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ABSTRACT

PDS/PIO is a lightweight, parallel interface designed to support efficient transfers of massive,
grid-based, simulation data among memory, disk, and tape subsystems. The higher-level PDS
(Parallel Data Set) interface manages data with tensor and unstructured grid abstractions, while
the lower-level PIO (Parallel Input/Output) interface accesses data arrays with arbitrary
permutation, and provides communication and collective /O operations. Higher-level data
abstraction for finite element applications is provided by PXI (Parallel Exodus Interface), which
supports, in parallel, functionality of Exodus II, a finite element data model developed at Sandia
National Laboratories. The entire interface is implemented in C with Fortran-callable PDS and
PXT wrappers.
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INTRODUCTION

Historically, scientists and engineers have depended on experimental results to validate their
theories and designs. Experimentation has become prohibitively expensive, both from the
financial and environmental points of view. Therefore, experimentation is increasingly being
replaced by computer modeling and simulation. Increased reliance on high-resolution simulation
forces the scope and complexity of those applications to increase dramatically. Computational
resources have kept up with the increased demand, but I/O (Input/Output) subsystems have not.

I/O "bottlenecks" slow modeling and simulation application output as well as visualization
application input. The I/O "bottleneck" appears at different levels of software/hardware

- abstractions, e.g., in data format, application read/write, file systems, and disk. Much research
has demonstrated the efficiencies of data organization and collective /O [1][2][3]. Panda [4] is
an early system that made use of server-directed, collective I/O. PASSION (Parallel and Scalable
Software for Input-Output) provides software support for loosely synchronous applications with
data pre-fetching and data-sieving [5]. "

MPI-IO [6] is the first standard interface designed for portable, parallel I/O. It provides a high-
level interface supporting partitioning of file data among processes and a collective interface
supporting complete transfers of global data structures between memory and files. In addition,
further efficiencies can be gained via support for asynchronous I/O, strided accesses, and control
over physical file layout on disk. Currently, Sandia's unstructured grid applications would not
utilize MPI-IO's functionality to its fullest, but would have to deal with the additional overhead
of having that generality. MPI-IO is a promising interface that may become more useful to
PDS/PIO in the future. ROMIO [7] is the Argonne National Laboratory implementation of MPI-
IO that will be evaluated on Sandia's TFLOP system.

A data model currently in use at SNL is Exodus II: A Finite Element Data Model [§], developed
to store and retrieve data for finite element analyses. The Exodus II data file is written using
NETCDF and HDF. Its most obvious limitations include lack of parallel and collective I/O, lack
of compression, and difficult file management. To achieve parallelism, each processor must
write a separate file, which must then be recombined. The recombination step is costly in terms
of both cpu and memory. It is no longer a practical tool for the largest and most complex
problems.

PDS/PIO addresses the I/O problem at the level of data format and parallel application read/write
operations. Data is organized so that it may be presented to the disk subsystem in a near-optimal
manner. The PXI/PDS/PIO libraries are based on the Single Program Multiple Data (SPMD)
programming model. Data structures are decomposed into sub-units and distributed among the
computational nodes (processors). The program executes on each compute node, and messages
are passed between the nodes using the MPI message-passing protocol [9].

All PXT and PDS functions are collective in that all processors have to participate in function
calls, albeit with processor-specific arguments. PDS maintains light-weight meta-data
information about all of the data files within the dataset. To avoid burdening the file system, the
meta-data is accessed by only one processor, which then broadcasts global data when necessary.
At the PIO level, the data files are accessed only by a selected set of processors acting as I/O
servers, which communicate with processors needing the actual data transfer.




Preliminary results demonstrate an order of magnitude increase in performance. A test
application writing data from the Intel TFLOP to the Intel PFS (Parallel File System) [10] using
NETCDF demonstrates a peak bandwidth of less than 10 megabytes (MBytes)/second. An
unstructured grid-based simulation application writing PDS datasets with PXI from the Intel
TFLOP to the Intel PFS demonstrates a peak bandwidth of greater than 150 MBytes/second.

