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Abstract
For highly crosslinked, polymer networks bonded to a solid surface, the effect

i1SO

of interfacial bond density as well as system size on interfacial fracture is
studied molecular dynamics simulations. The correspondence between the
stress-strain curve and the sequence of molecular deformations is obtained. .
“The failure strain for a fully bonded surface is equal to the strain necessary
to make taut the average minimal path through the network from the bottom
solid surface to the top surface. At bond coverages less than ﬁlll,‘na.nometer,-
scale cavities form at the surface yielding an inhomogeneous strain profile.
The failure strain and stress are linearly proportional to the nﬁmber of bonds
at the interface unless the number of bonds is so few that van der Waals

interactions dominate. The failure is always interfacial due to fewer bonds at

the interface than in the bulk.

I. INTRODUCTION

Adhesives present a complex problem for polymer theory. Progress has primarily oc-
curred for adhesives with weak interfacial sf:rength [1] such as pressure sensitive adhesives
[2] and polymer-polymer interfaces [3]. Such adhesives typically do not have strong chemical
bonds across the interface. Only relatively weak van der Waals interactions exist at the in-

terace. For strong adhesives equivalent development is lacking. The difﬁculty of performing
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measurements on interfa-ces“is a major obstacle in understanding adhesion problems. Recent
experiments at Sandia have begun to study failure in the strong interface of an epoxy on
a silicon wafer [4,5]. The interfacial structin'e. is probed with neutron and X-ray reflectiv-
ity. In addition, the‘number of Vchemicjal ‘bonds‘ at the interfa_tce is varied in a controlled
manner through use of self-assexhbled monolayér (SAM) coatings. In conjunction with these
experiments, a program of molecular dynamics (MD) simulations have been developed and
- performed. The initial results of these MD simulations are reported here.

lIn bulk epoxies, experimehts have shown that as the crosslink density increases the bulk
failure mechanism changes from crazes to deformation zones [6]. There is very little infor-
mation about mechanisms for inteffacial;faﬂure in epoxies on solid surfaces. Theoretically,
linear elastic fracture mechanics works well for such polymers far from the crack tip. How-
ever, the method breaks down near the crack tip where large plastic deformation occurs
and the molecular details become important [7]. Performing MD simulations that treat the
region near the crack tip would yield very‘ useful, but m‘issingd information.

Frhm a general perspective,’the” polymér adhesive is a network.v We would like to know
how the network structure influences the adhesive strength, the ‘initiatién of cracks, the
distribution of sti:éss, etc. In a random nettvotk, the stress on bon'ds‘ is expected to vary, and
the network bonds that are inost stressed will hréak ﬁrét [8] Crack initiation could occur
where a cluster of hlghly constrained bonds ex1$ts There is no reason to expect the crack
1mt1at10n 51te to occur at the mterface, although we know expenmentally that interfaces are
often weak. - Loaw s gty S

Termonia has performed a several calculations focussed origtnally on the strength of
fibers [9]. These calculations are based on a lattice model of the network. His work on
network polymers has primarily treated bulk deformations in elastomers.

Little work exists for molecular simulation of polymer adhesives [10]. Highly crosslinked
polymer networks been particularly neglected by simulations, yet they are important class
of adhesives. The development of MD simulations has reached the point where treatment of

adhesives is possible [10]. Simple coarse-grained bea;d-épring models successfully treat bulk
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polymer melts and networks [11,12]. This work extends these methods to study fracture
of highly crosslinked polymer networks. Connectivity is the main ingredient ingredient in
polymer dynamics [13]. The bead-spring models preserve the network connectivity. In these
models, a bead represents of group of monomers; how many monomers depends on the
particular polymer. Typically, the stiffer the polymer, the more monomers per bead. The
coarse-graining allows the simulations to reach times of at least a microsecond. This enables
coarse-grained MD simulations to treat entanglement dynamics [14]. In contrast, atomistic
simulations can barely pass a nanosecond. Much of the impoﬁut dynamics in polymers,
let alone in adhesion occurs on longer time scales.

In order to understand how varying interfacial bonding effects the interfacial strength,
the number of chemical bonds between the adhesive and the solid surface is varied. The
stress-strain curves are then calculated as a function the number of interfacial bonds using
MD. The structural dynamics is examined and correlated with the stress-strain curves.

In the following section, the bead-spring model is described along with all the aspects of
the simulations. The results of the simulations are presented in sec. III. The correspondence
between the stress-strain curve and the sequence of molecular deformation is given. How the
structure determines the failure strain is described. Insights based on force measurements
between self-assembled monolayers reveal the expected range of stress magnitudes for each
of the possible interaction types. Next, the data for the stress-strain curves as a function
of the number of interfacial bonds are given. In sec. IV, the results are discussed. The
inhomogeneity in the strain is demonstrated and shown to be an additional constraint on

the network effecting the failure strain. Finally, the conclusions are given in sec. V.
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II.- SIMULATION METHOD
A Poiymef Model and Potentials

The polymer network is treated as a bead-spring system. Beads interact via a Lennard-

Jones (LJ) potential with a cutoff at 2.5d [12].

