

1 DISSOLUTION KINETICS OF Ni(II) SURFACE PRECIPITATES ON
2 KAOLINITE: RESIDENCE TIME EFFECTS
3

4 Matthew J. Eick
5 Crop and Soil Environmental Sciences
6 Virginia Tech
7 Blacksburg, Virginia 24061-0404
8

9 Benjamin Ryan Naprstek
10 Crop and Soil Environmental Sciences
11 Virginia Tech
12 Blacksburg, Virginia 24061-0404
13

14 Patrick V. Brady
15 Geochemistry Department
16 Sandia National Laboratories
17 Albuquerque, New Mexico 87185-0750
18

RECEIVED
MAY 01 2008
OSTI

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

INTRODUCTION

Recently, a great deal of research has focused on understanding the mechanism of surface precipitate formation on soil constituent surfaces. Specifically, whether Ni(II) forms a pure Ni(OH)_2 surface precipitate or a co-precipitate similar to takovite (Ni-Al hydroxy-nitrate/carbonate) on phyllosilicate surfaces (Scheidegger et al., 1996; Scheidegger et al., 1997; Eick and Fendorf, 1998). While this information is important, data on dissolution kinetics is necessary for accurately predicting surface precipitate

1 bioavailability in natural environments. However, there are relatively few studies
2 examining the dissolution of trace metal surface precipitates (Fendorf et al., 1996;
3 Scheidegger and Sparks, 1996). Furthermore, recent research has demonstrated that the
4 desorption of many trace element cations becomes more recalcitrant with time
5 (McKenzie 1970; McLaren et al. 1986 Ainsworth et al. 1994; Backes et al. 1995;
6 McLaren et al. 1998; Eick et al., 1999). Several explanations have been proposed for
7 these observed residence time effects including solid-state diffusion within oxide
8 particles (Bruemmer et al. 1988), diffusion into micropores and intraparticle spaces
9 (Backes et al. 1995), change in the type of surface complex (McBride 1994),
10 incorporation into the mineral structure via recrystallization (Ainsworth et al. 1994),
11 surface catalyzed oxidation and incorporation into the crystal matrix (McKenzie 1970;
12 Backes et al. 1995), and surface catalyzed hydrolysis and precipitation (Backes et al.
13 1995).

14 Understanding surface sequestering processes in soils should better allow us to
15 evaluate the bioavailability and potential toxicity of trace metals in the subsurface.
16 Newly precipitated solids are often less ordered than those that have been allowed to age.
17 Therefore, we hypothesize that the dissolution rate of an aged Ni(II) surface precipitate
18 will be slower than a Ni(II) precipitate that has not been aged. Accordingly, the present
19 study examines the dissolution kinetics of Ni surface precipitates on kaolinite and the
20 effect of residence time. The dissolution kinetics of crystalline Ni(OH)_2 and a synthetic
21 Ni-Al hydroxy-nitrate (takovite) were also examined as analogs for the Ni-surface
22 precipitates. The Ni-kaolinite system was chosen because kaolinite is an abundant soil
23 clay mineral and EXAFS has demonstrated that Ni has the ability to form surface

1 precipitates on phyllosilicates at common soil pH ranges (Scheidegger et al., 1996; Eick
2 and Fendorf, 1998).

3

4 **MATERIALS AND METHODS**

5

6 *Kaolinite preparation and characterization*

7 The sorbent used in this study was a well-crystallized Georgia kaolinite obtained
8 from the University of Missouri Source Clays Depository. The bulk kaolinite was
9 washed with doubly-deionized water until a stable conductivity resulted for 24 hours.

10 The washed kaolinite was fractionated by standard procedures (Jackson, 1969), based
11 on a gravimetric method, to an equivalent diameter of less than $2 \mu\text{m}$. It was then
12 dialyzed in doubly-deionized water until a stable conductivity resulted for 24 h and was
13 subsequently freeze dried.

14 The $<2 \mu\text{m}$ kaolinite fraction was characterized by X-ray diffraction (XRD) and
15 diffuse reflectance infrared fourier transform (DRIFT) spectroscopy. X-ray diffraction
16 and DRIFT analysis yielded results diagnostic for kaolinite with no impurities present.

17 The cation-exchange capacity (CEC) of the Georgia kaolinite as determined by Ba-Ca
18 exchange was $1.14 \text{ cmol}_\text{e} \text{ kg}^{-1}$. This value is in good agreement with published values
19 for the well crystallized Georgia kaolinite and indicates the absence of significant
20 amounts of 2:1 clay impurities (McBride, 1976; McBride, 1978). The specific surface
21 area was $16.5 \text{ m}^2 \text{ g}^{-1}$, as determined by a five point N_2 Brunauer-Emmett-Teller (B.E.T.)
22 gas adsorption isotherm method.

1 *Takovite Synthesis*

2 A synthetic Ni-Al hydroxy-nitrate (takovite) was prepared for dissolution
3 experiments as a comparison to Ni surface precipitates since it has been suggested that
4 the Ni(II) surface precipitates formed on phyllosilicates are more like takovite than
5 pure Ni(OH)₂ (Scheidegger et al., 1996). A modification of the method of Bish and
6 Brindley (1977) was used as detailed below. A 100 ml solution of 0.75 M Ni(NO₃)₂
7 and 0.25 M Al(NO₃)₃ was dripped into a pH 10 solution of 0.10 M NaNO₃ at a rate of
8 0.40 ml min⁻¹. The suspension pH was kept constant and well-stirred with the aid of an
9 automatic titrator (Brinkman, Metrohm 718 Stat Titro) and mechanical stirrer
10 (Caframo RZR-2000), respectively. The suspension was purged with N₂ to eliminate
11 CO₂ and kept at a constant temperature of 298 ± 0.1 K. The precipitate was rinsed 6
12 times with doubly-deionized water and placed in an oven at 393 K for 24 hours. The
13 dried sample was ground in an agate mortar and analyzed by X-ray diffraction (XRD)
14 using a Scintag XDS-2000 diffractometer. The mounts were scanned at 2° 2θ min⁻¹
15 using Cu Kα radiation and a graphite monochromator. X-ray diffraction results were
16 consistent with those presented by Bish and Brindley (1977).