BACKGROUND
Environment

The Accelerated Strategic Computing Initiative (ASCI) is focused upon problems requiring
three-dimensional, full-physics calculations. At Sandia National Laboratories, simulation
applications include electromechanics (ALEGRA [11]), large deformation transient dynamics
(PRONTO), low-Mach transient fluid dynamics (GILA [12]), and shock physics (CTH [13)), to
name a few. It is estimated that high-resolution grid-based simulations with adequate temporal
resolution will require 10° to 10° mesh nodes. The problem cornplexity is stressing the limits of
current infrastructure. Achieving a balance between compute power, I/O bandwidth, disk and
memory capacity has proven difficult for massively parallel systems [14].

Figure 1 illustrates the major hardware components of the TFLOP system. The major functional
components are the analyst's workstation, the TFLOP computer, the TFLOP local disk storage
system, the Visualization Server, and the HPSS (High Performance Storage System). The Intel
TFLOP system is Sandia's MPP compute engine. It consists of 4536 compute nodes, each of
which contains two Pentium Pro processors with 128 MBytes of memory per node. The
complete system has 1.8 teraflops peak computational rate with 608 GBytes of system memory.

The TFLOP I/O subsystem is comprised of 18 specialized nodes that process I/O requests and 36
RAID (Redundant Array of Independent Disk) devices. Each specialized node, or /O node,
consists of 2 Pentium Pro processors sharing 256 MBytes of memory on an Intel "Eagle" board.
I/0 nodes run the "Tflops Operating System" (TOS), a distributed OSF UNIX operating system.
Two RAID controllers, attached to the I/O node, control two RAID devices, each of which has a
512 kilobyte (KByte) cache. Maximum bandwidth of each RAID device is 32 MBytes/second.
Peak aggregate bandwidth to disk is 1 GByte/second, achievable only in a very carefully tuned
test configuration.

This is in sharp contrast to the 51 GBytes/second total potential message traffic capacity between
all nodes in the system. The inter-processor communication network of the TFLOP is configured
in a 2-dimensional, 2-plane, mesh topology with peak bi-directional bandwidth of 800
MBytes/second and peak directional bandwidth of 400 MBytes/second. Measured directional
bandwidth is 330 MBytes/second. Thus, the cross-sectional bandwidth of the inter-processor
communication network is 51 GBytes/second.




TFLOP Disk
HPSS 15 Thytes

Figure 1: TFLOP System

As shown in Figure 2, the Intel Parallel File System (PFS) is built on one or more UNIX file
systems, striped over multiple RAID devices. The 512 KByte blocksize was selected to match
the RAID device cache size. The default stripe size of 1 MByte was selected to match the total
RAID device cache available per I/O node.

Experience with the I/0 libraries on the TFLOP I/O subsystem has contributed to the design of
the I/0 subsystem for Sandia's new Computational Plant (CPLANT). The I/O library work will
continue to guide development of future scalable file system capability.

Motivation

User-level applications gain flexibility by using data modeling and data management tools. Such
tools provide a common database for multiple application codes, such as mesh generators,
analysis codes, and visualization software. Increased problem size and complexity is forcing
better performance from these tools. PDS/PIO addresses the performance issues by providing a
lightweight, parallel interface that optimizes data organization and disk I/O.

Currently, the ASCI Data Models and Formats (DMF) group is developing a portable data model
interface that is generalized to solve all user needs. However, the time-critical needs of Sandia's
ASCI applications required an immediate solution and could not wait for delivery of DMF.

The Intel TFLOP supports a Parallel File System (PFS) to give applications high-speed access to
a large amount of disk storage. PFS file systems are optimized for simultaneous access by
multiple nodes. File size is not limited to 2 GBytes. Access to PFS file systems use an I/O
technique called fast path I/0, which gives better performance for large I/O operations (64K
bytes or more per read or write). The Intel Cougar operating system on the compute nodes
cannot directly access the file system. As shown in Figure 3, I/O requests from the application on
the compute nodes are made via Remote Procedure Calls (RPCs) to an I/O Service Process
executing in the Service Partition. The Service Process sends RPCs to the required I/O nodes,
which then transfer the data directly from compute node memory to disk [15]. Very careful use




of this system is required to prevent extremely bad I/O performance. It is quite possible for an
application to compute for minutes, then write data to PES for hours. PDS/PIO was developed to
present data to PFS in a near-optimal manner.

