FEB 23 20m
SANDIA REPORT

~ SAND99-0631
~_Unlimited Release

i
[}




Issued by Sandia National Laboratories, operated for the United States Depart-ment of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Govern-ment, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency
thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O.Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http://www.ntis.gov/ordering.htm

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A0l




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.



SANDS9-0631
Unlimited Release
Printed March 1999

Modeling the Responses of TSM Resonators under
Various Loading Conditions

Helen L. Bandey, Stephen J. Martin and Richard W. Cemosek
Microsensors Research and Development Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1425

A. Robert Hillman
Chemistry Department
Leicester University
Leicester, LE1 7RH, UK

ABSTRACT

We develop a general model that describes the electrical responses of thickness shear
mode resonators subject to a variety of surface conditions. The model incorporates a physically
diverse set of single component loadings, including rigid solids, viscoelastic media, and fluids
(Newtonian or Maxwellian). The model allows any number of these components to be combined
in any configuration. Such multiple loadings are representative of a variety of physical situations
encountered in electrochemical and other liquid phase applications, as well as gas phase
applications. In the general case, the response of the composite load is not a linear combination
of the individual component responses. We discuss application of the model in a qualitative
diagnostic fashion to gain insight into the nature of the interfacial structure, and in a quantitative
fashion to extract appropriate physical parameters such as liquid viscosity an/d density, and

polymer shear moduli.
KEYWORDS

Thickness-shear mode resonator; quartz crystal microbalance; viscoelasticity; polymers;
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INTRODUCTION

The thickness-shear mode (TSM) resonator, also known as the quartz crystal
microbalance (QCM), and its electrochemical variant the EQCM are now mature techniques,
routinely used to provide a wealth of thermodynamic and kinetic information on interfacial
processes, in the latter case occurring under electrochemical potential control. In the simplest
situation (that of a rigidly coupled film), the EQCM functions as a gravimetric probe of surface
populations. However, it is increasingly recognized that many systems of interest - notably
polymers - do not conform to this requirement. A number of publications (reviewed below) have
considered isolated examples of cases that fall outside the “rigidly coupled film” scenario, and the
topic has attracted considerable debate.! The purpose of this paper is to initiate a unified
treatment ultimately capable of handling all physical circumstances likely to be encountered. This
includes rigid and viscoelastic films, of finite or infinite extent, and fluids. Furthermore, we
address the practically important situation that the resonator is loaded with more than one type of
layer, as is almost invariably the case in an in situ electrochemical experiment. To our knowledge,
a general model with these capabilities has not previously been described.

Characterization of thin films, rigidly coupled to the surface of quartz thickness-shear
mode (TSM) resonators, is a well understood process. Frequency changes (Af) of the resonator
upon addition of mass can be directly related to the areal mass density (Am) via the Sauerbrey

equation:2

Af=—[ 2 JAmff (1)
PgVq

where p, and v, are the quartz density and wave velocity, respectively, (Table 1) and f; is the
frequency of the unperturbed device. The Sauerbrey equation has been used very successfully for
almost forty years to describe a wide range of “rigid film” situations. Initially, it was used to
interpret TSM resonator data in solid/gas phase situations, typified by “thickness monitors” for
metal deposition. This approach has subsequently formed the basis for the interpretation of TSM
resonator data associated with the deposition and subsequent manipulation of a wide variety of
films at the resonator surface.

Initially it was believed that the addition of a liquid to one side of the quartz resonator

would result in excessive energy loss to the solution from viscous effects, to the extent that the
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crystal would cease to oscillate. In 1980 Nomura et al.3 were first to prove this incorrect,
demonstrating that the TSM resonator had potential applications for chemical sensors in the liquid
phase. This capability opened up the door to a wide range of in situ studies, including measuring
properties of the contacting solution. Most notable among these developments was the
electrochemical quartz crystal microbalance (EQCM) where one of the resonator electrodes is
used as the working electrode in a conventional three-electrode electrochemical cell. 46

Today, many of the materials studied on acoustic wave devices are not rigidly coupled to
the electrode surface. For example, polymers, whose range of useful physical and chemical
properties promise many potential applications, may show viscoelastic behavior. In the
electrochemical context, materials are studied and applied in situ, i.e., exposed to solution, in
which case films on the EQCM may not exhibit rigid behavior. The Sauerbrey approximation was
not intended or envisaged to cover such situations, so its application requires appreciable care.

