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4 ABSTRACT .

New algorithms are proposed for the modification of a mixed hexahedra-tetrahedra

element mesh to maintain compatibility by the insertion of pyramid elements. Several methods

for generation of the p+yramidsare presented involving local tetrahedral transformations and’or

node insertion near the he.titet interface. Local smoothing and topological operations improve

the quality of the transition region. Results show superior performance of the resulting elements

in a commercial finite element code over non-conforming interface conditions.
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1. INTRODUCTION

Many automated tetrahedral mesh generation methods have become commonplace in the

CAE industry. In contrast, all-hexahedra free meshing methods have proven to be more

challenging i’2’3’4.Some engineering disciplines have shown a preference for hexahedral

elements over tetrahedral’6. While all-hexahedral element meshes maybe preferred, some

tetrahedral elements may be acceptable within the same model. For example, blocky or easily

mapped or swept regions of the solid maybe first filled with hexahedra. Regions that maybe

more critical to the analysis, such as boundary layers or regions of high stress may also be better
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served by hexahedra. Tetrahedral elements may fill the remaining, more geometrically

complex, or less critical regions of the solid. Other applications may include Hex-Dominant7’8

mesh generation, where the volume is filled with hexahedral elements using an advancing front

procedure, leaving more complex regions on the interior of the volume to be filled with

tetrahedral. Geometrically, since hvo tetrahedral faces are required to interface with a single

hexahedron, discontinuities will arise at the boundary behveen the hvo element types.

Traditional uses of the finite element method require that elements conform. In hvo-

dimensions, this principle implies that no sin$e element edge will have more than hvo elements

adjacent. In three-dimensions, no single face will have more than hvo adjacent elements. Edge

a-b and Face c-d-e-f in Figure 1 have more than the ma,,imum hvo adjacent elements, thus

rendering the mesh mathematically deficient for finite element analysis. This paper presents

several solutions to the problem of~on-conforming meshes that contain tetrahedral and

hexahedra elements.

Dewhirst9’10explores several possible alternatives for interfacing hexahedral elements

directly with tetrahedral. While recognizing that displacement discontinuities will arise at the

diagonal edge (Edge c-e in Figure 1), an attempt is made to minimize the error. When ten-node

tetrahedral are used, the mid-diagonal node (g) can be constrained to displace as a fimction of the

four surrounding comer nodes by means of muhi-point constraints (MPC’s). To constrain the

mid-node, the solution of four non-linear simultaneous equations is required. Bretl*1discusses

the formulation of the MPC equations. While an improvement in results over unconstrained

mid-nodes is noted, the computational expense in regions where MPC’S are defined can be

severe.

Interfacing directly with four-node tetrahedralwas also proposed. While acceptable error

was reported*Oin a limited number of test cases, it is well documented5’6that four-node

tetrahedral tend to be overly stiffi performing poorly in structural applications.

An additional alternative is to simply drop the mid-diagonal node on the ten-node

tetrahedron. While some commercial finite element applications will allow dropped mid-side

nodes, si=~ificant error can be introduced at the discontinuity.

The ANSYS12finite element code also provides a general purpose alternative similar to

MPCS. I)zte]face constraint eqziations can be defined on the model where nodes do not match

with nodes of adjacent elements. This procedure is typically used for interfacing coarse element
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meshes with finer meshes, but can be used to constrain the mid-diagonal node behveen a

tetrahedron and hexahedron. While some reduction in error across the interface is achieved,

conformability is nevertheless violated. The error can be reduced as the mesh is refined.

Although these methods for interfacing hexahedra to tetrahedral are \videly used, it

should be noted that most require modification of the finite element code to handle these special

cases. Even when options are available in an existing finite element code to handle

discontinuities, it is not unusual to require significant user interaction to specify appropriate

conditions at the interface nodes. An automatic method is required for interfacing the hvo

element shapes without the need for complex constraint equations or modifying an existing

finite element code. Automatic formation of pyramid elements at the interface behveen

hexahedra and tetrahedral appears ‘tobe a promising solution and is addressed in this study.