Vo RAID Controller " RAID 1
Node 1 | eAID Control '
ONIrolier | £ :
: RAID 2
Vo RAID Controller RAID n-1
Node n
RAID Controller RAID n
Figure 2: TFLOP 1/O Nodes and RAID Devices
Service
Node
Proc 0 Control | 170 RAID 1
Node 1
RAID 2
Proc 1 Data
—
. Data
= Vo RAID n-1
Procn Node n .
RAID n

Figure 3: Control via RPC and Direct Data Path to 1/0 Nodes

PDS/PIO and its higher level interface, PXI, were designed to address Sandia's computer
modeling and simulation I/O problems from computation to visualization. Requirements from
the areas of computation data I/O and visualization data I/O differ in some areas. Simulation
applications usually write data as it is computed, for an entire problem topology. Reading is
limited to restarting applications from some previously written data (checkpoint). Visualization




applications may read data for subsets of the topology, such as 'slices’, or follow one particular
variable over time. PDS/PIO addresses issues of data access patterns by organizing data to
optimize access for computer modeling and simulation applications and visualization
applications.

APPROACH

PDS/PIO is a lightweight, parallel interface designed to support efficient transfers of massive,
grid-based, simulation data among memory, disk and tape subsystems. The higher-level PDS
(Parallel Data Set) interface manages data with tensor and unstructured grid abstractions, while
the lower-level PIO (Parallel Input/Output) interface accesses data arrays with permutation.

_ User-level applications may access the interface at the PDS level. Higher-level abstraction for
finite element applications is provided by PXI (Parallel Exodus Interface), which supports, in
parallel, the functionality of Exodus II, a finite element data model. The entire interface is
implemented in C with Fortran-callable PDS and PXI wrappers.

Parallel I/O performance is critical! Other requirements, while secondary, are, none the less,
important. Additional requirements include:

e Portability

e FEase of use, i.€., a clean API

o "Gather/scatter" functionality

e Capability to interface with vendor-specific parallel file systems and HPSS
e Synchronous and asynchronous I/O

e Coordination of I/O requests (I/O servers)

e Thread-safe for SMP clusters

PXI/PDS/PIO was developed to address these requirements. Each library is described, beginning
with the low-level PIO library.

PIO

PIO (Parallel Input/Output) reads and writes data arrays with arbitrary permutation. It is the
software component responsible for organization and presentation of data to the disk subsystem
in a near-optimal manner. PIO data permutation may include any or all of the following:

e Byte swapping
e Data type conversions
¢ Remapping based on Index and/or Value

To meet the PXI/PDS/PIO user requirements described previously, implementation of the PIO
library was driven by the design criteria described in the following sections.




Parallel I/O

The single most important design requirement for our new I/O libraries was parallel I/O. Driving
this requirement was the structure of the TFLOP I/O subsystem. The I/O control path is capable
of handling multiple requests. More importantly, there are separate, direct data paths from
compute node memory to I/O node, each of which has two attached RAID devices. Therefore,
parallel I/O requests should be serviced concurrently, dramatically increasing aggregate
bandwidth. PIO issues parallel I/O requests via the selected set of processors acting as /O
Servers.

To write a data array, all processors execute the algorithm in Figure 4. Writes to separate
locations in the file are processed by separate I/O nodes, based on careful selection of data buffer
size.

Initialization
MPI_Alfgather{) to initialize #bytes to be written
Construct and write section header information
Initialize data buffers
Loop
Collect data into buffers
Non-i/O Servers MPI_Send()
1/0 Servers MP!_Receivef{)
Write data buffer

Figure 4: Algorithm to Write Data
Collective 1/O

A second important design requirement for PIO was collective I/O. All compute nodes of a

- massively parallel system issuing I/O requests simultaneously would likely overwhelm the
capacity of the I/O subsystem. Such was our experience on the TFLOP, where approximately
4500 compute nodes must issue I/O requests to a limited set of 18 I/O nodes. In the past, many
Sandia applications attempted to "throttle" this I/O bottleneck by allowing only subsets of
processors to issue I/O requests, while other processors remained idle. A better solution is
collective I/O whereby data is "collected" from many processors to a few processors who issue
the I/O requests.