Crystal impedance is a technique that gives information on the deviations from rigidity of
surface-bound films. It involves using an impedance analyzer to determine the spectrum over a
specified frequency range in the vicinity of crystal resonance. By comparing the shape of the
spectrum of the perturbed resonator to that of the unperturbed device, one can explore the
validity of the Sauerbrey approximation. A translation towards lower frequency with no change
in the shape of the spectrum is characteristic of a rigidly coupled mass layer. However, damping
of the signal is characteristic of a lossy material, e.g., fluid or viscoelastic material.

Quantitatively, one can study crystal impedance data by using equivalent circuit analysis in
which the electrical output of the resonator is subsequently related to the mechanical properties of
the surface perturbation. Recently, use of equivalent circuit analysis to probe the resonator’s
electrical properties has opened up a new avenue of enquiry, yielding information on the physical
properties of not only rigid mass layers, but also viscoelastic layers and liquids.”-1¢ In this paper
we present a general model for describing the physical properties of a range of chemically and
physically distinct systems on the surface of a TSM resonator. Unlike previous treatments, we
extend the models to multi-layer systems, showing how physical parameters can be obtained for
each individual layer. This allows us to describe almost any system on the TSM resonator and

extract relevant physical parameters.



THEORY

The TSM resonator consists of a thin disk of AT-cut quartz with metal electrodes
deposited on both faces (Figure 1). Owing to the piezoelectric properties and crystalline
orientation of the quartz, the application of an external electrical potential between these
electrodes produces an internal mechanical stress and consequently a shear deformation of the
crystal. If an alternating electric field is induced perpendicular to the surface of the crystal, the
deformation will oscillate at the frequency of the applied field. The maximum amplitude of
vibration occurs at the mechanical resonant frequency of the crystal (this corresponds to a crystal
thickness that is an odd multiple of half the acoustic wavelength). If a medium contacts one or
both of the resonator surfaces, the oscillating surface(s) interact mechanically with that medium.
Owing to the electromechanical coupling that occurs in the quartz, the mechanical properties of
the contacting medium are reflected in the electrical properties of the resonator. The object of
this paper is to relate the electrical properties of the resonator to the mechanical properties of the

contacting medium in order that the latter may be extracted from measurements of the former.

Side
view

Top
view

Figure 1. Electrode design for a typical TSM resonator.

A one-port electrical device is characterized by its input electrical impedance, Z, measured
over a range of excitation frequencies, f In practice, this is commonly accomplished using an
impedance analyzer that excites the TSM resonator with a controlled amplitude incident voltage
and measures the reflected signal over a range of frequencies around crystal resonance. The ratio
of reflected to incident voltages is denoted by the scattering parameter Sy;; this is a complex
quantity, representing both the magnitude ratio and phase relation between the incident and

reflected signals. The input impedance is found from $; by!?
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where Z, is the characteristic impedance of the measurement system (typically 50 Q).

Transmission-Line Model. The most accurate electrical representation to date for a
piezoelectric bulk-wave resonator is given by the transmission-line model based on a three-port
Mason model (Figure 2).17- 18 There are two acoustic ports that represent the two crystal faces.
These acoustic ports are connected by a transmission-line that represents the phase shift and loss
experienced by an acoustic wave propagating across the quartz thickness. A 1:N' transformer,
representing the electromechanical coupling between the applied voltage (at A-B) and quartz

shear displacement (at C-D), couples the acoustic ports to the electrical port.

Quartz Resonator
[piezoelectric]

hj2

Figure 2. Transmission-line representation!? of a TSM resonator with one stress-free and one loaded

surface.