17
18 *Adsorption Experiments*

19 Sorption experiments were conducted at various Ni surface coverages using a
20 batch technique. Different surface coverages were achieved by varying sorptive
21 concentrations (1 X 10⁻⁴, 5 X 10⁻⁴, and 7.5 X 10⁻⁴ M). All sorption experiments were
22 conducted at a kaolinite suspension concentration of 25 g L⁻¹ and a pH of 7.5. These
23 conditions were selected because preliminary experiments indicated that > 99% sorption

1 of Ni was achieved after 14 days while the suspensions were undersaturated with respect
2 to $\text{Ni(OH)}_2(s)$. Samples of kaolinite were weighed into a 500 ml teflon lined flat-
3 bottomed, water-jacketed reaction vessel (500 ml) covered with a removable glass lid
4 containing entry ports for a mechanical stirrer, pH electrode, N_2 gas, burette tip, and
5 pipette. The kaolinite was hydrated and N_2 sparged for 24 hours in 450 ml of 0.10 M
6 NaNO_3 and adjusted to pH 7.5 using 0.10 M HNO_3 . The Ni was dispensed in stepwise
7 quantities from a 0.0515 M $\text{Ni(NO}_3)_2$ stock solution to minimize local oversaturation of
8 the suspension. The suspension pH was kept constant and well-stirred with the aid of an
9 automatic titrator (Brinkman, Metrohm 718 Stat Titro) and mechanical stirrer (Caframo
10 RZR-2000), respectively. All experiments were conducted at $298 \pm 0.1 \text{ K}$ at 1 atm
11 pressure in a N_2 environment to eliminate CO_2 influences.

12 Sorption experiments were conducted for 14 days (short-term study) and 20
13 weeks (long-term study). Samples were taken until sorption reached > 99 % (14 days).
14 An initial 2 mL aliquot was removed from the batch reactor and filtered through a 0.10
15 μm Gelman metrical membrane in order to "pre-saturate" the membrane. An additional
16 10 mL aliquot was removed from the batch reactor and filtered through the same "pre-
17 saturated" membrane into previously acid-washed polypropylene test tubes. All
18 suspension-samples were carefully removed from the batch reactor using an electronic
19 pipet in order to avoid changes in the total surface area to solution ratio. The filtered
20 samples were acidified to a pH < 2 with 8 M HNO_3 , sealed and stored in a refrigerator
21 prior to analysis. After 14 days all samples were removed from the pH-stat and placed in
22 500 ml acid-washed high-density polyethylene centrifuge bottles. The bottles were
23 sealed with teflon tape to prevent evaporation and placed on an environmentally

1 controlled rotating shaker (New Brunswick Scientific, Innova 4230) at 298 ± 0.1 K. The
2 bottles were gently rotated at 130 rpm to avoid abrasion of the solid. The pH was
3 maintained constant at 7.50 ± 0.10 through manual addition of 0.10 M HNO₃ or NaOH.
4 All NaOH solutions were made from carbonate free doubly-deionized water and stored in
5 bottles with sodium hydroxide coated silica sinks to absorb carbon dioxide.

6

7 *Dissolution Studies*

8 All dissolution studies were carried out using a pH-stat technique in the presence
9 of 1 mM oxalate at pH 6. Oxalate was chosen because it is a common plant root
10 exudate found at appreciable levels in natural soil environments (Stevenson, 1994). The
11 kaolinite suspension from either the short- or long-term sorption experiments was
12 carefully poured into a 500 mL teflon liner. The liner was placed into the flat-bottomed
13 jacketed reaction vessel used in the sorption experiments. The pH was adjusted to pH 6
14 using an automatic titrator and an appropriate quantity of oxalate was dispensed from a
15 0.10 M sodium oxalate stock solution. All samples were carefully removed from the
16 batch reactor using an electronic pipet in order to avoid changes in the total surface area
17 to solution ratio. The samples were filtered and acidified to a pH < 2 with 8 M HNO₃,
18 sealed and stored in a refrigerator prior to analysis. All experiments were conducted in
19 the dark at 298 ± 0.1 K and 1 atm pressure in a N₂ environment to eliminate CO₂
20 influences. Nickel was analyzed using a Perkin Elmer 3300 atomic adsorption
21 spectrometer. The detection limit for Ni is 0.06 ppm.

22 For comparison of dissolution rates crystalline Ni(OH)₂ and a synthetic takovite
23 were measured using the same pH-stat technique and experimental conditions.

1 Takovite and crystalline Ni(OH)_2 samples were ground in an agate mortar. An
2 appropriate mass was added to a 400 ml solution of 1mM oxalate (pH 6 and IS 0.10 M
3 NaNO_3) to give final Ni concentrations of 0.10, 0.50, and 0.75 mM.

