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Abstract

The distorted wave Born approximation (DWBA) is applied to evaluate the
diffraction pattern of neutrons (or X-rays) from a 2D array of dots deposited
onto a dissimilar substrate. With the radiation impinging on the surface at a
grazing incidence angle ¢, the intensities diffracted both in and out the plane
of specular reflection are calculated as a function of the periodicity of the
array, height and diameter of the dots. The results are presented in the form
of diffracted intensity contours in a plane with coordinates o and o', the latter
being the glancing angle of scattering. The optimization of the experimental
conditions for polarized neutron experiments on submicron dots is discussed.
The feasibility of such measurements is confirmed by a test experiment.
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I. BIFFRACTION GEOMETRY

In the last few years it has become possible to produce periddic arrays of submicron
”dots” [1-3] and nano-scale [4,5], two dimensional (2D) structures on flat surfaces or em-
bedded in metallic, semiconducting or superconducting films and multilayers. High precision
control of the size, period and symmetry of the micro and nano structures enables t;,he fabri-
cation of systems of great interest for optical and magnetic storage applications. In order to
check the fabrication parameters a number of different techniques, such as optical, electron
and atomic fqrce microscopy, as well as optical and electron diffraction are widely employed.
Recently, the magnetic properties of a 2D lattice of holes (antidots) in a Fe film have been
studied [6] by means of magneto—optic Kerr effect in combination with Brillouin scattering
and magnetic force microscopy. However, these methods can hardly be useful if the structure
is buried under a non transparent film. If the film is not too thick grazing incidence diffrac-
tion (GID) of X-rays [7] may deliver rather complete information on the dot arrangement,
while the use of polarized neutron GID is most suited to study the magnetic structures
implanted into thick films. In the present paper the equations for GID from 2D artificial
structure will be derived and analyzed with the aim of optimizing forthcoming experiments.

Conventionally it is assumed that the optimal conditions for the diffraction on a lattice
are satisfied if the wavelength A of X-rays or neutrons is scaled with the reciprocal lattice
spacing a. Therefore, at first sight it seems that neutron or X -ray diffractometry is not the
proper choice to study a lattice with a spacing a of the order of microns. This statement,
however does not always hold for the case of 2D structures on a flat surface when viewed at
grazing incidence. Let us consider the case in which the incoming radiation is at a grazing
angle a with respect to the basic plane and the 2D structure is defined by reciprocal lattice
vectors 7.

If k, k' are the wave vector projections of the incoming and scattered beams onto the
basal plane, Q) = k' — k is the lateral wave vector transfer, and w is the in-plane scattering

angle between the vectors k and ', then the Bragg law Q) = 7 is fulfilled at @’ = a7 and




w = w7, where

cos® ar = cos® a + 20, cos xr cosa + O?2 (1)
sin wy cos ar = O, sin xr, (2)
X7 is the angle between the directions of & and the vector 7 (see Fig.1), and ©, = 7/k. At

A < a the amplitudes of the Bragg peaks may have appreciable values only at & <« 1 and
o < 1, and then:

ar & +Jo? — 20, cos xr < 1, (3)

wr & O,sinxr < 1, (4)

where ©, = 7/k. As these equations determine the peak positions as functions of a and
o, the scattered intensity may conveniently be represented as a contour plot in the {¢/, a}-
plane. Let us for instance consider a square lattice (Fig.1) in the symmetrical case in
which the basic reciprocal vector 7 is directed along &, and thus, wig = wjp = 0. Then
the representation of the equation a? = a%(a) in {a,o/}-plane is that of on hyperbola
cutting the o axis at +/20;: neutrons incident at smaller values of « are unable to excite
this diffraction lines. Similarly, 71, gives rise at a diffraction line at loci defined by an
hyperbolas that cuts the o' axis at +/20.

The diffraction effects of the reciprocal vectors 7¢; and 77 are significantly different.
For w = +0; the diffracted beams loci in {aa’}-plane are coincident with the reflected or
transmitted beam: this is because they occure for a modulation of the in-plane potential
exactly perpendicular to the incoming wave. However, turning the reciprocal lattice into
asymmetric position has dramatic effect on the Bragg peaks at +ag; and Fapg. The de-
generacy for these Bragg lines is lifted: then one can, in principle, observe all four peaks
corresponding to the curves o — a? = +£20;x. In Fig.2 is presented an example, when
x = 0.4°.

The example shown indicates that the Bragg law Q) = 7 defines not only the in—plane

scattering angle w, but also the angle o/ # o between the outgoing wave vector and the
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basic 2D plane. In this geometry small lateral momentum transfers result in appreciable
changes in Q,: for instance, a resolution in Q; of ~ 1073A provides a sensitivity to Q)
down to 107%A~!, a range well matched with lattice spacings of the order of microns. We

want to calculate now the intensities expected for the diffraction from such a 2D structure.

