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ABSTRACT

Validation of nuclear power reactor signals is often performed by comparing signal prototypes
with the actual reactor signals. The signal prototypes are often computed based on empirical data.
The implementation of an estimation algorithm which can make predictions on limited data is an
important issue. A new machine learning algorithm called support vector machines (SVMS)
recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization
with finite high-dimensional data. The improved generalization in comparison with standard
methods like neural networks is due mainly to the following characteristics of the method. The
input data space is transformed into a high-dimensional feature space using a kernel function, and
the learning problem is formulated as a convex quadratic programming problem with a unique
solution. In this paper we have applied the SVM method for data-based state estimation in
nuclear power reactors. In particular, we implemented and tested kernels developed at Argonne
National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear,
nonparametric estimation technique with a wide range of applications in nuclear reactors. The
methodology has been applied to three data sets from experimental and commercial nuclear power
reactor applications. The results are promising. The combination of MSET kernels with the
SVM method has better noise reduction and generalization properties than the standard MSET
algorithm.

1. INTRODUCTION

One approach for validation of nuclear power plant signals makes use of pattern recognition
techniques. This approach often assumes that there is a set of signal prototypes that are
continuously compared with the actual sensor signals. These signal prototypes are often
computed based on empirical models with little or no knowledge about physical processes. A
common problem with all data-based models is their limited ability to make predictions on the
basis of available training data. Another problem is related to suboptimal training algorithms.
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Both of these potential shortcomings with conventional approaches to signal validation and sensor
operability validation are successfully resolved by adopting a recently proposed learning paradigm
called the Support Vector Machine (SVM)l. The work presented here is a novel adaptation of the
SVM paradigm for data-based modeling of system state variables in a nuclear power plant,
integrated with a nonlinear, nonparametric technique called the Multivariate State Estimation
Technique (MSET), an algorithm developed at Argonne National Laboratory for a wide range of
nuclear plant applications.2

2. BACKGROUND ON MSET

State estimation in MSET is achieved by first organizing the data into a “process memory” matrix

fi. The number of columns of this matrix is equal to the number of observations, and the number
of rows is equal to the number of sensors. If a new observation is made and the sensor
measurements from this matrix represent correlated phenomena, then it can be assumed that the
estimate of the new state is related to the data matix in the following way:

(1)

The weight vector W is computed in MSET using a proprietary set of nonlinear operators. In a
general operator form, the solution for the weight matrix in MSET is given by the following
expression:

where symbol @ represents a nonlinear operator applied to the input data. The goal of this
operation is to transform the input data space into another space, called the feature space, which
reveals the similarity between new states and previous states that are stored in the process memory

matrix. The matrix K = fi’ @D has components K ~ = Xi’ @Xj and is designated as the

similarity matrix. Several nonlinear operators have been invented and implemented in the MSET
algorithm for a variety of successful applications in the areas of nuclear power plant signal
validation and fault identification.2

To improve numerical accuracy and stability, Tikhonov regularization3 has recently been

implemented in MSE~. The Tikhonov regularized solution Wi is obtained as the solution to the

following minimization problem:

(3)

where k is the regularization parameter and ~ is a convenient regularization matrix that controls
the smoothness of the solution. Testing with ill-conditioned problems in MSET has demonstrated
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that the generalized cross validation (GCV)5 procedure provides a good method for optimization
of the regularization parameter.

The solution of the regularized problem is

(4)

Here K(~Ob) is a column vector. Each component (K(%Om))i = K(XOb, X, ) = XObT @ii can

be regarded as a kernel evaluated at the points XOband X in the input space.

The estimation problem in the input space (first equality in equation (4)) has been transformed
into an estimation problem in the feature space (last equlity). Nonlinear features are defined using
kernel K. Under some regularity conditions (see, e.g., GirosiG),the kernel can be represented as a
functional expansion in a set of basis functions, which define a feature space. The ability of the
learning algorithm to select appropriate features is the main factor in controlling the generalization
of the learning algorithm. An overly rich set of features may lead to overfitting, while a sparse set
may lead to large estimation errors.