4

5 *Infrared Analysis*

6 Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy was
7 performed to examine changes in the crystallinity of the Ni(II) surface precipitates.
8 DRIFT analysis was done using a Perkin-Elmer 1720x FTIR unit with a diffuse
9 reflectance accessory. Sub-samples were taken from the batch samples prepared for the
10 dissolution studies and were washed with approximately 100 mL of doubly-deionized
11 water and freeze dried. The freeze dried material was diluted by 90% (by weight) with
12 KBr to reduce spectral reflectance. The samples were placed in the DRIFT accessory
13 which is continuously purged with CO_2 and H_2O free air. A DTGS detector was used,
14 with 100 scans collected at 4cm^{-1} resolution.

15 In addition to the short and long term Ni-Kaolinite samples, several reference
16 materials were analyzed for comparison. Reference spectra were obtained from pure
17 KGa-1 kaolinite, an aged Ni(OH)_2 , and a freshly precipitated Ni(OH)_2 . The Ni(OH)_2
18 precipitates were created by titrating 20 mM $\text{Ni(NO}_3)_2$ to pH 8.5 under an N_2
19 atmosphere. The precipitate was maintained at this pH for 24 hours and 15 weeks.
20 After this time each precipitate was filtered and washed with approximately 100 mL of
21 doubly-deionized water and freeze dried. This procedure is similar to that used by
22 Fendorf et al., (1994) to create $\gamma\text{-CrOOH}$.

23
24

RESULTS AND DISCUSSION

2 Sorption Kinetics

The kinetics of Ni(II) sorption on kaolinite at three different loading rates and a pH of 7.5 is illustrated in Figure 1. Sorption is initially rapid with greater than 78% of the initial Ni sorbed in 24 hours. This initial rapid reaction is followed by a slower reaction which lasts approximately 14 days. For all initial solution concentrations > 99% of the initial Ni(II) added was sorbed on the kaolinite surface. An initial rapid reaction followed by a much slower reaction is characteristic of heavy metal sorption on clay and oxide surfaces (Benjamin and Leckie, 1981; Dzomback and Morel, 1986; Davis et al., 1987; Bruemmer et al., 1988; Scheidegger et al, 1996). Based on previous research the rapid sorption is attributed to chemisorption of Ni(II) on edge sites while the slow sorption is due to the nucleation and precipitation of Ni(OH)₂ on the kaolinite surface (Eick and Fendorf, 1998).

16 Dissolution Kinetics

17 The dissolution kinetics of Ni(II) surface precipitates for three different surface
18 loadings as well as homogenous precipitates of Ni(OH)₂ and takovite are shown in
19 figures 2-4. Similar to dissolution studies of other mineral surfaces, the release of Ni
20 from all surfaces can be separated into a rapid phase (0 – 10 hours) followed by a
21 slower stage (Ludwig and Casey, 1996; Ludwig et al., 1996; Eick et al., 1999). In the
22 case of mineral surfaces that have been synthesized in the laboratory and not
23 extensively pretreated, there is often a rapid release of a metal from the surface during
24 the first 10 – 15 hours. This has been attributed to ultra-fine grains or other rapidly

1 dissolving surfaces created during the grinding process (Stumm, 1992). This explains
2 the rapid release of Ni observed for the homogeneous precipitates (Ni(OH)_2 and
3 takovite) but not for the Ni surface precipitates. Examination of figures 2-4 indicate the
4 rapid release of Ni from the surface precipitates is most pronounced at the lowest
5 surface loading (Figure 2). Previous spectroscopic investigations of Ni sorbed to
6 kaolinite and pyrophyllite have shown the presence of chemisorbed Ni surface
7 complexes in addition to polynuclear surface precipitates (Scheidegger et al, 1996a;
8 Eick and Fendorf, 1998). Therefore, the desorption of chemisorbed surface complexes
9 may account for the rapid release of Ni. Furthermore, this would explain why at the
10 lowest loading this rapid release is most pronounced since a greater proportion of the
11 sorbed Ni would be present as chemisorbed surface complexes.

12 The dissolution rates for the four experiments are listed in Table 1. These rates
13 were calculated from the linear regression of the slow linear stage of Ni release (> 20
14 hours). For all experiments dissolution rates decreased in the order Ni(OH)_2 > short-
15 term Ni surface precipitate > takovite > long-term Ni surface precipitate. The
16 dissolution rates for both short- and long-term surface precipitates were slower than for
17 the pure homogeneous Ni(OH)_2 . Scheidegger and Sparks (1996) observed similar
18 results for the dissolution of Ni(II) surface precipitates on pyrophyllite. The slower
19 dissolution rates for the Ni(II) surface precipitates compared to pure homogeneous
20 Ni(OH)_2 may be due to the greater surface area of the homogeneous Ni(OH)_2 and/or co-
21 precipitation of Al^{+3} with the Ni(II) surface precipitates. Since the Ni(II) surface
22 precipitates are attached to the kaolinite surface the surface area exposed to the oxalate
23 ligand would be less than the homogeneous Ni(OH)_2 . Furthermore, whether the Ni(II)

1 surface precipitate distributes evenly across the kaolinite surface or clusters will affect
2 its exposed surface area and markedly influence its dissolution rate (Fendorf et al.,
3 1996).

