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At very high energies, weak coupling, non-perturbative methods can be used to 
study classical gluon production in nuclear collisions. One observes in numerical 
simulations that after an initial “formation” time, the produced partons are on 
shell, and their subsequent evolution can be studied using transport theory. At 
the initial formation time, a simple non-perturbative relation exists between the 
energy and number densities of the produced partons, and a scale determined by 
the saturated parton density in the nucleus. 

An outstanding problem in high energy scattering is the problem of ini- 
tial conditions for particle production ‘. In perturbative &CD, for processes 
which involve a hard scale Q2 >> A&o, the hard and soft contributions can 
be factorized. The soft contributions are lumped into non-perturbative, pro- 
cess independent parton distribution functions, while the hard contributions 

are computed for each physical process of interest. For a fixed hard scale of 
interest Q2, there is a center of mass energy fi beyond which this approach 

in particular, and the operator product expansion (OPE) in general breaks 
down 2. However, since the parton densities in this regime are large, weak 

coupling classical methods may be applicable 3. Wilson renormalization group 
methods have been developed for this high parton density regime 4. 

At small z, classical parton distributions in a nucleus can be computed 
in a model with a dimensionful scale p2 proportional to the gluon density per 
unit transverse area. In this model, parton distributions saturate at a scale 
QS 0; g2p. For Au-Au collisions at RHIC, one can estimate QS N 1 GeV, 
and at the LHC, the saturation scale will be QS N 2-3 GeV. Most of the 
gluons produced therefore have transverse momenta kt N Qs, and since this 
scale for RHIC and LHC is at least marginally a weak coupling scale, these 
classical methods may be applied to study the production and initial evolution 
of partons at RHIC and LHC. 

These classical methods were first applied to nuclear collisions by Kovner, 
McLerran and Weigert 5. For an interesting alternative approach, see Ref. ‘j. 
Assuming boost invariance, and matching the equations of motion in the 
forward and backward light cone, they obtained the following initial condi- 
tions for the gauge fields in the A’ = 0 gauge: A>lT=O = -4”; + Ai , and 



A*~,,o = f % x*[Af,Aa]. Here Ai,2(p*) (i = 1,2) are the pure gauge trans- 
verse gauge fields corresponding to small z modes of incoming nuclei (with 
light cone sources p* S(zF)) in the 19(&r-)@(rz+) regions respectively of the 
light cone. 

The sum of two pure gauges in QCD is not a pure gauge-the initial condi- 

tions therefore give rise to classical gluon radiation in the forward light cone. 

For pt >> crsp, the Yang-Mills equations may be solved perturbatively to 
quadratic order in crsp/pt. After averaging over the Gaussian random sources 
of color charge p* on the light cone, the perturbative energy and number 

distributions of physical gluons were computed by several authors 5,7. In the 
small z limit, it was shown that the classical Yang-Mills result agreed with 
the quantum Bremsstrahlung result of Gunion and Bertsch *. 

In Ref.‘, we suggested a lattice discretization of the classical EFT, suitable 
for a non-perturbative numerical solution. Assuming boost invariance, we 
showed that in A’ = 0 gauge, the real time evolution of the small z gauge fields 
Al(zt, T), Aq(zt, T) is described by the Kogut-Susskind Hamiltonian in 2+1- 
dimensions coupled to an adjoint scalar field. The lattice equations of motion 
for the fields are then determined straightforwardly by computing the Poisson 
brackets. The initial conditions for the evolution are provided by the lattice 
analogue of the continuum relations discussed earlier in the text. We impose 
periodic boundary conditions on an N x N transverse lattice, where N denotes 

the number of sites. The physical linear size of the system is L = a N, where a 
is the lattice spacing. It was shown in Ref. lo that numerical computations on 
a transverse lattice agreed with lattice perturbation theory at large transverse 
momentum. For details of the numerical procedure, and other details, we refer 
the reader to Ref. lo. 

In our numerical simulations, all the relevant physical information is com- 

pressed in g2p and L, and in their dimensionless product g2,uL “. The strong 
coupling constant g depends on the hard scale of interest; p 0; Ali6 depends 
on the nuclear size, the center of mass energy, and the hard scale of interest; 
L2 is the transverse area of the nucleus. Assuming g = 2 (or cxs = l/r), 
p = 0.5 GeV (1.0 GeV) for RHIC (LHC), and L = 11.6 fm for Au-nuclei, 
we find g2pL M 120 for RHIC and x 240 for LHC. (The latter number would 
be smaller for a smaller value of g at the typical LHC momentum scale.) As 
will be discussed later, these values of g2pL correspond to a region in which 
one expects large non-perturbative contributions from a sum to all orders in 
- 6 aSp/pt, even if CYS << 1. We should mention here that deviations from 
lattice perturbation theory, as a function of increasing g2pL, were observed in 
our earlier work lo. 