3. SUPPORT VECTOR MACHINES

Most standard learning methods control the generalization error by keeping the number of features
small. For example, in feedforward neural networks, the number of hidden units corresponds to
the dimensionality of the feature space. Various heuristic approaches can be used for selecting a
small number of features. Keeping the dimensionality of the feature space small effectively
controls the model complexity.

The SVM approach is based on a different principle. The feature space is high dimensional (for
some kernels the set of basis functions maybe infinite), but complexity control is performed in the
input space. This is very similar to complexity control in the standard versions of MSET.
Although the performance of standard MSET selection procedures was quite good in practice,
there was no guarantee that the selected training dataset would represent an optimal tradeoff
between compactness and estimation accuracy. The main advantage of the SVM algorithm is that
an optimal and unique training dataset can be found.

To exploit an SVM approach, the first quadratic error term in (3) should be replaced with
Vapnik’s ~-insensitive error functionl of the form

3
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The intuitive motivation for this choice is robustness: errors less than a specified threshold &are
ignored.

In order to be able to approximate a variety of experimental data, one should use a large class of
approximating function. One such class of function belongs to a functional space called the
Reproducing Kernel Hilbert Space (RKHS). This specific choice of functional space is used both
in functional analysis7 and in the theory of stochastic processes. To each RKHS corresponds a
reproducing kernel named so because of the reproducing property defined by

< f(.), K(., X) >H= f(x) (6)

for every function f belonging to that functional space, Here< , ~ denotes the inner product in
RKHS.

The reproducing kernel can be expanded in independent functions, called features

Any function from the RKHS defined by Q. can be represented as

Y(i) = $C.O.(i)
n=l

A natural form for the regularized functional in the RKHS is

(7)

(8)

(9)

The second term is a norm in the RKHS defined by functions & Here 1 is the regularization
parameter, ~ is a positive decreasing sequence.

We have implemented features that are based on the Hermite polynomials

where

and Pk

‘k(x) = pkpk(x)e-x’

k

()Pk(x)= (–l)kex’ & e-x’

are normalization constants.
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For these polynomials one can obtain the kernels (Vapnik, 1998)

K(x, y) = ~qiHi(x)Hi(y) =
{

2xyq (x–y)2q2

J&
exp — –

‘+ l+q l–qz }
(12)

where 12 q 20 is a regularization parameter. This kernel has a closed form expression for a
multivariate case. The tensor product of a d-dimensional kernel again has the same form I

K(i, ~) = Cexp(2i3(X .~))exp(–l X–~ I*62)

This form controls both global (scalar product term)
The reason to use the Hermite polynomials is deeper

(13)

and local (Gaussian term) approximation.
than the mathematical convenience of the

closed expression given by (12). We cannot expect that all our variables will be Gaussian
processes. Any sufficiently regular non-linear transformation of a Gaussian process will produce
a non-Gaussian process, which can be expanded in Hermite polynomials of the original Gaussian
processs.

The formulated optimization problem for the regularized functional (9) is more difficult than the
problem for the quadratic functional (3). When the objective function is convex, this primal
problem has a corresponding dual problem insofar as a minimum of the primal objective function
is a maximum of the dual objective function. Using the technique of Lagrange multipliers it can
be proveds that the minimum of the functional (9) is equivalent to the solution obtained using
SVM1.