The selected set of processors acting as I/O Servers communicates with processors needing
actual data transfer via message passing. Communication via message passing is many times
faster than disk I/O, resulting in greatly increased data throughput. Each I/O Server




communicates with a subset of the application's compute processors. Figure 5 illustrates PIO
using two I/O Servers.

Proc n+1

Proc n I\
I' > 110

Srvr
i
§ 110
Srvr Parallel
%‘i File
: System
Proc m

Figure 5: P1IO Communications

Data Buffering

A third important design requirement for PIO was data buffering. Most, if not all, I/O subsystems
operate more efficiently with few large data transfers, than with many small ones. Data buffering
alone can improve I/O performance for a file system striped across multiple disks. A parallel file
system should be "tuned" for optimum performance by selecting appropriate file system block
size, stripe unit, and stripe file size, based on disk speed and cache size. Optimum PIO buffer
size will vary based on the optimum data transfer size.

Data is buffered by the I/O Server into 1 MByte blocks, by default, for efficient reads and writes
to TFLOP PFS. Peak performance should be achieved with a 28 MByte data buffer. However,
buffers larger than one or two MBytes may not offer enough performance improvement to justify
the memory cost to the application. It becomes very important on distributed memory systems to
provide a good balance of application and PIO memory requirements.

Asynchronous /O

It is important to provide an asynchronous I/O capability, for greatest performance benefit. As
described earlier, control for multiple I/O requests can be handled by the TFLOP Service
process, and multiple data paths exist to the PFS I/O nodes. Therefore, it should be possible to
achieve some degree of concurrency by issuing blocking I/0 requests from multiple processors
to multiple I/O nodes. A greater degree of concurrency will be achieved by issuing non-blocking
1/0 requests from multiple processors to multiple I/O nodes. PIO is currently limited to the use
of blocking reads/writes. Multiple, non-blocking I/O requests have been problematic for our
initial target architecture, the TFLOP PFS.




PDS

PDS provides data management at a level above data arrays, in a data abstraction context. All
PDS functions are collective in that all processors have to participate in function calls, albeit with
processor-specific arguments. To support flexible migration of data, PDS maintains light-weight
meta-data information about all of the data files within the dataset. Meta-data is stored in a
separate file to facilitate remote interaction with the dataset. To avoid burdening the file system,
the meta-data is accessed by only one processor which then broadcasts global data when
necessary. For example, meta-data may contain processor-independent information that must be
broadcast to all processors. Maintaining meta-data in a separate file also enables adaptive
meshing.

PDS accesses and updates the meta-data file. All other data files within the dataset are accessed
through PIO. Access to the meta-data file is normally buffered for efficiency. The size of the
meta-data file is expected to be no more than a few MBytes. At the end of PDS operations on a
dataset or, at the user's discretion, the meta-data file is updated. Figure 6 illustrates example
PDS datasets.

Metadata Metadata Metadata
Data? Data 1 Data 1-5
Da-ta 2 Data 2 Data 6-10
D:ta n D:ta n Dat:a (n-4)-n

Figure 6: Example PDS Datasets
There are three sets of entities that PDS maintains: segments, variables, and infos.

PDS Segment

A segment is a contiguous piece of a file that contains data associated with a time index. It can
either be a topology or a state segment, recording topological or state information at time
associated with the time index. Segments must be written in increasing time-index order. A
topology and a state segment can have the same time index; however, no two topology or two
state segments can have the same time index.

Every segment must be entirely contained within one data file. Multiple segments may be written
to a single data file. There can be more than one data file, each containing muitiple segments.




The segments have internal ID's that are ordered linearly: first in increasing-time-index order,
second in topology-followed-by-state order. In normal use, datasets can be grown only by
appending a new segment, and modified only by erasing all segments following a selected
segment. Figure 7 illustrates PDS topology and state segments.

