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At very high energies, weak coupling, non—perturbative methods can be used to
study classical gluon production in nuclear collisions. One observes in numerical
simulations that after an initial “formation” time, the produced partons are on
shell, and their subsequent evolution can be studied using transport theory. At
the initial formation time, a simple non-perturbative relation exists between the
energy and number densities of the produced partons, and a scale determined by
the saturated parton density in the nucleus.

An outstanding problem in high energy scattering is the problem of ini-
tial conditions for particle production!. In perturbative QCD, for processes
which involve a hard scale Q? > A%, the hard and soft contributions can
be factorized. The soft contributions are lumped into non-perturbative, pro-
cess independent parton distribution functions, while the hard contributions
are computed for each physical process of interest. For a fixed hard scale of
interest )2, there is a center of mass energy /s beyond which this approach
in particular, and the operator product expansion {(OPE) in general breaks
down 2. However, since the parton densities in this regime are large, weak
coupling classical methods may be applicable®. Wilson renormalization group
methods have been developed for this high parton density regime?.

At small z, classical parton distributions in a nucleus can be computed
in a model with a dimensionful scale u? proportional to the gluon density per
unit transverse area. In this model, parton distributions saturate at a scale
Qs o g?u. For Au-Au collisions at RHIC, one can estimate Q, ~ 1 GeV,
and at the LHC, the saturation scale will be @, ~ 2-3 GeV. Most of the
gluons produced therefore have transverse momenta k; ~ @4, and since this
scale for RHIC and LHC is at least marginally a weak coupling scale, these
classical methods may be applied to study the production and initial evolution
of partons at RHIC and LHC.

These classical methods were first applied to nuclear collisions by Kovner,
McLerran and Weigert °. For an interesting alternative approach, see Ref. 6.
Assuming boost invariance, and matching the equations of motion in the
forward and backward light cone, they obtained the following initial condi-
tions for the gauge fields in the A™ = 0 gauge: A} |,—0 = A} + 4%, and
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At o=+ 12-‘1 zE([AL, AL). Here A} 5(p*) (i = 1,2) are the pure gauge trans-
verse gauge fields corresponding to small z modes of incoming nuclei (with
light cone sources p* §(z¥)) in the §(£z~)8(Fzt) regions respectively of the
light cone.

The sum of two pure gauges in QCD is not a pure gauge-the initial condi-
tions therefore give rise to classical gluon radiation in the forward light cone.
For py >> agpu, the Yang-Mills equations may be solved perturbatively to
quadratic order in asu/p;. After averaging over the Gaussian random sources
of color charge p* on the light cone, the perturbative energy and number
distributions of physical gluons were computed by several authors ®7. In the
small z limit, it was shown that the classical Yang-Mills result agreed with
the quantum Bremsstrahlung result of Gunion and Bertsch 8.

In Ref.?, we suggested a lattice discretization of the classical EFT, suitable
for a non-perturbative numerical solution. Assuming boost invariance, we
showed that in A™ = 0 gauge, the real time evolution of the small z gauge fields
Ay (ze,7), A"(x¢,7) is described by the Kogut-Susskind Hamiltonian in 2-+1-
dimensions coupled to an adjoint scalar field. The lattice equations of motion
for the fields are then determined straightforwardly by computing the Poisson
brackets. The initial conditions for the evolution are provided by the lattice
analogue of the continuum relations discussed earlier in the text. We impose
periodic boundary conditions on an N x N transverse lattice, where N denotes
the number of sites. The physical linear size of the system is L = a N, where a
is the lattice spacing. It was shown in Ref. 1% that numerical computations on
a transverse lattice agreed with lattice perturbation theory at large transverse
momentum. For details of the numerical procedure, and other details, we refer
the reader to Ref. 10,

In our numerical simulations, all the relevant physical information is com-
pressed in g?4 and L, and in their dimensionless product g?uL!!. The strong
coupling constant g depends on the hard scale of interest; ;1 o< A/® depends
on the nuclear size, the center of mass energy, and the hard scale of interest;
L? is the transverse area of the nucleus. Assuming g = 2 (or as = 1/7),
¢ = 0.5 GeV (1.0 GeV) for RHIC (LHC), and L = 11.6 fm for Au—nuclei,
we find g?uL =~ 120 for RHIC and ~ 240 for LHC. (The latter number would
be smaller for a smaller value of g at the typical LHC momentum scale.) As
will be discussed later, these values of g?uL correspond to a region in which
one expects large non-perturbative contributions from a sum to all orders in
~ 6asu/pt, even if ag <« 1. We should mention here that deviations from
lattice perturbation theory, as a function of increasing g2 L, were observed in
our earlier work 10,

