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For highlycrosslinked,polymer networksbonded to a solid surface,the effect G9

of interracialbond density as well as system size on interracialfracture is

studied molecular dynamics simulations. The correspondence between the

stress-straincurve and the sequence of molecular deformationsis obtained. .

“The failurestrain for a fully bonded surfaceis equal to the strain necesmry

to maketaut the averageminimalpath throughthe networkhorn the bottom

solid surfaceto the top surface. At bond coveragesless than full, nanometer..

scale cavities form at the surface yielding an inhomogeneousstrain profile.

The failurestrainand stressare linearlyproportional to the numberof bonds

at the interface unIessthe number of bonds is so few that van der Waals

interactionsdominate. The failureis alwaysinterracialdue to fewerbonds at

the interfacethan in the bulk.

Adhesives present a complex

I. INTRODUCTION

problem for polymer theory. Progress has primarily oc-

curred for adhesives with weak interracial strength [1] such as pressure sensitive adhesives
●

[2] and polymer-polymer interfaces [3]. Such adhesives typically do not have strong chemical

bonds across the interface. Only relatively weak van der Waals interactions exist at the in-

terace. For strong adhesives equivalent development is lacking. The difficulty of performing
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measurements on interfaces is a major obstacle in understanding adhesion problems. Recent

experiments at Sandia have begun to study failure in the strong interface of an epo~ on

a silicon wafer [4,5]. The interracial structure is probed with neutron and X-ray reflectiv-

ity. In addition, the number of chemic~ bonds at the interface is varied in a controlled.. .
manner through use of self-assembled monolayer (SAM) coatings. In conjunction with these

experiments, a program of molecular dynamics (MD) simulations have been developed and
,.

performed. The initial results of these MD simulations are reported here.

,In bulk epoxies, experiments have shown that as the crosslink de&i& increases the bulk.:

f&re mechanism changes from crazes to deformation zones [6]. There is very little infor-

mation about mechanisms for intefiacial failure in epoxies on solid surfaces. Theoretically,—

linear elastic fracture ‘mechanics works well for such polymers far horn the crack tip. How-

ever, the method breaks down near the crack tip where large plastic deformation occurs

and the molecular details become important [7]. Performing MD simulations that treat the

region near the crack tip would yield very useful, but missiig information.

From a general perspective,” the polymer adhesive is a network. We would like to know

how the rietwork” st~ctuie influences the’-adhesive streng$h, the initiation of cracks, the
,,

distribution of st&s, etc. In a random network, the stress on borids is expected to vary, and
,,- -’

the network bonds that &e most stre&ed will break first [8]. Crack initiation could occur
... . .,

where a cluster of highly constrained bonds eti~t&’ There is no reason to expect the crack
-.. , “. . .

initiation site to occur at tKe ‘inte~ace, although we know experimentally”’that interfaces are
-. ,.- .), -..

Ofien We.&:.-. . :: , .:‘ : -’”:’“,.... ,.’ :::;.,; ‘-,.- ..:., :.....: ;:,:’’,;::,:.; : ,“-:. -,. ‘
... ..... .

Termonia has performed a several calculations focussed ori~nally on the strength of

fibers [9].’ These calculations are based on a lattice model of the network. His work on

network polymers has primarily treated bulk deformations in elastomers.

Little work exists for molecular simulation of polymer adhesives [10]. Highly crosslinked
●

polymer networks been particularly neglected by shulations, yet they are important class

of adhesives. The development of MD simulations has reached the point where treatment of,.

I

adhesives is possible [10]. Simple coarse-grained bead-spring models successfully treat bulk
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polymer melts and networks [11,12]. This work extends these methods to study fracture

of highly crosslinked polymer networks. Connectivity is the main ingredient ingredient in

polymer dynamics [13]. The bead-spring models preserve the network connectivity. In these

models, a bead represents of group of monome~ how many monomers depends on the

particular polymer. Typically, the stifFer the polymer, the more monomers per bead. The

coars~graining allows the simulations to reach times of at least a microsecond. This enables

coarse-grained Ml) simulations to treat entanglement dynamics [14]. In contrast, atomistic

simulations can barely pass a nanosecond. Much of the important dynamics in polymers,

let alone in adhesion occurs on longer time scales.

In order to understand how varying interracial bonding effects the interracial strength,

the number of chemical bonds between the adhesive and the solid surface is varied. The

stress-strain curves are then calculated as a function the number of interracial bonds using

MD. The structural dynamics is examined and correlated with the stress-strain curves.

In the following section, the bead-spring model is described along with all the aspects of

the simulations. The results of the simulations are presented in sec. III. The correspondence

between the stress-strain curve and the sequence of molecular deformation is given. How the

structure determines the failure strain is described. Insights based on force measurements

between self-assembled monolayer reveal the expected range of stress magnitudes for each

of the possible interaction types. Next, the data for the stress-strain curves as a function

of the number of interracial bonds are given. In sec. IV, the results are discussed. The

inhomogeneity in the strain is demonstrated and shown to be an additional constraint on

the network effecting the failure strain. Finally, the conclusions are given in sec. V.
I

I
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II. SIMULATION METHOD

.,
A: Poipei Model and Potentkds

The polymer network is treated as a bead-spring system. Beads interact via a Lennard-

Jones (LJ) potential with a cutoff at 2.5d [12].

