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Abstract
Our paper focuses on fully automated
analysis of failure event data in the
concept and early development stage of a
semiconductor-manufacturing tool. In
addition to presenting a wide range of
statistical and machine-specific
performance information, algorithms
have been developed to examine
reliability growth and to identify major
contributors to unreliability. These
capabilities are being implemented in a
new software package called Reliadigm.

When coupled with additional input
regarding repair times and parts
availability, the analysis software also
provides spare parts inventory
optimization based on genetic
optimization methods. The type of
question to be answered is: If this tool
were placed with a customer for beta
testing, what would be the optimal
spares kit to meet equipment reliability
goals for the lowest cost? The new
algorithms are implemented in
Windows@ software and are easy to
apply.

This paper presents a preliminary
analysis of failure event data from three
IDEA machines currently in
development. The paper also includes
an optimal spare parts kit analysis.

Introduction

Early identification of reliability issues
has become more important as
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MTBF, MTBI, MTTR, and availability-
requirements as part of the binding
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performance metrics that will be used to
evaluate our tools. These requirements
can be tied to “stiff” financial penalties
that translate directly to system margins
and gross profit. Tools that can be used
to identify and help correct reliability
issues are therefore becoming more
important. One of the available tools is
the Reliadigm reliability analysis
software. Reliadigm is part of the
Reliadigm Reliability Suite, tools and ,
technologies originally developed by
Sandia National Laboratories.
Reliadigm is a highly configurable
software tool that can provide a wide
array of reliability analysis results from
raw failure event data. In addition to
user-definable reliability metrics, the
software performs sensitivity and
variability analysis. Reliadigm also
includes an optimization capability that
can be applied to spare parts inventories
or to reliability trade-off studies. The
capability of the software to aid in
MTBF and MTTR analysis makes it an
ideal candidate as a software analysis
tool, particularly when combined with
the optimization capabilities.

To test the capability of the software, a
reliability database (in the form of failure
event records) based on product
development was used. So as not to
reveal the true product under
development, a fictitious product is
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called IDEA (Implant Depth Estimation
& Analysis) tool was created for this
analysis. IDEA is a concept. The
modules described do not exist and any
resemblance between this and any
existing tool is strictly accidental.
However, the reliability data used in this
analysis is based on actual development
projects and does have a basis in fact.
The data has been modified to hide the
true identity of the projects. System up
times and wafer counts are similarly
based on development projects.

Results and Discussion

Data Collection

The failure event data used in the
analysis is a highly modified (to disguise
the original projects) series of system
failure records taken from three similar
systems. The records are based on actual
failure events recorded during early
product development. The records are
entered into a Microsoft Access@ two-
part database that records wafer
transfers, machine states, and failure

January through December 1999. The
data was not specifically taken for this
analysis and’some data for the individual
failure records is based on best
estimates. The majority of the records
indicate software, software induced, or
communication between modules as
failure modes. This is not unexpected
during early product development. The
failure data collection and system run
information was performed using a
Reliability Database Main Table. The
Table has pull-down menus based on the
product structure and failure modes as
identified by the FMECA. The table
simplifies the data entry into the Access
database. The database can be queried to
provide the input for the analysis.

Failure Event Data

Failure event data were available for
three IDEA machines. For two of the
machines, the data sets covered about a
year while the third data set covered only
about a one-month time period. The
dates are provided in Table 1.

data. The time-frame of the data is from
Machine 1 Machine 2 Machine 3

Start Date 01/09/1999 01/18/1999 11/15/1999
End Date 12/17/1999 01/04/2000 12/16/1999
Number of Failure Events 372 191 36
Total Hours 8,232 8,448 768
Productive Hours 1,563 641 111
Non-Scheduled Hours 5,373 7,398 590
Unscheduled Downtime 1,296 409 67