Various pyramid finite elekent formulations, including five-node and thkteen-node

fomudations are available in commercial FE codes. Pyramid element formulations in the form

of a degenerate hexahedron are also available in the literature where one face of the hexahedron

collapses to a single node. Figure 2 shows the basic 20-node hexahedron, along w-ithits

degenerate 13-node instance of a pyramid. The eight nodes on the top face have been collapsed

into a single node. The pyramid element, including in its degenerate hexahedral form, has been

used for many years in some commercial finite element codes.

To assess the accuracy of the pyramid element, results from an all-pyramid mesh were

compared with all-tetrahedra and all-hexahedra meshes under unimial tension and bending in a

simple cubical volume. To generate an all-pyramid mesh, a -gridof hexahedra was first

generated and each hexahedron was subdivided into six pyramids by placing a node at the

hexahedron centroid. Analysis was run on the commercial FEA code, ANSYS, and results from

a simple set of patch tests are shown in Table 1. For the uniaxial tension case, similar to

tetrahedraland hexahedra, pyramids predict the analytical results exactly. For bending studies,

the results showed that quadratic, 13-node pyramids performed reasonably well, equivalent to

the 10-node tetrahedral. Although poor results were exhibited by linear pyramids under bending

conditions, these results were consistent with those of linear tetrahedral under similar loading

conditions.
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2. PYRAMID MESHING

Three principle methods are presented for insertion of pyramid shaped elements in an

existing mixed element mesh at the interface between hexahedra and tetrahedral. The first

method involves modifying the hexahedra, while maintaining the tetrahedral elements

unchanged. The other methods propose transformations to the tetrahedral while maintaining the

hexahedral elements. These methods and their performance are described in the following

section.

2.1 He.rahedral Node Insertion

Compatible interfaces between hexahedra and tetrahedralmaybe defined by simply

inserting an additional node at the ‘centroid of all hexahedra immediately adjacent to a

tetrahedron. This process involve? splitting the hexahedron into seven elements; NVOtetrahedral

and five pyramids. Figure 3 shows the results of this process where, for e&nple, hexahedral

elements A,B,C,D are immediately adjacent tetrahedral elements, as in Figure 3(a). The dashed

diagonal lines at the hexahedral faces represent the non-conforming condition at the interface

behveen the hvo element shapes. Fi=g,ue3(b) shows each hexahedral element at the interface,

split into two tetrahedraland five pyramids where an additional node has been inserted at the

centroid of each hexahedra. If tetrahedral are adjacent at additional faces of a hexahedron,

additional pyramids can be split to generate more tetrahedral.

While this method is relatively simple, and tends to produce reasonable quality

elements, some drawbacks exist. It is usually the hexahedra for which the user has spent

additional effort to place within the model. Unless the elements are sufficiently fine that

removal of some of the interface hexahedral elements will cause little difference, most users

would tend to object to the modification of this one layer. In addition, this method tends to

generate too many elements, increasing the number of elements near the hetitet interlace by a

factor of seven or more. For this reason, this method was not pursued fi.u-ther.

As it is preferable that the pyramids be formed in the region otherwise occupied by

tetrahedral, this can be accomplished either prior to the tetrahedral meshing operation, or as a

post-process. As an a-priori operation, after placement of the hexahedral elements, pyramids

can be constructed from each qf the quadrilateral faces of the interface hexahedra. Although not

implemented as part of this study, the a-priori procedure would require tedious intersection
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checks to ensure the pyramids generated did not intetiere with opposing boundaries or elements,

It would also involve logic to resolve compatibility where intersections would occur. These

special procedures would be similar to those needed for an advancing front-type scheme’3 for

tetrahedral mesh generation. Once the pyramids had successfi.dlybeen formed, a tetrahedral

mesh generator could then be used to fill the remaining volume.