Mechanical loading of the quartz resonator is represented by a mechanical impedance, Z;,
which is the ratio of surface stress to particle velocity at the device surface:
Z,=—=> G3)
Ve | ymo
where T, is the sinusoidal steady-state shear stress (force per unit area in the x-direction on a y-
normal plane) imposed on the contacting medium by the resonator, and v, is the resulting x-

directed surface shear particle velocity (Figure 3).
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Figure 3. Cross-sectional view of an unperturbed TSM resonator where T, is the surface shear stress,

vy is the resulting particle velocity and uy is the resulting particle displacement in the x-direction.

For the unperturbed quartz crystal, both of the surfaces inay be considered as stress-free
boundaries (neglecting electrode mass) which gives Z; = 0, analogous to a short-circuit at both
acoustic ports. In most sensing applications, one of the ports is unloaded and acts as a short
circuit (Z; = 0), while the other is terminated by a non-zero surface mechanical impedance, Z;.
The complex electrical input impedance for the quartz resonator described by the transmission-

line model in Figure 2 is®

Z=Z,= .1 +]X+

()2

where Zcp is the complex mechanical impedance, @= 27zf (f is the excitation frequency), X is the

)

reactance of the piezoelectric interaction, N’ is the transformer turn ratio representing the quartz
electromechanical coupling, Co is the static capacitance of the resonator, and j = (-1)"
Expressions for X and N’ are defined in the literature.20 Further development of transmission-line

components leads to8

zZ, - 1 {1 K? 2tan( /2) (Z /Z) )

N jaC, g, 1- ](ZS/Zq)cot(gﬁq)
where K is the complex electromechanical coupling factor for lossy quartz (Table 1), @, is the
complex acoustic phase shift across the lossy quartz, and Z, is the quartz characteristic impedance
Z,= (ait)” Where w, is the quartz shear elastic constant (Table 1)). The electrical impedance in
eq 5 can be represented as a motional impedance, Z,, (arising from mechanical motion), in parallel
with C, as & 19

SN YN Y2 Y\

" jaC, | 2tanlg, /2) 4K*aC, 2tan(g, /2)
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The first term in eq 6 represents the motional impedance for the unperturbed resonator (Z,.),

while the second term represents the motional impedance created by the surface load (Z,,).

Permittivity, &,(A”s* g” cm™) 3.982 x 102
Viscosity, 77, (g cm™ s™) 3.5x10°%
Shear elastic constant, 4, (dyne cm™) 2.947 x 101
Density, p, (g cm™) 2.651
Electro mechanical coupling factor, K> 7.74 x 1073
Wave velocity, v, (cm s™) 3.34 x 10°

Table 1. Properties of AT-cut quartz.2*

The Unperturbed Resonator. For an unperturbed resonator operating at frequencies
near the mechanical resonance (¢ = N7), the transmission-line model can be simplified to get an
expression in terms of lumped-elements. By using the identity tan(¢,/2) = 4¢,/[(Nz)* - ¢,°] and
¢, = [(V2)* - 8K*V/(1 + j&) where £= an/p4,, and assuming that 8K* « (N7z)’ and w= @, the first
term in eq 6 can be approximated as!®

KZ
Z) = 1 ¢"/ ~1{~R +jolL, + ,1 @)
jaC, | 2tanlg, /2) jaC,

where 77, is the effective viscosity for quartz (Table 1), @, =27zf, where f; is the series resonant

frequency for the unperturbed TSM resonator, and N is the resonator harmonic number. This
approximation describes the motional impedance for the Butterworth-Van Dyke (BVD)
equivalent circuit of an unperturbed resonator (Figure 4a with Z," = 0). It has been shown
previously that this simpler lumped-element model can be used instead of the transmission-line

representation, and the deviation between the models is negligible for the unperturbed

resonator. 19




(a) T (b) i

L Unperturbed L

1 Resonator 1
Gy e c, C,== C,
R R,
Surface ' L,

Load
1 R,
R

Figure 4. Modified Butterworth-Van Dyke equivalent circuit with (a) a complex surface impedance

element, Zm1, and (b) a motional inductance, L, and resistance, R..