4 Previous research has demonstrated that the specific adsorption of Ni(II) on
5 phyllosilicate surfaces accelerates mineral dissolution at near neutral pH values
6 (Schiedigger et al., 1996a; Eick and Fendorf, 1998). Moreover, EXAFS results indicate
7 that small quantities of Al^{+3} released from the phyllosilicate surface may co-precipitate
8 with Ni (Eick and Fendorf, 1998). The solubility of many co-precipitated compounds
9 can be lower than that of the pure compound (McBride, 1994). In the case of the Ni(II)
10 surface precipitates it may be a combination of both factors that are responsible for the
11 observed reduction in dissolution rates compared to the pure homogeneous Ni(OH)_2 .

12 The dissolution rate of the mixed Ni-Al hydroxy-nitrate (Takovite) is between
13 the dissolution rates of the short- and long-term Ni(II) surface precipitates. Previous
14 research has suggested that incorporation of Al^{+3} released from phyllosilicate
15 dissolution as well as nitrate used in the background electrolyte creates Ni(II) surface
16 precipitates that are similar to pyroaurite-hydroxy minerals (e.g. takovite) (Schiedegger
17 et al., 1997). It was suggested that this takovite-like structure was responsible for the
18 contraction in metal-metal bond distances compared to pure hydroxide phases formed in
19 the absence of the surface (O'Day et al., 1994a,b; O'Day et al., 1996; Scheidegger et al.,
20 1996). However, in a recent study the validity of the mechanism for the formation of
21 takovite-like surface precipitates on phyllosilicates was questioned due to differences in
22 the rates of dissolution and precipitation and the driving force for
23 precipitation/dissolution (Eick and Fendorf, 1998). Although the dissolution rates of

1 takovite and the Ni(II) surface precipitates are similar, one cannot necessarily assume
2 that their structures are the same. Dissolution of mineral surfaces will be related to a
3 number of factors including composition, structure, degree of crystallinity, and
4 morphology, and the similarity in dissolution rates between takovite and the Ni(II)
5 surface precipitates may be fortuitous. Additional research is required for gaining
6 detailed atomic compositional and structural information concerning the nature of Ni(II)
7 surface precipitates which may ultimately resolve the question concerning the
8 contracted metal-metal bond distances.

9

10 *Residence Time effects*

11 At all three surface loadings the dissolution rate and the total quantity of Ni
12 released from the surface precipitates is greater for the short-term compared to the long-
13 term experiments (Table 1 and Figures 2-4). This is in contrast to what Scheidegger and
14 Sparks (1996) observed for the dissolution of Ni(II) surface precipitates on pyrophyllite
15 at pH 4 and 6 that were aged between 1 and 8 weeks. This may be due to an insufficient
16 aging time compared with the present study (20 weeks). There have been many
17 explanations for observed residence time effects for trace metal desorption from mineral
18 surfaces (see introduction). In this study we knew a priori that Ni(II) would form surface
19 precipitates on kaolinite similar to pure Ni(OH)₂ based on a previous EXAFS study (Eick
20 and Fendorf, 1998). Our hypothesis for the observed residence time effect is that the
21 Ni(II) surface precipitates become more crystalline with time. This is commonly
22 observed for hydroxide precipitates of easily hydrolyzable metals (Schwertmann and
23 Cornell, 1991). To test this hypothesis we conducted DRIFT spectroscopy on the short-

1 and long-term Ni(II) surface precipitate samples as well as several reference samples.
2 Unfortunately, absorbance bands from the kaolinite surface obscured the Ni-O vibrational
3 mode characteristic of the crystalline structure of Ni(OH)₂. Insight into changes in
4 crystallinity of Ni(II) surface precipitates may be obtained through a comparison of the
5 freshly precipitated and aged homogeneous Ni(OH)₂ samples (Figure 5). The aged
6 Ni(OH)₂ absorption spectrum shows bands characteristic of crystalline Ni(OH)₂: a narrow
7 band at 3650 cm⁻¹ which is characteristic of the valence vibration mode of ν -OH, a band
8 at 520 cm⁻¹ resulting from the plane deformation mode of δ -OH, and a band at 460 cm⁻¹
9 resulting from the ν -NiO vibration mode (Figlarz and Le Bihan, 1971). In contrast the
10 freshly precipitated Ni(OH)₂ shows a markedly different infrared spectrum (Figure 5).
11 The freshly precipitated Ni(OH)₂ has a very wide band centered at 3500 cm⁻¹ and a wide
12 band at 1600 cm⁻¹ which indicates the presence of "significant" quantities of water
13 (Figlarz and Le Bihan, 1971). Furthermore, the δ -OH and ν -NiO a slightly displaced
14 towards shorter wavelengths which is an indication of a less ordered structure (Figlarz
15 and Le Bihan, 1971). Similar changes in crystallinity may be occurring for the Ni(II)
16 surface precipitates which may be responsible for the observed residence time effect.
17

18 CONCLUSIONS

19 The kinetics of Ni(II) sorption on kaolinite is characterized by an initial rapid
20 stage followed by a slower more gradual stage. Based on previous EXAFS experiments
21 the rapid stage was attributed to the desorption of chemisorbed Ni while the slow stage
22 was attributed to the dissolution of Ni(II) surface precipitates. For all experiments