Table 1. Machine Data Sets

The raw event data was provided in a
spreadsheet format and included, for
each failure event, a machine identifier, a
failure location and failure mode
identifier (module, submodule, failure
mode and failure code), a failure event
date, and repair time. Also included
were daily and cumulative values of

tractor time, wafer cycles, and power on
time. For this analysis, machines were
assumed to be productive when tractor
time was reported and to be in “standby”
mode (i.e., nonscheduled time) at all
other times when not being repaired.
The machines were assumed to be in one
of these three states at all times. The
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data sets contained only failure events:
we generated corresponding standby
events in the spreadsheet to accurately
account for nonscheduled time rather
than simply using an average utilization
fraction. As failure times were not
available, we assumed that the first
failure on any given day occurred at
12:00 am and that any productive time
immediately preceded the corresponding
failure event.

Preparing the failure event data for
analysis provided some lessons both in
terms of what data to record as well as
how to record the information. For
example, the time taken to repair failures
was not recorded contemporaneously
with the failure. This meant that
technicians were required to estimate
repair times after the fact, a time-
consuming process after the event but
information that would have taken
seconds to record at the time. Similarly,
the time of day could have been recorded
for each failure to make the process of
time accounting more accurate. Finally,

the failure coding scheme, while
hierarchical, could have benefited from
having dashes separate the different
levels of the hierarchy. For example,
PRO-WFR-SC-TILT is more easily
interpreted than PROWFRSCTILT.

The failure event data was imported into
Reliadigm for analysis. The Reliadigm
Import Wizard performs a sequence of
checks and then provides data
summarized by machine. When event
data importing is complete, the software
automatically (i.e., with no further user
interaction) builds a reliability model
and performs the statistical calculations
needed. At this point, the complete
range of Reliadigm analysis results is
immediately available.

Reliability Analysis Results

Figure 1 shows a Reliadigm histogram
of MTBF based on statistical analysis of
data from all three machines. The range
of values is from about 2.5 to 5 hours of
operational time between failures.

Figure 1. Histogram of MTBF for the Three-Machine Sample

Figure 2 shows a bar chart of actual MTBF values in the histogram is wider
MTBF values for the three machines. than the actual machine MTBF values
The MTBF values are Machine 1 (4,2 because the statistical analysis seeks to

hours), Machine 2 (3.4 hours), and characterize the population of machines

Machine 3 (3 hours). The range of based, in this case, on a sample size of 3.
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Flgure2. MTBFValues by Machine

To see which failure modes have the
greatest influence on MTBF, consider
the Reliadigm sensitivity plot shown in
Figure 3. The Pareto plot shows that the
Process Module Load Lock Software is,
statistically, the largest contributor to
system failure. It also shows that there is
considerable variability in this result
from machine to machine. This can be
seen in Figure 3 by looking at the
percentiles for each failure mode. The

percentiles indicate that the fractional
contribution of the “Proc LL Software”
failure mode ranges from less than one
percent to about 7 percent of all failures.
In fact, “Proc LL Software” occurred
three times in only 111 hours of
operation on Machine 3 but was seen
twice on Machine 1 (1,563 hours of
operation) and twice on Machine 2 (64 1
hours of operation).

Figure 3. Pareto of Contributors to System Failure

The Reliadigm software used for this three machines. Notice that “Proc LL
analysis also provides a wide range of Software” is the most frequently
equipment-specific results. For occurring failure mode on Machine 3 but
example, Figure 4 shows the most is not among the top ten most frequent
frequently occurring failure modes for failure modes on Machines 1 and 2.
each of the
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Figure 4.
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Most Frequently Occurring Failure Modes

To see if the system MTBF varied over both Machines 1 and 2 in the first three
the duration of the data, we plotted time intervals, but increases slightly in
MTBF over three month time intervals. the fourth interval. Note that Machine 3
The result is shown in Figure 5. The did not operate in the first three quarters
plot indicates that MTBF decreases for of the test period.