The BVD model consists of a “static” and “motional” arm in parallel. The static arm consists of a
capacitance, Co*, where

Co*=C,+C, (8)
C, is the parasitic or stray capacitance, external to the quartz, due to the geometry of the test
fixture and electrode pattern. The motional arm, containing L;, C, and R,, arises due to the
electromechanical coupling of piezoelectric quartz (i.e., due to the motion of the resonating
crystal). The capacitive component, C,, represents the mechanical elasticity of the system; the
inductive component, L;, represents inertial mass changes; and the resistive component, R,
represents dissipation of energy due to viscous effects, internal friction, and damping from the
crystal mounting. The static capacitance, Co*, dominates the admittance (reciprocal of
impedance) away from resonance, while the motional contribution dominates near resonance.

The elements of the equivalent circuit for the unperturbed resonator are given by!0

c _qu ©)
0 hq
2
¢ =if,ﬂf§ (10)
1
L= (11
' w2,



Ry =—0FH (12)

where &, is the permittivity for quartz (Table 1), 4 is the effective electrode area, and A, is the

quartz crystal thickness.

The Surface Loaded Resonator. A load on the surface of a resonator can be represented
by a sﬁrface mechanical impedance, Z; (eq 3). This is shown for the transmission-line model in
Figure 2. Similarly, the lamped-element model is modified with a motional impedance, Z,', as
shown in Figure 4a. Z; is a complex quantity: the real part, Re(Z;), corresponds to the component
of surface stress in phase with the surface particle velocity and represents mechanical power
dissipation at the surface; the imaginary part, Im(Z;), corresponds to the stress component 90°
out-of-phase with particle velocity and represents mechanical energy storage at the surface.

The transmission-line model is the more accurate of the two models since it imposes no
restrictions on the surface mechanical load impedance. However, the lumped element approach is
easier to visualize and often requires less effort to extract parameters. It has been shown!? that, in
all cases, the relative deviations in the resonator parameters (Af and AR) computed by the two
models does not exceed 3% for most practical loading conditions operating at the resonator
fundamental frequency. Theoretically, if the ratio of Z; to Z, does not exceed 0.1, the lumped-
element model always predicts responses within 1% of those for the transmission-line model.
Thus the motional impedance created by a surface load (described by the second term in eq 6) can
be approximated by

Zl_¢q(Zs/Zq)[1 J'(ZS/ZQ)Iz N (zj

"~ aK’aC, | 2tan(g, /2 4K’w C, Z_q
Furthermore, Z,' is complex and can be separated into real and imaginary components (see Figure

4b):

(13)

Z,=R, +jaoL, (14)
The equivalent circuit parameters, R, and L, can be related to Z; by
Re(Z
4K'0,C, Z,




and

Im(Z
Xzza)L2=4K]2W[C mz(, :) (16)
a)s 0

q

Eq 7 can be modified to give the total motional impedance, described by the lumped-element

model, for a surface-loaded resonator:

Z, = (R, +R,)+ jor(L, +L,)+— a”n
jaC

1 PERTURBATIONS ON THE TSM RESONATOR

There are three primary surface load types that can be applied to a quartz resonator: an
ideal mass layer, a fluid, and a viscoelastic medium. The first two are special cases of the latter.
Addition of these layers to the resonator surface will present different surface mechanical
impedances, and hence change the electrical characteristics of the system. This section relates Z;
to the physical parameters of the different surface loads, not only for single-layered, but also for
multi-layered and semi-infinite systems. The different systems studied are summarized in Table 2
at the end of the section. The list is not exhaustive, but the cases presented describe the majority

| of single/multi-layered systems likely to be encountered on the TSM resonator.