TP Seg 1

State Seg 1

State Seg 2

State Seg n

Figure 7: PDS Topology and State Segments
PDS Variable |

A variable is a handle to a single, distributed, parallel data array of homogeneous types. It must
be registered, to associate the variable with an ID and set its type, before the corresponding data
can be read or written for each segment. Variable data are stored strictly in the data files and
their accesses are collective and processor-dependent. A variable data corresponding to a
particular segment is called a section. Thus, every segment is composed of a number of sections,
each corresponding to a different variable. It is not necessary that every segment contain the
same number of sections. Figure § illustrates PDS variables within a segment.

SEGMENT

Variable 1

Variable 2

Variable n

Figure 8: PDS Segment

A section is a set of variable data written in a processor—ranked, concatenated form, prepended
by a header. Information in the 56-byte header includes an integer reserved for future use,
number of processors contributing data, sum and max information, and a list of data sizes




(number of bytes) for each processor. A section containing data written by # processors will
consist of the header followed by data for Py, P;, P, ... Po.1.

Variables are read and written by specifying the ID returned by its registration. Variable type is a
sum of "item" type, such as PDS_SCALAR or PDS_VECTOR, plus "word" type, such as
PIO_FLOAT or PIO_DOUBLE. Variable type may be reset before writing data. For a write
operation, data type conversion is performed based on the "Put Type" of the variable versus the
"compute word size" of the application performing the write. For a read operation, data type
conversion is performed based on the "Get Type" of the variable versus the "compute word size"
of the application performing the read.

PDS Info

An info is a processor-independent (name, value)-pair stored as meta-data. An info name is a
string of a maximum length, and an info value is a homogeneous array whose size and datatype
are user-specified. An info may be attached to the dataset or any variable or segment within the
dataset. Using these info objects, one can introduce auxiliary user-supplied functions to interpret
and process the data in special ways not provided through the standard PDS interface.

PXI

PXI provides data management at a level above PDS/PIO. It supports a finite element data model
consisting of nodes, elements, element blocks, node sets, side sets (faces), etc. The initial version
supports multi-processor applications reading/writing many-to-many, and visualization
applications reading many-to-one.

The meta-data is written to a separate file for all datasets. The user controls the number of data
files in a particular dataset in one of the following modes of operation:

e Single data file contains problem topology and all data.

¢ Initial data file contains problem topology and data for first time index. Remaining data
files each contain data for one time index.

o Initial data file contains problem topology and data for first » time indices. Remaining
data files each contain data for # time indices.

PXI also supports a subset of Nemesis I functionality (Set of Functions for Describing
Unstructured Finite-Element Data on Parallel Computers) [16]. Nemesis I was developed at
Sandia as a parallel extension to Exodus II.

During the initial design phase, the requirement for a higher-level, finite-element model,
interface was not anticipated. The required "clean", easy-to-use Application Programming
Interface (API) also needed to provide an easy migration path for the applications.

10




RESULTS

Peak performance of the Intel PFS (Parallel File System) on Sandia's Intel TFLOP system is 1
GByte/second. It was achieved by a very finely tuned performance test conducted by Intel, using
all 18 /O nodes. Expected performance of PFS is 32 MBytes/second for each RAID device, or
64 MBytes/second for each I/0 node. For 18 I/O nodes, the expected aggregate bandwidth would
be 540 MBytes/second. Actual observed performance for 14 I/O nodes was 150 MBytes/second
aggregate bandwidth.

On the TFLOP 28-way striped PFS, an easy way to increase performance was to increase the
amount of data being read or written, i.e. PIO buffer size. Theoretically, one should be able to
achieve close to the peak 32 MBytes/second bandwidth for each of the 28 RAID devices. In
practice, performance grows very slowly for PI1O buffer sizes greater than 2 MBytes. Table 1
shows the increase in performance (Max Bandwidth) as buffer size increases.

