skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low temperature growth of ultrananocrystalline diamond on glass substrates for field emission applications.

Conference ·
OSTI ID:751844

Recent studies of field emission from diamond have focused on the feasibility of growing diamond films on glass substrates, which are the preferred choice for cost-effective, large area flat panel displays. However, diamond growth on glass requires temperatures {le} 500 C, which is much lower than the temperature needed for growing conventional microwave plasma chemical vapor deposition (CVD) diamond films. In addition, it is desirable to minimize the deposition time for cost-effective processing. The authors have grown ultrananocrystalline diamond (UNCD) films using a unique microwave plasma technique that involves CH{sub 4}-Ar gas mixtures, as opposed to the conventional CH{sub 4}-H{sub 2} plasma CVD method. The growth species in the CH{sub 4}-Ar CVD method are C{sub 2} dimers, resulting in lower activation energies and consequently the ability to grow diamond at lower temperatures than conventional CVD diamond processes. For the work discussed here, the UNCD films were grown with plasma-enhanced chemical vapor deposition (PECVD) at low temperatures on glass substrates coated with Ti thin films. The turn-on field was as low as 3 V/{mu}m for a film grown at 500 C with a gas chemistry of 1%CH{sub 4}/99%/Ar at 100 Torr, and 7 V/{mu}m for a film grown at 350 C. UV Raman spectroscopy revealed the presence of high quality diamond in the films.

Research Organization:
Argonne National Lab., IL (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
751844
Report Number(s):
ANL/CHM/CP-99666; TRN: AH200018%%378
Resource Relation:
Conference: MRS '99 Fall Meeting, Boston, MA (US), 11/29/1999--12/03/1999; Other Information: PBD: 17 Jan 2000
Country of Publication:
United States
Language:
English