' . Una(r) = 4up [(g)u - (g)ﬁ] . o (1)

In this article d represents the LJ diameter and up représenté the LJ energy. The stress and
strain will retain their traditional ﬁotation of o and g, respectively. All quantities will be in
LJ units.

The LJ stress will later be' mapped to MPa to give a rough magnitude for the stresses.
Because of the coarse-grained nature, there is no one-to-one mapping of the model to real
systems. In coarse-grained simulations, the goal is to understand the model system self-
consistently. In relating the simulation results to actual adhesive such as epoxies, the em-
phasis is on the Conneéfi_w}iﬁy and its impiicai;idné.f A

In the Kremerr-Grestr model [12],.beads are bonded together using a potenfial that pre-
vents chain cfossing. This bond pofential is the sum of the purely repulsive LJ interaction
with a cutoff at 21/6d and a finite-extensible nonlinear elastic (FENE) attractive potential.
In order to break bondé and preserve the continuity of ‘the bond forcé,’a breakable quartic

bond potential was f:reated to rebiai:é the FENE potential. - '
e - AU <t
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The potential parameters are: kq = 1434.3uy/d*, 1y = 0.7411d, 72 = 0.0 and Uy = 67.2234u,.
With this bond potential, chains caﬁ cross only by breaking bonds.

The maximum bond force is 156.7 up/d, and the maximum LJ force is 2.4 uo/d. For
atomic force-fields, the force ratio betﬁeen the bond and the van der Waals forces is about

1000. However, a single bead represents several atoms and the LJ pair interaction represents



multiple van der Waals pair interactions. With even just 3 atoms per bead, there are 9 pair
interactions. A force ratio of order 100 in the coarse-grained model is representative of the

atomic system. The ratio of 65 used in these simulations is then in the correct range.

B. Solid Surface Model

The complete system consists of a polymer network between two solid walls. Each wall
is two layers of particles in an fcc lattice with nearest neighbor distance 1.204 d. The (111)
direction (2-direction) is perpendicular to the walls. The wall particles aré bound to the
lattice sites by a harmonic spring with spring constant 100 uo/d?. The wall dimensions give
the simulation cell lateral lengths, L, and L,, and periodic boundaﬁ conditions are applied
in these directions. The separation distance between the innermost wall layers is L,. The
wall particles interact with the beads via the same LJ potential (Eq. 1), with some wall
particles bonded to the polymer network by Eq. 2. To perform the tensile pull and shear

simulations, the walls are pulled at constant velocity.

‘C. Network Formation

To form the networks, we take a cue from a highly crosslinked adhesive, epoxies. Epox-
ies are chemically cured networks formed from a liquid mixture of a resin (Bisphenol A)
and a crosslinker [15]. Each strand consists of only a few monomers. As a bead corre-
sponds typically to 2 or 3 monomers Ii2], 'an epoxy model would have only a few beads per
strand. The minimal case of two beads is used here. In this iﬁitial work the emphasis is
on understanding general features of highly crosslinked networks. In later work, the simple
modifications that would better model epoxies, for example, will be applied. A discussion
of possible modifications is given in sec IVC.

In epoxies, a liquid mixture of a crosslinker and a resin is crosslinked dynamically. In
the simulations the mixture consists of two bead and three bead molecules. The three bead

molecule has a sixfold functional crosslinker bead already bonded to a two bead strand.




In this initial work the strand beads and crosshnker beads have 1dentlcal LJ parameters.
The hqmd is equlhbrated at temperature T=1. l'uo After equilibrating the hqurd mlxture,
crosslinkers are first bonded to the walls Bonds are formed when the separatlon between
a crosshnker and a strand end or wall particle is less than 1.3 d. Next, during a MD run,
the crosslinkers are bonded to strands until at least 95% of all possible bonds are made.
Zero load is maintained on the walls during the crosslmkmg Afterward, the temperature is

reduced below the glass {ransition temperature (T = 0 5) to 0. 3

D. System para.meters

Four different system sizes have been studied. Table 1 lists the varying size parameters
for these systems. For system 1 the wall dimensions are L, = 33.1d _and Ly = 19.3d. For
systems 2-4, L. is doubled and L, = 28.9d. Given the size of the epoxy molecules, the bead
size corresponds to about d ~ 1 nm. Using this mapping, the largest system studied has a
height of 77 nm. These- are ‘small systems co_mpared to typicaladhesives; The simulations
effectively treat the region at or near the crack tip. In this region, strains and possibly even
stresses are much larger than the macroscopic measured values.

