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Abstract. A lattice-Monte Carlo approach was developed to simulate ferroelectric domain
behavior. The model utilizes a Hamiltonian for the total energy that includes electrostatic terms
(involving dipole-dipole interactions, local polarization gradients, and applied electric field), and
elastic strain energy. The contributions of these energy components to the domain structure and to
the overall applied field response of the system were examined. In general, the model exhibited
domain structure characteristics consistent with those observed in a tetragonally distorted
ferroelectric. Good qualitative agreement between the appearance of simulated electrical hysteresis
loops and those characteristic of real ferroelectric materials was found.

INTRODUCTION

The electrical, mechanical and optical behavior of a ferroelectric is dictated by
the morphology and reorientation dynamics .of domains, regions consisting of like-
oriented spontaneous polarization. The ferroelectric attempts to attain a domain
configuration that minimizes the total energy while satisfying both electrostatic and
mechanical boundary conditions. The interplay between domain configuration,
microstructure, and service conditions (e.g. temperature, applied field, pressure)
dictate the engineering performance of a ferroelectric.  Development of a
computational approach to simulate the domain structure of a ferroelectric would
enhance a broader model to predict the mechanical and electrical response of a
ferroelectric. This capability could be used to guide the processing and utilization of
ferroelectric ceramics in various applications to optimize performance and evaluate
aging effects.

Numerical simulations of ferroelectrics and their properties have been the
focus of numerous research efforts. Techniques including ab initio calculations [1-3],
the solution of the Landau-Ginzburg energy relations [4-6], and Potts-based Monte
Carlo simulations [7,8] have been pursued. The present work develops a lattice-based
Monte Carlo simulation technique for the prediction of ferroelectric domain
configurations. The model is two-dimensional and, rather than relying on the typical
Potts-type Hamiltonian to evaluate neighboring lattice site interactions, the present
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approach utilizes potentials based on electrostatic and mechanical phenomena that
occur in ferroelectrics. As we will discuss below, these longer range interactions
produce domain morphologies and relative orientations of dipoles across domain
boundaries that are consistent with those observed experimentally.

The present work will describe the model and the influence of the electrostatic
and elastic strain energy terms used on the evolution of domain assemblage. The
response of the dipole ensemble to an oscillating applied field will also be examined
through the simulation of electrical hysteresis loops.

MODEL DESCRIPTION

Crystal and Domain Representation

In the current lattice-based Monte Carlo (MC) simulation, space is discretized
into a two-dimensional, square array, or grid, of lattice points. Each lattice point is
assigned the orientation and magnitude of the local, spontaneous dipole moment
associated with a single ferroelectric unit cell.

A tetragonal lattice distortion is assumed to describe the formation of
permanent dipoles in the ferroelectric material. Two orthogonal basis vectors (two-
dimensions) are therefore used to describe the local dipole orientation. Four dipole
orientations are allowed within the plane defined by the basis vectors. The simulation
is further limited to a single crystal orientation with dipole moment basis vectors
aligned with the principal axes of the square lattice used to discretize space. Allowed
dipole orientations are therefore up, down, left and right.

While there is no inherent restriction on the relative orientation and symmetry
used for the simulation lattice, the alignment of the simulation lattice basis vectors
with those used to represent the dipole moment is consistent with a one-to-one
correspondence between a simulation lattice site and a single ferroelectric unit cell and
the assumption that crystallographic lattice coherence is maintained through the cubic
to tetragonal phase transformation. This choice of lattice and dipole orientation
symmetries thus enables the simulation to clearly exhibit the general domain wall
orientations and the relative orientations of dipoles in adjacent domains that are
anticipated in a tetragonal ferroelectric material (e.g. 180° and 90° domain walls).

The dipole moment magnitudes are assumed to be constant during the
simulation. In most cases, the local dipole orientations were randomly assigned to
lattice points to furnish a starting configuration. While the elastic strain energy is
utilized in the model, the current implementation does not allow for motion of
adjacent lattice sites with respect to one another, thus neglecting the influence of local
displacements that describe the elastic strain field.




