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ABSTRACT

The variational nodal method implemented in the VARIANT code is generalized to perform full
core transport calculations without spatial homogenization of cross sections at either the fiel-pin
cell or fhel assembly level. The node size is chosen to correspond to one fbel-pin cell in the
radial plane. Each node is divided into triangular finite subelements, with the interior spatial flux
distribution represented by piecewise linear trial functions. The step change in the cross sections
at the fiel-coolant interface can thus be represented explicitly in global calculations while
retaining the fill spherical harmonics capability of VARIANT. The resulting method is applied
to a two-dimensional seven-group representation of a LWR containing MOX fiel
Comparisons are made of the accuracy of various space-angle approximations
corresponding CPU times.

1. Introduction

assemblies.
and of the

Nodal methods have found widespread use for the performance of whole-core reactor physics
calculations. Each node normally corresponds to an axial slice of a fiel assembly for which
homogenized cross sections have first been obtained. The methods have been most widely
applied using diffision theory for two-group thermal reactor calculations but also to multigroup
fast reactor calculations. In fast reactor cores, however, and with increasingly heterogeneous
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thermal reactor cores, steep flux gradients and large cross section discontinuities may cause the
diffusion approximation to lead to substantial inaccuracies.

Nodal transport theory is employed increasingly to circumvent diffusion theory’s limitations. In
particular, the variational nodal method incorporated into the Argonne National Laboratory code
VARIANT combines multigroup spherical harmonics (l%) or simplified spherical harmonics
(SPn) treatments of the angular variables with a nodal treatment of the spatial variables based on
a hybrid primal finite element method.2-5>8 VARLANT utilizes response matrix methods to solve
the even-parity transport equation on a nodal grid coupled by odd-parity Lagrange multipliers at
the node interfaces.

With the ability to perform whole-core nodal transport calculations secured, the largest
remaining computational uncertainties arise fi-om the use of homogenized fbel assembly cross
sections and the subsequent dehomogenization procedures required to estimate fbel pin powers.
For, no matter how high the angular order of whole-core transport calculations, accuracy is
limited by the approximations made in the homogenization process. In highly heterogeneous
configurations, such as those in LWRS containing MOX fuel assemblies, the spatial
homogenization performed at the fhel-pin cell or at the fiel assembly level may obliterate the
coupling between local and global transport effects and introduce substantial errors into pin
power estimates.

Our recent efforts have been centered on generalizing the variational nodal method to petiorm
whole-core transport calculations in which the need for spatial cross section homogenization is
reduced or eliminated. To accomplish this, we introduce a subelement formulation to expand the
capabilities of the VARIANT code. The resulting algorithms are more computationally intensive
than those employed with homogenized assembly cross sections. Nevertheless, continuing
advances in processor speed and the improving capabilities for parallel computing make the
prospects bright for employing such methods not only for occasional benchmark verifications but
also for more routine reactor physics calculations as well.

The standard VARIANT code employs a set of complete polynomial trial functions to represent
the flux within each homogenized node. More recently, we have developed two different
approaches to refining the spatial resolution, both retaining fill capability to perform Pn or SPn
approximations in angle. In the first of these, the homogeneous assembly-sized nodes
conventionally used in VARIANT are replaced with homogeneous nodes each the size of one
fhel-pin cell. Full core calculations thus require homogenization only at the fiel-pin cells. The
refined spatial resolution, however, considerably lengthens the time required to obtain a solution
of the resulting response matrix equations. The second approach uses finite subelement trial
functions.

With subelements, the fbel assembly is retained as the basic node. Within each node,
continuous, piecewise bilinear finite subelement trial fimctions are employed on a square grid,
corresponding to the pin cells. This approach permits step changes in cross sections at each pin
cell interface. As in the first approach, homogenization is required only at fbel-pin cell level.
Retaining the assembly-sized node incurs some approximation along the assembly interfaces that
is not present in the first approach. However, our experience with two-group MOX loaded LWR
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cores indicates that the errors introduced are quite sma11516.Moreover, retaining the large
assembly-sized nodes results in faster solution of the response matrix equations while moving
the additional computational effort to the highly parallelizable formation of the response
matrices.