1 dissolution rates decreased in the order Ni(OH)_2 > short-term Ni surface precipitate >
2 takovite > long-term Ni surface precipitate. Differences in dissolution rates between
3 surface precipitates and pure homogeneous Ni(OH)_2 may be due to differences in
4 exposed surface area or the co-precipitation of Al^{+3} with Ni on the kaolinite surface. The
5 dissolution rates for both Ni(II) surface precipitates were similar to takovite, however,
6 this may be fortuitous and is not necessarily an indication of a similar structure which has
7 been previously proposed (Scheidegger et al., 1996). A pronounced residence time effect
8 was observed between the short-term (14 day) and long-term (20 week) samples. It is
9 suggested that an increase in crystallinity in the Ni(II) surface precipitate with time is
10 responsible for the observed differences. Unfortunately, DRIFT results were
11 inconclusive due to interference from the kaolinite surface. However, comparison of
12 aged and freshly precipitated homogeneous Ni(OH)_2 solids indicated an increase in
13 crystallinity with time. Previous investigations on metal surface precipitates have
14 concentrated on determining their structure, composition, and morphology. While this
15 information is extremely important for assessing the reactivity and hence bioavailability
16 of surface precipitates, the present investigation demonstrates the importance of
17 quantifying dissolution rates as well as examining residence time effects to accurately
18 determine the bioavailability of metals in natural environments.

19

20 ACKNOWLEDGEMENTS

21 We would like to thank Derek Peak of the Department of Plant and Soil Sciences
22 at the University of Delaware for performing the DRIFT spectroscopy experiments.
23 Funding for this research was supported by Sandia National Laboratory LDRD Office.

1 REFERENCES

2

3 Ainsworth, C.C., J.L. Pilon, P.L. Gassman, W.G. Van Der Sluys, 1994. Cobalt, cadmium
4 and lead sorption to hydrous iron oxide: residence time effect. *Soil Sci. Soc. Am. J.* 58:
5 1615-1623.

6

7 Backes, C.A., R.G. McLaren, A.W. Rate, R.S. Swift. 1995. Kinetics of cadmium and
8 cobalt desorption from iron and manganese oxides. *Soil Sci. Soc. Am. J.* 59: 778-785.

9

10 Benjamin, M.M., J.O. Leckie. 1981. Multiple-site asorption of Cd, Cu, Zn, and Pb on
11 amorphous iron Oxyhydroxide. *J. Colloid Interface Sci.* 79: 209-221.

12

13 Bruemmer, G.W., J. Gerth, K.G. Tiller. 1988. Reaction kinetics of the adsorption and
14 desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals.
15 *Journal of Soil Science*. 39: 37-52.

16

17 Charlet, L., and A.A. Manceau. 1992. X-ray absorption spectroscopic study of the
18 sorption of Cr(III) at the oxide-water interface: II. Adsorption, coprecipitation, and
19 surface precipitation on hydrous ferric oxide. *J. Colloid Interface Sci.* 148: 443-458.

20

21 Chisholm-Brause, P.A. O'Day, G.E. Brown, Jr., and G.A. Parks. 1990. Evidence for
22 multinuclear metal-ion complexes at solid/water interfaces from X-ray absorption
23 spectroscopy. *Nature*. 348:528-530.

24

25 D.L. Bish and G.W. Brindley. 1977. A reinvestigation of takovite, a nickel aluminum
26 hydroxy-carbonate of the pyroaurite group. *Am. Mineral.* 62: 458-464.

27

28 Davis, J.A., C.C. Fuller, and A.D. Cook. 1987. A model for trace metal sorption
29 processes at the calcite surface: adsorption of Cd²⁺ and subsequent solid solution
30 formation. *Geochim. Cosmochim. Acta*. 51:1477-1490.

31

32 Dzombak, D.A., F. Morel. 1985. Sorption of cadmium on hydrous ferric oxide at high
33 sorbate/sorbent ratios: equilibrium, kinetics, and modeling. *J. Colloid Interface Sci.* 112:
34 588-598.

35

36 Eick, M.J., and S.E. Fendorf. 1998. Reaction sequence of Nickel(II) with kaolinite:
37 Mineral dissolution and surface complexation/precipitation. *Soil Sci. Soc. Am. J.* 62:
38 1257-1267.

39

40 Eick, M.J., J.D. Peak, and W.D. Brady. 1999. The effect of oxalate on the oxalate
41 promoted dissolution of goethite. *Soil Sci. Soc. Am. J.* 63:In Press.

42

43 Eick, M.J., J.D. Peak, P.V. Brady, and J.D. Pesek. 1999. Kinetics of lead
44 adsorption/desorption on goethite: Residence time effect. *Soil Sci.* 164:28-39.

1 Fendorf, S.E., G. Li, and M.E. Gunter. 1996. Micromorphologies and stabilities of
2 chromium (III) surface precipitates elucidated by scanning force microscopy. *Soil*
3 *Sci. Am. J.* 60:99-106.

4

5 Fendorf, S.E., G.M. Lamble, M.G. Stapleton, M.J. Kelley, and D.L. Sparks. 1994.
6 Mechanisms of chromium(III) sorption on silica. 1. Cr(III) surface structure derived by
7 extended X-ray absorption fine structure spectroscopy. *Environ. Sci. Technol.* 28:284-
8 289.

9

10 Fendorf, S.E., and D.L. Sparks. 1994. Mechanisms of chromium(III) sorption on silica. 1.
11 Effect of reaction conditions. *Environ. Sci. Technol.* 28:290-297.

12

13 Figlarz, M. and S. Le Bihan. 1971. Étude par spectroscopie infrarouge d'un hydroxyde de
14 nickel turbostratique et de sa cristallisation. *C.R. Acad. Sc. Paris.* 272: 580-583.

15

16 Jackson, M.L. 1969. Soil chemical analysis. M.L. Jackson, Madison, WI.

17

18 Ludwig, C., and W.H. Casey. 1996. On the mechanisms of the dissolution of
19 bunsenite [NiO(s)] and other simple oxide minerals. 1996. *J. Colloid Interface Sci.*
20 178:176-185.