In Ref. ‘z, n-e computed the energy density E as a function of the proper 
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time r. This computation on the lattice is straightforward. To obtain this re- 

sult, we computed the Hamiltonian density on the lattice for each p*, and then 

took the Gaussian average (with the weight p2) over between 40 p trajectories 
for the larger lattices and 160 p trajectories for the smallest ones. 

The dependence of ET as a function of r was investigated in our numer- 
ical simulations. For larger values of g2pL, ET increases rapidly, develops a 
transient peak at T N l/g2p, and decays exponentially there onwards, satis- 
fying the relation CY + /3 e- v to the asymptotic value (Y (equal to the lattice , 
dE/L2/dv!). This behavior is satisfied for all g2pL > 8.84, independently of 
N. One can interpret the decay time 70 = l/y/g2p as the appropriate scale 
controlling the formation of gluons with a physically well defined energy. In 
other words, TD is the “formation time”in the sense used by Bjorken 13. 
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Figure 1: ET/(g2p)3 extrapolated to the continuum limit: f as a function of g’pL. The 
error bars are smaller than the plotting symbols. 

The physical energy per unit area per unit rapidity of produced gluons can 
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be defined in terms of a function f (g2pL) as 

1dE 1 --= 
L2 dq 92 f(g2ClL) (g2P)3. 

The function f here is obtained by extrapolating our results for finite lattice 
spacings to the continuum limit. In the region of physical interest for heavy 
ion collisions, f varies very slowly. It changes by - 25% for nearly an order of 
magnitude change in g2,uL. The saturation scale Qg - 6 asp-one can therefore 
rewrite our result for the energy density in terms of Q8. 

Doing so, we confirmed that our results are consistent with an estimate 
by A. H. Mueller l4 for the number of produced gluons per unit area per unit 
rapidity. He obtains dN/L2/dv = c (Nz-1) Q2/47r2 cys N,, and argues that the 
number c is a non-perturbative constant of order unity. If most of the gluons 
have pt - Qs, then dE/L2/dv = c’ (Nz - 1) Qi/47r2 (YS N, which is of the same 
form as our Eq. 1. In the g2pL region of interest, our function f M 0.23-0.26. 
We obtain c’ = 4.3-4.9. Since one expects a distribution in momenta about Qs, 
it is very likely that c’ is at least a factor of 2 greater than c-thereby yielding 
a number of order unity for c as estimated by Mueller. This coefficient can 
be determined more precisely when we compute the non-perturbative number 
and energy distributions r5. 

In Ref. 12, we estimated the initial energy per unit rapidity of produced 
gluons at RHIC and LHC energies. We did so by extrapolating from our SU(2) 
results to SU(3) assuming the N, dependence to be (Nz - l)/Nc as in Mueller’s 
formula. At late times, the energy density is E = (g2p)4 f(g2pL) y(g2pL)/g2, 
where the formation time is rD = l/r(g2pL)/g2p as discussed earlier. We 
find .sRHIC M 66.49 GeV/fm3 and ~~~~ M 1315.56 GeV/fm3. Multiplying 
these numbers by the initial volumes at the formation time TD, we obtained 
the classical Yang-Mills estimate for the initial energies per unit rapidity ET 
to be EFHIC M 2703 GeV and E$HC M 24572 GeV respectively. 

Compare these numbers to results presented recently by Kajantie16 for the 
mini-jet energy (computed for pt > paat, where psat is a saturation scale akin 
to QS) in the pQCD mini-jet approach 17. He obtains EFHIc = 2500 GeV 
and E$HC = 12000. The remarkable closeness between our results for RHIC is 
very likely a coincidence. Kajantie’s result includes a K factor of 1.5-estimates 
range from 1.5-2.5 la. For the latest estimates from our Finnish colleagues, see 
the preprint of Eskola et al. 20. If we pick a recent value of K M 2 lg, we obtain 
as our final estimate, EpHIC M 5406 GeV and EGHC M 49144 GeV. 

We can also boldly estimate the number of produced gluons at central 
rapidities. As mentioned in the preceding text, the value of the constant c 
in the expression for the number distribution is currently being computed 
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numerically. We obtain for Au-Au collisions in one unit of rapidity the result 
that NRHIC = 714 * c and NLHC = 2855 . c. Given that the corresponding 
constant for the energy density was larger, we would anticipate that it is more 
likely that c = 2-2.5. Taking the higher value, we obtain NRHIC = 1785 and 
NLHC = 7138. Again, these values are very close to those of Eskola et al. 
20. Note that they consider Pb-Pb collisions and their results include a K 

factor of 2. The purpose of this simple exercise is primarily to confirm that 
our numbers are not wildly divergent from mini-jet calculations. Our results 
are typically a factor of two larger (more at LHC) but this is easily understood 
because our results include all momentum modes. 

The number density of these out-of-equilibrium gluons can be related to 
the equilibrium entropy: Sglve = 3.6.N,l,,. This is particularly so at the LHC, 
where because Qa >> A&n, elastic scattering dominates. The equilibrium 
entropy of gluons is, to within a factor of two, (which can be quantified in 
one’s thermal+hydro model of choice), the entropy of pions. 
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