(1)

In this articled represents the LJ ditieter and &orepresents the LJ energy. The stress and

strain will retain their traditional notation ‘ofo arid e, respectively. All quantities will be in

LJ units. , .

The LJ stress will later be’mapped to MPa to give a rough magnitude for the stresses.

Because of the coarse-grained nature, there is no one-to-one mapping of the model to real

systems. In coarse-grained simulations, the goal is to understand the model system self-

consistently. In relating the simulation results to ‘iwtuid adhesive such as epoxies, the em-,.

pha& is on the conne&i&y and its implications. “ “‘
7

In the Kremer-Grest model [12], beads are bonded together using a potential that pre-

vents chain crossing. This bond potential is the sum of the purely repulsive LJ interaction

with a ctitoff at 21/6d and a finite-extensible nonlinear elastic (FENE) attractive potential.

In order to break”bonds and preserve the continuity of the bond force,”a breakable quartic
,.

borid”potential W* created to replace the FENE potential. ‘“ ; ‘ ‘
.:.,.,., ,...... . . ,. .,.:. . .’.-:.-:.:...- .:-”!:..... :,-:..‘. ,....,..-

“’”{

,-. . . .... ..,.’..’. . . .. ..” -“-, ..—.
k4(~- ~1)(~– ~2j3+ UI),~<;2 -

,,. ..,
‘ U4(7’).= , (2)

qj, r>rz

The potential parameters are: k4 = 1434.3uo/d4, rl = 0.7411d, r2 = 0.0 and U. = 67.2234u0.

With this bond potential, chains can cross only by breaking bonds.
●

The maximum bond force is 156.7 uo/d, and the maximum LJ force is 2.4 uo/d. For

atomic force-fields, the force ratio between the bond and the van der Waals forces is about

1000. However, a single bead represents several atoms and the LJ pair interaction represents

4



multiple van der Waals pair interactions. With even just 3 atoms per bead, there are 9 pair

interactions. A force ratio of order 100 in the coarse-grained model is representative of the

atomic system. The ratio of 65 used in these simulations is then in the correct range.

B. Solid Surface Model

The complete system consists of a polymer network between two solid walls. Each wall

is two layers of particles in an fcc lattice wiith nearest neighbor distance 1.204 d. The (111)

direction (z-direction) is perpendicular to the walls. The wall particles are bound to the

lattice sites by a harmonic spring with spring constant 100 uo/&. The wall dimensions give

the simulation cell lateral lengths, L= and Lu, and periodic boundary conditions are applied

in these directions. The separation distance between the innermost wall layers is L=. The

wall particles interact with the beads via the same LJ potential (Eq. 1), with some wall

particl& bonded to the polymer network by Eq. 2. To perform the tensile pull and shear

simulations, the walls are pulled at constant velocity.

C. Network Formation

To form the networks, we take a cue from a highly crosslinked adhesive, epoxies. Epox-

ies are chemically cured networks formed from a liquid mixture of a resin (Bisphenol A)

and a crosslinker [15]. Each strand consists of only a few monomers. As a bead corre-

sponds typically to 2 or 3 monomers [12], an epoxy model would have only a few beads per

strand. The minimal case of two beads is used here. In this initial work the emphasis is

on understanding general features of highly crosslinked networks. In later work, the simple

modifications that would better model epoxies, for example, will be applied. A discussion

of possible modifications is given in sec IV C.4

In epoxies, a liquid mixture of a crosslinker and a resin is crosslinked dynamically. In
.

the simulations the mixture consists of two bead and three bead molecules. The three bead

molecule has a sixfold functional crosslinker bead already bonded to

5
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In this initial work,’ the strand beads and crosslinker beads have identical LJ parameters. ‘
,. ,,

The liq~d is equilibrated at temperature T = l.luO. After equilibrating the liquid mixture,. . . .. . .-,
crosslinkers are first bonded to the walls. Bonds are for&ed when the separation between

a crosslinker and a strand end or wall particle @less than 1.3 d. Next, during a MD run,

the crosslinkers are bonded to strands until at least 95% of all possible bonds are made,

Zero load is maintained on the walls during the crosshnking. Afterward, the temperature is
..

reduced below’the glass tr~itiori temperature (T~-= 0.5) to 0~3~

.... . ,. ..-”

..
,.

D. System parameters

Four different system sizes have been studied. Table 1 lists the varying size parameters

for these systems. For system 1 the wall dimensions are L= = 33.ld and Lv = 19.3d. For

systems 2-4, L= is doubled and Lv = 28.9d. Given the size of the epoxy molecules, the bead

size corresponds to about d = 1 nm. Using this mapping, the largest system studied has a

height of 77 nm. These tie small systems compared to typical dhesives. The simulations

effectively treat the region at or near the crack tip. In this region, strains and possibly even .’

stresses are much larger than the macroscopic measured values.