21

22 Ludwig, C., J.L. Devidal, and W.H. Casey. 1996. The effect of different functional
23 groups on the ligand-promoted dissolution of NiO and other oxide minerals.
24 *Geochim. Cosmochim. Acta.* 60:213-224.

25

26 McBride, M.B. 1976. Origin and position of exchange sites in kaolinite. *Clays and*
27 *Clay Minerals.* 24:88-92.

28

29 McBride, M.B. 1978. Copper(II) interactions with kaolinite: Factors controlling
30 adsorption. *Clays & Clay Minerals* 26: 101-106.

31

32 McBride, M.B. 1994. Environmental soil chemistry. Oxford University Press, NY.

33

34 McKenzie, R.M. 1970. The reaction of cobalt with manganese dioxide minerals. *Aust. J.*
35 *Soil Res.* 8: 87-106.

36

37 McLaren, R.G., C.A. Backes, A.W. Rate, and R.S. Swift. 1998. Cadmium and cobalt
38 desorption kinetics from soil clays: Effect of sorption period. *Soil Sci. Soc. Am. J.*
39 62:332-337.

40

41 McLaren, R.G., D.M. Lawson, R.S. Swift. 1986. Sorption and desorption of cobalt by
42 soils and soil constituents. *J. Soil Sci.* 37: 413-426.

43

44 O'Day, P.A., G.A. Parks, and G.E. Brown, Jr. 1994a. Molecular structure and
45 binding sites of cobalt(II) surface complexes on kaolinite from X-ray absorption
46 spectroscopy. *Clays and Clay Minerals* 42:337-355.

2 O'Day, P.A., G.A. Parks, and G.E. Brown, Jr. 1994b. X-ray absorption spectroscopy of
3 cobalt(II) multinuclear surface complexes and surface precipitates on kaolinite. *J. Colloid*
4 *Interface Sci.* 165:269-289.

5

6 Scheidegger, A.M. and D.L. Sparks. 1996b. Kinetics of the formation and the
7 dissolution of nickel surface precipitates on pyrophyllite. *Chem. Geol.* 132:157-164.

8

9 Scheidegger, A.M., G.M. Lamble, and D.L. Sparks. 1996a. Investigation of Ni
10 sorption on pyrophyllite: An EXAFS study. *Environ. Sci. Technol.* 30:548-554.

11

12 Scheidegger, A.M., G.M. Lamble, and D.L. Sparks. 1997. Spectroscopic evidence for the
13 formation of mixed-cation hydroxide phases upon metal sorption on clays and aluminum
14 oxides. *J. Colloid Interface Sci.* 186:118-128.

15

16 Schwertmann, U., R.M. Cornell. 1991. Iron oxides in the laboratory. VCH Publishers,
17 NY.

18

19 Stevenson, F.J. 1994. *Humus Chemistry. Genesis, Composition, Reactions.* Wiley,
20 New York.

21

22 Stumm, W. 1992. *Chemistry of the solid-water interface.* Wiley Interscience, New
23 York.

24

25

26

27

28

29

30

31

32

33

List of Figures

Figure 1. Kinetics of Ni sorption on kaolinite at pH 7 and ionic strength ($I = 0.10\text{ M}$).

Figure 2. Oxalate (1 mM) promoted dissolution kinetics of Ni surface precipitates (short- and long-term experiments), takovite, and Ni(OH)_2 at pH 6 and 0.10 mM Ni.

Figure 3. Oxalate (1 mM) promoted dissolution kinetics of Ni surface precipitates (short- and long-term experiments), takovite, and Ni(OH)_2 at pH 6 and 0.50 mM Ni.

Figure 4. Oxalate (1 mM) promoted dissolution kinetics of Ni surface precipitates (short- and long-term experiments), takovite, and Ni(OH)_2 at pH 6 and 0.75 mM Ni.

Figure 5. DRIFT spectra for homogeneous Ni(OH)_2 precipitates aged for 24 hours and 15 weeks.

Table 1: Dissolution rates of Ni(II) surface precipitates, takovite, and Ni(OH)_2 at pH 6 in the presence of 1 mM Oxalate (Ionic strength = 0.10 M NaNO_3)

0.10 mM Ni		0.50 mM Ni		0.75 mM Ni	
Treatment	Rate ($\mu\text{M h}^{-1}$)	Treatment	Rate ($\mu\text{M h}^{-1}$)	Treatment	Rate ($\mu\text{M h}^{-1}$)
Ni(OH)_2	0.821	Ni(OH)_2	4.03	Ni(OH)_2	5.98
Short-term	0.313	Short-term	1.46	Short-term	2.04
Takovite	0.285	Takovite	1.38	Takovite	1.39
Long-term	0.257	Long-term	1.23	Long-term	1.21

