HI\)L/mQS/QP- 01033,

-

System Description: IVY™*

Argonne National Laboratory, U.S.A.
mccunelfmes.anl.gov
http://wwu.mcs.anl.gov/ mccune

2 Department of Electrical and Computer Engineering
Northwestern University, U.S.A.
shumsky@ece.nwu.edu

Abstract. IVY is a verified theorem prover for first-order logic with
equality. It is coded in ACL2, and it makes calls to the theorem prover =~
Otter to search for proofs and to the program MACE to search for coun-
termodels. Verifications of Otter and MACE are not practical because
they are coded in C. Instead, Otter and MACE give detailed proofs and
models that are checked by verified ACL2 programs. In addition, the
initial conversion to clause form is dome by verified ACL2 code. The
verification is done with respect to finite interpretations.

1 Introduction

Our theorem provers Otter [6,7,10] and EQP [4,8] and our model searcher
MACE (3, 5] are being used for practical work in several areas. Therefore, we.
wish to have very high confidence that the proofs and models they produce are
correct. However, these are high-performance programs, coded in C, with many
tricks, hacks, and optimizations, so formal verification of the programs is not
practical. o

Instead, our approach is to have the C programs give their results explicitly
as detailed proof objects or models, and to have separate checker programs check
the results. The checker algorithms are relatively simple and straightforward, so
it is practical to apply program verification techniques to them. In particular, we
use the ACL2 program verification system to prove that if the checker program
accepts a proof, then the proof is correct.

Otter can convert first order formulas into clauses (by normal form transla-
tion and Skolemization), but it is not able to include these preprocessing steps
as part of the proof objects. Therefore, we have recoded the clause form trans-
lator in ACL2 and proved its soundness directly. The result is a hybrid system,
named IVY, that (1) is driven by ACL2 code, (2) calls ACL2 functions for the

* This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

The submitted manuscript has been created’;
by the University of Chicago as Operator of;
Argonne National Laboratory ("Argonng" i
under Contract No. W-31-109-ENG-38 with

the U.S. Department of Energy. The U.S.!
Government retains for itseif, and others act-

ing on its behalf, a paid-up, nonexclusive,

irrevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of
the Government. /

DISCLAIMER

This report was prepared as an account-of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

preprocessing, (3) calls an external program to search for a proof or a model,
and (4) calls ACL2 checker functions to check the results. The top-level sound-
ness theorems have the form: If IVY claims a proof, then the input formula is a
theorem. A weakness of the verification method is that the soundness proofs are
with respect to finite interpretations. In Section 6 we discuss an approach for all
interpretations.

ACL2 (A Computational Logic for Applicative Common Lisp) (2,1}, is
the successor to the Boyer-Moore theorem prover. ACL2 is a specifica-
tion/programming language, based on Common Lisp, together with an envi-
ronment for proving theorems about the programs. Its strength is automated
support for proving inductive theorems about recursively defined programs.

2 Specification of the Logic

We use ACL2 to define a first-order logic, and this becomes the specification
for our verification. The definitions of well-formed term and well-formed formula
are straightforward. We next define the semantics of our logic by defining inter-
pretation of a first-order language. This part is nonstandard, because we restrict
ourselves to finite interpretations; see Section 6. Finally, we define evaluation
of a formula in an interpretation. The evaluation function is a pair of mutually
recursive functions, in which one recurses through the structure of formulas, and
the other (called for quantified formulas) recurses through the elements of the
domain of the interpretation. In particular, the function (FEVAL F I) evaluates
formula F in interpretation I.

3 The Proof Procedure

The proof search procedure is standard for first-order resolution/paramodulation
theorem provers. Starting with the negation of a conjecture, we (1) convert
to negation-normal form, (2) rename bound variables, (3) Skolemize, (4) move
universal quantifiers to the top, (5) convert to conjunctive normal form, (6)
search for a refutation (or a model}, and (7) check the refutation {or model).

Steps 1, 2, 4, and 5 produce an equivalent formula, and Skolemization pro-
duces an equiconsistent formula.

