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Abstract

The distorted wave Born approximation (DWBA) is applied to evaluate the

diffraction pattern of neutrons (or X-rays) from a 2D array of dots deposited

onto a dissimilar substrate. With the radiation impinging on the surface at a

grazing incidence angle a, the intensities diffracted both in and out the plane

of specular reflection are calculated as a function of the periodicity of the

array, height and diameter of the dots. The results are presented in the form

of diffracted intensity contours in a plane with coordinates a and a’, the latter

being the glancing angle of scattering. The optimization of the experimental

conditions for polarized neutron experiments on submicron dots is discussed.

The feasibility of such measurements is confirmed by a test experiment.
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L DIFFRACTION GEOMETRY

In the last few years it has become possible to produce periodic arrays of submicron

“dots” [1–3] and nano–scale [4,5], two dimensional (2D) structures on flat surfaces or em-

bedded in metallic, semiconducting or superconducting films and multilayers. High precision

control of the size, period and symmetry of the micro and nano structures enables the fabri-

cation of systems of great interest for optical and magnetic storage applications. In order to

check the fabrication parameters a number of different techniques, such as optical, electron

and atomic force microscopy, as well as optical and electron diffraction are widely employed.

Recently, the magnetic properties of a 2D lattice of holes (antidots) in a Fe film have been

studied [6] by means of magneto–optic Kerr effect in combination with Brillouin scattering

and magnetic force microscopy. However, these methods can hardly be useful if the structure

is buried under a non transparent film. If the film is not too thick grazing incidence diffrac-

tion (GID) of X-rays [7] may deliver rather complete information on the dot arrangement,

while the use of polarized neutron GID is most suited to study the magnetic structures

implanted into thick films. In the present paper the equations for GID from 2D artificial

structure will be derived and analyzed with the aim of optimizing forthcoming experiments.

Conventionally it is assumed that the optimal conditions for the diffraction on a lattice

are satisfied if the wavelength A of X-rays or neutrons is scaled with the reciprocal lattice

spacing a. Therefore, at first sight it seems that neutron or X -ray diffractometry is not the

proper choice to study a lattice with a spacing a of the order of microns. This statement,

however does not always hold for the case of 2D structures on a flat surface when viewed at

grazing incidence. Let us consider the case in which the incoming radiation is at a grazing

angle a with respect to the basic plane and the 2D structure is defined by reciprocal lattice

vectors T.

If R, R’ are the wave

basal plane, Qll = R’ – K

vector projections of the incoming and scattered beams onto the

is the lateral wave vector transfer, and w is the in–plane scattering

angle between the vectors R and K!, then the Bragg law Qll = r is fulfilled at d = aT and
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w = WT, where

COS2o!~ = COS2a + 2er CosXT Cosa + e: (1)

sin WTcos ar = @r sin Xr, (2)

X7 is the angle between the directions of R and the vector T (see Fig.1), and @T= ~/k. At

A << a the amplitudes of the Bragg peaks may have appreciable values only at CM<<1 and

a’ <<1, and then:

a~ R {az – 2@TCosXT <<1, (3)

UT c @sinXr <<1, (4)

where ~~ = -r/k. As these equations determine the peak positions as functions of a and

a’, the scattered intensity may conveniently be represented as a contour plot in the {Q!,a}–

plane. Let us for instance consider a square lattice (Fig.1) in the symmetrical case in

which the basic reciprocal vector 710 is directed along E, and thus, Ulo = ~io = O. Then

the representation of the equation a’2 = a% (CM)in {a, o?}–plane is that of on hyperbola

cutting the a axis at ~: neutrons incident at smaller values of a are unable to excite

this diffraction lines. Similarly, ~io gives rise at a diffraction line at loci defined by an

hyperbolas that cuts the d axis at +=.

The diffraction effects of the reciprocal vectors -rOl and ~oi are significantly different.

For w = +@l the diffracted beams Ioci in {cm’}–pIane are coincident with the reflected or

transmitted beam: this is because they occure for a modulation of the in–plane potential

exactly perpendicular to the incoming wave. However, turning the reciprocal lattice into

asymmetric position has dramatic effect on the Bragg peaks at +aol and ~~oi. The de-

generacy for these Bragg lines is lifted: then one can, in principle, observe all four peaks

corresponding to the curves a’z – a2 = +2@1x. In Fig.2 is presented an example, when

x = 0.4°.