Interaction Potentials

The present work attempts to introduce physically realistic interaction
potentials based on the known electrostatic and elastic mechanical nature of the
ferroelectric material associated with each lattice point.  Since the lattice sites are
associated with permanent dipole moments within the ferroelectric, a dipole-dipole
potential energy expression has been introduced. Thus, the pairwise interaction
potential energy between lattice points is given by the vector expression:
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where: P = dipole moment vector at a given lattice site; n = unit vector
connecting points i and j; r = magnitude of the separation vector between i and j; K =
scaling factor (contains the material permittivity).

The dipole-dipole interaction is truncated at a distance where the potential has
dropped to <2% of its magnitude at r = 1 lattice unit. In addition, the truncation
distance must also be less than one-half the size of the simulation box to avoid a
dipole interacting with its image when using periodic boundary conditions (minimum
image convention). A truncation distance of 6 lattice unit distances was utilized in the
present study; larger truncation distances did not significantly alter the steady-state
dipole configurations obtained or their dipole-dipole potential energy [9].

An potential term linked to the presence of polarization gradients is used to
include an electrostatically based domain wall energy. The expression is adapted from
that used by Hu and Chen [6]. The potential energy density takes the form:
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where: x and y denote spatial variables, P is the local electric polarization, and
J is a scaling factor for the domain wall interaction potential. Unless otherwise noted,
the J factor in the present work was chosen to energetically favor a single domain
configuration under periodic boundary conditions (infinite single crystal model) and a
multi-domain structure under finite boundary conditions when using only electrostatic
contributions to the total configuration energy.
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An applied bias field was also included in the simulation. The potential energy
of the dipole in the field is expressed as the dot product between the field vector and
the dipole moment, as dictated by electrostatics. In the present study, the applied field




is taken to be constant over the entire lattice without regard for electrostatic screening
effects known to produce local modifications in the field strength. The field-related
potential energy is therefore given as:

E=-a(PF) 3)

where: P = dipole moment, F = applied field, a = scaling factor.

Elastic strain energy at each step in the Monte Carlo simulation is calculated
based on an analytical expression developed by Khachaturyan [10] for a multiphase,
coherent mixture assuming a uniform, anisotropic elastic modulus in each phase. In
this case, each dipole is associated with a portion of material that has undergone a
phase transformation from cubic (paraelectric) to tetragonal (ferroelectric). The
orientation of the dipole at a location in the simulation then gives the orientation of the
local transformation strain field. In the present study, the simulation is therefore
treated as a composite of two different material phases with the spatial distribution of
these phases given by the dipole configuration. The total elastic strain energy for the
ferroelectric body is given in terms of the elastic strain energy associated with the
local transformations (term 1 in equation (4) below) and the concomitant relaxation of
the surrounding material (terms 2 and 3).
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where: V = total volume, €° (p) = transformation strain of phase p, ¢° (p) =
transformation stress of phase p, A = elastic modulus tensor, w, = volume fraction of
phase p, ®, (k) = Fourier transform of the “shape” function, ®, (r) (a spatial mapping
of the pth phase), and Q is a tensor whose inverse contains A.

The relaxation energy is expressed in terms of homogeneous and
heterogeneous strain components (terms 2 and 3 in equation (4), respectively) where
the heterogeneous strain term is defined such that the total real-space displacement at
the body edges is zero. All displacements associated with the body edges are
contained in the homogeneous strain term.

Again, information regarding real-space displacements of the simulation lattice
is not used in the current model. The strain energy calculated above is combined with
the electrostatic energy to determine the total energy change associated with a given
Monte Carlo move.