In the following section, we present a third approach that also uses subelements, but in a quite
different manner. In it, the nodes are the size of one fbel-pin cell. Within each node, continuous
piecewise linear finite element trial fimctions are utilized on a triangular grid. As indicated in
Fig. 1 such grids allow the step change in cross sections at the fiel-coolant interfaces to be
represented explicitly. Thus homogenization at both the fhel-pin cell and the fiel assembly
levels is eliminated. In section 3 we apply this formulation to a seven-group MOX benchmark
problem and examine accuracy and computational efficiency. Future directions are discussed in
the final’section.

2. Theory

The variational nodal method combines multigroup spherical harmonics (l%) or simplified
spherical harmonics (SPn) expansions of the angular variables with a primal hybrid finite
element representation in space of the even-parity form of the transport equation. The problem
domain Y is decomposed into subdomains K (called nodes of elements):

v=~ <. (1)
v

The even-parity transport equation is solved within each node, with the nodes coupled by odd-
parity Lagrange multipliers that preserve nodal neutron balance.

Following the angular expansion, the even-parity equations reduce to a coupled set of second
order differential equations

where qJ+(7) is the vector of spatially dependent coefficients of the even-parity flux, and the

angular coupling is incorporated into the tensor ~ and the vector w. The odd-parity coefficient
vector on the node interfaces is given by

y-(?) =–cr’v.lry+(~). rav (3)

To express these equations in a variational form, we define a functional that is a superposition of
nodal contributions

mv+>wl=~ 5 [W+,YJ-l>
v

(4)
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v

J+ 2 dr’fi“(ETly+)TqJ- . (5)
v

The fictional is required to be stationary, yielding Eq. (2) as the Euler-Lagrange equation
resulting from variations in V+(7) within the node, and Eq. (3) at the interfaces. Similarly,

continuity of y+(7) across the nodal interfaces is imposed from variations on the interface

Lagrange multipliers yJ-(7).

We next discretize the spatial variables. The interface Lagrange multiplier vectors are expanded
as

(6)

where the J spatial trial fimctions h(?) obey the orthogonality condition

Jdl%hr =1,. (7)
v

and @ indicates Kronecker tensor multiplication.

In the standard form of VARIANT , the cross sections within each node are uniform and V+(7) is

expanded in a set of complete polynomials, typically of fourth or sixth order. Here, however, we
want to treat fiel-pin cells as heterogeneous nodes in which the fhel-cookmt interface is
represented explicitly. To accomplish this we subdivide the nodal volume 7Vinto a number of

triangular subelements.

~ =~ve . (8)
e

where uniform cross sections are specified within each subelement. h the calculations that
follow, the triangular element structures indicated in Fig. 1 are used to represent explicitly the
fiel-coolant interface in a unit cell sized node. They are specified such that the fhel and coolant
volume fi-actions are preserved exactly.

We represent spatial flux distributions within each subelement by finite element trial fimctions
with local support, designated by the vector n(?), and vectors <~of unJsnowns. The even-parity

flux moments become

~+(~) =1~ @nT(7)&, Fcve (9)
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where n(~) represents the linear trial fictions on the triangular elements. Hence <~

approximates the value of V+(7) at the subelement vertices. The nodal fictional given by

Eq,(12) reduces to a superposition of subelement contributions:

where the coefficient matrices are given in terms of the known trial fi.mctions

and

(lo)

(11)

Me =Ek @ f’tnknh~, (12)
e

with the source term

~
se = dYis@3n. (13)

e

Since these trial fi.mctions must be continuous across subelement interfaces, the components of
~e corresponding to the same physical location on either side of a subelement interface must

have the same value. This continuity condition is enforced by creating a Boolean matrix EC for

each subelement that maps the ~eonto ~v, anode wide vector of coefficients:

Assembling the subelements, we may write the discretized forms of Eqs. (4) and (5) as

~=xz[<”Y%”] (15)
v

and

To speed computations without a commensurate loss of accuracy, the group source vector can be
lumped into coarser components. They are the volume-averaged contributions fi-omthe fiel and



from the moderator regions adjoining the four cell interfaces, as indicated by the shading in
Fig, 1.