The dynamics is performed at constant temperature T using the Langevin thermostat
[16]. The mtegratlon time step is 0.005 T, and the dampmg constants are 1 771 for the
monomers and 5 771 for the walls, where 7 is the LJ time umt
‘ Slmulatlons of both tensrle and shear deformatlons are performed In both cases, the
walls are moved at constant velocrty All the data presented here is for a wall velocity of
v=0. Old/'r Simulations have been performed for v = 0. 001d/r and 0.1 d/'r with similar

results. For the shear simulations, the wall is pulled in the z-direction.




III. RESULTS
A. Molecular scale deformation of network

Figure 1 shows a typical tensile stress-strain curve. The correspondence between the
molecular deformations and the stress-strain curve is as follows. The first peak at ¢, = 0.1
is the yield stress. This occurs due to the LJ force between pairs of neighboring beads going
through its maximum value. In equilibrium, the typical separation is 1 d, and the maximum
force is at r = 2/8d = 1.12d. Thus it takés a strain of about 0.1 to reach the maximum
value.

At € > g, the stress is constant for a range of stains. In this plateau regime, examination
of configurations shows that the bonds are not stretched. Instead the strands connecting two
crosslinkersAare pulled progressively taut. In this section, ‘strand’ includes the crosslinkers

so that there are four beads to a strapd. Only after the strands are in the taut, linear
kconformatiqn do the bonds bégin to stretch. Even though there are only four beads per
strand, the strain to extend the strand from the compact initial state to the linear state is
relatively large. For example, consider the close packed, planar state with the strand making
a zig-zag path from one crosslinker to the other. The bond lengtﬁ is about equal to d and
in the compact state the nonbonded beads are separated by the core diameter, d. For this
state the crosslinker-crosslinker separatior} distance is v/3d. In the linear, taut conformation
the separation is 3d. The strain to deform the compact state into_thg linea; state is /3!
The plateau regime in Fig. 1 has range of strain of about 0.35. Clearly, the average strand
conformation is not in the close packed state at € = 0, but also it is clear that large strains
are possible even for short strands.

Once strands are taut, bonds must stretch on further displacement. At this point, the

stress rises. The points show the strains at which bonds break. The first bond breaking -

occurs at € = 0.60. As more bonds are stretched the stress rises with some bonds breaking.

Finally, the system fails at e; = 1.05, where the failure strain is taken as the stain at the




midpoint between the failure stress and z'ero,stress: -Failure is interfacial with all the bonds
‘between the bottom surface and the network breakiug.

In all the simulations failure oc'cu’rs’interfaciallyi The reason for the ihterfacial failure is
that the number of bonds at the mterface is less than elsewhere. The crosslinkers bonded
to the bottom surface have only a smgle bond in the -z direction. Crosslinkers are allowed
to bond to multlple wall sites, but they choose to bond to only a smgle 31te during the
crosslmkmg procedure Issues concemlng thlS w111 be dlscussed in sec. IV. Crosslinkers
not at the mterface have close to 3 bonds in the +z direction ahd -z direction. Thus, the

interfacial crosslinker bonds have to support more load, and they stretch first and break
first.

B. Minimal paths

To understand the failure strains in terms of the network structure, we need to know
what is the ' maximum strainvpossib'le without‘bonds breaking. It turns out that the average
value of this maximum strain corresponds to the failure strain. An upper limit to the strain
at which scission must occur is given by the minimal path lengths of the network. For a
site on the bottom wall to which the network is bonded, there are many paths through the
polymer network to the top wall. The shortest path is the minimal path P for that site
on the bottom wall.- For the comiplete systehl'there"is‘a set of minirnal paths, one for each
bondmg s1te at the bottom Wall The stram at whlch the strands m the mlmmal path are
taut, ‘but the bonds are not stretched is given by the relatlon =

ep=(P - LZ)/Lz‘- | ) (3)

For € > €p, some bond within the minimal path must stretch. Using Dijkstra’s method
[17], P has been calculated for all bonding sites on the bottom wall. For the system in Fig.
1 the shortest minimal path has ep = 0.54 which is slightljr smaller than the first broken
bond indicated by the points in the figure. Additional strain is required to stretch bonds




to the breaking point. The simulations show that the average minimal path over the whole
system is a good estimate of the failure strain. For the system in Fig. 1 the average value
‘corresponds to £p = 0.97 which is whére the peak stress occurs.

The apparent large failure strain is now understood in terms of the physical constraints
on the network coﬁnectivity. Bond breaking does not occur until the minimal paths in the
network are taut. The strain to make the minimal paths taut is typically about 1, since

the typical conformation of a minimal path at £ = 0 is a zig-zag path as one would expect.

