given internal component. One can then compare the predicted response to the
shock specifications of the internal component of interest. PRONT03D (Attaway et. al
(1998)), a nonlinear, transient dynamics finite element code developed at Sandia National
Laboratories, coupled with a spherical cavity expansion model of the soil-stmcture inter-
action (Warren and Tabbara (1997)), was used to predict the internal component response
during the penetration event. In addition, filtering routines in MA~AB (The MathWorks
(1998)) were used to compute the SRS.

Each function evaluation using this complex system model required over 33 CPU hours on
a SUN Ultra II workstation. This fact motivated the use of approximations to the design
space, which were developed using the design of experiment methods of Box and
Behnken (1960). Hence, in the notation of Fig. 1, the model, M, is a quadratic response
surface that approximates the cascaded system of PRONT03D, the cavity expansion
model of the soil, and the MATLAB filtering routines.

The overall goal is to estimate P(S’), the probability of internal component survival. In
previous work (see Field et. al, (2000a)), the authors’ approach was to define a series of
outputs

Ui = SRS~i), i = 1,2, . . ..nf. (2)
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where ~i denotes the i ‘h naturaI frequency of the computed shock response spectrum.
Reliability- and sampling-based methods were then employed to compute corresponding

probability density functions (PDFs) ~U(ui), i = 1,2, . . .. nj. Upon comparing to a refer-
ence, denoted SRSref, at each frequenc~ line one could then make a statement regarding
the probability of exceeding SRS,e

(
. However, because the correlation structure of the out-

put is unknown with this approac , statements pertaining to system reliability cannot be
made. As an alternative, in Field et. al (2000b) the authors defined the scalar output

ii= min (SRS,,j – SRS),
f

(3)

where SRS denotes the calculated shock response spectrum from the computational
model, and employed the identical methodologies to estimate ~u(ii). While this approach
facilitates a system reliability assessment, the response metric of Eq. (3) can be overly
conservative. In addition, both of the schemes outlined in Eqs. (2) and (3) require a pn”ori
knowledge of SRS,ef, a somewhat ad hoc, test-based failure criterion. In the sequel, poly-
nornird chaos expansions will be employed to address the shortcomings of each of the pre-
vious approaches to this problem. In addition, because these techniques provide an
approximation to the response process, they may be used to construct an analytically-
based failure criterion.

Polynomial Chaos Expansions

The stochastic finite element method, as developed in Ghanem and Spanos (1991), relies
on the notion that random processes are mathematically well-defined mappings assumed
to satisfy certain criteria. Among them is the notion that a real random variable (r.v.) is a
deterministic measurable function which maps the sample space of random events to the
real line. It is this attribute of measurability that provides the foundation for defining a Hil-
bert space, X, of square-integrable, measurable functions and subsequently following
function approximation theory in X in a way that directly parallels the path taken in a
deterministic finite element approach with, in the stochastic case, an inner product opera-
tor that is given by mathematical expectation and the norm generated by this inner product
(see Friedman (1982)).

The result of this analytical background is that finite-dimensional series approximations
can be made for both the input and the output random processes that can be shown to con-
verge weakly to the fimctions they replace. In the following, the special case where the
input and output are vectors of random variables is considered. As introduced in Fig. 1, let
@ and u represent the internal and output quantities, respectively, and consider the fol-
lowing orthogonal decompositions

(4)
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U(X,0) = U(X,e)N~~ Ui(X)ri({ ~j}) , (5)

i=O

where ri({ ~j}) are defined to be multi-variate Hermite polynomials in the sequence of
standard normal r.v.’s, {~j}. The { ~j} are defined on a sample space !2 with elements 0 j
here and throughout; the explicit notation of dependence on e is suppressed to simpli~
notation.

It can be shown that the 17i({&j}) = I_’icomprise an orthogonal set relative to the Hermite
kernel; and, further that

E[rirj] = (rirj) = O, i#j. (6)

There are a number of methodologies that can be employed to determine the coefficients
for the internal r.v.’s in Eq. (4). For example, if only statistical information is known about
the components of@, moment matching, using either an exactor a least squares fit, is one
choice. For the case under consideration, a general Fourier analysis for evaluation of the
coefficients scaling the ri was implemented. Here, a projection of both sides of Eq. (4)
onto rj is performed

(Orj) = @j(+ , (7)

where the orthogonality of the collection of ri has been exploited. Thus, the Fourier coef-
ficients can be computed

@j = (@rj)/(+. (8)

The expectations in Eq. (8) were approximated using a Monte Carlo scheme, where joint
probability distributions for @ were assumed known, and arithmetic means were substi-
tuted for the expectations.

Once the input approximation has been computed, a similar procedure is followed for Eq.
(5); specifically, terms in the relation

~i(x)= (u(x)ri)/(rj (9)

are approximated using Monte Carlo sampling. First, the input r.v.’s are approximated
using the right-hand side of Eq. (4). Second, these so-called realizations are run directly
through the analytical model, depicted by ikZ in Fig. 2. Finally, each output realization is
scaled by the current realization of ri and added to the previous terms in the sum for each
i.
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Figure 3. Polynomial chaos expansion of input random variables
computed with N = 4, n~ = 100000.

Results

Figure 3 illustrates the approximation to the two input r.v.’s ct and D using the polyno-
mial chaos expansion. Here N = 4, and 100,000 Monte Carlo samples were used to com-
pute the Fourier coefficients. In both cases, the relative mean square error is small. Note
that while the two input random variables were assumed uncorrelated, the methods pre-
sented are not limited to problems with zero correlation. The approximation to the output
stochastic process u is computed in a similar manner. Fifty realizations of the output SRS
are shown in Fig. 4a, where it is evident that significant variability exists in the amplitude
of the response.

When employing Eq. (1), the expectation operator does not commute, i.e.,

E[u] #M(.;E[@]) . (lo)
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Figure 4. Approximation of output random process: (a) 50 realizations,
(b) illustration that expectation operator does not commute.
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This is a common misconception in industry, as an analyst may attempt to simulate the
“worst-case” system response by performing a single deterministic analysis at the per-
ceived “worst-case” input conditions. The large disparity between the two curves in Fig.
4b illustrates the danger in making this assumption.

Conclusions

The use of one of the key elements of the Stochastic Finite Element Method, namely the
polynomial chaos expansion, has been utilized in a nonlinear shock and vibration applica-
tion. Finite dimensional series approximations were made for both the input and output
variables using Monte Carlo simulations and arithmetic means to estimate the expected
values associated with each set of Fourier coefficients scaling the polynomial chaos terms.
As a result, the computed response was expressed as a random process, which is an
approximation to the true solution process, and can be thought of as a generalization to
solutions given as statistics only. This important characteristic facilitates the use of this
technique in, for example, multi-physics applications which require a link between differ-
ent analysis codes. In addition, the authors were able to demonstrate by example that the
operator of mathematical expectation does not commute, which is a known result when
the inputloutput relationship is nonlinear. One corollary is that an analysis run at “worst-
case” input conditions cannot be guaranteed to yield a “worst-case” response.
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