The SVM-based approximation scheme for any new variable y takes on a form similar to the last
equality in equation (4), except that a constant term b is added for numerical stability

(14)

The expansion coefficients ~i and q’ are the solutions of the following quadratic programming
(QP) problem

rnin R(u*,cx)=&~(a~ +cti)-~yi(cx~ –ai)+~$(cx~ -cti)(cx~ –cxj)K(~i, ~j) (15)
i=l i=l i,j–1

subject to the constraints:
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x( C+xi)=o
i=l

(16)

(xia; =0

The order of the QP problem is 2m, where m is the number of observations. Due to the nature of
this QP problem, only a number of the coefficients ~“-~ will be different from zero, and the input
data points associated with those that are nonzero are called support vectors. The number of
support vectors depends on C and s. The parameter C weighs the data term with respect to the
smoothness term, and is related to the amount of noise in the input reactor signals. This parameter
can be selected based on the GCV criterion. The parameter &controls the tolerance level in the
objective function error. A larger tolerance improves the generalization ability, but values that are
too large can lead to unacceptable bias. The constant term b is obtained from the necessary and
sufficient conditions for the global minimum of the regularized functional.

Once the kernel function is selected, the training of the support vector machines is reduced to a
convex quadratic programming problem. The selection of an appropriate optimization approach
is important since the number of variables can be enormous, and standard algorithms for QP are
not appropriate. Since the number of variables is equal to the number of data points, and the
quadratic form is completely dense, memory requirements grow with the square of the number of
data points. Therefore, decomposition and scalability become important issues. In the present
version we implemented a modification of Sequential Minimal Optimizationg, a convenient
decomposition algorithm that does not require storage of the complete quadratic form.

4. RESULTS

Insofar as SVM is a newly emerging paradigm, many issues remain unresolved. One important
component of the SVM approach is the kernel function, and optimal kernel selection remains a
topic of intense investigation. For the present investigation, two kernels have been implemented
and applied to nuclear power plant state estimation.

Most of the MSET kernels are empirical functions, and it is difficult to prove positive definiteness
of the resulting similarity matrices. After extensive experimenting we selected for comparison the
MSET kernel called the Vector Similarity Estimation Technique (VSET). For a sufficiently large
number of explanatory variables with significant correlation, we have never observed cases where
this kernel was not positive definite. The analytical form of this kernel is close to that of radial
kernels, but with additional components that enable anisotropic correlation modeling in a
multidimensional vector space.

To compare generalization errors for the standard MSET algorithm and the SVM algorithm we
first used the SMORN VII Neural Network (NN) BenchmarklO. Generated electric power in the
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Borssele nuclear power plant in the Netherlands is estimated based on sensor readings for 11
power plant variables. For the training set of 600 patterns and the testing set of 942 patterns, the
results are given in Figure 1.
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Fig 1. Comparison of SVM estimation and standard MSET for Neural Network Benchmark

After some experimenting, the value of the parameter C in the SVM algorithm was set to 480, a
value slightly larger than the maximum of the data. Smaller values of C would sometimes cause
artificial “clipping” of the data and introduce bias. Only 45 support vectors are needed to estimate
the data with the accuracy around 1% of the maximum value (tolerance level c = 5). With the
same number of training vectors in MSET, selected using an unsupervised learning procedure
called Vector 0rdering2, the estimation results are practically indistinguishable.

An extended data set from the NN Benchmark has been used to compare training and testing
errors. The training set has 942 patterns, while the testing set has 1169. The results are given in
Table I.

Training and testing errors are similar to the reported errors for artificial neural networksl”. The
improvement in generalization error in the SVM algorithm over the standard MSET with the same
number of training vectors selected is modest. However, in Vector Ordering, the number of
training vectors must be prescribed by the user ad hoc, while in SVM the support vectors are
obtained automatically based on the optimization of the regularized functional.
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Table I. Training and Testing Errors for NN Benchmark”

SVM estimation MSET Estimation

Parameter& Number of Training Testing Number of Training Testing
(%) Sv Error (%) Error (%) Vectors Error (%) Error (%)

0.5 130 0.45 2.09 130 0.58 2.16

1.0 50 0.74 1.89 50 0.61 2.01

As a second example we use 10 archive signals from the Experimental Breeder Reactor-Ii (EBR-
11). We compare the VSET kernel and the Herrnitian kernel (13) written in the following form

K(i,j)=exp@(i.j)) exp@xlli-~112 /2.02) (17)

to explicitly include a data-dependent normalization factor u and a free parameter o that controls
the width of the Gaussian. This parameter has effect on smoothing properties, as in standard
kernel regression. Better adaptation to data could be obtained using a properly selected parameter
CT.This parameter should follow the input data variability, but in practice it is not easy to find the
proper value. In this paper we used a trial and error method, but some formal paramater selection
procedures have been developedll and will be implemented in the future.