Figure 5. Time Plot of MTBF by Machine

Optimal Spares Kit Analysis

The second phase of this study involved
an optimal spares kit analysis. An
optimal spares kit is the set of spare parts
that, for a given kit cost, minimizes
downtime. For example, if a single
IDEA tool were sent to a customer for
beta testing, the optimal spares kit is the
best possible set of spare parts, for a
given budget, that could be sent with the
machine to minimize downtime. The

Reliadigm software has the ability to
perform optimization analysis to
determine the optimal spares kit to
support a single machine and can also be
used to determine the optimal spares
inventory to support multiple machines.
Only the optimal spares kit analysis is
reported here.

To setup the analysis, we first defined a
complete set of spares for the IDEA tool.
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Although the failure event data revealed
almost 300 failure modes, a large
fraction of these failure modes were
software-based, did not require spare
parts, and had relatively short

downtimes. For failures requiring a
spare part, downtime with the spare on
hand was estimated based on experience.
Downtime without the spare was
calculated by adding an urgent-shipping
time of 24 hours to the downtime with
spare. We also assumed that the normal
time taken to restock a spare was 2
weeks. These assumptions could easily
be modified based on local conditions.
The purchase cost for each spare part
was included in the analysis but,
although Reliadigm can account for
storage costs in the calculations, these
were not included in this application.

Based on this problem setup, there are
more that 3 x 10]5 possible spare part
kits to be considered. Reliadigm uses a
powerful genetic algorithm to find the
optimal spares kit for different budgets.
Space does not permit us to list an
optimal spares kit here. However, one .
way to present the results is to plot, for
different values of budget, the average
downtime for the optimal spares kit.
Figure 6 provides such a plot for this
analysis. The base case (i.e., the case
where no spares are available on site)
has an average downtime of 5.5 hours.
As mentioned earlier, this is relatively
low because so many of the failures
observed were software-based and
required very little time to “repair.”

I Optimal Spares Klt
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Figure 6. Downtimes for Optimal Spares Kits of Varying Cost

Figure 6 shows that, as the budget for investments. It also becomes
spare parts increases, the resulting increasingly expensive to gain additional
downtime decreases. It is important to reductions in downtime. In this case,
note that each point plotted in Figure 6 is Figure 6 shows that very little benefit is
an optimal solution. By this we mean obtained by spending more than $30K on
that, for a given budget, the downtime the spares kit. However, deciding on the
indicated is obtained with the optimal “right” spares kit budget will ultimately

spares kit available for that budget. depend on how the user values
Figure 6 also shows that the greatest downtime for the LDEA tool. More

return on investment (i.e., the greatest importantly, these Reliadigm results
downtime reduction per dollar spent on provide decision-makers with the “
the spares kit) occurs for relatively small

6/’7



information they need needed to make
well-informed decisions.

assure that average repair times meet the
customer MTTR requirements and
provides a basis for providing a
recommended spares kit.

Conclusions
Recommendations

As with any analysis, having the proper
data is of utmost importance. In
preparing the failure event data for
analysis, it became quite clear that
knowing what data to record as well as
how to record the system information
meant that knowing the analysis
requirements and setting up the data log
must be well understood. If Applied
Materials had more precisely recorded
the failure or operating record times, a
more accurate performance evaluation
would have resulted. Recording the time
taken to repair failures at the time the
repair was completed would have
yielded better estimates of MTTR.
Similarly, recording the exact time for
each failure or system operating
condition would have made time
accounting much more accurate.

Modern reliability analysis techniques
and software tools like Reliadigrn allow
manufacturers to demonstrate that
Customer Specifications have been met.
When repair times and parts availability
are included in the data, the analysis
software can provide a spare parts
inventory optimization. This helps

It is recommended that a standard
method for recording and reporting
system performance and failure data be
instituted throughout a company. The
selected standard would allow any
reliability engineer to use raw system
data to evaluate modules and sub-
modules as well as fully integrated
systems for reliability performance. The
addition of system repair information
greatly improves a manufacturer’s ability
to provide optimum spares for both
current and future systems.
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