The dynamics is performed at constant temperature 2’ using the Langevin thermostat

[16]. The integration time step is 0.005 T, and the damping constants are 1 ~-l for the; ,-
monomers and 5 ~-1 for the walls, where T is the LJ time unit.

Sim~ation: of both’ tensile and shear deformations are perfo’&ed. In-both cases, the... .. .. . ....”.. .... . .,.: .,, -
walls are moved at consta& velocity. All the data-presented ‘h;re is for a wall velocity of

.- ,,,-
v = O.OlcZ/~. Simulations have been performed for v = 0.001d/T and 0.1 d/r with similar

,-
results. For the shear simulations, the wall is pulled in the z-direction.

. .’

.’ ,-
.,
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III. RESULTS

.
A. Molecular scale deformation of network

Figure 1 shows a typical tensile stress-strain curve. The correspondence between the

molecular deformations and the stress-strain curve is as follows. The first peak at Ev= 0.1

is the yield stress. This occurs due to the LJ force between pairs of neighboring beads going

through its maximum value. In equilibrium, the typicabeparation is 1 d, and the maximum

force is at r = 21/Gd= 1.12d- Thm it t~a a str~n of about 0.1 to rea& the m~mum

value.

Ate >&v the stress is constant for a range of stains. In this plateau regime, examination

of configurations shows that the bonds are not stretched. Instead the strands connecting two

crosslinkers are pulled progressively taut. In this section, ‘strand’ includes the crosslinkers

so that there are four beads to a strand. Only after the strands are in the taut, linear

,conformation do the bonds begin to stretch. Even though there are only four “beads per

strand, the strain to extend the strand ‘from the compact initial state to the linear state is
.>

relatively large. For example, consider the close packed, planar state with the strand making

a zig-zag path from one crosslinker to the other. The bond length is about equal to d and

in the compact state the nonbonded beads are separated by the core diameter, d. For this

state the crosslinker-crosslinker separation distance is fid. In the linear, taut conformation

the separation is 3d. The strain to deform the compact state into the linear state is W!

The plateau regime in Fig. 1 has range of strain of about 0.35. -Clearly, the average strand
.

conformation is not in the close packed state ats = O,but also it is clear that large strains

are possible even for short strands.

Once strands are taut, bonds must stretch on further displacement. At this point, the

● stress rises. The points show the strains at which bonds break. The first bond breaking “

occurs ats = 0.60. As more bonds are stretched the stress rises with some bonds breaking.

Finally, the system fails at sf = 1.05, where the failure strain is taken as the stain at the

i’
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midpoint between the failure stress and zero stress. Failure is interracial with all the bonds

between the bottom s&face and the yetyork breaking.

In all the simulatioti failure ocimrs”hterfacially; The reason for the interracial failure is.

that the number of bonds at the interface ,is less than elsewhere. The crosslinkers bonded
-. ..-

to the bottom surface have only a single bond in the -z direction. Crosslinkers are allowed

to bond to multiple wall sites, but they choose to bond to only a single site during the
. .,.-.

crosslinking procedure. Issues concerning this will be discussed in sec. IV. Crosslinkers

not at the interface have close to”3 bonds in the +Z direction and -Z direction. Thus, the

interracial crossl.inker bonds have to support more load, and they stretch first and break

first.

B. Minimal paths

To understand the failure strains in terms of the network structure, -we need to know

what is the ‘maximum strain po.s&ble without bonds breaking. It turns out that the average

value of this maximum strain corr&pon& to the failure strain. An upper .limit to the-strain

at which scission must occur is given by the minimal path lengths of the network. For a

site on the bottom wall to which the network is bonded, there are many paths through the

polymer network to the top wall. The shortest path is the minimal path P for that site
. .,-

on the bottom wfi. For the complete system’ there-is-a set of minimal paths, one for each

bonding site at the bottom wall. The strain at which the strWds in the minimal path are.... ....-,.’. . .. .. . . . ...... ..- .. -.,. ,’-.-.
taut, but the bonds are not stretched is”given by the relation, ‘;::

&p= (~ - ~z)/~z. (3)

For s > 5P, some bond within the minimal path must stretch. Using Dijkstra’s method

4 [17], P has been calculated for all bonding sites on the bottom wall. For the system in Fig.

1 the shortest minimal path has &p = 0.54

bond indicated by the points in the figure.

which is slightly smaller than the first broken

Additional strain is required to stretch bonds

8
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to the breaking point. The simulations show that the average minimal path over the whole

system is a good estimate of the failure strain. For the system in Fig. 1 the average value

‘corresponds to EP = 0.97 which is where the peak stress occurs.
1

The apparent large failure strain is now understood in terms of the physical constraints

on the network connectivity. Bond breaking does not occur until the minimal paths in the

network are taut. The strain to make the minimal paths taut is typically about 1, since I

the typical conformation of a minimal path at E = O is a zig-zag path as one would expect.