In contrast, a procedure for forming pyramids after the initial formation oftetrahedra

would not involve advancing flont-type intersection checks. Instead, local transformations are

performed on the tetrahedral nearby the interface hexahedral elements. Provided the volume of

all tetrahedral remains positive during these operations, overlapping elements will not be an

issue. This paper presents two such methods for forming pyramid elements as a post-process to

the tetrahedral meshing operation.’

4

2.2 P>.ramidOpeil hletllod

The first method, implemented as part of this study, consists of opening a pymrnid from

the quad face of a hexahedron. The base of the pyramid is formed from the quad face, and the

triangle faces of the pyramid are formed from the tetrahedral.As shown in Figure 4, initially, a

node (C) is introduced at the midpoint of the diagonal edge A-B. All tetrahedral sharing an

edge with A-B are then split. This is accomplished by traversing around edge A-B and splitting

each adjacent face. For example, in Figure 4, the tetrahedron initially defined by nodes A-B-

N1-NZbecomes two tetrahedral defined by C-B-N1-N2and A-C-N1-N2. A new pyramid element

can then be formed from the nodes A-N~-B-N1-C. The pyramid can be opened, by performing a

constrained Laplacian smooth on node C, as shown in Figure 4(b). The new location of C is

defined as:

(1)

where n is the initial number of faces adjacent to edge A-B, and Ni are nodes at opposite

ends of edges from node C. Node C is also constrained to ensure that the tetrahedralwill not

become inverted. All adjacent tetrahedral are checked to ensure a minimum element shape

metric (described later). If any tetrahedron fails, a new location for the node is computed by

taking a weighted average of its initial location and the location last computed. This process

5



continues until valid tetrahedral and pyramid are defined. In the event a valid location camot be

defined using the above procedure, a method employing optimization techniques’~ may be used

for locating the node. The node location is optimized based on the objective of maximizing the

minimum shape metric for any element adjacent to node C.

An additional case may arise i~ as a result of previous insertion of pyramid elements,

edge A-B is adjacent to an existing pyramid element, as shown in Figure 5(a). In this case, a

p.yrarnid(NI-NZ-N3-A-B)has previously been inserted in order to maintain transitions to an

adjacent hexahedron. This case will arise only if the tetrahedral transformation method,

described later, is employed in conjunction with the pyramid open method. Consequently, it is

necessary to split the pyramid, as shown in Figure 5(b) into three elements: nvo tetrahedral (C-

NI-B-NZ,C-NZ-B-N’Jand one pyr~mid (N1-N@J5-.4-C). Doing so maintains the quad base of

the existing pyramid, while providing the topology enabling the insertion of a ne~vp}Tamid.

One additional nuance to the pyramid open method occurs w-henh~o of the triangular

faces of a tetrahedron form the quadrilateral face of a hexahedron as show-nin Figure 6. In this

example, tetrahedral A-B-E-D is the only tetrahedral adjacent the hexahedron. In this case,

splitting edge A-B to form node C would be unsuccessful. Instead, edge E-D \vould be split.

This in turn requires that all tetrahedral adjacent edge E-D be split. The resulting pyTamid

element is comprised of Nodes A-B-D-E-C. Node C can then be repositioned using the node

relocation procedure described above. Althou~J occurring infrequently, this case can arise when

the interface behveen hexahedra and tetrahedral is non-planar.

The pyramid open method is robust and relatively simple to implement. It is rare that

local geometry or topology will prohibit the algorithm from succeeding. In spite of its

robustness, element qualities for tetrahedral adjacent to the pyramids tend to be lower. While

clean up and smoothing can improve qualities dramatically, the tetrahedral transformation

method, described next, tends to give higher quality and fewer numbers of elements.