The example shown indicates that the Bragg law Qll = T defines not only the in–plane

scattering angle w, but also the angle o? # a between the outgoing wave vector and the
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basic 2D plane. In this geometry small lateral momentum transfers result in appreciable

changes in Ql: for instance, a resolution in Q1 of N 10-3~ provides a sensitivity to Qll

down to 10-G~-l, a range well matched with lattice spacings of the order of microns. We

want to calculate now the intensities expected for the diffraction from such a 2D structure.

II. SCATTERING AMPLITUDE

Let us consider a set of ferromagnetic particles forming a periodic 2D lattice in the

XY–plane. For instance, the particles may have height d and be deposited on a thick flat

substrate. The neutron wave incident on such a sample is reflected and refracted by the

optical potential of the substrate, and also diffracted by the lattice. If the angle of incidence

is low, the optical effect should be accounted for exactly. However, as the diffracted intensity

is usually weak its effect can be regarded as a perturbation. The potenti~ V(r) representing

the neutron interaction with the system may be decomposed into a sum

V(r) = VO(Z) + Vd(r), (5)

where the first term depends solely on the coordinate z normal to the surface and may

be approximated by the optical potential: VO(Z) = O at z <0, and VO= ?i2p~/2m in the

substrate. Here p? = 4m~b~; p~ is the critical wave number of the total reflection and n~b~

is the neutron scattering length density (SLD) for the substrate.

The second term in the Eq. (5) is due to the dots with SLD ndbd, and can be written in

the form:

V~(r) = ~~F(p-pi, z-d),
a

(6)

where p~ = 4mdbd, z is a running index which indicates the particle position on the substrate

surface, and F(p, z) is the particle shape function.

Since Vd(r) depends on the 3D coordinate r = {p, z}, itcauses diffraction in off-specular

directions. Within the first order of the distorted wave Born approximation (DWBA) the

diffraction amplitude ~(k’, k) is proportional to the matrix element of the potential Vd(r)
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~(k’, k) = -&/~rfi(k’)r)~d(r)~(k2r)) (7)

where the wave functions @(k’, r) and W(k, r) are the exact solutions for the potential V.

with the proper initial and boundary conditions. Thus in free space V (k, r) is a plane wave

approaching the sample surface from the neutron source, while @(k’, r) is a wave approaching

the sample in the direction opposite to the direction of observation: IJ?(k,r) = ei%~+(po, z)

V(p:, Z), Where PO = k sin ~, pi = k sin d are perpendicular to theand fi(k’, r) = e–iK’p -

surface components of k, k’, @(p., z) and @(pi, z) are the exact solutions of the one dimen-

sional Schrodinger equation with the potential V.(z). Due to the factorization of the wave

functions,

where F(QII; pi, PO) is

~(QII,P&,Po) = –~ ~ e’Q1lPi~(Qll; pl,pO),
a

the matrix element:

(8)

F(QII; PhPo) = /dz~(Pl>z)F(Q\,) z)@(Po>z)> (9)

and F(QII, z) is the 2D Fourier transform of the scatterer shape function l’(p, z). In the case

the scatterers have columnar character F(QII; pj, Po) = ~1 (QII)~L(PL, Po}, with

(lo)

~11(Qll, z) depends on the actual cross section of the column, and d is the column height

The wave functions 10(po,z) and ~(p~, z) are linear combinations of plane waves incident

and reflected from the substrate: ~(po, ,z) = e@@+ re–@O%,where r = (p —po)/(p + po) is

the Fresnel reflectance, p = ~p~ – p: is the neutron wave number within the substrate. If

scattering occurs in the reflection hemisphere, i.e. above the sample “horizon”, then the

wave function ~(p~, ~) has exactly the same form as given by Eqs.(11 ) with the argument

POsubstituted by p&. The explicit equation for Fl(p{, po) is

FJ- (p~,pi)) = F; + T-’F: + ?-F. + ?-’rF+. (11)

This equation contains four terms, and each of them corresponds to one of the possible

scattering processes of incident or reflected waves. The “transverse” form–factors are:
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F+ =
exp[i(p~+po)dj – 1

qP~+Po)

~_ _ exp[i(p~–po)~–l
—

@~ –Po) ‘

(12)

(13)

where r’ = r(p~).

It is important to note that the “transverse” form-factor FL(P~, PO) is a function of two

variables, i.e. the normal to the surface components p: and p. of the outgoing and incoming

wave vector, rather than the transverse component of the wave vector transfer QL = pi +po.