Bonds could break at smalls if there were an additional constraint operating on a segment”

of the minimal paths. The fact that the failure strain corresponds to the minimal path strain
i

shows that there are no additional constraints. However, for the systems with a low number I
,
1

of interracial bonds, an additional constraint does arise and the failure strains are smaller I

than the minimal path strain. These results will be presented in sections IIIE and III F.
,
I

1

C. Stress magnitude 1

The number of bonds across the interface is an important quantity .affecting interracial ... . .
I

fkacture. The ideal stress to fracture the interface is directly proportional to the number of .

interfacizd bonds, Nb.

(4)

I

where Fb is the force to break a single bond and A is the area of the interface. For systems
,,

2-4 where Nb’R 200,”Fb = 156.7 and ‘A = 1928, qi”= 16.3. ThE ideal value never occurs

in the simulations, because the bonds are broken sequentially, not simultaneously (Fig. 1). i
~

Thus, at any given instant the contribution to the total stress by the breaking bonds is a

fraction of the ideal value. The failure stress in Fig. 1 is 6.2 uo/d3 which is 2.6 times smaller

than the ~d.4 I

One means to calibrate the simulations is comparison to measurements on self-assembled
I

t
monolayer (SAMS). In addition, some fundamental aspects concerning the relative impor- ~

[
tance of van der Waals and chemical bonds at the interface are revealed. A SAM can be

9
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coated’ onto a force micro~ope tip, and the force to separate two SAMS can be measured. In

this manner the molecular scale forces are measured which correspond to the stresses mea-,,

sured in the simulatio”ks. Thomas et al. [18] have measured methyl terminated alkylsiloxane

SAMS as well as acid-base (COOH:NH2) terminated SAMS corresponding to the bonding of

epoxies to silicon oxide surfaces. These experiments measure the pull-off force for a spherical

tip of radius, R To compare to the simulations the sphere-plane stress needs to converted ●

to a plane-plaqe stress. For two surfaces interacting via a LJ potential, the repukive core
,.

c&n be neglected. Writing the attractive part as V(T) = –C/r6~ “then it can be shown [19]

that the pull-off force between a spheie and a plane is

r2p%’R
FQ = ~D2 , (5)

where p is the density and D is the separation distance. Between two planes the pull-off

force per area or’stress is .

(6)
.

The experimental value for methyl ‘terininated SAMS is F8P/R = 0.4 + 0.2 N/m [18]. Taking
.- .,, ,...

D “& 4& the typical LJ “diameter for “methyl “groups,we obtain OPP= 320& 160 MPa. For
,,

the acid-base measureme&s, F,P/l? = 4.3+ 0.2 N/m which gives CTPP’= 3400 & 320 MPa.

However, the acid-base interaction does not have the LJ form. If we use the traditional JKR

calculation, we obtain 3100 + 290 MPa. These two numbers are within the experimental,.,

uncertainty so that either number yin satis~” the “pu~oses of this discussion. The chemically
,.

bonded ‘surfaces require a stress about’lO;.tim’es’;largey ‘than’ the wan der [Waals; bonded.-.~...:- ... ..

surfaces. Moveover, both of these stresses are much larger than measured values for epoxy

adhesives in, mode II deformations [5,20]. While measuring the stress at a crack tip is not

directly possible, estimates of crack tip stresses are an order of magnitude lower than the

3.4 GPa. This presents an apparent paradox concerning how bonded interfaces fail at much
●

lower stresses.

The paradox is resolved by recognizing that the number of bonds at the interface for an

epoxy adhesive is much smaller than for SAMS. The area per chain for the alkylsiloxane



, ,

SAMS is about 25 ~2. The area per crosslinker molecule is calculated using the bulk epo~

density, 1.13 g/cc for the epoxy used in experiments at Sandia [15,4,21]. For a slab with

thickness 8A near a flat silicon oxide surface, the area ‘per crosslinker is 920 ~2. For the

sk-fold fictional crosslinker at the interface assuming on average that 3 bonds are within

the network and 3 bonds attach to the surface, then the area per interracial bond is 310 ~2.

Thus, the area per bond in the epoxies is 12 times smaller than in the SAMS. This lowers

the ideal fracture stress from 3400 MPa to 280 MPa. However, with the small contact area

. of a force microscope the bonds between two SAMS can break almost simultaneously. In an

epoxy, the bonds break successively, i.e. a crack propagates. The present simulations find

that this reduces the failure stress by a factor of 2.6. Using this number the expected failure

stress for epoxies on a silicon o~de surface under tensile strain is about 110 MPa. There are

some uncertainties in this number. It is not likely that the crosslinker can make three bonds
. .

to the surface. Once one bond is made, the other bonds are restricted to occur in a small

area about the first bond. On the other hand, the density at the surface is larger than in

the bulk and th~ could easily compensate for the decreased bonding. Thus, including these

uncertainties, the true number is not going to be far from 100 MPa. Finally, for epoxies not

chemically bonded to a surface, but attached only by van der Waals interactions (i.e. epoxies

on a SAM coated surface to prevent chemical bonding) the failure stress is 120 MPa, where

the same 2.6 factor has been used. Within the uncertainties the contribution to the failure

tensile stress due to chemical bonds and the contribution dye to van der Waals interactions
,,

.-
are equal. Ii addition, even the van”der Waals stress is larger than the yield stress which is

about 50 MPa.