In IVY, the preprocessing steps (1-5) are coded in ACL2, the search step (6)
is accomplished by calling Otter or MACE, and the checker step (7) is coded in
ACL2.

4 Soundness Theorems

The function to convert formulas to negation-normal form is (NNF F), and the
soundness theorem states that NNF produces an equivalent formula:

(EQUAL (FEVAL (NNF F) I)
(FEVAL F I)).

The soundness theorems for steps 2, 4, and 5 of the proof procedure are similar.
The soundness theorem for Skolemization is more complicated, because we have
to extend the interpretation with the new Skolem symbols:

(EQUAL (FEVAL (SKOLEMIZE F) (SKOLEMIZE-EXTEND F I))
(FEVAL F I)).

Steps 6 and T of the proof procedure are combined in an ACL2 function
(REFUTE-N-CHECK F) which calls Otter (see Sec. 5) and the checker func-
tion. If Otter finds a refutation, and if the checker accepts the refutation,
REFUTE-N-CHECK returns FALSE (the contradictory formula of our logic); oth-
erwise REFUTE-N-CHECK returns the input formula F. Hence, it always produces
an equivalent formula, and the soundness theorem is

(EQUAL (FEVAL (REFUTE-N-CHECK F) I)
(FEVAL F I)).

All of the preprocessing functions, REFUTE-N~CHECK, and a few other func-
tions are composed into a top-level function (PROVED F), which takes the positive
form of a conjecture, checks that it is well-formed and closed, negates it, and
applies the proof procedure. The top-level soundness theorem is

(IMPLIES (PROVED F)
(AND (WFF F)
(NOT (FREE-VARS F))
(FEVAL F I))).

In other words, if IVY claims a proof of a conjecture F, then F is a closed well-
formed formula that is true in all (finite) interpretations. Of course, to accept
this theorem, a user must accept our ACL2 definition of first-order logic and the
soundness of the ACL2 system. But the point is that the user doesn’t have to
trust Otter, which does the hard part of the work.

The other side of the problem, searching for countermodels, is easier because
checking a claimed model produced by the C program MACE is done by simply
evaluating the negation of the conjecture in the claimed model. The top-level
function (COUNTERMODEL F) is analogous to (PROVED F): it checks that the con-
jecture F is closed and well formed, negates it, preprocesses it, calls MACE to
search for a finite model, and checks that the negation of F is true in any model
found by MACE. The soundness theorem for (COUNTERMODEL F) is nearly trivial,
because the evaluation property we need to prove is checked by COUNTERMODEL:

(IMPLIES (COUNTERMODEL F)
(AND (WFF F)
(NOT (FREE-VARS F))
(NOT (FEVAL F (COUNTERMODEL F))))).

In other words, if IVY claims a countermodel to a conjecture F, then F is a closed
well-formed formula that is false in some interpretation.

3

5 Interface to the C Code

The function REFUTE-N~CHECK takes the universal closure of a conjunction of
clauses and returns an equivalent formula. First it transforms the input for-
mula into an initial proof object. Next it calls the function EXTERNAL~PROVER
which augments the initial proof object with additional steps that represent some
derivation (a derivation of the empty clause if we are lucky). Then it checks that
each step of the proof object follows from preceding steps.

In the ACL2 environment, EXTERNAL-PROVER is a defstub, that is, we tell
ACL2 that it exists but that we don’t know any other properties of it. We
use ACL2 to prove properties of REFUTE-N-CHECK {e.g., soundness), but these
properties are necessarily independent of EXTERNAL-PROVER.

At run time, a Common Lisp function EXTERNAL-PROVER is loaded along with
the ACL2 code, and the Common Lisp version of EXTERNAL-PROVER overrides
the ACL2 defstub.! The Common Lisp version of EXTERNAL-PROVER contains
operating system calls to build an input file for Otter, run Otter, and read
and process Otter’s output. If the Common Lisp version of EXTERNAL~PROVER
returns a proof object that is not well formed or is unsound, the check fails, and
REFUTE-N-CHECK returns its input.