Bonds could break at small ¢ if there were an additional constraint operating on a segment

of the minimal paths. The fact that the failure strain corresponds to the minimal path strain
shows that there are no additional constraints. However, for the systems with a low number
of interfacial bonds, an additional constraint does arise and the failure strains are smaller

than the minimal path strain. These results will be presented in sections IIIE and IITF.

C. Stress magnitude

The number of bonds across the interface is an important quantity.affecting interfacial .

fracture. The ideal stress to fracture the interface is directly proportional to the number of
interfacial bonds, Nj.

o = N, Fy /A, 4)

where Fj is the force to break a single bond and A is the area of the interface. For systems
2-4 where N, ~ 200,~ F, = 156.7 and A= 1928, &;’d’= 16.3. This ideal value never occurs
in the simulations, because the bonds are broken sequentially, not simultaneously (Fig. 1).
Thus, at any given instant the contribution to the total stress by the breaking bonds is a
fraction of the ideal value. The failure stress in Fig. 1 is 6.2 ug/d® which is 2.6 times smaller
than the oyq4.

One means to calibrate the simulations is comparison to measurements on self-assembled
monolayers (SAMs). In addition, some fundamental aspects concerning the relative impor-

tance of van der Waals and chemical bonds at the interface are revealed. A SAM can be
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coated onto a force microssspe tip,‘ and the force to separate two SAMs can be measured. In
this manner the molecular scale forces are measured which correspond to the stresses mea-
sured in the simulations. Thomas et sl. [18] have measured methyl terminated alkylsiloxane
SAMs as well as acid-base (COOH:NH;) terminated SAMs corresponding to the bonding of
epoxies to silicon oxide surfaces. These experiments measure the pﬁll—oﬁ' force for a spherical
tip of radius, R. To compare to the simulations the sphere-plane stress needs to converted
to a plane-plane stress. For two surfaces interacting via a LJ potentlal the repulsive core
can be neglected. Writing the attractlve part as u(r) —C/r5, ‘then it can be shown [19]

that the pull-off force between a sphere and a plane is

w2 p?CR

Fsp:w—a (5)

where p is the density and D is the separé.tion distance. Between two planes the pull-off

force per area or stress is

e = 6D3 "~ R7D’ - ®

The expenmental value for methyl termmated SAMs is Fy, / R= 0 4+0.2 N/m [18]. Taking

D as 4A, the typical LJ diameter for methyl groups, we obtain app = 320 + 160 MPa. For
the acid-base measurements, F,/R — 43:+02 N/m whicll‘lrgives Opp = 3400 & 320 MPa.
However, the acid-base interaction does not have the LJ form. If we use the traditional JKR
calculation, we obtain 3100 4 290 MPa. ’I‘iiess two numbers _;u_ré within the expeﬁﬁentd
uncertainty so that either number ﬁll satisfy the 'pﬁrposes of 1':his 'discussion, The chemically
bonded 'surfsses require a stress '"é.b'oﬁ_t-'i‘l)()itime;s':large,r‘thél‘;t‘__ig_l.lej;m ‘dergWaals:“- bonded
surfaces. Moveover, both of these stresses are much larger than' I‘Issasured values for epoxy
adhesives in.mode II deformations [5,20]. While measuring the stress at a crack tip is not
directly possible, estimates of crack tip stresses are an order of magnitude lower than the
3.4 GPa. This presents an apparent paradox concerning how bonded interfaces fail at much
lower stresses. |

The paradox is resolved by recognizing that the number of bonds at the interface for an

epoxy adhesive is much smaller than for SAMs. The area pei‘ chain for the alkylsiloxane
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SAMs is about 25 A2. The area per crosslinker molecule is calculated using the bulk epoxy
density, 1.13 g/cc for the epoxy used in experiments at Sandia [15,4,21]. For a slab with
thickness 8A near a flat silicon oxide surface, the area per crosslinker is 920 A2. For the
six-fold functional crosslinker at the interface assuming on average that 3 bonds are within
the network and 3 bonds attach to the surface, then the area per interfacial bond is 310 A2.
Thus, the area per bond in the epoxies is 12 times smaller than in the SAMs. This lowers
the ideal fracture stress from 3400 MPa to 280 MPa. However, with the small contact area
of a force microscope the bonds between two SAMs can breai: almost simultaneously. In an
epoxy, the bonds break successively, i.e. a crack propagates. The present simulations find
that this reduces the failure stress by a factor of 2.6. Using this number the expected failure
stress for epoxies on a silicon oxide surface under tensile strain is about 110 MPa. There are
some uncertainties in this number. It is not likely that the crosslinker can make three bonds
to the surface. Once one bond is ﬁlade; the other bonds are restricted to occur in a small
area about the first bond. On the other hand, the density at the surface is larger than in
the bulk and this could easily compensate for the decreased bonding. Thus, including these
uncertainties, the true number is not going to be far from 100 MPa. Finally, for epoxies not
chemically bonded to a surface, but attached only by van der Waals ipteractions (i-e. epoxies_
on a SAM coated surface tc; prevent éhemical bonding) the failure stress is 120 MPa, where
the same 2.6 factor has been used. Within the uncertainties the contribution to the failure
tensile stress due to chemical bonds and the contribution due to van der Waals interactions
are equal. In addition, ev'eﬁ the van der Waa;ls stress is larger th;m the yield stress which is
about 50 MPa.