The SAM systems can easily be modeled in the bead-spring system. To each of the

top su~ace beads, a two bead SAM chain is bonded. Two such SAM coated surfaces are

created. The stress to separate is calculated just as in the model network systems. Thea

methyl terminated case corresponds to no bond between the two SAMS; the SAMS interact

only through the LJ potential. In this case, the failure stress is 5.7 uo/d3. This implies that

11 .
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uo/&=320/5.7 =56 MPa. 13ybond~ng each of thetwo,SAM chains opposite each other,. .
,, ,, ,,

.’, .

the Cherqic+ly bonded-case is treated;’-ln t@s c~e; the failuie.str~ is 112’tio/&. This gives. . ... . ,,. ,- ,.. ., ,.,.
a map of uo/& = 3400/112 = 30 MPa. Being a“coa&-grai6ed model, the two maps are not

identical. An average value of uo/&. = 43 MPa gives the best approximation.,.

The failure stress of the bead-spring network is 6.0 e/d3. This stress value is about equal

to the nonbonded SAM failure stress. The above calculation from the experimental SAM

. data found that the epo~ failure stress would be about equal” to the methyl terminated

SAM failure stress. This a~eement is a dce consistency. ~

,. .,

D. Vimiation of s@ace bond density—..

Even though the actual value of the fracture stress is not equal to the ideal value, the

failure stress may still scale with N*. The dependence on ~b can be examined in a controlled .

manner by forbidding bonds to occur on a subset of the waU surface. Experimentally, this
,-

‘is done “by coating the siiiface ~th SAMS w~ch prevent chemi&l boriding ‘[5,20] . In the
:>. -: .. . . .“

simulat-ions, the bonding reactiori is simply forbidden in a &osen region on”the wall (Fig. --
1 :.-.. .
2). The’ fractional area of the wall surface covered ‘with bon&is denoted by C, the bonded

.. . .
,- ,.’ ,,

coverage. The” fractional number ,of bonds at coverage C’ with respect to full coverage is “

defined as nc = ~.(C)/~b(C = 1).’ Because crosshnkers above the edge of a nonbond wall
.,

region can move a little ~d bond to’ an open site, nc tends’ to be slightly larger than C.
.. --” ,.,;. . ,-,
~h~ jde~ fracture stress at coveragq, C.!s t!eg. ,., ~....- ,,..,,, “:.~.:..,, .’.- .-.. .. -- . .. .->..-....,. .,.’. . . ‘,.:: -,---.,”, ,-----

Similar to experimental studies [20] and to get a good statistical representation, a set

of rectangles on a grid (Fig. 2) were used as the nonbonding region. In the simulations an

●

8x3 grid was used. Experimentally, such grids coated with SAMS to prevent bonding can

be formed lithographically. However in comparison with such experiments, the simulation
,-

nonbonding regions are much smaller, at most 10 nm on a side. Much smaller debond regions

12



are possible experimentally by applying submonolayer coverages of SAMS [20], although the

controlled geometry is lost.

E. Tensile data

Figure 3 shows the tensile stress-strain curves for systems 1-4 at various C. The shape

of the stress-strain curves is similar for all the systems.

C = 1 corresponding to the various stress-strain regimes

the -systems fail interracial as discussed ‘above. The size

described.

The molecular deformations for

were described in sec. III A. All

and coverage effects will now be

The C = 1 stress-strain curve is a master curve for the lower coverage data. At C <1

the stress-strain curve follows that for C = 1 until the failure stress is reached at which

point the stress drops to zero. In the tensile mode, this yields two regimes of failure as a .

function of coverage. For low coverages (C ~ 0.25) failure occurs without any secondary rise

in the stress due to bond stretching. At high coverages (C z 0.5), bond stretching makes a

significant contribution.

The failure stress, of, does not vary with system size. At a given C, the shape of the

.

curve is independent of size. In systems 1 and 2, and for C = 1 in system 3, the yield stress

is about 4. Otherwise for systems 3 and 4, the yield stress is 3 with a much less pronounced

peak. On the other hand, the failure strain, et, does depend on the system size. Consider

systems 2 and 4 at C = O. For system 2, &f = 0.54, :but for system 4, et = 0.20. For the

large system, this &f corresponds to the system failing just aftei”the system has reached the

yield stress. This is what one expects for surfaces interacting only through LJ interactions.