Ideal Mass Layer. A film that is sufficiently thin and rigid so that there is negligible
acoustic phase shift, ¢, across the layer thickness may be approximated as an ideal mass layer, i.e.,
one that is infinitesimally thin, yet imposes a finite mass per unit area on the resonator surface. In

this case the entire layer moves synchronously with the quartz surface (Figure 5).

y

Figure 5. Cross-sectional view of a TSM resonator with a layer behaving as an ideal mass layer on the

upper surface. The acoustic phase shift across the layer is negiigible.
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The surface stress, 75, required to sinusoidally accelerate a mass layer is

T, =py, (18)
where vy, is the surface particle velocity and v, =0v,/0¢t. p is the mass per unit area
contributed by the layer ( p, = h_p,,, , where h; and p;.; are the thickness and density of the ideal
mass layer, respectively). For a sinusoidal oscillation

v, =v_e’” (19)
and

Ty = jov,,p, (20)
The surface mechanical impedance, Z;, associated with an ideal mass layer is obtained by

combining eqs 3 and 20 to give
Z, = jap, 1)
Combining eq 21 with 15 and 16 gives the motional impedance elements arising from the ideal

mass layer:22

R,=0 (22)
and
Nz s
X,=—r 23)
4K’0,C, Z,

From eqs 22 and 23, it can be seen that there is no power dissipation (R;), but only energy storage
(X>) arising from the kinetic energy of the mass layer. This energy storage is proportional to the
surface mass density.

The unperturbed series resonant frequency, f;, is defined as the frequency at which the

motional reactance is zero, i.e.,

jwsLl +

=0 24
Jjao,C, @4)

Solving eq 24 for @, and noting that o, = 27f_, gives

1
_ 25
272(L,C,)" @3

5

For the perturbed resonator with mass loading:




~_ LZfs — Zﬂzps (26)

A = =
2L, Nzuq Py )Vz

This is equivalent to the Sauerbrey equation (eq 1) when N=1.

Example. Figure 6 shows an example of the mass loading effect on the TSM resonator
electrical characteristics near resonance for a 6 MHz AT-cut quartz resonator. The curves are the
measured response for (a) the unperturbed device and (b) the TSM resonator loaded with 160 nm
SiO, layer. The primary effect of the mass layer is to translate the admittance curves towards
lower frequency without affecting the admittance magnitude. This is consistent with eqs 22 and
23 where there is only an inductive component, L,, added to the electrical equivalent circuit. This
element represents the increased kinetic energy contributed by the mass layer moving

synchronously with the resonator surface.

100 [ T T =

10

Y] (mS)

0.1

0.01

90

60

30 -

Y, (deg)

30 -

0} -
5.875 5.880 5.885 5.890
f (MH2)

Figure 6. Electrical admittance vs. frequency for a TSM resonator before and after deposition of a 160

nm SiO, layer.
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Semi-infinite Fluid. When a TSM resonator is operated in a fluid, the shear motion of
the crystal surface viscously entrains fluid close to the resonator surface (Figure 7). The velocity
field, v,, generated by this in-plane shear oscillation is determined by solving the Navier-Stokes

equation for one-dimensional plane-parallel flow:23

o%v, i
771 ayz :plvx (27)
where p; and 7; are the liquid density and shear viscosity, respectively. The solution is
v.(y,0)=v_e 7" | (28)

Eq 28 represents a damped shear wave radiated into the fluid by the oscillating device surface. y

is the distance from the surface and yis the complex propagation factor for the acoustic wave:

pA
y{“f’} A+ ) (29)

7

Substituting eq 29 into eq 28 leads to
v, (y,1)=v, e [cos(—g—) — Jsin (ﬁﬂe Jot (30)

where s the decay length of the shear wave:
%
5= (2&} (1)
wp,

We note that the decay length is related to the kinematic viscosity (77/0,) of the fluid.

y

Figure 7. Cross-sectional view of a TSM resonator with a Newtonian fluid on the upper surface.
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Newtonian Fluid Case. A Newtonian fluid is one in which the shear stress and the

gradient in fluid velocity are related by a constant, independent of amplitude or frequency. The

shear stress imposed by the resonator surface on the liquid to generate the velocity field of eq 30

ov
T, =-1n— 32
v ﬂE’FO | (32)