2.3 Tetrahedral Transfoi-matiou

The tetrahedral transformation method involves merging hvo adjacent tetrahedral to form

a single pyramid element. The two tetrahedral whose faces form the triangles of the quad face of

the adjacent hexahedron are the candidates for merging. Since it is likely that these h~o

tetrahedralwill not share a common face, it is necessary to perform the s\t’ap.?3operation.
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The swap23 is a basic transformation that defines three tetrahedral from tvhat was

initially hvo adjacent tetrahedral. The process is illustrated in Figure 7. A set of five vertices

abcde, initially defining hvo tetrahedralabed and ache are transformed to define the three

tetrahedralaebd, becd and cead. hy number ofswap23 operations maybe performed until the

topology is sufficient for the merging of hvo tetrahedral to form a pyramid. The necessary

condition for this to occur is for the diagonal edge (edge A-B in Figure 1) to have exactly two

adjacent tetrahedral or exactly three adjacent triangle faces.

The order in which s~vapsare performed may also affect the final quality of the pyramid

and its neig~boring tetrahedral. In order to locally improve the quality of the elements, the order

of s~vappingis dictated by the maximum potential element quality of the resulting elements. An

example of this procedure is illust~ated in Figure 8.

To simplify visualization, #igure S(a) show’sa “top” vie~vof the quadrilateral diagonal

edge .4-B (side vie~vof the quadrilateral). The quadrilateral face in this case is defined by

nodes A-hrl-B-N5. There are initially four tetrahedraladjacent to edge A-B. The objective is to

reduce this number to two. The dotted lines in Fi-mre 8(b) show the three possible hvo-three

swaps which can be performed. To select potential hvo-three swap transformation pairs, each

pair of tetrahedral adjacent to a face sharing edge A-B is tested. A shape metric for each of the

three potential tetrahedral to be formed as a result of a swa#3 operation is computed and their

metrics summed. If a potential tetrahedron has a negative shape metric (the tetrahedron is

inverted), the potential swap is immediately discarded as an alternative. The five-node set

defined by nodes A-B-Nz-N3-hTJin Figure 8(b) shows a case where a negative shape metric

would result if a two-three swap was performed. The maximum value for the sum of the

metrics for the potential tetrahedral is used to select the transformation to be performed. In this

case, the tetrahedral A-B-hTl-NZand A-Nz-B-NJ were transformed into A-N~-B-Nz, W’J3-IVI-IW

and NI-N3-A-NZ. As a result of the swap, only one of the three resulting tetrahedral is now

adjacent to edge A-B, reducing the total number of tetrahedraladjacent to edge A-B by one as

shown in Figure 8(c). This process is performed once again. Figure 8 (c) shows two potential

transformations which could be performed. The swap23 operation resulting in the hi~&est

quality elements is effected resulting in the configuration shown in Figure 8(d). At this point,

the necessary conditions for the formation of a pyramid are satisfied. The hvo tetrahedral, A-B-

N1-N3and A-N5-B-N5,are merged to form the pyramid A-N1-B-N5-N~.

7
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It should be noted that geometric configurations of tetrahedral adjacent to edge A-B may

not allow any two-three swaps to succeed. This occurs when all potential transformations result

in at least one inverted tetrahedron. To avoid such a case, while infrequent, the pyramid open

method is reverted to when geometric conditions do not allow local transformations.

The shape metric, Q, used to determine the order of transformations, is the ratio of

respective radii of the inscribed to circumscribed spheres of the tetrahedron, and is given as

Q=3~ (2)

where r is the inscribed sphere radius and R k the circumscribed sphere radius. Joe*5

presents a closed form expression of the metric in terms of the tetrahedron’s node locations.

This measure provides a maximumtvalue of 1.0 for a regular tetrahedron. If the volume of the

tetrahedron is less than zero, the element is inverted and the metric is modified to return a

negative value.