The SAM systems can easily be modeled in the bead-spring system. To each of the
top surface beads, a two bead SAM chain is bonded. Two such SAM coated surfaces are
created. The stress to separate is calculated just as in the model network systems. The
methyl terminated case corresponds to no bond between the two SAMs; the SAMs interact

only through the LJ potential. In this case, the failure stress is 5.7 uo/d®. This implies that
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ug/d® = 320/5 7= 56 MPa. By bonding each of the two SAM chains oppoSite each other,
the chemlcally bonded case is treated In th1s case, the farlure stress is 112 'Uo /d3. This gives
a map of up/ B = 3400/ 112 = 30 MPa Bemg a coarse-gramed model, the two maps are not
identical. An average value of v/ d3 43 MPa gives the best approximation. -

The failure stress of the bead—spnng network is 6.0 ¢/d3. This stress value is about equal
to the nonbonded SAM failure stress. The above calculation from the experimental SAM
data found that the epoxy failure stress would be about equalr'to the methyl terminated

SAM failure stress. This agreement is a nice consistency.

D. Variation of surface bond density

Even though the actual value of the fracture stress is not equal to the ideal value, the
failure stress may still scale with V,. The dependence on N, can be examined in a controlled -
manner by forbidding bonds to occur on a subset of the wall surface Expenmentally, this
is done by coatmg the surface with SAMs whlch prevent chemlcal bondmg [5 20] . In the
‘srmulatrons, the bondmg reactlon is s1mply forbldden in a chosen region on the wall (Fig. -
!2) The fractlonal area of the wall surface covered w1th bonds i is denoted by C’ the bonded
coverage. The fractional number ,of bonds at coverage C with respect to full coverage is
deﬁned as ng = Np(C)/N,(C = '1) ‘Because crosslinkers above the edge of a nonbond wall
reglon can move a httle and bond to an open site, n¢ tends to be shghtly larger than C.

The 1deal fracture stress at coverage C is then . .
O'id(C) = Nb(G)Fb/A = f’tcb‘id(C = 1). (7)

Similar to experimental studies [20] and to ”get a good statistical representation, a set
of rectangles on a grid (Fig. 2) were used as the nonbonding region. In the simulations an
8x3 grid was used. Experimentally, such grids coated with SAMs to prevent bonding can
be formed lithographically. Hovvever in comparfson with such experiments, the simulation

nonbonding regions are much smaller, at most 10 nmon a side. Much smaller debond regions

12



are possible experimentally by applying submonolayer coverages of SAMs [20], although the
controlled geometry is lost.

E. Tensile data

Figure 3 shows the tensile stfesg—strain curves for systems 1-4 at various C. The shape
of the stress-strain curves is similar for ali the systems. The molecular deformations for
C =1 corresponding to the various stress-strain regimes were described in sec. IITA. All
the systems fail interfacial as discussed above. The size and coverage effects will now be
described.

The C = 1 stress-strain curve is a master curve for the lower coverage data. At C <1

the stress-strain curve follows that for C = 1 until the failure stress is reached at which

point the stress drops to zero. In the tensile mode, this yields two regimes of failure as a .

function of coverage. For low coverages (C < 0.25) failure occurs without any secondary rise
in the stress due to bond stretching. At high coverages (C > 0.5), bond stretching makes a

significant contribution.

The failure stress, oy, does not vary with system size. At a given C, the shape of the -

curve is independent of size. In systems 1 and 2,’ and for C =1 in system 3, the yield stress
is about 4. Otherwise for systems 3 and 4, the yield stress is 3 with a much less pronounced
peak. On the other hand, the failure strain, €, does depend on the system size. Consider
systems 2 and 4 at C = 0. For system 2, e = 0.54, but for system 4, & = 0.20. For the
large system, this & corresponds to the system failing just after the system has reached the

yield stress. This is what one expects for surfaces interacting only through LJ interactions.