F. Shear data

4

Figure 4 shows the shear mode data for systems 1-4. The yield stress in this case is

determined by C = O case which gives Ou = luo/d3 independent of the system size. This

stress corresponds

.,.’,’-, ., .,.. .,, .7.”-,.““,

to the friction force necessary to slide two surfaces with LJ interactions

13
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over each other. The fiction stress is’well known to be less than the tensile separation stress,

since the sliding particles need not fully separate [22,23]. For nonzero coverage below the

failure strain, the stress rises monotonically with increasing strain. As in the tensile mode,

the C = 1 stress-strain curve is a master curve. The O < C <1 cwwes follow this master
,,

curve until failure at which point the stress drops to the yield stress value or sliding friction

value.
.

The failure stress in the shear mode ‘at C = 1 is the same X in the tensile mode. The.,.,

failure ~ also hterfa&l. Thus, the” iriterfacial strength is the”same in either mode. This
.. ...

is not surprising at C = 1”wh&e the’ bond forces dominate in determining the interracial

failure stress. The failure stresses are identical for the two modes until the LJ interactions

dominate at low C in the tensile mode.

In contrast to the tensile mode, there is ‘no plateau regime in the shear stress-strain

curves. Since yielding in shear mode only involves sliding particles over each other, the
. .

particles are not separated at ‘the yield strain as in the tensile mode. In the shear mode,
.. . ,-,

the volume is conserved and the str~”to deform’the whole netiork incre~es ‘monotonically

. beyond the ~eld strain. ““

In the shear mode, the deformation-sequence is the same &
. .

strairis are larger due to geometric factors. As shown earlier the

,..

the tensile mode, but the

failure strain’ is related to

the strain necessary to make taut the minimal paths& the network from the bottom surface
. .

to the top surface. This requires a larger strain for the she~” mode th& for the tensile mode,.?.-,..- ‘.. .,... . :..,-’. .. . . . .. .. .,, .-. .“:
solely ‘due to”“geornetrnceffects-For ‘&i i~lti&l wall reparation-of_L%(0) fid the’’stie strain,,,. . . . . --t-
he separation of two points on the top and ‘bottom ‘walls with same (z, y) positions are

(1+ G)LZ(0) for terisile mode and i~Lz(0) for shear’ mode. For example, at &= 1, the
,,

length in tensile mode is 2LZ(0), but in shear mode, the length is only ~Lz(0). Thus, to

stretch the minimal paths the same length, the shear simulations must go to larger strains.
●

As in the tensile ,mode the failure strain decreases with system size. At C = 0.25 for

system 2, &f = 1.5, but for system 4 &j = 1.0. For the shear mode, the failure stress

predominantly has just one regime. For systems 3 and 4, a straight line could be fit through

14
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the (ef, of) points. This implies a linear relation between of and&f which will be shown in

sec. IV A.

I

(

IV. DISCUSSION

A. Failure stress
I

WMle the magnitude of the failure stress is not equal to the ideal fracture stress, the

failure stress can still scale as the ideal function. Specifically, let Nl and Nc be the number

of interracial bonds at full coverage (C = 1) and partizd coverage, C, respectively. Then, if

scaling holds, the stress at C is related to the stress at C = 1 by

(8)

The data for the failure stresses (Fig. 5) does in fact exhibit a Iinefi dependence for the

shear mode over the complete range of C. The linear fit to the shear data is ~ ‘ ~
.

-. .-

Gc = 5.4nC + 0.7 E (al – 00)72C+ 00, . . (9)

where O. is the failure shear stress at nc = O. The value of O. is not zero, due to the

frictional stress of the sliding surfaces.

As noted above the tensile data hss two regimes. At low nc (< 0.3) , the failure stress

. is equal to the plateau stress. At larger nc (~ 0.5), the fit equation is almost identical to

that for the shear data,

Oc = 5.3nc -t 0.8.

‘1

This equation can be written in terms of aP, 01, and n~ the crossover point,

!

1

(10)
}
I

(11)

Equation 10 given 01 = 6.2 and Op= 3.0 is obtained using n: = 0.4; for nc < n:, UC= OP.

This equation connects crPand n> to the y-intercept and slope of Eq. 10.

15 I
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B. Failure strain

For C = 1 it wassho~ eiwlier that the average minimal path determines the failure

strain. For C < 1 the average minimal path does not change much, but the failure strain

does. What happens as C decreases ~om 1 and how does this effect the failure strain? The

essential aspect is that the strain becomes inhomogeneous with distinct bulk and interracial

terms.

The fewer the bonds at the interface, the larger the inhomogeneity is.