3. MESH QUALITY IMPROVEMENT

While the methods presented above do not allow the formation of inverted elements, the

quality of the pyramids and tetrahedralmaybe lacking. In order to improve local quality of

elements in the transition region after the transformations have been performed, both smoothing

and topological improvement are performed. Smoothing involves the repositioning of nodes to

improve element shape, without changing element configurations, while topological

improvement increases the quality of the mesh by altering the local comectivity of the nodes to

form new elements.

3.1 Smoothing

The constrained Laplacian smoothing*Goperation is performed locally within the

transition region. To accomplish this, a local search is done begiming with nodes on the

interface between the hexahedra and tetrahedral. Nodes within the volume that are topologically

within three edges are marked as those needing to be smoothed. Laplacian smoothing involves

repositioning nodes to reside at the centroid of its surrounding nodes that are comected by an

edge. Since this technique may sometimes decrease the element quality and even invert

otherwise reasonable elements, the decision to move the node is based on whether the minimum
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shape metric of the node’s surrounding elements is improved. If no improvement can be made,

the node remains at its original location.

The constrained Laplacian smoothing operation depends on the definition of a shape

metric. It was therefore necessary to define an appropriate shape metric for the p+yramid

element. While the inscribed to circumscribed sphere radius ratio can be used for tetrahedr~ it

can not be directly used for pyramids. For the pyramid, shape metrics of the four tetrahedralthat

can be derived from the pyramid, as shown in Fie~re 9, are first computed. The minimum

radius ratio of the four tetrahedral is then used as the required pyramid shape metric.

The metric is fi,u-thernormalized by a constant, U, where u was experimentally

determined to be approximately 0./l6O34. The constant U, was defined by computing the

ma..imum shape metric for one of the four tetrahedral~vherethe apex node is constrained to lie
4

on a line normal to the base passing through its centroid. This metric defines an ideal pyramid

with a base defined as a perfect square of length b and with apex node at height h = 0.98 154b.

As a result, an ideal pyramid will have a shape metric of 1.0. In this way, metrics for pyramids

can be directly compared and summed with those of tetrahedral that are to be used in the

smoothing algorithm.

Experimental results show that the proposed pyramid shape metric works well when

utilized with constrained Laplacian smoothing. The pyramid metric can be directly compared

with the tetrahedral shape metric from equation 2, with reasonable outcome.

Topological Inlprovement

The ability to swap faces to improve tetrahedralshape metrics is also used as a means of

improving the element quality in the transition region. Joe15provides the basis for tetrahedral

improvement used in this study. Essentially, local permutations of connectivities are examined

in order to find improvement in overall shape metric. Local transformations are performed on

the existing tetrahedralbyjlipping faces to achieve this improvement. Of the transformations

described by Joe; the T23, T32 and T44 flips were used. No changes were made to pyramids or

to the boundary of the mesh.

A cubical domain was considered to evaluate the metrics for the elements generated

using the proposed techniques. The results of forming pyramids from tetrahedral
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transformations are shown in Figure 10. In this figure, of the 25 pyramids formed, hvo

conditions existed in which local transformations could not be used. As a result, the pyramid

open method was automatically invoked. Table 2 displays minimum and average shape metrics

for pyramids and tetrahedral for the model shown in Figure 10.

The improvements in metrics for this domain due to smoothing and topological

improvement were next evaluated. From trial and error, it was found that an initial smoothing

iteration, followed by topological improvement, followed next by additional iterations of

smoothing appeared to provide significant improvement, yet remain fairly cost effective. Table

2 lists the element shape metrics for both tetrahedral and pyramids after each step of the

improvement operation for the model shown in Fiewe 10. The number of elements used for

each shape as well as the minimu~ and average shape metric for the element shape are shown.

After pyramids have been inserted: and without any topological improvement, tetrahedral are of

unacceptable quality. A minimum tetrahedral shape metric of approximately 0.1 is generally

considered acceptable. After smoothing and topological improvement, the element shape

metrics are easily satisfactory for finite element analysis.