Table 1: PDS/PIO Writes for 1 1/O Server

Buffer Size (MB) Max BW (MB/sec)
1 63.0

2 106.5

4 149.3

8 171.5

12 182.6

16 - 1168.2

28 176.8

A data model currently in use at SNL is Exodus II, which uses NETCDF and HDF V for its I/O.
A test application writing directly to NETCDF achieved a peak bandwidth of less than 10
MBytes/second using 1 I/O node. The same test application writing directly to HDF V achieved
a peak bandwidth of less than 4 MBytes/second from one I/O node.

Preliminary PXI/PDS/PIO results demonstrate more than an order of magnitude increase in
performance. A 64-processor simulation application (ALEGRA) writing PDS datasets with PXI
from the Intel TFLOP to the Intel PFS demonstrated a peak bandwidth of 85 MBytes/second
from one I/O server with a PIO buffer of 1 MByte. The same simulation application writing PDS
datasets with PXI demonstrated a peak bandwidth of greater than 100 MBytes/second from one
I/O server with a PIO buffer of 2 MBytes. The same simulation application, using 140
processors and a PIO buffer of 4 Mbytes, demonstrated a peak bandwidth of greater than 150
Mbytes/second. The simulation application was updating meta-data following each time step.

As shown in Table 2, good performance improvement is also possible for smaller problems. A
simulation application (GILA) writing PDS datasets demonstrated a peak bandwidth of 75.6
MBytes/second from one I/0O server with a PIO buffer of 1 MByte. In the following table,
bandwidth is reported in MBytes/second.




Table 2: PDS/PIO (GILA) Using 1 I/O Server

Dim {Elem Node Proc {Max BW
2 1760 1852 8 18.3
2 31320 31791 32 71.9
2 31320 31791 32 73.8
3 44250 49584 32 75.6

As shown in Table 3, good performance improvement may be achieved by small increases in
buffer size. A simulation application (ALEGRA) writing PDS datasets demonstrated a peak
bandwidth of 149.4 MBytes/second from one I/O server with a PIO buffer of 4 MBytes. In the
following table, bandwidth is reported in MBytes/second. The same simulation application
demonstrated a peak bandwidth of greater than 150 Mbytes/second from 14 I/O servers.

Table 3: PDS/PIO (ALEGRA) Using 1 I/O Server

Dim |Elem Node Proc |Buffer (Mb)|Max BW
3 7599 9138 140 |1 321

3 7599 9138 140 |2 45.4

3 7599 9138 140 |4 149.4

One of the accomplishments not to be forgotten is the significant improvement made toward
generating and visualizing LARGE DATA using the PXI/PDS/PIO libraries. Applications no
longer create thousands of files requiring a long, memory-intensive recombination step. There is
no limit on file size.

Testing of functionality at the PIO level has uncovered issues that must be investigated further.
On a system with normal user load, increasing the number of I/O servers is not producing the
expected increases in aggregate bandwidth. Multiple blocking write requests to a single PFS file
do not appear to be executing in parallel, as expected. Requests are made using appropriate seek
and PIO buffer size of 1 MB, which should guarantee concurrent writes to multiple I/O nodes.

An issue which needs further investigation is the potential conflict for an /O Server, that
contributes data to an I/O Server other than itself. The current algorithm that determines which
processors contribute data to which I/O Servers is based on the ID of a data block, not based on
processor ID. One solution would be to designate a set of processors as I/O servers that are not
also compute servers. This solution would probably not be acceptable to the applications. A
better solution might be to separate the communication step, i.e. the "data collection" step from
the I/O request and data transfer.
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An order of magnitude increase in I/O performance is a significant step toward the goal of
parallel, scalable I/O libraries. However, we believe that our initial version of the libraries is
simply the first step toward even better I/O performance.

SUMMARY/FUTURE

The scope and complexity of computer modeling and simulation applications will increase as
computational power increases. ASCI is already planning for future systems with goals of 10, 30,
and eventually 100 teraflops of peak computing performance. It is quite possible that I/O

. subsystems will continue to lag behind computational systems in performance. It is imperative
that we continue to develop new strategies for improving I/O performance.