Requiring Eq. (16) to be stationary with respect to variations in <v and xv yields for each node,

the equation

&<v +M.Jv =s” (17)

and the continuity of

v“ =WTCV

across each interface. Solving Eq. (17) for ~v yields

(18) ,

(19)L =0, -fqvq~v.

The combination of Eq. (18) and (19) then gives the result

w, =M20v –M)_@& . (20)

This equation expresses the even-parity flux moments WVat the node interface in terms of the

source and the odd-parity interface moments XV,while imposing the continuity of both of these

moments between neighboring elements. The final step is to transform variables such that
Eq.(20) may be written in terms of a response matrix. Introducing the partial current like
variables

.*
J, ‘:Y, +%> (21)

we may write Eq.(20) in the response matrix form:

j; =~j; +Bvsv. (22)

3. Results

The finite subelement formulation described above has been implemented in a prototypic
modification of the VARIANT code. We have applied it to a problem being proposed as an
OECD/NEA benchmark.7 The problem is an elaboration of the earlier OECD/N13A two group
PWR benchmark, C5 configuration.l The quarter core configuration, shown in Fig. 2 consists of
two MOX and two U02 assemblies. The configuration of the MOX assemblies is indicated in
Fig. 3, where the shading indicates the three Plutonium enrichments, and the guide tubes. In the
U02 assemblies all of the fiel pins have the same composition. The C5 configuration poses a

6



challenging transport problem since the heterogeneities produced by the MOX assembles interact
strongly with the sharp global flux gradients that result fi-omthe small core size.

As a basis for the calculations that follow, we took the atom densities specified by Cavarec,
1994, and performed single fiel-pin cell calculations with the DRAGON codeg to generate
seven-group transport-corrected isotropic cross sections for the fhel and for the coolant regions
of each fiel-pin cell. Our concern was not with the accuracy lost in cross section collapse, but
rather with spatial homogenization and space-angle transport effects. Thus we simplified the
resulting cross section set by using a single set of water cross sections (those from the U02 cell)
for all the assemblies and for the reflector.

We performed two classes of calculations in which each node represents one fuel-pin cell. The
first uses the subelement formulation of VARIANT where no spatial homogenization is
employed either at the fuel-pin cell or fiel assembly level. The second uses the standard
VARIANT formulation, which requires homogenized fiel-pin cell cross sections. The
homogenized cross sections are generated using standard flux weighting flom the single pin cell
calculations. Comparing the results of standard and subelement VARIANT calculations thus
allows inaccuracies produced by pin cell homogenization to be examined.

The subelement VARIANT formulation allows all of the space-angle approximations to be
refined: node interface approximations ilom flat to linear to quadratic, triangular meshes from
Fig. 1a to Fig. lb, and angular approximations from PI, to P3, and P5. Multiple geometry
comparisons were carried out between the higher-order approximations of both the standard and
subelement VARIANT codes and the DRAGON collision probability code calculations using the
seven group cross sections as input. For single-pin cell geometries, both the standard version of
VARIANT and the subelement version are in excellent agreement with the eigenvalue results
from DWGON. The same is true for calculations of single fuel assembly geometries. For the
C5 configuration a full collision probability calculation using the DRAGON code could not be
completed because of excessive CPU time (longer than one month). Thus we only compare the
differences between the standard version of VARIANT and the subelement version taking the
highest order subelement version as the reference solution.