II. SCATTERING AMPLITUDE

Let us consider a set of ferromagnetic particles forming a periodic 2D lattice in the
XY-plane. For instance, the particles may have height d and be deposited on a thick flat
substrate. The neutron wave incident on such a sample is reflected and refracted by the
optical potential of the substrate, and also diffracted by the lattice. If the angle of incidence
is low, the optical effect should be accounted for exactly. However, as the diffracted intensity
is usually weak its effect can be regarded as a perturbation. The potential V(r) representing

the neutron interaction with the system may be decomposed into a sum
V(r) = Vo(z) + Vy(r), (5)

where the first term depends solely on the coordinate z normal to the surface and may
be approximated by the optical potential: Vy(2) = 0 at z < 0, and V, = A%p?/2m in the
substrate. Here p? = 4mn,b,; p, is the critical wave number of the total reflection and 7,bs
is the neutron scattering length density (SLD) for the substrate.

The second term in the Eq.(5) is due to the dots with SLD ngb,, and can be written in

the form:
h2 2 V
Volr) = =22 S F(p = piyz = d), ®)
m =

where p? = 4wngby, 7 is a running index which indicates the particle position on the substrate
surface, and F'(p, z) is the particle shape function.

Since Vy(r) depends on the 3D coordinate r = {p, z}, it causes diffraction in off-specular
directions. Within the first order of the distorted wave Born approximation (DWBA) the

diffraction amplitude f(k’,k) is proportional to the matrix element of the potential Vy(r)
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f(k,>k) ==

27’:;2 / dr¥(K', r)Va(r) T (k, 1), (7)

where the wave functions U(K,r) and ¥(k,r) are the exact solutions for the potential V,
with the proper initial and boundary conditions. Thus in free space ¥(k,r) is a plane wave
apprdaching the sample surface from the neutron source, while \If(k’ ,T) is a wave approaching
the sample in the direction opposite to the direction of observation: ¥(k,r) = empz/J(pg, z)
and W(K',r) = e **'Pij(p}, z), where py = ksine, p) = ksino/ are perpendicular to the
surface components of k, k', 9(po, z) and ¥(p}, z) are the exact solutions of the one dimen-
sional Schrédinger equation with the potential Vy(z). Due to the factorization of the wave

functions,

2 .
f(Ql|7p6ap0) = _Z_; ZezqﬂpiF(Q“;pé]’pU)) (8)

where F(Qy; ph, Po) is the matrix element:
II>Po

F(Qy; oy po) = /dZ?Z(Pf),Z)F(Qis,z)¢(Po,z), (9)

and F'(Qy, z) is the 2D Fourier transform of the scatterer shape function F'(p, z). In the case

the scatterers have columnar character F(Qy; pj, po) = Fjj(Qy) FL (P, po), with

Fulph o) = [ d=F(oh, b0, 2), (10

F(Qy, z) depends on the actual cross section of the column, and d is the column height.
The wave functions ¥(po, z) and ¥ (p}, z) are linear combinations of plane waves incident
and reflected from the substrate: ¥(pg, z) = €97 + re~0% where r = (p — po)/(p + po) is
the Fresnel reflectance, p = \/m is the neutron wave number within the substrate. If
scattering occurs in the reflection hemisphere, i.e. above the sample ”hérizon”, then the
wave function J(pf,, z) has exactly the same form as given by Eqgs.(11) with the argument

po substituted by py. The explicit equation for F) (pp, po) is
Fy (pp,po) = Fy + r'F* + rF_ +1'rF,. (11)

This equation contains four terms, and each of them corresponds to one of the possible

scattering processes of incident or reflected waves. The "transverse” form—factors are:
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__ expli(ph+po)d]—1
F, = eoligm) (12)

F = expli(pg=po)d-1

i(pp~po) (13)
where ' = r(pj).

It is important to note that the ”transverse” form—factor F (pf, po) is a function of two
variables, i.e. the normal to the surface components pj and py of the outgoing and incoming
wave vector, rather than the transverse component of the wave vector transfer ¢, = pj+py.
The latter variable is the proper choice only in the Born (kinematic) approximation, which
is valid for values of pj and p, far beyond the range of the total reflection. In the kinematic

approximation p’ & py, p & po, all reflected waves are neglected, and the transverse form

factor takes the more easily recognizable form

. iQLd/ sin(Q@,d/2)
Fu(Qu) m S ==

which at low angles depends only upon the scattering angle 8 = o' + «. However, even in

(14)

this simplest case the total form—factor F(Qy; pg, po) lineshape is a function not only of the
scattering angle 8, but also of the angle of incidence: it may show a maximum not only at

f = 0, but also at # ~ 2«, which corresponds to ”specular reflection” from the disc faces.