Simulation Units

Electrostatic energies were calculated in reduced units with length defined by a
simulation lattice constant (called a “lattice unit” (LU) ) and the dipole moment
defined to be 1 charge-LU. Given the current assignment of a ferroelectric unit cell to
each simulation lattice point, the LU is therefore directly related to the
crystallographic lattice constant. An energy unit (EU) is then equal to the potential
energy obtained with two parallel dipole moments of unit magnitude separated by a
vector of length one lattice unit oriented perpendicular to the dipole moments.
Temperature is reported in terms of energy, i.e. kT, in EU’s.

Elastic strain energies were calculated using elastic constants and
transformation strains representative of BaTiOs: Cy; = 275 x 10° N/mz, Cip= 179 x
10° N/m?, Cas= 543 x 1° N/m’, &1 = en= -3.74x 107, g33= 6.23x 10°. The
results were converted to energy units (EU) to allow combination with electrostatic
energy results to derive a total energy for the simulation.

The temporal unit is a Monte Carlo timestep (MCS). The MC timestep
represents m x m MC move attempts, where m is the size of the simulation box. 50 x
50 or 100 x 100 LU simulation sizes were typically utilized in this study. Where
smaller ensembles are noted, the results are representative of larger simulations.

Simulation Procedure

A Monte Carlo move attempt involves the random selection of a lattice site
followed by random reorientation of the dipole at this site. Move acceptance is
determined using the Metropolis importance sampling algorithm [11] based on the
energy change associated with the dipole reorientation and the simulation temperature.

Simulation temperatures were chosen to provide sufficient thermal energy to
allow Monte Carlo move acceptance rates in the range 0.2 to 0.4, thus favoring
evolution of a steady-state dipole configuration within a reasonable computation time
without significant randomization of the configuration due to thermal energy. A
steady-state condition was defined when little or no further minimization in the
ensemble’s average total energy was observed with additional MC moves.
Simulations were performed using either the electrostatic potential only or using both
electrostatic and elastic strain energy contributions to the total energy. This allowed
the effect of each energy term on the evolution of the dipole ensemble configuration to
be studied. A more detailed evaluation of the specific effects of the individual
electrostatic terms was undertaken in previous work [9].

After gaining insight into the relative impact of the different energy terms and
simulation conditions on the evolution of the dipole configuration, the model was
extended to allow the simulation of ferroelectric-type electrical hysteresis loops. In
this case, the applied field value was changed by a known increment and the
simulation was allowed to evolve from the configuration state developed at the
previous field value. The net polarization component aligned with the applied field
was calculated from the dipole configuration at each field magnitude. The “effective”
field frequency was varied by changing the equilibration time allowed the system at a




given field value. Electrical hysteresis was simulated for a purely electrostatic system
and for the combined Hamiltonian including both the electrostatic and elastic strain

energy terms.

RESULTS AND DISCUSSION

Figure 1a shows a representative dipole configuration for a purely electrostatic
simulation at kT = 1.5 EU under periodic boundary conditions. (The domain wall
scaling factor, J, has been adjusted to allow the observation of multiple domains.) The
presence of 180° domain walls is evident. Head-to-tail alignment of dipoles across the
boundaries is dictated by the dipole-dipole potential used. Addition of elastic strain
energy significantly affects the evolution and appearance of the simulation, resulting
in the formation of 90° domain walls (see Figure 1b). Again, a head-to-tail alignment
across the walls is observed due to the dipole-dipole electrostatic interaction.
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FIGURE 1. Representative dipole configurations after 750 MCS for simulations including electrostatic
potential terms only (a.) and both electrostatic and elastic strain energy terms (b.)

The impact of the elastic strain energy on the switching dynamics of the dipole
ensemble is indicated in Figure 2 which contains representative hysteresis loops
simulated at a frequency of 2.5 x 10° MCS™ and kT = 4 EU for both pure
electrostatic and combined electrostatic and elastic strain energy models, respectively.
Both simulations utilized equal maximum field strengths (sufficient to insure
saturation of the polarization alignment for the purely electrostatic model at this
frequency). Significant noise is observed in the loops due to the small simulation size
used (20 x 20).
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FIGURE 2. Representative electrical hysteresis loops simulated using the lattice-MC approach. The
solid curve was obtained using only electrostatic terms in the model Hamiltonian, the dashed curve
utilized both electrostatic and elastic strain energy terms.