In Ref. 2, we computed the energy density € as a function of the proper
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The dependence of e7 as a function of 7 was investigated in our numer-
ical simulations. For larger values of g?uL, e7 increases rapidly, develops a
transient peak at 7 ~ 1/¢g%u, and decays exponentially there onwards, satis-
fying the relation o + Be~77, to the asymptotic value a (equal to the lattice
dE/L?/dn!). This behavior is satisfied for all g°uL > 8.84, independently of
N. One can interpret the decay time 7p = 1/v/g?u as the appropriate scale
controlling the formation of gluons with a physically well defined energy. In
other words, 7p is the “formation time”in the sense used by Bjorken 3
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Figure 1: e7/(g?u)® extrapolated to the continuum limit: f as a function of g°uL. The
error bars are smaller than the plotting symbols.

The physical energy per unit area per unit rapidity of produced gluons can
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be defined in terms of a function f(g?uL) as

d
% % = gizf (g*uL) (g°w)® . 1)

The function f here is obtained by extrapolating our results for finite lattice
spacings to the continuum limit. In the region of physical interest for heavy
ion collisions, f varies very slowly. It changes by ~ 25% for nearly an order of
magnitude change in g?uL. The saturation scale Q, ~ 6 agu—one can therefore
re—write our result for the energy density in terms of @,.

Doing so, we confirmed that our results are consistent with an estimate
by A. H. Mueller 1 for the number of produced gluons per unit area per unit
rapidity. He obtains dN/L?/dn = ¢ (N?—1) Q?/4n* ag N,, and argues that the
number ¢ is a non—perturbative constant of order unity. If most of the gluons
have p; ~ Qs, then dE/L?/dn = ¢' (N2 —1) Q3/4n? ag N, which is of the same
form as our Eq. 1. In the g2uL region of interest, our function f = 0.23-0.26.
We obtain ¢’ = 4.3-4.9. Since one expects a distribution in momenta about Q,,
it is very likely that ¢’ is at least a factor of 2 greater than c-thereby yielding
a number of order unity for ¢ as estimated by Mueller. This coefficient can
be determined more precisely when we compute the non—perturbative number
and energy distributions 5.

In Ref. '2, we estimated the initial energy per unit rapidity of produced
gluons at RHIC and LHC energies. We did so by extrapolating from our SU(2)
results to SU(3) assuming the N, dependence to be (N2 —1)/N, as in Mueller’s
formula. At late times, the energy density is € = (g%p)* f(9°uL) v(g*1L)/g?,
where the formation time is 7p = 1/v(g?uL)/g*n as discussed earlier. We
find eRHIC ~ 66.49 GeV/fm® and eXHC ~ 1315.56 GeV/fm®. Multiplying
these numbers by the initial volumes at the formation time 7p, we obtained
the classical Yang—Mills estimate for the initial energies per unit rapidity Ep
to be ERHIC ~ 2703 GeV and EXHC ~ 24572 GeV respectively.

Compare these numbers to results presented recently by Kajantie'® for the
mini—jet energy (computed for p; > psat, where p,,; is a saturation scale akin
to Q) in the pQCD mini-jet approach !7. He obtains EFHIC = 2500 GeV
and EEHC =12000. The remarkable closeness between our results for RHIC is
very likely a coincidence. Kajantie’s result includes a K factor of 1.5-estimates
range from 1.5-2.518. For the latest estimates from our Finnish colleagues, see
the preprint of Eskola et al.?°. If we pick a recent value of K =~ 2'°, we obtain
as our final estimate, EfP7C ~ 5406 GeV and EXHC ~ 49144 GeV.

We can also boldly estimate the number of produced gluons at central
rapidities. As mentioned in the preceding text, the value of the constant ¢
in the expression for the number distribution is currently being computed
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numerically. We obtain for Au-Au collisions in one unit of rapidity the result
that Nrgrc = 714-c and Npgc = 2855 - ¢. Given that the corresponding
constant for the energy density was larger, we would anticipate that it is more
likely that ¢ = 2-2.5. Taking the higher value, we obtain Nrg;c = 1785 and
Nruc = 7138. Again, these values are very close to those of Eskola et al.
20, Note that they consider Pb-Pb collisions and their results include a K
factor of 2. The purpose of this simple exercise is primarily to confirm that
our numbers are not wildly divergent from mini-jet calculations. Our results
are typically a factor of two larger (more at LHC) but this is easily understood
because our results include all momentum modes.

The number density of these out-of-equilibrium gluons can be related to
the equilibrium entropy: Sgiue = 3.6-Ngiye. This is particularly so at the LHC,
where because Q2 3> A2 .p, elastic scattering dominates. The equilibrium
entropy of gluons is, to within a factor of two, (which can be quantified in
one’s thermal+hydro model of choice), the entropy of pions.
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