Since the walls are pulled at constant ~elocity, a homogeneous strain would yield a linear

displacement profile in both the tensile and shear mode. The mechanism for deviations

horn the linear profile is exhibited in Fig. 6. The figure shows an image of a tensile pull

simulati& of system 2 at C’= 0.1 and e = 0.54. Tiny, nanometer scale cavities have formed
,.

on the bottom s&face above the regions which are not ,demically bonded to the bottom . .
-.

surface. A few bonds perilously attach the network to the’ bottom surface. The ptill off ~

occurs at about the same strain as for the completely nonbonded system. In the C = 0.1
., ,. ,’

system at e = 0.54, the stress has already dropped to 1.0 uo/d3 from the plateau stress (see

Fig. 3(b)). Most of the drop in the stress is due to this pull off as’it occurs before the bonds
. ,,

!.. .

break. The corkeqtience ofthe iiterfacial ca~ties is that the displacement near the bottom
,,., ... . , .,

&rface is larger thag the.uniform linear profile. ‘. :‘ ,’-... ,,- ~ ;.
. .. . . . .-...- . .., .,, . . . .::, :. .,

.-. , . . . ..
Displacement profiles for this system have been calculated i~the following manner. The

,“

displacement of each p~icle at a given e relative toe = Ois calculated. Then these particle

displacements are averaged into bins which are layers parallel to the walls. Figure 7 shows the

displacement curves for the system of Fig. 6. The first few bins include the wall particles. ”
.

At the strain of Fig. 6 the displacement field shows a large increase at small z near the

bottom surface due to the cavity formation. The increase is due to the cavity formation and

produces increased stress on the bonds to the surface. The figure shows the progression of

16
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this increased interracial displacement starting from E = 0.30 where the profile is uniform

and linear.

In general, the C = O and C = 1 cases provide boundary values of the failure strain.

- For O < C <1, the nonbonded regions will pull off the bottom surface forming cavities

at a strain between the failure strains for C = O and C = 1. This will yield an excess in

strain or strain localization at the interface. The strain localization causes the segments of

the minimal paths within the interracial region to be excessively stretched. In other words,

strain localization is the mechanism by which part of a minimal path can become taut

without the whole path becoming taut. Bonds within these segments can and do break well

before ep.

Figure 9 shows the failure strains as a iimction of coverage for system 3 (almost identical

to system 4) for tensile and shear modes. The linear fit to the data is ~

Ef(nc) = 0.61nc + 0.80.; (13)

The linear behavior is obeyed for the shear data except at w = Ofor which no bonds are

broken. Thus, the y-intercept is not equal to the nc = O fail~e strain. There is insufficient

data to study how the failure strain must tend toward &f(0) as nc goes to zero. At small C

the number of interracial bonds is small yielding poor statistics.

In the shear mode, cavities cannot form at the surface since the volume is conserved.

The strain localization still occurs as shown in Fig. 8. The deviation fkom the linear profile

occurs in a ve~” narrow region at the surface.’” h shem” modej -the interracial part of the

network in the nonbonded regions can slip over the solid surface. Thus, it does not displace

as far as the solid surfaces or the interracially bonded part of the network. Figure 8 shows

the average displacement hear the bottom wall tends to be closer to Othan the wall value.

In other words, only the part of the network that must move with the wall does; the rest
●

shears as little as it can. This results in a split between bulk and interracial strain. Then,

just like the inhomogeneity in the tensile strain, this gives the mechanism for a constraint

on the minimal path segments which forces them to stretch ats < ~p.
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For the tensile data hi Fig. 9,,the”linear relation is cotiistent (albeit for tkee data points)

at nc > n~. For nc < n~, the failure is dominated by van der Waals interactions which

yields a diiferent behavior. In tensile, the van der Wads interactions ‘are relatively strong

in comparison with the bond iriteractions. -This suggests that the deviation from the failure. . . .

strain which is based on bonded interactions should occur at a much larger C for tensile

than for shear simulations. ,-

C. Model Modifications

There are a variety of changes to the model that can be made. Some of these would be

basic improvements; others would be to treat the variety of systems available. The system

treated here has identical LJ interaction parameters for al species. It is easy to input

differing parameters. Some work has already been done to examine the effect of varying

polymer-substrate interaction. Varying the relative preference of the crosslinker and resin ,

to the surface is another important issue to be studied. This directly effects the number of
.. . ,. ,-, ,-

interfaci$ density of crosdinkers “and”consequently, the interfacia number of bonds. . . ,

Th& stifbss of the strarids effects the failure ‘“strainsdirectly. In the present model, the
.,

strands are completely flexible and ,the extension ratio is large. To make the strands stiffer

a bond bending interaction’ could be added. The form would have to allow bond breaking
,, -,. .

which ‘most bond “bending pot&&Ji’ do ‘not’do~””V““ ‘ ~~~ : “‘
-.

. . .. . . .----...... . . ..’”. -------- ,, ..
,~ teti of the mininyd paths, bond~~ending”condrains the’ range of accessible angles... .. . .. .-.-., ;. ~..,. >.,..::.-:.. .. :,’ :.,. .--:-~ .: .,.-.,.,. .... -. ,.. . . .

With bond bendhg, the minimal path may be longer thari th~fa&re s&iin, since bonds
,.

could break at angles less than 180°. In this case, the minimal path length maybe redefined
..

not to be the contour path, but to be the maximal extension length of the minimal path.
,.