III. AN EXAMPLE: FE DOTS ON SI

In accordance with Eq.(4) the equation for the differential scattering cross section reads:
% = INDIS(QDIF(Q; p6, po) [P (15)
S(Qp) = (1/s0) =7 6(Q) ~ 1), | (16)

where A is the number of scatterers illuminated by the incoming beam, and sq is the unit

cell area. For cylindrical particles the form-factor

|F(Qys 2h, po)* = FH (@I X FL (o, po) %, (17)
uv

with F”(p}, po) given by Egs.(11-13), and




Fy(Qy) = %”Qh(poQu), | (18)

for an array of cylindrical particles of radius pg, corresponding to a particle shape function
F(p,z) =1at p< pyand 1<z <d, and zero otherwise.
In terms of the angles of incidence and scattering the conditions of occurrence of the

Bragg reflection can be expressed as

5(Q)~7) = Pz —wr) (19)

[0(a) — ar) + 6(c + ar)],

In estimating the Bragg peak positions in the {¢/, o} plane it was assumed that the equation
for azimuthal angles w = wr = ©,x+ is satisfied for each of the discussed reciprocal vectors
7. Usually this is satisfied automatically because reflectometers have poor resolution with
respect to the azimuthal angles, and all the Bragg lines for w’s in the range of interest are
just summed up. In accordance with Eq.(19) the form factor Fy(r) ~ 7p§ at 7py < 1, and
it decays as 773/2 at @)po > 1. Therefore this sum is well convergent and approaches the
summation of ws to infinite limits. However, only relatively small number n ~ a/po of terms
bring appreciable contribution to this sum and small factor (472)X%/sea) < 1 in Eq.(20) is
not compensated: the diffraction effect remains quite weak even at y, < 1. At higher angles
o', and/or x, the Bragg diffraction is additionaly suppressed by the transverse form factor
given in Eq.(12).

Numerical calculations were made for the diffraction pattern of square 1 x 1um? lattice
of iron dots with diameter 3 000 A and height 800 A deposited on a SiO, wafer. Neutrons
have a wave length of A = 4.41 A, and fall on the dot pattern at an angle x = 0.4°
from the lattice edge. For SLD were taken: for SiO; n.b, ~ 03.9 x 10~° A2 for iron
nabg ~ 13 x 107% A2, as expected for fully magnetized iron and for neutrons polarized
parallel to the direction of magnetization. With a resolution A = 0.02°, we find that
the maximum inteﬁsity of the (0,£1) peaks may amount up to 2% of the total reflection.

Much lower is the intensity of the (&1, 0) reflections, which is suppresed by the form factor




F\(pp,po) at ph,po = d~1. The results of calculations are presented in Fig.2a, while in
order to experimental results are depicted in Figs.3b. The experiment carried out at the
polarized neutron reflectometer ADAM [8] at the Institut Laue-Langevin (Grenoble) shows
that indeed the diffraction experiments on submicron size dot systems are feasible. However,
the amount of intensity diffracted is such that such experiments can provide a satisfactory
amount of physical information only for very selective problems and systems with suffisiently
large area.

*Work is supported by US-DOE, BES-MS contract #W-31-109-ENG-38, Russian State Program

»Neutron Research of Condensed Matter” and RFFI-Grant No. L-EN-96-15-96775.




REFERENCES

(1] J.1. Martin et al., Phys. Rev. Lett. 79, 1929 (1997).
[2] Y. Jaccard et al., Phys. Rev. B 58, 8232 (1998).

[3] D.J. Morgan et al., Phys. Rev. Lett. 80, 3614 (1998).
[4] V. Holy et al., Phys. Rev. Lett. 83, 356 (1999).

(5] M. Grassi Alessi et al., Phys. Rev. B 59, 7620 (1999).
[6] P. Vavassori et al., Phys. Rev. . B 59, 6337 (1999).
[7] M.Tolan et al., Physica B 221 (1996) 53.

[8] A. Schreyer et al., Physica B 248 (1998) 349.




FIGURE CAPTIONS
FIG.1 Geometry of the (0,1) diffraction process from square lattice of dots.

FIG.2 a.) Schematic contour plots of the reflected and diffracted intensity as a function
of the scattering angles o/ and the incidence 'angles o; Sample is 1 x 1um? lattice of
iron dots with diameter 3 000 A and height 800 A deposited onto SiO, wafer, neutrons
wave length A = 4.41 A, and the angle xy = 0.4°,

b) experimental results for neutrons polarized along the dot magnetization.
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