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ABSTRACT- A motion involves large distortion if the ratios of principal stretches differ
significantly from unity. A motion involves large deformation if the deformation gradient
tensor is significantly different from the identity. Unfortunately, rigid rotation fits the
definition of large deformation, and models that claim to be valid for large deformation are
often inadequate for large distortion. An exact solution for the stress in an idealized fiber-
reinforced composite is used to show that conventional large deformation representations
for transverse isotropy give errant results. Possible alternative approaches are discussed.

INTRODUCTION: Models that perform well for small deformations are often
extemporaneously generalized to large deformations by merely applying them in the
unrotated configuration. Such an approach does generate a frame indifferent model, but it
does not necessarily produce a model that will perform well for large material distortions
where the body significantly changes shape, not just size or orientation. We present a
simple counterexample to demonstrate this claim. We also discuss some possible
approaches to generalize small deformation constitutive models when large distortion
measurements of material response are unavailable.
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Figure 1: An idealized ensemble of fibers-in-air deforms according to a known deformation.
The area that was originally normal to the fibers does not remain normal to the fibers.

Force in single fiber = F(A)

PROCEDURES, RESULTS, AND DISCUSSION: Fig. 1 depicts an idealized composite
consisting of fibers in a negligibly weak matrix (air). The force in a single fiber resulting
from a fiber stretch A (= current length / initial length) is presumed given by an arbitrary
known function #(A). The ensemble of fibers-in-air is subjected to an arbitrary
homogeneous deformation, described by a deformation gradient tensor F. There are v,
fibers per unit initial cross-sectional area, and they are initially parallel to a unit vector M.
The total force applied across the plane indicated in Fig. 1 is #(A)v A, . Brannon [1998]
showed that dividing this force by the area A, gives the exact solutions for the Cauchy
stress ¢, unrotated Cauchy stress g, and second Piola-Kirchhoff (PK2) stress 5:
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where
o =F,M=R,a,, a@=ViM; A= J=detF, and G ﬂ“ 2
FF M =R ,8,, a;=ViM;j, = /80> etF,and G(A)=v, (2)

Here, R is the rotation and V is the rlght stretch (more commonly denoted U) from the
polar decomposmon of F. The vector a is s just the deformed vector of a material fiber that
is initially coincident with the unit vector M, and a is the vector obtained by “unrotating”
a back to the reference configuration. Eqn. (1) states that the Cauchy stress must be
uniaxial in the direction of a, as should be self-evident from Fig. 1, which therefore lead
Zheng [1992] to assert that the unrotated transverse symmetry axis (to which elastic
constants are referenced) should always be parallel to a. This conclusion can be proved
inadequate by considering Fig. 2 where identical deformations are applied to materials
having different microstructures. They are both initially transversely isotropic about the
same direction, but the.deformed symmetry axis is different for the two cases.
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Figure 2: Two structures that are initially transversely isotropic about the same direction. After
simple shear, the symmetry axis moves with the fibers for the fiber composite, but stays normal to the
planes for the layered composite. Neither symmetry axis reorients according to the polar rotation.

Brannon [1998] also showed that the exact solution for the rate of the PK2 stress is
éij = Eijklé“: where Eijkl = MMM -Mle. . (3)

Here, £ is the Lagrange strain (€;;=3(F},;F),; ;—98;7))- The PK2 tangent stiffness tensor Eijni,
is nonlinear even if the fiber force function is lznear but it has an intuitive structure. Only
E,,;; will be nonzero when the fibers are originally oriented in the 1-direction — there is
no shear component of the PK2 stiffness. Taking rates of the Cauchy stress is far more
complicated because neither a nor a is constant in time. The Cauchy stress is uniaxial, but
its rate is not uniaxial. There does exist a tensor Ll i, such that G;; = LlquD pg> where
D,, is the unrotated symmetric part of the velocity gradlent — however, even though the
material cannot sustain shear, L;j3; must contain shear terms to account for rotation of the
material fibers! “Generalizing” a small distortion transversely isotropic stress-strain model
by simply applying it in the unrotated Cauchy frame will not capture this kinematic effect.

The structure of the exact L;;;, is so complicated that it is essentially useless even for the




simple fibers-in-air material. Furthermore, the Cauchy tangent stiffness L, ikl 1s not even
major symmetric (as often erroneously assumed in the literature). To ensure major
symmetry, the Kirchhoff stress 7=JG must be used. Otherwise, rates of J from Eqn. (1)
will lead to terms in the expression for L, thatare of the form o; Sk 1» Which is not major
symmetric. Faults with the Cauchy stlffness might seem to suggest that the PK2 stress is a
better choice for the stress measure, but then one is faced with an absolute necessity to
include nonlinearity of the moduli. As explained by Brannon [1998], cavalierly using
constant PK2 moduli can result in numerical instabilities under compression. In short, a
constant PK2 modulus gives the right stress directions, but wrong (and potentially unstable)
stress magnitudes, and vice versa for the Cauchy stress.

When data are lacking, we suggest trying the Lagrange strain and PK2 stress, but with
a strain-dependent tangent modulus tensor C; jr1 defined by

éijkl = cl(sl)gzljkl + cz(ez)ﬁzzjkl + c3(82)§?jkl + c4(84)§z4jkl + Cs(es)Eszkl , 4)

where ¢*= Je quB $qkiEy; and the five ¢; are material functions for which ¢;(0) must
equal the approprlate modulus measured under small distortions. Components of the fourth
order transverse basis tensors (which can be derived using group theory) are

Bl = MM M, M, - )
Blel = 8zjakl_lulu skl_8 Mle+MM Mle - (6)
Bukl = Mleskl +MkM185j—2MIMJMle | 7)
B = %(Miﬂksjl + MM S+ MiM8 jy, + M M8;) - 2M MMM, ®)
Ezsjkl = %(SikSﬂ + Silsjk)+Miﬂjﬂkﬁl_%(sikﬁjﬂl + Silﬂjﬂk + SjkMiMl"'sleiMk). (9)

By considering idealized microstructures, functional forms could be derived for each of the
nonlinear modulus functions. For example, defining the equivalent stretch as 2= 2y 1,
- we can define the function ¢, to match the exact fibers-in-air solution in Eqn. (3).

CONCLUSIONS: Prediction of the stresses caused by large distortion remains an
unsolved problem. The most popular approach of merely applying a model in the unrotated
Cauchy frame is intoxicatingly robust and satisfies frame indifference, but it is still wrong,
- as was demonstrated via our simple counterexample of fibers in a weak matrix. We have
offered a highly heuristic method of generating a transverse isotropy model that will give
the exact answer in the limit of fibers in a weak matrix, but much more research is needed
to generate models for arbitrary anisotropy that will give correct answers at large distortion
as well as just large deformation.
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