Table I is a compendium of some of the VARIANT subelement results for the eigenvalue and
peak to average pin power ratios for the C5 problem. As indicated in Table I, we found that a
change in node interface approximation from linear to quadratic did not have a large effect on
either eigenvalue or on the peak to average pin power ratio. A similar trend was observed with
the change from flat to linear, therefore only partial results are included. It is noteworthy,
however, that the estimate of some of the pin powers away fi-om the peak are sensitive to the
node interface approximation used. In the C5 problem, refinement of the triangular grid fi-om
Fig 1a to Fig lb results in slightly larger eigenvalues and more substantial differences in peak to
average pin power ratios, indicating the need for the more refined grid. As expected, the change
in the angular approximation from P 1 (diffision) to P3 to P5 represents the most significant
change in eigenvalue and peak to average pin power ratio results. The greatest change is
observed between the P1 and P3 results, with a small correction made by the P5 calculation.
These results are consistent with previous calculations made with VJUUA.NT. In Fig. 4 the pin
power distribution for the case with no homogenization (Fig. lb triangular mesh) and that with
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fuel-pin cell homogenization are shown. These results represent thesolutions using a quadratic
node interface approximation and a P5 angular approximation for both methods.

For the highest node interface approximation and angular approximation the total CPU times
required for a Sun Ultra Workstation to obtain the problem solutions are 1690, 1820, and 2100
seconds for the standard VARIANT, coarse grid subelement VARIANT (Fig. la), and fine grid
subelement VARIANT (Fig. lb) calculations, respectively. In the case of the Fig. 1a mesh and
the standard VARIANT calculation the time required to form the response matrices is almost
identical (-25 seconds) with the triangular mesh taking slightly longer. The CPU time for the
formation of the response matrices for the Fig. lb mesh is on average twice that of the Fig. la
mesh (-50-60 seconds). This shows that the majority of CPU time is devoted to the solution of
the response matrix equations, which is relatively unaffected by the refinement of the spatial
distribution within the node.

4. Discussion

The results given above offer encouragement for the fhrther development of whole-core
transport methods that eliminate the ambiguities introduced by homogenization at the fuel-pin
cell and fiel assembly level. Much remains to be done both in improving the computational
efficiency of the subelement methods and in extending them to a wider range of physical models.

For computational efficiency, the use of fuel assembly-size nodes, but nodes in which a richer
triangular finite element structure would allow the explicit treatment of the fbel coolant
interfaces, would greatly decrease the execution times for the outer iterations. The
computational burden would then be shifted to finite element formation of the assembly response
matrices. Such response matrix formulations would be ideally suited for parallel processor
configurations, which are coming into increased use.

The more immediate modeling challenge is to take the subelement methods from two to three
dimensions. Nodal interfaces will be required in the axial plane and, unlike planes lying
perpendicular to the core axis, material interfaces will cut through these axial interfaces.
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TABLE I. 1

H%-R-
Interface Angular
Approx. Approx.

*

Linear P1

uadratic P 1

Ouadratic P3

Quadratic I P5

igenvalue and Peak to Avg. Pin Power Ratios for the C5 Problem.

Homogenized Pin Cell Coarse Mesh Fine Mesh
VARIANT (Fig. 1a) (Fig. lb)

Peak to Peak to Peak to
Eigenvalue Avg. Eigenvalue Avg. Eigenvalue Avg.

1.18647 2.51679 1.18405 2.50592 1.18288 2.51372
1.18651 2.51729 1.18411 2.50468 1.18305 2.50862
1.18794 2.52887 1.18971 2.55758 1.19043 2.54115

1.18803 2.52534 1.19055 2.55617 1.19181 2.53504
Percent Percent Percent Percent Percent Percent

Diff Diff Diff Diff Diff Diff

0.44746 0.72019 0.65088 1.14873 0.74867 0.84121
0.44447 0.70035 0.64537 1.19767 0.73491 1.04226
0.32441 0.24337 0.17617 0.88883 0.11522 0.24072

0.31687 0.38291 0.10567 0.83328 :-:-”.”;;%:’:;”T . ‘“%.::::.?:
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a. Course grid b. Fine grid.

Figure 1. Triangular Subelement Structures for a Fuel-pin Cell Sized Node
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Figure. 2. Core Configuration for the C5 Benchmark Problem
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Figure 3. Composition Structure for a MOX Fuel Assembly
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Figure4. a)Fuel PinPowersforthe C5Problemwithout Homogenization
b) FuelPinPowers fortheC5 Problem withFuel-PinCell Homogenization