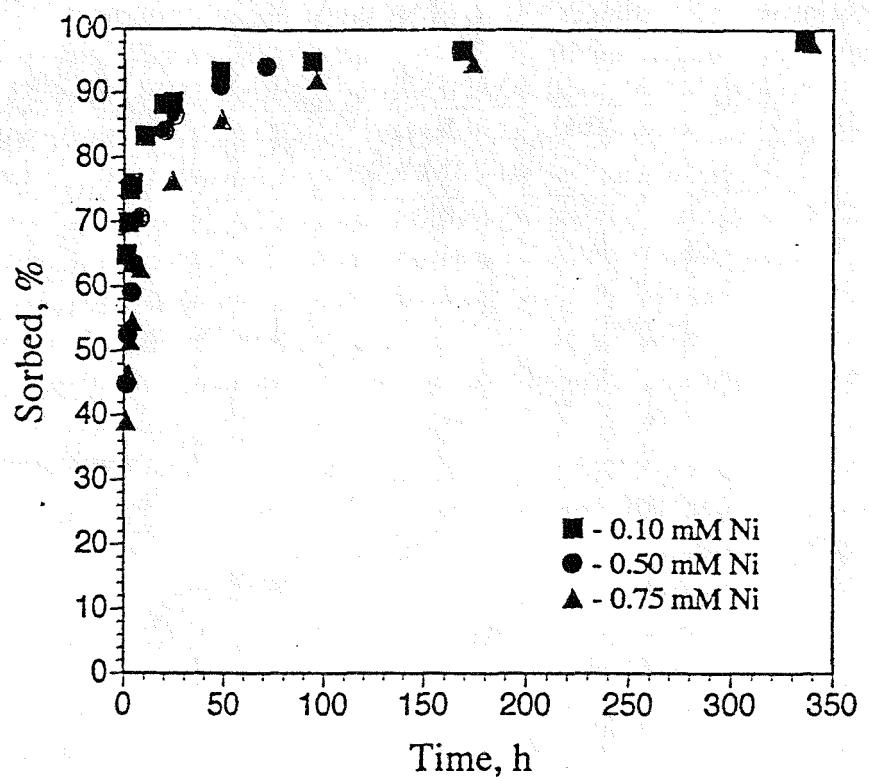


Figure 1

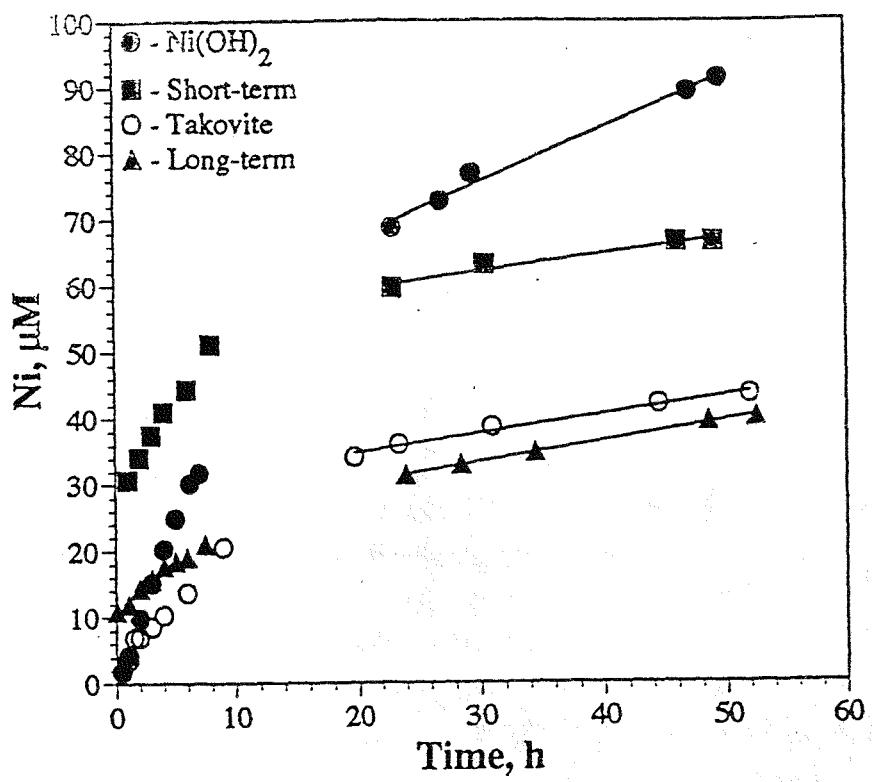


Figure 2 (0.10mM Ni)

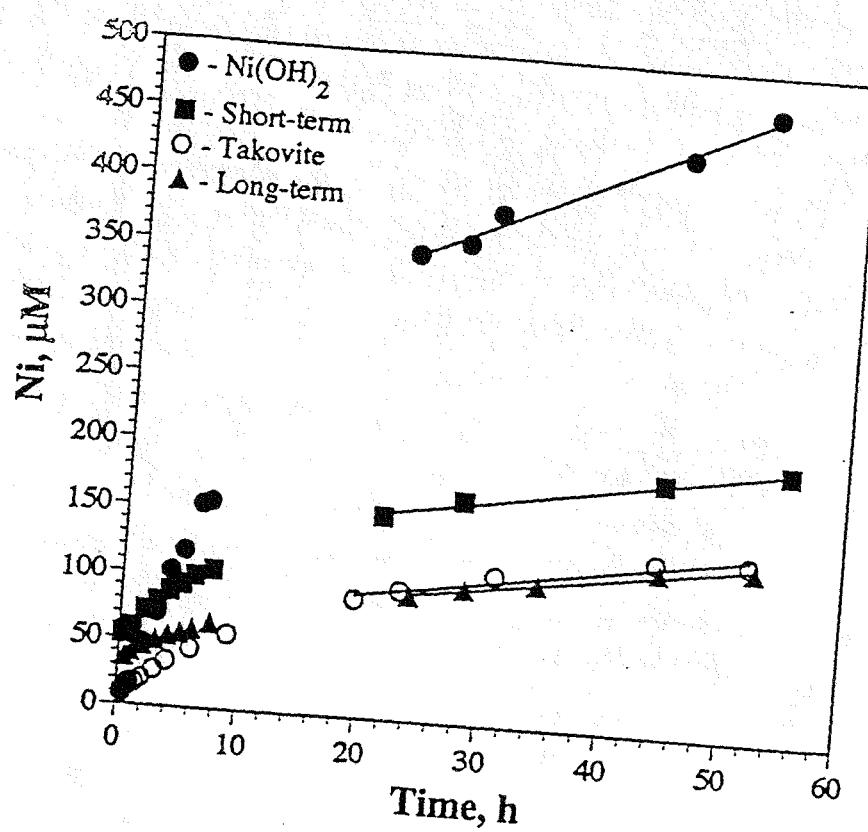


Figure 3 (0.50 mM Ni)