I/0 "bottlenecks" slow modeling and simulation application output as well as visualization
application input. PDS/PIO addresses the I/O problem at the level of data format and application
read/write. Data is organized so that it may be presented to the disk subsystem in a near-optimal
manner. PDS/PIO is a lightweight parallel interface designed to support efficient transfers of
massive, grid-based, simulation data among memory, disk and tape subsystems.

Future directions include support for the following:
e Compression
. Applic#tion—directed archival storage/retrieval
e Read/Write using different number of processors than previous read/write
e More Nemesis functionality
o New data types
e Partial read/write operations

Parallel I/O performance is critical! Preliminary results are very promising. We must continue to
improve performance of PDS/PIO and its higher level interface, PXI.




This page intentionally left blank.

14




REFERENCES

1 J. del Rosario, R. Bordawekar, A. Choudhary. Improved Parallel I/O via a Two-Phase Run-
time Access Strategy. In Proceedings of the Workshop on I/0 in Parallel Computer Systems at
IPPS 93, pages 56-70, April 1993. Also published in Computer Architecture News, 21(5):31-38,
December, 1993.

2 D. Kotz. Disk-directed I/O for MIMD Multiprocessors. ACM Transactions on Computer
Systems, 15(1):41-74, February, 1997.

3 R. Thakur, A. Choudhary. An Extended Two-Phase Method for Accessing Sections of Out-of-
Core Arrays. Scientific Programming, 5(4):301-317, Winter, 1996.

4 K. Seamons, Y. Chen, P. Jones, J. Jozwiak, M. Winslett. Server-Directed Collective I/O in
Panda. In Proceedings of Supercomputing '95. ACM Press, December, 1995.

5 R. Thakur, A. Choudhary, R. Bordawekar, S. More, S. Kuditipudi. Passion: Optimized /O for
Parallel Applications. Computer, 29(6):70-78, June, 1996.

6 Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. July
1997. On the World-Wide Web at http://www.mpi-forum.org/docs/docs.html.

7 R. Thakur, E. Lusk, W. Gropp. Users Guide for ROMIOQ: A High-Performance, Portable MPI-
10 Implementation. Technical Report ANL/MCS-TM-234, Mathematics and Computer Science
Division, Argonne National Laboratory, October, 1997.

8 L. Schoof, V. Yarberry. EXODUS II: A Finite Element Data Model. Sandia Report: SAND92-
2137, September 1996.

9 Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 1.1,
June 1995. On the World-Wide Web at http://www.mpi-forum.org/docs/docs.html.

10 Intel Corporation Paragon System Administrator's Guide. Chapter 10: Managing PFS File
Systems. April 1996.

11 ALEGRA - A Three-Dimensional, Multi-Material, Arbitrary-Lagrangian-Eulerian Code for
Solid Dynamics, http://www.sandia.gov/1431/ALEGR Aw html

12 GILA, http://www.cs.sandia.gov/~machris
13 CTH 3D Eulerian Shock Code, http://www.sandia.gov/1431/CTHw.html

14 M. Christon, D. Crawford, E. Hertel, J. Peery, A. Robinson. ASCI Red - Experiences and
Lessons Leamed with a Massively Parallel TeraFLOP Supercomputer. Supercomputer 1997,
Hans-Werner Meuer, K. G. Saur, Munich, Germany, 1997.

15 B. Cole, P. Fay, B. Godley, G. Henry, D. Robboy, P. Work. Getting I/O Performance on the
ASCI Red Platform. Intel Corporation, August, 1998. In preparation.

16 G. Hennigan, J. Shadid. NEMESIS I: A Set of Functions for Describing Unstructured Finite-
Element Data on Parallel Computers. Sandia Report, July 1997.

15




This page intentionally left blank.

16




DISTRIBUTION
6 MS 0318  Judy Sturtevant, 4618
1 0318  Philip D. Heermann, 9215

1 0807  John Noe, 4618

1 0801  Michael Vahle, 4600

1 0813 R. Michael Cahoon, 4611

1 1110  Neil Pundit, 9223

1 0321  Arthur Hale, 9224

1 9018 Central Technical Files, 8940-2

2 0899  Technical Library, 4916

1 0612  Review & approval Desk, 4912
for DOE/OSTI

17




This page intentionally left blank.

18