F. Shear data

Figure 4 shows the shear mode data for systems 1-4. The yield stress in this case is
determined by C = 0 case which gives o, = lug/d® independent of the system size. This

stress corresponds to the friction force necessary to slide two surfaces with LJ interactions
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over each other. The friction stress is well known to be less than the tensile separation stress,
sincethe sliding particles need not fully separate [22,23]. For nonzero ooverage below the
failure strain, the stress rises monotonically with increasing strain. As in the tensile mode,
the C = 1 stress-strain curve is a master curve. The 0 < C < 1 curves follow this master
curve until failure at rvhich point the stress drops to the yield stress value or sliding friction
value. '

" The failure stress in the shear moder 'af; C =1 is the same as in the tensile mode. The
failure 1s also inrerfaelal. rThus, the int_erfacial strength is the same in either mode. This
is not surprising at C = ‘lwrvhe"re the hond forces dominate in determi’ning the interfacial
failure stress. The failure stresses are identical for the two modes until the LJ interactions
dominate at low C in the tensile mode.

In contrast to the tensile mode, there is no plateau regime in the shear stress-strain
curves. Since yielding in shear mode onljr involves lsliding particles over each other, the
partlcles are not separated at the y1eld stram as in the tensile mode. In the shear mode,
the volume is conserved and the stress to deform the whole network increases monotomcally
- beyond the y1eld strain. l ‘

In the shear mode, the deformation ‘sequenee is the same as the tensile mode, but l;he
strains are larger due to geometrié faotors. As shown earlier the failure strain is related to
the strain necessary to make taut the minlmal paths in the netrvork from the botifom surface
to the top surface Thls requlres a larger stram for the shear mode than for the tensrle mode
A solely due to geometnc eﬁ'ects - For ; an 1n1t1a1 wall separatlon of L (O) and the same stram,
the separatmn of two pomts on the top and bottom walls with same (z,y) positions are
(1 +€)L,(0) for tensile mode and +/1+ 2L, (0) for shear mode. For example, at & = 1, the
length in tensile mode is 2Lz(0), but in shear mode, the length is only v/2L(0). Thus, to
stretch the minimal paths the same length, the shear simulations must go to larger strains.

As in the tensile mode the failure strain decreases with system size. At C = 0.25 for
system 2, ¢y = 1.5, but for system 4 & = 1.0. For the shear mode, the failure stress

predominantly has just one regime. For systems 3 and 4, a straight line could be fit through
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the (y,0y) points. This implies a linear relation between oy and £; which will be shown in

sec. IVA.

IV. DISCUSSION
A. Failure stress

While the magnitude of the failure stress is not equal to the ideal fracture stress, the
failure stress can still scale as the ideal function. Specifically, let N; and N¢ be the number
of interfacial bonds at full coverage (C = 1) and partial coverage, C, respectively. Then, if

scaling holds, the stress at C is related to the stress at C =1 by
oc ~ ']VT'U'I =NcOoi. (8)

The data for the failure stresses (Fig. 5) does in fact exhibit a linear dependence for the

shear mode over the complete range of C. The linear fit to the shear data is
oc = 5.4n¢c +0.7 =~ (01 — go)nc + 0o, - - 9

where oy is the failure shear stress at n¢ = 0. The value of oy is not zero, due to the
frictional stress of the sliding surfaces.

As noted above the tensile data has two regimes; At low n¢ (< 0.3) , the failure stress

. is equal to the plateau stress. At larger nc (> 0.5), the fit equation is almost identical to

that for the shear da;ta, .
oc =5.3nc+0.8. (10)

This equation can be written in terms of o, 01, and ng the crossover point,

oc = n—C_—1:C(al — 0p) +0p, N > Ng. (11)
1- e

Equation 10 given 01 = 6.2 and o, = 3.0 is obtained using ng = 0.4; for n¢ < ng, ¢ = 0p.

This equation connects o, and ng; to the y-intercept and slope of Eq. 10.
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B. Failure strain

For C =1 it was shoWh earlier that the average minimal path determines the failure
strain. For C < 1 the average minimal path does not change much, but the failure strain
does. What happens as C decreases from 1 and how dees this effect the failure strain? The
essential aspect is that the strain becomes inhomogeneous with distinct bulk and interfacial

terms.
€ = Epulk + Eint . ‘ (12)

The fewer the bonds at the interface, the larger the inhomogeneity is.