4. TEST CASES

Several tests were run, in order to determine the effect of various interface conditions on

the analysis results. A recent version of the commercial finite element code, ANSYS, was used

for analysis. A simple block divided by an arbitrary cutting plane, as shown in Figure 1l(a), was

used for testing. The cutting plane served as the interface between two volumes in which

hexahedra or tetrahedral elements were generated. Figure 1l(b) shows an example of the

pyramid elements formed at the hex/tet interface. The evaluation involved defining various

interface conditions at the interface plane and comparing their performance under uniaxial

tension and bending.

Eleven different element configurations, as shown in Table 3, were tested. For the

tension case, a uniform uniaxial surface pressure was applied on the opposite ends of the model.

Minimal constraints were applied to inhibit rotations and translations. For the bending case,

uniformly varying loads were placed on either end of the model to simulate equal and opposite

moments. The maximum percent error with respect to the exact analytical solution for stress and

displacement for the tension tests and stress only for the bending tests are shown in Table 3.
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For tension, the percent error is computed from the nodal solutions on the interface plane. For

bending, the maximum percent error is computed from,nodes at the top and bottom surfaces

farthest from the neutral axis. A result is listed as exact, if the percent error is on the order of 10-

9or less.

For each test shown in Table 3, either linear or quadratic hexahedra were generated in

volume 1 with linear or quadratic tetrahedral generated in volume 2. Interface conditions

included either placing two tetrahedral directly adjacent to a single hexahedron, or using

pyramids formed by tetrahedral transformations or pyramid opens. The results corresponding to

the use of constraint equations (CE) when incompatible nodes arise at the interface are also

shown in Table 3.

In some cases it was necessary to drop midside nodes in order to maintain compatibility

behveen linear and quadratic elem?ents. For example, in cases 2 and 4, the Hex-S and Tet-1O

configurations required interfacing pyramids, (Pyr-9) with dropped midnodes. In this case, a

full 13-node pyramid has the four nodes of its quad base removed. The ANSYS analysis code

recognizes these edges as linear and handles them appropriately. For comparison, the final hvo

cases illustrate the Hex-8 and Tet-10 with the midnodes not dropped. In cases 10 and 11,

respectively, Hex-12, a linear hexahedron with four quadratic edges at the interface, is directly

adjacent a fill Pyr-13 or Tet-1Oelement.

The results shown in Table 3 clearly indicate the advantage of using pyramid transition

elements over other hexahedra to tetrahedral transition methods. In the pure tension case, the

pyramid elements are able to reproduce exact results for both stress and displacement. This is in

direct contrast to non-conforming interface conditions where errors at the interface can be in the

range of 30 percent for this model. While constraint equations appear to perform well in

tension, poor performance for these equations was indicated for bending.

The results for bending also indicate favorable perfonmmce of pyramid transition

elements. While linear pyramids with tetrahedralperform poorly under bending conditions, the

results for quadratic transition pyramid are equivalent to results from all-hex and all-tet meshes

with error in the range of 2 percent.



5. EXAMPLES

Two applications where this technology has been applied are illustrated here. A thermal

finite element model of a heat sink is first considered and is shown in Figure 12. The coils,

ideally represented by hexahedral elements must interface with the surrounding material, which

camot be easily subdivided into hexahedra. Both the entire model and a close-up of the

exploded mixed element mesh are shown in Figure 12.

An electro-magnetic (EMAG) device shown in Figure 13 is next modeled using mixed

element shapes. This device is a common benchmark problem used in the EMAG industr$’.

Both the device and the surrounding air must be filled with finite elements. Fi=syre13(a) shows

the electro-maa~etic device with the air modeled as a cylindrical shape surrounding it. Figure1
13@)and Figure 13(c) show the mixed element mesh of the device and the surrounding air,

4
respectively. In this case, very high aspect ratio hexahedral elements were required to fill one

of the volumes of the device. Fi=wre 13(d) is a close-up showing the high aspect ratio pyramids

required to interface between hexahedra and tetrahedral.Use of pyramid elements in this case

reduced the number of elements needed to accurately model the device by a full order of

magnitudes. In both cases, the hex elements were first meshed, and the remaining volumes

were meshed with tetrahedral.The tetrahedral at the interface of the hex elements were then

automatically converted to pyramids to maintain compatibility.