For the EBR II data we found that o = 0.1 is appropriate. Comparison of the training and testing
errors for VSET and the Hermite kernel is given in Table II.

Table II. Training and Testing Errors for EBR II data

SVM estimation with the VSET kernel I SVM Estimation with the Herrnitian kernel
I

Parameter Number of Training Testing Number of Training Testing
& Sv Error Error Sv Error Error

0.25 239 0.299 0.346 61 0.134 0.153

0.5 90 0.331 0.349 28 0.241 0.237
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Figure 2. A signal from EBR II estimated using SVM with the Hermite kernel (e =0.25)

In this case the Hermitian kernel outperforms the VSET kernel. Using a much smaller number of
support vectors, the testing error is smaller for both values of &selected.

Finally, we used a set of 10 correlated signals taken from a commercial nuclear power plant to
show how to control smoothness using both parameters &and o. Figure 3 shows the results of the
standard MSET estimation with VSET kernel and 18 training vectors (optimal number of support
vectors for VSET in this case). Figure 4 shows the corresponding results of SVM estimation with
the VSET kernel.

The testing error for standard MSET estimation is 0.96, while for MSET integrated with SVM the
testing error is 0.92. Here, SVM generalization is not significantly better. It is evident from the
figure that the solution obtained using SVM has smaller variance than the original signal
(signified by dots in the figure).
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Figure 3 A commercial PWR signal estimated using standard MSET with a VSET kernel
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Figure 4. A commercial PWR signal estimated using SVM with a VSET kernel
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Figure 5. A commercial PWR signal estimated using SVM with the Hermitian kernel (0=0.5)

Finally, Figure 5 shows the results of SVM estimation with the Hermitian kernel and 6 = 0.5.
This value was selected on the basis of trial and error. The effect of the parameter o on the
training data (first 500 observations) and the testing data can be observed from Figure 6. For G =
0.2 the training error is the smallest, but the testing error is the largest. As o increases, the
training error increases. However, the increase in the training error is slower, and for c = 0.5 both
training and testing errors are small. Although the errors are close, or even better than SVM with
the VSET kernel, the Hermitian kernel in this case requires a much larger number of training
vectors.

The presented results are preliminary. Nevertheless, the examples presented here from the Neural
Network Benchmark database, from EBR-11, and from an operating commercial PWR show an
improvement of MSET when integrated with SVM as compared with the standard version of
MSET. The SVM method results in variance reduction, near optimal selection of a compact
subset of training vectors, and some improvement in generalization.
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CONCLUSIONS

A recently proposed learning paradigm called the Support Vector Machine (SVM) has been
applied to nuclear reactor state estimation. The generalization error of this methodology is
improved by transformation of the input data into another space, called feature space, using an
appropriately defined kernel function. In addition, optimal training is achieved using a convex
quadratic programming approach that results in a unique solution. The selection of proper kernels
is an open research problem. In this paper we investigated two kernels. The first kernel is a
nonparametric function called the Vector State Estimation Technique (VSET) and is a component
of the Multivariate State Estimation Technique (MSET) developed at Argonne National
Laboratory. The other kernel is based on the Hermite polynomials and contidns data-based
parameters. We tested three real data sets from experimental and commercial nuclear power
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reactors. For all cases investigated, application of the SVM algorithm shows improvement over
the standard MSET algorithm.
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