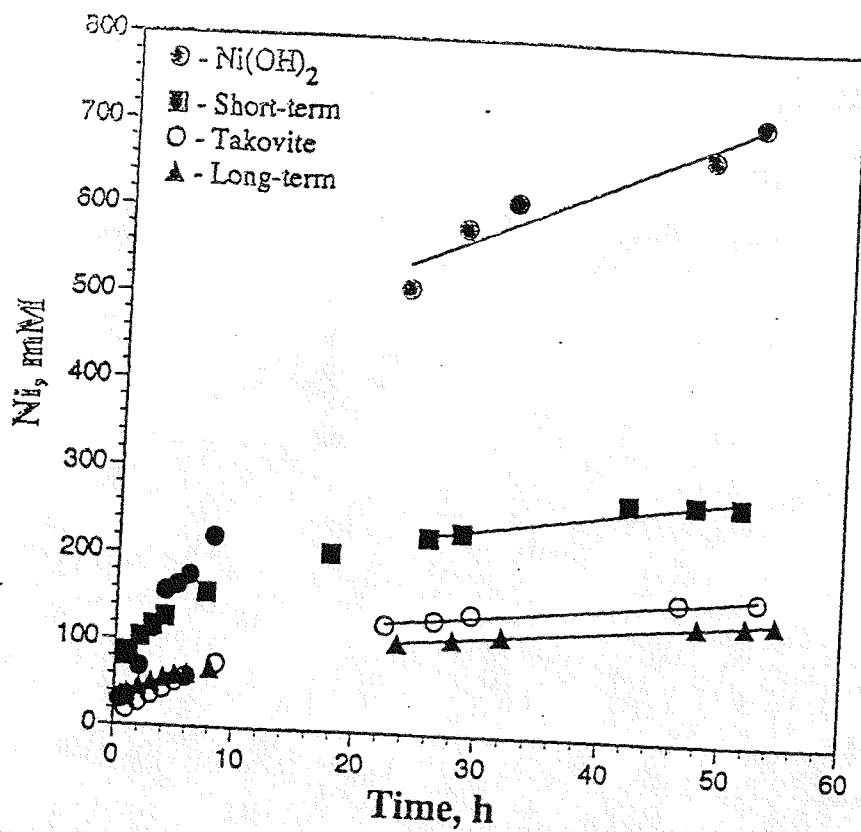


Figure 4 (0.75 mM Ni)

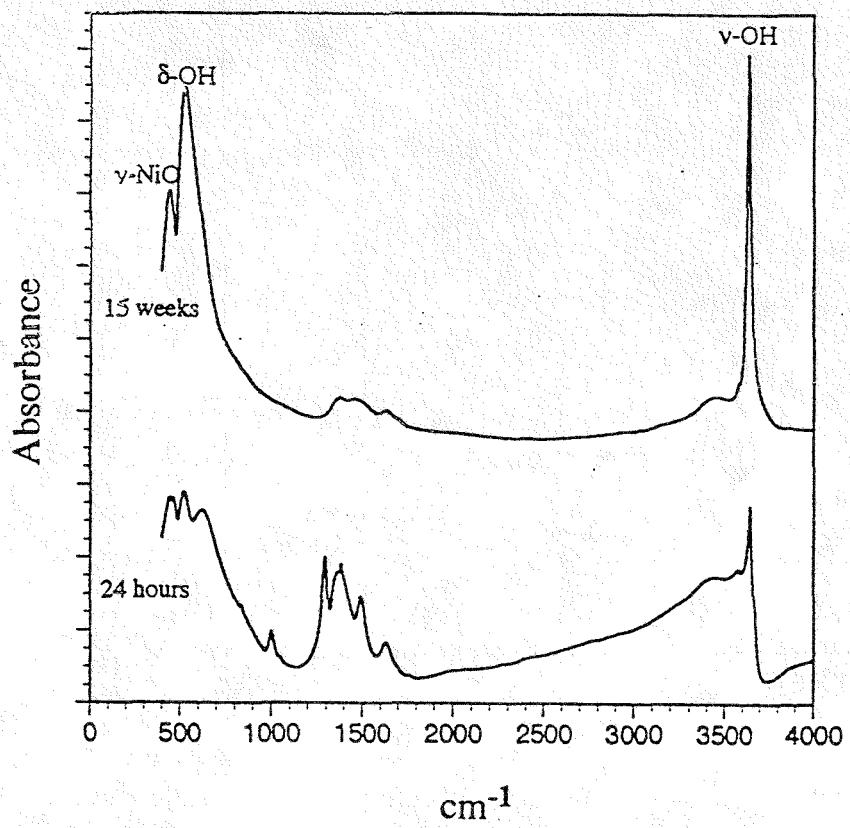


Figure 5