The surface mechanical impedance contributed by a semi-infinite Newtonian fluid is obtained by

is

combining eqs 3, 30 and 32:

jA
z, =(—“’%”—J (1+) (33)

Combining egs 15, 16 and 33 gives the motional impedance elements arising from the semi-infinite
Newtonian fluid in contact with one surface of the resonator:

_ Nz P17, %
U 4K, CZ 2

(4)

Newtonian liquid loading leads to an equal component of energy storage (X:) and power
dissipation (R;). The motional reactance, X, represents the kinetic energy of the entrained liquid
layer and results in a decrease in the frequency of oscillation. The motional resistance, R,
represents power radiated into the contacting liquid by the oscillating device surface and results in
resonance damping.

Example. When liquid contacts one face of the TSM resonator, the electrical response
changes, as described by the elements R, and X,. Figure 8 shows admittance vs. frequency data
(points) measured as the density-viscosity product (o) of a solution contacting the resonator
varies. With increasing o7, the admittance magnitude shows both a translation of the series
resonant peak toward lower frequency and a diminution and broadening of the peak. The solid
lines in Figure 8 are admittances calculated from the equivalent circuit model when best-fit X, and
R; values are included. The model accurately produces the admittance vs. frequency curves
measured under liquid loading using fixed parameters determined from the unloaded resonator.
The translation of the admittance curves arises from the reactance contribution, X5, and the

broadening and diminution of the resonance peaks arises from the resistance contribution R,.
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Figure 8. Electrical admittance vs. frequency near the fundamental resonance with glycerol (in water)
solutions contacting one side of the TSM resonator. Numbers indicate percentage glycerol. The solid

curves are fits to the measured data points.22

Similarly, Figure 9 shows the equivalent circuit parameters, R, and X5, as a function of
(o))" obtained for various glycerol/water solutions. It can be seen that the plot is linear and R, =
X>, as predicted by eq 34. The best fit from the measured response is extremely close to the

predicted response.




3.0 1 4 1 ]
R 4
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A X2 T
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Figure 9. Equivalent circuit parameters (R, and X5) as a function of (p,r;,)"2 for glycerol/water solutions
which exhibit Newtonian characteristics.

Maxwellian Fluid Case. A Maxwell fluid is one type of non-Newtonian fluid that
considers the finite reorientation time of molecules under shear stress. The fluid exhibits a first-

order relaxation process:23

_
’7(“’)‘_‘1+J-m (35)

where 7, is the low frequency shear viscosity and 7 is the relaxation time (7= 70/G. where G is
the high frequency rigidity modulus). When the strain rate is low, w7 « 1, and the Maxwell fluid
behaves as a Newtonian fluid. However, when @7~ 1, unlike Newtonian fluids, the elastic energy
cannot be totally dissipated in viscous flow and some is stored elastically. (Also it is interesting to
note that when @7 » 1, jown = G. and the fluid behaves much like a solid.)

Eq 35 can be substituted into eq 32 to give an expression for the shear stress. Then, in a
fashion similar to that used for the Newtonian fluid, eqs 35 and 29 are combined to give an
expression for the complex propagation factor:

7 =1+ jor) 36)

0

Eqs 32 and 3 then give an expression for the surface mechanical impedance for a Maxwell fluid:
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z, =[———’ “”’.”7") )
I+ jor

Combining eqgs 15, 16 and 37 gives the motional impedance elements arising from the semi-infinite

Maxwell fluid:

PR (wpmoj 49T ! (38)
4K’0,C,Z 2 J1+ (01)° \/1+(cor)2
and
X, ——, 7 (wplﬂo) ,___or 1 (39)
4K*0,C,Z, \ 2 J1+(07)? \/1 +(wr)

These statements agree with derivations by Mason in 1965.23

It can be seen that when @wr « 1, eqs 38 and 39 reduce to those of a semi-infinite
Newtonian fluid (eq 34). When @ris not negligible, R, > X5.