A similar situation holds when searching for a countermodel with MACE. A
defstub EXTERNAL-MODELER is used in the ACL2 environment when defining func-
tions and proving properties, and a Common Lisp version of EXTERNAL-MODELER,
which calls MACE, is loaded at run time.

It is possible to use the preprocessing and proof checkmg functions of IVY
with other first-order resolution/paramodulation provers and model searchers,
provided they produce appropriate proof objects or models. (The format for
proof object can be found in [9].) This can be accomplished by simply rewriting
the Common Lisp version of the EXTERNAL-PROVER or EXTERNAL-MODELER to call
the desired program:.

6 The Finite Domain Assumption

Our approach of proving soundness with respect to finite interpretations is cer-
tainly questionable. Consider, for example, the sentence

(IMP (ALL X (ALL Y (IMP (= (FX) (F Y))
=X
(ALL X (EXISTS Y (= (F Y) X)),

that is, one-to-one functions are onto. It is not valid, but it is true for finite
domains. Could IVY claim to have a proof of such a nontheorem?

We strongly believe that it could not—that the weakness is in the metaproof
method rather than the first-order proof procedure. Nonetheless, we are pursuing
a general approach that covers infinite interpretations.

! According to the ACL2 designers, having an ACL2 function call 2 Common Lisp
function in this way is not officially endorsed, but it is acceptable in this situation.

ACL2 has an encapsulation feature that allows it to reason safely about in-
completely specified functions. We believe we can use encapsulation to abstract
the finiteness.? In our current specification, the important way in which finite-
ness enters the picture is by the definition of FEVAL-D, which recurses through
the domain. This function, in effect, expands universally quantified formulas into
conjunctions and existentially quantified formulas into disjunctions. Instead of
FEVAL-D, we can counsider a constrained function that chooses an element of the
domain, if possible, that makes a formula true. When evaluating an existen-
tially quantified formula, we substitute the chosen element for the existentially
quantified variable and continue evaluating. (Evaluation of universally quantified
variables requires some fiddling with negation.) However, proving the soundness
of Skolemization may present complications in this approach.

7 Performance and Availability

Aside from the overhead of starting up ACL2, the performance of IVY is essen-
tially the same as the performance of Otter’s autonomous mode or MACE with
its default settings. IVY cannot yet accept parameters to be passed to Otter or
MACE.

The latest version of IVY is available from

http://www.mcs.anl.gov/ “mccune/ivy.

A more complete paper on IVY can be found in [9].

References

1. M. Kaufmann, P. Manolios, and J Moore, editors. Using the ACL2 Theorem
Prover: A Tutorial Introduction and Case Studies. Kluwer Academic, 2000. To
appear.

2. M. Kaufmann and J Moore. An industrial strength theorem prover for a logic
based on Common Lisp. IEEE Transactions on Software Engineering, 23(4):203-
213, 1997.

3. W. McCune. A Davis-Putnam program and its application to finite first-order
model search: Quasigroup existence problems. Tech. Report ANL/MCS-TM-194,
Argonne National Laboratory, Argonne, IL, May 1994.

4. W. McCune. EQP. http://www.ncs.anl.gov/ AR/eqp/, 1994.

5. W. McCune. MACE: Models and Counterexamples.
http://www.mcs.anl.gov/AR/mace/, 1994.

6. W. McCune. Otter. http://wuw.mcs.anl.gov/AR/otter/, 1994. ’

7. W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6,
Argonne National Laboratory, Argonne, IL, 1994.

8. W. McCune. 33 basic test problems: A practical evaluation of some paramodulation
strategies. In Robert Veroff, editor, Automated Reasoning and its Applications:
Essays in Honor of Larry Wos, chapter 5, pages 71-114. MIT Press, 1997.

2 This approach was suggested by Matt Kaufmann.

9. W. McCune and O. Shumsky. IVY: A preprocessor and proof checker for first-order
logic. Preprint ANL/MCS-P775-0899, Argonne National Laboratory, Argonne, IL,
1999. To appear in {1].

10. W. McCune and L. Wos, Otter: The CADE-13 competition incarnations. J.
Automated Reasoning, 18(2):211-220, 1997, '