6.’CONCLUSION

Several methods for interfacing tetrahedraldirectly with hexahedra have been presented.

The formation of pyramid shaped elements appear to be a promising alternative for resolving

incompatibilities between hexahedral and tetrahedral elements. Pyramids formed as a post-

process to the formation of tetrahedralusing tetrahedral transformations, in practice, provided

the best quality elements. Where local topolo~cal conditions did not permit successful

tetrahedral transformations, the pyramid open method was employed. Experimental results

showed that the pyramid open method was used in about 10 percent of the cases. Also required

was an additional step of smoothing and topological improvement operations to ensure elements

\vere of acceptable quality for finite element analysis. Uniaxial tension and bending tests

indicated that pyramid transition elements were in all cases superior to non-conforming

12



interface conditions.

constraint methods.

Pyramid transitions were also shown to be superior to multi-point
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Figure 3. Exploded view of pyramid transitions defined within first layer of
hexahedra. Tetrahedral (not shown) meet at triangle faces
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Figure 9. Division of a pyramid into four tetrahedral for pyramid shape
metric.



Figure 10. Exploded view of pyramids formed using a combination of
tetrahedral transformations and pyramid opens. Hexahedra (not shown)

adjacent to quad faces.
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(a)

(b)

Figure 11. (a) Finite element model used for tests. (b) Exploded view of
pyramids at the interface. Tetrahedral have been removed.



Figure 12. Heat Sink finite element model using tet, hex and pyramid
elements.
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Figure 13. EMAG benchmark problem modeled with pyramid interface
elements
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II %Error
Elements in

Model*
Tension I Bending

II I Displacement I Stress I stress

I 1 I Hex-8 f exact I exact I 0.91

2 Tet-10 exact exact 1.47

3 Pyr-13 exact exact 1.77

*xxx-n refers to element shape xxx with n nodes

Table 1. Comparison of FEM results for, all-hexahedra, all-tetrahedra and
all-pyramid mesh.



.

Tet I Num. elems

kMin. metric

Avg. metric

Pyr Num. elems

t%=

Initial Mesh Pyramids Smooth Topological Final smooth
(tets only) inserted Improvement

660 t 627 627 623 623

.586944 . .000016 .184845 .407329 I .414901

.814500 ‘ 1.806665 1.825427 1.826503 I .835560 I

NIA .799915 .757268 .757268 .769436

N/A .835968 .822949 .822949 .833507

Table 2. Comparison of element shape metrics after improvement
operations performed.



..

Elements in Model* YO Error

Vol 1 Vol 2 Interface Tension Bending
Condition

Displacement Stress Stress

1 Hex-20 Tet-1 O Pyr-13 ‘ exact exact 2.30

2 I ~Tet-9 31.3 34.1 I 28.3

3 “ Te\-10 + CE ord 10< ord 10+ I 44.1

4 Hex-8 Tet-1 O Pyr-9 exact exact I 3.88
+

5 I Tet:7 16.5 29.3 , I 26.1

6 { Pyr-13 + CE exact exact .04

7 Tet-10 + CE exact exact 40.0

a Hex-8 Tet-4 Pyr-5 exact exact 33.4

9 Tet-4 10.2 7.02 33.6

10 Hex-8 Tet-1 O Hex-12 + Pyr-13 exact exact 6.41

11 Hex-12 + Tet-9 30.5 34.7 44.7

*xxx-n refers to element shape xxx with n nodes

Table 3. Comparison of FEM results under various hexahedra to tetrahedral
interface conditions
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