The latter variable is the proper choice only in the Born (kinematic) approximation, which

is valid for values of pj and p. far beyond the range of the total reflection. In the kinematic

approximation p’ N PL, P = PO, all reflected waves are neglected and the transverse form

factor takes the more easily recognizable form

F1(Q1) x eiQ*~/2‘in(QLd’2),
QJ2

(14)

which at low angles depends only upon the scattering angle @= a’ + a. However, even in

this simplest case the total form–factor F(QII; pi, po) lineshape is a function not only of the

scattering angle 0, but also of the angle of incidence: it may show a maximum not only at

O= O, but also at 0 R 2a, which corresponds to “specular reflection” from the disc faces.

III. AN EXAMPLE: FE DOTS ON S1

In accordance with Eq. (4) the equation for the differential scattering cross section reads:

% = *~P&(QI)l~(QII; Pl,PO)12 (15)

S(QII) = (1/SO)& J(QII – T), (16)

where Af is the number of scatterers illuminated by the incoming beam, and so is the unit

cell area. For cylindrical particles the form–factor

lNQII;Pk PO)12= ~~(QII)l ~~f’(Pj>Po)12, (17)
pv

with Ff (pi, po) given by Eqs. (11–13), and
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WQII) = ~,,‘WOQII), (18)

for an array of cylindrical particles of radius PO,corresponding to a particle shape function

F’(p, z) = 1 at p s p. and 1 ~ z ~ d, and zero otherwise.

In terms of the angles of incidence and scattering the conditions of occurrence of the

Bragg reflection can be expressed as

In estimating the Bragg peak positions in the {o!, a} plane it was assumed that the equation

for azimuthal angles w = Ur = @TXTis satisfied for each of the discussed reciprocal vectors

r. Usually this is satisfied automatically because reflectometers have poor resolution with

respect to the azimuthal angles,

just summed up. In accordance

it decays as ~‘3/2 at Qllpo >> 1.

and all the Bragg lines for w’s in the range of interest are

with Eq. (19) the form factor ~1 (~) s np~ at ~po s 1, and

Therefore this sum is well convergent and approaches the

summation of WT to infinite limits. However, only relatively small number n N a/p. of terms

bring appreciable contribution to this sum and small factor (47r2~2/sea) <1 in Eq.(20) is

not compensated: the diffraction effect remains quite weak even at X7 <<1. At higher angles

o!, a and/or z. the Bragg diffraction is addit ionaly suppressed by the transverse form factor

given in Eq.(12).

Numerical calculations were made for the diffraction pattern of square 1 x lpm2 lattice

of iron dots with diameter 3000 ~ and height 800 ~ deposited on a Si02 wafer. Neutrons

have a wave length of A = 4.41 ~, and fall on the dot pattern at an angle x = 0.4°

from the lattice edge. For SLD were taken: for Si02 n,b~ R 03.9 x 10-6 A-2, for iron

ndbd % 13 X 10–6 A–2, as expected for fully magnetized iron and for neutro& polarized

parallel to the direction of magnetization. With a resolution Ad = 0.02°, we find that

the maximum intensity of the (O,+1) peaks may amount up to 2% of the total reflection.

Much lower is the intensity of the (+1, O) reflections, which is suppresed by the form factor
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~L(PL,fJo) at P~,PO 2 d-l. The results of calculations are presented in Fig.2a, while in

order to experimental results are depicted in Figs.3b. The experiment carried out at the

polarized neutron reflectometer ADAM [8] at the Institut Laue–Langevin (Grenoble) shows

that indeed the diffraction experiments on submicron size dot systems are feasible. However,

the amount of intensity diffracted is such that such experiments can provide a satisfactory

amount of physical information only for very selective problems and systems with sufficiently

large area.

*Work is supported by US-DOE, BES-MS contract #W-31-109-ENG-38, Russian State Program

“Neutron Research of Condensed Matter” and RFFI-Grant No. L-EN-96-15-96775.
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FIGURE CAPTIONS

FIG.1 Geometry of the (0,1) diffraction process from square lattice of dots.

FIG.2 a.) Schematic contour plots of the reflected and diffracted intensity as a function

of the scattering angles a’ and the incidence ‘angles a; Sample is 1 x l~m2 lattice of

iron dots with diameter 3000 ~ and height 800 ~ deposited onto Si02 wafer, neutrons

wave length A = 4.41 & and the angle x = 0.4°,

b) experimental results for neutrons polarized along the dot magnetization.
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