Since the walls are pulled at constant velocity, a homogeneous strain would yield a linear
displacement profile in both the tensile and shear mode. ’fhe mechanism for deviations
from the linear profile is exhibited in Fig. 6. The figure shows an image of a tensile pull
simulatien of system 2 at C =0.1 and € = 0.54. : Tiny,‘ nanometer scale cavities have formed
on the bottom surface above the reglons whlch are not chemlcally bonded to the bottom -
surface "A few bonds penlously attach the network to the bottom surface. The pull off
occurs at about the same strain as for the completely nonbonded system. In the C = 0.1
system at & = 0.~54 the stress has aireadsr droi)ped to 1‘0 U /d3 from the plateau stress (see
Fig. 3(b)). Most of the drop in the stress is due to this pull off as it occurs before the bonds
break The consequence of the 1nterfac1al cav1t1es 1s that the dlsplacement near the bottom
surface is larger than the, umform hnear proﬁle » 7 ] A

Dlsplacement profiles for this system have beeu calculated in the followmg manner. The
displacement of each particle at a given ¢ relative toe =0 is calculated. Then these particle
displacements are averagetl into bins which are layers parallel to the walls. Figure 7 shows the
displacement curves for the system of Fig. 6. The first few bins include the wall particles.'
At the strain of Fig. 6 the displacement field shows a large increase at small z near the
bottom surface due to the cavity formation. The iucrease is due to the cavity formation and

. produces increased stress on the bonds to the surface. The figure shows the progression of
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this increased interfacial displacement starting from € = 0.30 where the profile is uniform
and linear.

In general, the C = 0 and C = 1 cases provide boundary values of the failure strain.
For 0 < C < 1, the nonbonded regions will pull off the bottom surface forming cavities
at a strain between the failufe strains for C = 0 and C = 1. This will yield an excess in
strain or strain localization at the interface. The strain localization causes the segments of
the minimal paths within the interfacial region to be excessively stretched. In other words,
strain localization is the mechanism by which part of a mini;nal path can become taut
without the whole path becoming taut. Bonds within these segments can and do break well
before ep.

Figure 9 shows the failure strains as a function of coverage for system 3 (almost identical

to system 4) for tensile and shear modes. The linear fit to the data is
Ef(nc) = 0.61n¢ + 0.80. : (13)

The linear behavior is obeyed fér the s;hear data except at ng =0 for which no bonds are
broi(en. Thus, the y-intercept is not equal to the ng =0 failure strain. There is insufficient
data to study how the failure strain must tend toward £4(0) as n¢ goes to zero. At small C
the number of interfacial bonds is small yielding poor statistics.

In the shear mode, cavities cannot form at the surface since the volume is conserved.
The strain ’localization still occurs as shown in Fig. 8. The deviation from the linear profile
occurs in a verj'nanow fegfon at the surface.” In shear mode, the interfacial part of the
network in the nonbonded regions can élip over the solid surface. Thus, it does not displace
as far as the solid surfaces or the interfacially bonded part of the network. Figure 8 shows
the average displacement near the bottom wall tends to be closer to 0 than the wall value.
In other words, only the part of the network that must move with the wall does; the rest
shears as little as it can. This results in a split between bulk and interfacial strain. Then,
just like the inhomogeneity in the tensile strain, this gives the mechanism for a constraint

on the minimal path segments which forces them to stretch at € < gp.
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For the tensile data in Fig. 9,the‘linear relatlon is consistent (albeit for three data points)

‘at n¢ > ng. For ng < nf, the failure is dominated by van der Waals interactions which
yields a different behavior. In tensile, the van der Waals interactions are relatively strong
in comparison with the bond interactions. »Thissuggests that the deviation from the failure
strain which is based on bonded interactions should occur at a much larger C for tensile

than for shear simulations.

C. Model Modifications -

There are a variety of changes to the model that can be made. Some of these would be
basic improvements; others would be to treat the variety of systems available. The system
treated here has identical LJ interaction pa‘rametersrfor all species. It 1s easy to input
differing parameters. Some work has already been done to examine the effect of varying
polymer-substrate interaction. Varying the relative preference of the crosslinker and resin
to the surface i is another 1mportant issue to be studJed This d1rectly effects the number of
mterfac1a1 den51ty of crosshnkers and consequently, the 1nterfac1al number of bonds. .

The strﬁ’ness of the strands eﬁ'ects the failure strams dlrectly In the present model, the
strands are completely flexible and the extens1on ratio is large To make the strands stiffer
a bond bending interaction could be added The form would have to allow bond breaking
whrch most bond bendmg potentlals do not do ) ‘ . "

In terms of the mlmmal paths, bond bendmg constralns the range of accesslble angles
W1th bond bendmg, the m1n1ma1 path may be longer than the fa1lure stram, since bonds
could break at angles less than 180°. In this case, the mmlmal path length may be redefined
not to be the contour path but to be the maximal extensron length of the minimal path.
The next issue is whether failure could occur at strains even smaller than that corresponding
to the ma.x1mal extension length This is equlvalent to askmg whether the addition of bond
bending constraints is sufficient to cause strain 1nhomogene1t1es As discussed above, once

inhomogeneity can occur the failure mechanism becomes more local to the inhomogeneous
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region. To answer these issues will require the development and addition of an appropriate
bond bending potential.