It is clear that the total switchable polarization is reduced and the coercive field
increased with the introduction of the elastic strain energy term. Figure 3 shows the
dipole configurations at the positive (upward) and negative (downward) maximum
field values in the electrostatic and elastic strain energy model.

a b.

FIGURE 3. Dipole configurations for the maximum negative (a.) and positive (b.) applied electric
fields for the simulated hysteresis curve shown in Figure 2 for the combined electrostatic and elastic
strain energy model.

Figure 4a depicts the 90° dipole reorientation rate (90° successes/90° attempts)
with applied field for the combined electrostatic and strain energy run. Results for




180° switching are given in Figure 4b. Analogous data for the electrostatic only case

are given in Figures 5a and 5b. In all cases, the reorientation acceptance rates are
initially high as the simulation begins with a randomly oriented dipole ensemble.

90 degree reorientation success rate

FIGURE 4. Dipole reorientation rates for 90° (a.) and 180° (b.) reorientations corresponding to

0.018 . . :

T
electrostatic and elastic strain energy
0.016 |- :

0.014 |
0.012
0.010
0.008 |
0.006
0.004 -

0.002 -

0.000 L L i L

Applied Field (normalized)

a.

180 degree reorientation success rate

.0.545
0.540
0.535
0.530
0.528
0.520
0.515
0.510
0.505

0.500

T T T

| electrostatic and elastic strain energy

-1.0 .5 0.0 0.5
Applied Field {normalized}

b.

hysteresis curve given in Figure 2 for the combined electrostatic and elastic strain energy model.

90 degree reorientation success rate

0.22 T T
[ electrostatic energy only
0.20 -
0.18 :'
0.16
0.14 -
0.2 |
0.10 |-
¢.08 -

0.06 t

0.04 -

0.02 -

-1.0 0.5 0.0 0.5
Applied Field (normalized)}

a.

180 degree reorientation success rate

0.550

0.545

0.540

0.535

0.530

0.525

0.520

0.515

0.610

T T T T
electrastatic energy only !

L

L 1

I
-1.0 -0.5 0.0 0.5

Applied Field {(normalized)

b.

the

FIGURE 5. Dipole reorientation rates for 90° (a.) and 180° (b.) reorientations corresponding to the
hysteresis curve given in Figure 2 for the model containing only electrostatic energy.

In Figure 4, the 90° reorientation rate becomes nearly constant at a value only
20% of its original value and 0.6% of the corresponding 180° reorientation rate at zero
applied field after initial ordering of the dipoles with field early in the simulation.

These consistent move success rates observed for 90° reorientations are largely due to




thermally allowed reorientations rather than a continuous switching process in the
present simulation. In contrast, the 180° reorientation rate is observed to gradually
increase in magnitude as the positive (negative) coercive field is approached from
below (above), indicating that the field-driven dipole reorientation process is occurring
over a range of field magnitudes and that it is due mainly to 180° switching at these
field strengths. Peaks observed in both 90° and 180° reorientation rate curves
correspond to the coercive field of the electrical hysteresis loop, a point where the
maximum switching rate is expected.

A peak in the switching rates at the coercive field is also observed in the data
of Figures 5a and 5b for the electrostatic only model. In this case, however, both the
90° and 180° reorientation rate curves increase monotonically as the positive
(negative) coercive field is approached from below (above). These observations
indicate that both processes contribute to switching over a broad range of applied
fields. The difference between the 90° reorientation rate behaviors of the combined
electrostatic and elastic strain energy model (Figure 4a) and the electrostatic only
model (Figure 5a) is due to the enhanced energy penalty assigned to 90° dipole
reorientation when elastic strain energy is included. Significant 90° reorientation
success in this case is only activated when the applied field magnitude is sufficient to
offset this energy penalty and increase the Monte Carlo move acceptance probability.