Example. Figure 10 shows the motional impedance parameters computed for fluids with

different viscosities showing the influence of molecular reorientation time.

1 ~ ¥ 1 i

te+d L | — R, (Maxwellian)
E | — — X, (Maxwellian)
..... R,, X, (Newtonian)

g
X' te+3 | AN -
& : N\ ]
x ]
AN
N\ U
\ -
fet+2 | \ \ E
: 1 I 1 \1 \ 3

0.01 0.1 1 10 100

Viscosity, 7, (P)

Figure 10. Computed motional impedance parameters (R, X5) for Newtonian and Maxwell fluids as a

. function of static viscosity and high frequency rigidity modulus: G,, = (a) 3 x 10, (b) 1 x 10° and, (c) 3 x

10° dyne cm™.
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At low viscosity (70 < 0.1 P), the fluid response is characteristic of a Newtonian fluid (R, = X3).
However, as 7 increases, the response deviates from Newtonian behavior, characterized by R, >
X5, and X; eventually decreasing with increasing 77.

For many materials the relaxation time, 7, and the low frequency viscosity, 7, are a strong
function of temperature. This influences their rheological properties. Figure 11 shows the
motional resistance, R,, and reactance, X,, measured for a TSM resonator immersed in two
different synthetic lubricants. At high temperature, when @7 « 1, R; = X5, and both lubricants
behave as Newtonian fluids. At low temperature, R, > X, and the lubricants exhibit Maxwell fluid
characteristics. The lubricant containing the polymeric additive used as a viscosity enhancer

shows significantly more non-Newtonian behavior than the base stock.

20 — — .
—o— R, - oil base stock
-.o - Xo - oil base stock
10 - —e— R, - oil plus additive | 4
o. --m - Xy - oil plus additive
g b
i‘; 5k i
x
< Ll _
2 i .
Ry > X, R, =X,
Maxwellian [Newtonian
Fluid Fluid
1 | . -t N . 1 s .
-30 0 30 60
T (°C)

Figure 11. Experimental motional impedance parameters (R,, X,) for two synthetic lubricants as a

function of temperature.24

Viscoelastic Layer: Finite Thickness Case. A finite viscoelastic layer is one with a film
thickness smaller than several decay lengths so that the shear acoustic wave generated at the
resonator/film interface is reflected at the film/air interface (Figure 12). Therefore, the surface

mechanical impedance is dependent upon the phase shift and attenuation of the wave propagating

18
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across the film, i.e., it depends upon the nature of the interference between the waves generated at

the lower film surface and those reflected from the upper (film/air) surface.

»x

Figure 12. The dynamic film response generated by the oscillating resonator surface varies with the
acoustic phase shift, ¢, across the film: (a) for ¢ « n/2, synchronous motion occurs; (b) for ¢ < =2,
overshoot of the upper film surface in-phase with the resonator surface occurs (film resonance occurs
when ¢ = #/2); (c) for ¢ > a2, the upper film surface is 180° out-of-phase. The film is the thin region at
the top; the crystal is below. The magnitude of shear displacement in the quartz and the film are scaled
to iliustrate the differing effects.
Shear displacement in a viscoelastic layer can be described by the equation of motion!?
O*u .

G—ay;‘ = pii, (40)
where G is the complex shear modulus (G = G' + jG", where G' is the storage modulus and G" is
the loss modulus) and pris the film density. This equation can be solved to give the displacement,
u, in the film as a function of distance from the resonator surface and time. The solution is a

superposition of waves propagating in opposite directions due to reflection at the film/air

interface:
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u, (1) = (e + Ber? ) @

where A and B are constants and y is the complex wave propagation constant (determined by

%
yzja)[%) 42)

substituting eq 41 into eq 40):

Two boundary conditions are applied to solve for 4 and B in eq 41:
(1) u.(0)=u,, ie., continuity of particle displacement at the resonator/film interface; and