The number of bonds from the network to the solid surface is the critical determinate of
whether failure is cohesive or adhesive. In the present simulations, the crosslinkers bonding
to the surface only make a single bond. It is possible for the crosslinkers to make three bonds,
but evidently this possibility is low. Thus, to treat system that can cohesively fail, the system
would have to be altered such that the bondiﬂg probability to the surface increases. One
simple means to do this is to iﬁcrease the density of surface bon(iing sites; this is equivalent
to increasing the wall density. This will have the concomitant effect of strengthening the
wall-network LJ interaction which may not be wanted. This can be compensated for by
reducing the value of ug in the wall-network LJ interactions. Another possibility is to allow
multiple bonds from a crosslinker to a single bond site. This would require strengthening the
wall spring'.\constant, since two bon&s pulling on the site will be able to pull the wall bead
well out of fhe solid structure. The larger spring constant may require a smaller timestep

which is a big price to pay. Treatment of this issue will be done in a future work.

Ly

V. CONCLUSIONS

4

The initial results have been presented for coarse-grained, bead-spring molecular dy-
namics simulations of the fracture of highly crosslinked polymer networks bonded to a solid
surface. Thé correspondence between the si;,r__ge'ss‘,-‘strza‘.in,curve ancrlthe sequence of molecular
deformations has been detailed. For the pré'seﬁt model, bonds aré not stretched until strains
much larger than the yield strain have been reached. The failure strain for a fully bonded
surface is equal to the strain necessary to make taut the average minimal path through the
network from the bottom solid surface to the top surface. At bond coverages less than full,
nanometer scale cavities form at the surface. This yields an inhomogeneous strain profile
with a bulk and an interfacial term. This inhomogeneous strain is an additional constraint

on the network which results in segments of the minimal path near the interface becoming
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taut well before the full p.ath; The failure strain is linearly proportional to the number of
bonds at the interface. Similarly the failure stress has; a linear depeﬁdence on the number
of interfacial bonds. o

In the simulations presented here, failure is always interfacial. The number of bonds at
the interfaée is smaller than in the bulk. This interfacial deficit is an automatic consequence
of the network formation of the solid surfaces.

This work was supported by the DOE under contract DE-AC04-94AL8500. Sandia is a
multiprograni laboratory operated ‘by Sandia Corp., a Lockheeé Martin Company, for the
DOE.
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‘TABLES

TABLE I. System parameters.

No. no. particles area height
1 14000 Ay =643 151
2 51500 34; =1928 19.9
3 91000 1928 39.2
4 170000 1928 77.0
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FIGURES

tensile stress

1
0 05 1
strain

FIG. 1. The tensile stress-strain curve for the fully bonded case of system 2. The points mark

the strains at which bond breaking occurs.

FIG. 2. The checkerboard pattern used to create debond areas of varying size is schematically

shown. The black squares represent the debond regions. The size of the squares determine the

~ fraction of debond area.
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FIG. 3. The tensile stress-strain curves for systems 1 (a), 2 (b), 3 (c) and 4 (d). The point
represent different coverages at the bottom surface: 0% (solid triangle), 10% (solid square), 25%

(solid circle), 50%, (open triangle), 75% (open square), 100% (open circle).
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FIG. 4. Shear simulation data. Points are same as Fig. 3.
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FIG. 5. Failure stress in tensile (squares) and shear (circles)

fractional number of interfacial bonds.

simulations as a function of the

FIG. 6. Image of system 2 at C = 0.1 under tensile pull at € = 0.54. The pull off above the

" nonbonded regions at the bottom surface is clearly exhibited.
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FIG. 7. The displacement proﬁie for system 2 at C = 0.1 under tensile pull. The data are for
the following strains: 0.54 (circle), 0.49 (square), 0.40 (triangle), 0.30 (open square). The circle
data is for the strain of Fig. 6. The straight line is é. fit to € = 0.30 data excluding the three points

on both ends which corresponds to the solid surfaces.
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FIG. 8. The displacement profile for system 2 at C = 0.1 in shear mode. The data are for the
following strains: 1.52 (circle), 1.32 (square), 0.99 (triangle), 0.86 (open square). -The straight line
is a fit to € = 0.86 data excluding the three points on both ends which corresponds to the solid

surfaces.
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FIG. 9. Failure strain in tensile (squares) and shear (circles) simulations as a function of the
fractional number of interfacial bonds. A straight line has been fit to the shear data excluding the

nc = 0 point, and then the same line but different slope is plotted on the tensile data.
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