It is interesting to note that, while the magnitude of the 90° reorientation rate is
generally greater in simulations based only on electrostatic interactions (see Figure
5a), the overall success rate ratio of 90° vs 180° reorientations ranges from 0.1 to 0.4
(depending on applied field) for the electrostatic-only model, indicating that, even in
the absence of strain energy, 90° reorientation is not the favored process for
realignment with an applied field in this model.

The reduction in the switchable polarization observed in the hysteresis loop of
Figure 2 (using both electrostatic and elastic strain terms), then, is the result of a
limited success rate for 90° dipole reorientation under even the maximum applied
electric field. Examination of the dipole configurations of Figure 3, together with the
reorientation rate data of Figure 4, indicate that reorientation of the dipole ensemble
with the applied field is accomplished predominantly by 180° switching rather than
90° domain wall motion at these field strengths. It is anticipated that increased
maximum field strengths will increase the 90° dipole reorientation rate as an increased
- electrostatic driving force offsets elastic strain energy considerations for this process.
This will promote the movement of 90° domain walls to result in an increased
saturated polarization value for the system. These issues are currently under study.

CONCLUSION

A two-dimensional, lattice-Monte Carlo model for the simulation of
ferroelectric domain configurations has been presented. The model contains both
electrostatic and elastic strain energy contributions to a total potential energy that
determines the evolution of steady-state domain assemblages and the dynamics




associated with reorientation of the dipole ensemble under applied electric fields.
Evaluation of steady-state domain configurations obtained using purely electrostatic
energy and both electrostatic and elastic strain energy terms confirm that the
introduction of elastic strain considerations results in the formation of 90° domain
structures. Electrostatic contributions to the model favor the head-to-tail alignment of
dipoles across these domain boundaries. These observations are consistent with
experimental evidence in real ferroelectric materials.

The influence of elastic strain was further found to significantly impact the
switching behavior observed in simulated electrical hysteresis, producing a decreased
switchable polarization and increased coercive field over the model that did not
include elastic strain energy. The reduced saturated polarization is attributed to a
reduced 90° dipole reorientation rate that precluded the long-range motion of 90°
domain walls under the field strengths applied.

ACKNOWLEDGMENTS

The authors thank J. Aidun, S. Hwang, and L.-Q. Chen for valuable
discussions concerning the model. Sandia National Laboratories is a multiprogram

laboratory operated by Sandia Corporation, a Lockheed Martin Company. This work
was supported by the U.S. DOE under contract DE-AC04-94AL85000.

REFERENCES

W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. Lett. 73, 1861 (1994).

R.E. Cohen and H. Krakauer, Phys. Rev B 42, 6416 (1990).

A. Garcia and D. Vanderbilt, Appl. Phys. Lett. 72, 2981 (1998).

W. Cao and L.E. Cross, Phys. Rev. B 44, 5 (1991).

S. Nambu and D.A. Sagala, Phys. Rev. B 50, 5838 (1994).

H.-L. Hu and L.-Q. Chen, J. Am. Ceram. Soc. 81, 492 (1998).

M. Abel and R. Siems, Ferroelectrics 126, 275 (1992).

J.-M. Liu and Z.G. Liu, Mater. Lett. 36, 17 (1998).

B.G. Potter, Jr., V. Tikare, and B.A. Tuttle, J. Appl. Phys., to be published, 5/1/2000.

0. A.G. Khachaturyan, Theory of Structural Transformations in Solids, John Wiley and Sons,
Inc., New York, NY, 1983, pp. 198-212.

11. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.N. Teller and E. Teller, J. Chem. Phys.,

21, p. 1087 (1953).

SRR WD -