The next issue is whether failure could occur at strains even smaller than that corresponding

●
✌✍

to the maximal extension length. This is equivalent “to askirig whether the addition of bond

bending constraints is sufficient to cause strain inhomogeneities. As discussed above, once

inhomogeneity can occur the failure mechanism becomes more local to the inhomogeneous

-.
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region. To answer these issues will require the development and addition of an appropriate

bond bending potential.

The number of bonds from the network to the solid surface is the critical determinate of

whether failure is cohesive or adhesive. In the present simulations, the crosslinkers bonding

to the surface only make a single bond. It is possible for the crosslinkers to make three bonds,

but evidently this possibility is low. Thus, to treat system that can cohesively fail, the system

would have to be altered such that the bonding probability to the surface increases. One

simple means to do this is to increase the density of surface bonding sites; this is equivalent

to increasing the wall density. This will have the concomitant effect of strengthening the

wall-network LJ interaction which may not be wanted. This can be compensated for by

reducing the value of U. in the wall-network LJ interactions. Another possibili~ is to allow

multiple bonds from a crosslinker to a single bond site. ThK would require strengthening the
.,

wall spring constant, since two bonds pulling on the site will be able to pull the wall bead -

well out of the solid structure. The larger spring constant may require a smaller timestep
, ,

which is a big price to pay. Treatment of th~ issue will be done in a iiture work.
,J~ .-

V. CONCLUSIONS

The initial results have been presented for coarse-grained, bead-spring molecular dy-

namics simulations of the fracture of highly crosslinked polymer networks bonded to a solid

surface. The correspondence between the .stress-itrain curve and.the sequence of molecular.,. ,., , ,’. -“. . .,.,
deformations has been detailed. For the present model, bonds are not stretched until strains

much larger than the yield strain have been reached. The failure strain for a filly bonded

surface is equal to the strain necessary to make taut the average minimal path through the

network ‘from the bottom solid surface to the top surface. At bond coverages less than full,
●

nanometer scale cavities form at the surface. This yields an inhomogeneous strain profile

with a bulk and an interracial term. This inhomogeneous strain is an additional constraint

on the network which results in segments of the minimal path near the interface becoming

19
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taut well before the i%ll path. The f@lgre strain h Ijnearly proportional to the number of
.

bonds at the interface. Similarly the failure str~- has a’ linear dependence on the number

of bterfacial bonds.

In the simulations presented here, failure is always interracial. The number of bonds at

the interface is smaller than in the bulk. This interracial deficit is an automatic consequence

of the network formation of the solid surfaces.

ThE work was supported by the DOE under contract DEACO+94AL8500. Sandia is a

multiprogr~ laboratory operated by Sandia Corp., a Lockheed Martin Company, for the “

DOE.
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TABLES

TABLE I. Systemparameters.

No. no. particles area height

1 14000 Al= 643 15.1

2 51500 3A1 = 1928 19.9

3 91000 1928 39.2

4 170000 1928 77.0

.
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FIG. 1. The tensilestress-straincurve for the fully bonded case of system 2. The points mark

the strainsat whichbond breakingoccurs.

FIG. 2. The checkerboardpattern used to create debond areasof varyingsize is schematically

I
...

1’

shown. The black squaresrepresentthe debond regions. The size of the squaresdeterminethe

fraction ofdebond area. . ,,- . . - ‘,” ‘
....... .. .-,,. .,.
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FIG. 3. The tensile stress-strain curves for systems 1 (a), 2 (b), 3 (c) and 4 (d). The point

represent dflerent coverages at the bottom surface: 0% (solid triangle), 10% (solid square), 25%

(solid circle), 50%, (open triangle), 75% (open square), 100% (open ckcle).
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FIG. 4. She& simulation data. Points &e same as Fig. 3.
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FIG. 5. Failurestress in tensile (squares)and shear (circles) simulationsas a function of the

fractionalnumberof interfa&l bonds.

FIG. 6. Image of system 2 at ‘C = 0.1 under tensilepull at c = 0.54. The pull off above the

“ nonbonded regionsat the bottom surfaceis clearlyexhibited.
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FIG. 7. The displacement profile for system 2 at C = 0.1 under tensile pull. The data are for

the following strains: 0.54 (circle), 0.49”(square), 0.40 (triangle), 0.30 (open square). The circle

data is for the strainof Fig. 6. The straightlineis a fit to e = 0.30 data excludingthe threepoints

on both ends which corresponds to the solid surfaces

-5

0 5 10 15 20
z

FIG. 8. The dispkcement profile for system 2 at C = 0.1 in shear mode. The data are for the

followingstrains: 1.52 (circle), 1.32 (square), 0.99 (triangle), 0.86 (open square). .The straight line

is a fit to E = 0.86 data excluding the three points on both ends which corresponds to the solid

surfaces.
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FIG. 9. Failurestrain in tensile (squares) and shear (circles) simulationsas a function of the

fractionalnumberof interfacWbonds. A straightline has been fit to the sheardata excludingthe .

nc = Opoint, and then the same line but differentslope is plotted on the tensiledata.
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