@) Tylhs)=0 ie., the upper film surface is stress free.

hyis the film thickness. After solving for 4 and B, eq 41 can be written as

rlng-») -rlns-»)
ux(y,t)=um[e e }“" (@3)

e’ +e
By substituting expressions for v, and 7, into eq 3, an expression for the surface mechanical

impedance seen at the resonator/film interface is obtained:!!
Z, =(Gp, )" tanh(yh,) (44)

The hyperbolic tangent of the complex argument, y#; in eq 44 makes it difficult to separate the
load impedance, Z,., into its real and imaginary components, R, and X, except in a few limiting
cases. Thus, it is customary to treat the finite viscoelastic layer as having a single lumped-element
complex electrical impedance.

When the phase shift, ¢-[¢ = Re(shy)], across the film is small, the film’s upper surface
moves synchronously with the resonator surface (Figure 12a). Since the shear displacement is
uniform across the film, no elastic energy is stored or dissipated due to inertial effects. In this
regime, the device response is insensitive to G, and only dependent upon the layer mass, p; as
described previously. When the phase shift across the film becomes appreciable, the upper film
surface lags behind the driven resonator/film interface (Figure 12b). Significant elastic energy is
stored and dissipated. In this case, the resonant frequency and damping depend upon film
thickness, density, and shear elastic properties.

When ¢r= 772, i.e., the film thickness is one-quarter of the shear wavelength, a resonance
effect is created within the film causing maximum coupling of acoustic energy from the TSM

resonator to the film. At this point, the interaction between the resonator and film exhibits
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characteristics of coupled resonators.!l Dramatic changes in the motional impedance occur at
film resonance due to the enhanced coupling of acoustic energy into the film. Film resonance
effects have been recently demonstrated during the electrodeposition of polymer films by varying
726, 27 Film resonance can also be achieved by varying G or pr (e.g., as they change with
temperature).® 11 As ¢ surpasses #/2, the upper and lower surfaces go from an in-phase to an
out-of-phase condition (Figure 12c).

Example. The change in film dynamics with @-has a profound effect on device response
as exemplified by Figure 13. This shows the admittance magnitude data vs. frequency for a 3 um
trans-polyisoprene film on a 5 MHz TSM resonator operating in the third harmonic as a function
of temperature. The shear modulus, G, of the film is altered by varying the temperature, thus
allowing ¢-to go through /2 and exhibit film resonance. Film resonance is indicated by a jump in
the admittance peak to higher frequency. Figure 14 shows the corresponding parametric plot (R
vs. X3) for the data of Figure 13 fitted to the lumped element equivalent circuit of Figure 4.
Resonance is observed when the conductance reaches a minimum (resonant resistance, R,

reaches a maximum).

Figure 13. Admittance magnitude vs. frequency as a function of temperature for a 3 gm trans-

polyisoprene film on a 5 MHz AT-cut TSM resonator operating in the third harmonic.
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Figure 14. Equivalent circuit parameters (R, and X;) as a function of temperature for the data in

Figure 13. The lower plot is a parametric representation of R, and X,.
Viscoelastic Layer: Semi-infinite Case. If the viscoelastic layer is sufficiently thick, or
the moduli values are such that the decay length is much smaller than the film thickness, then the

film behaves as semi‘infinite. Wave propagation in the semi-infinite viscoelastic medium is

unidirectional. Therefore, eq 41 can be simplified to
u (. 0)=u, 7™ (45)
In this limit, the hyperbolic tangent term in eq 44 is equal to one [tanh(y#)—>1]. The surface

mechanical impedance is then represented by
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Z,=Gp,)" (46)

By combining eqs 15, 16 and 46, the equivalent circuit elements can be obtained:

Nz [pf(lG|+G'>r

= 47
' 4K’0,C,Z, 2 S
and
1
Nz [p,(G-G) 7"
7 = (48)
4K’w]C,Z, 2

where |G| = [(G’)* + (G"A". It is possible to invert eqs 47 and 48 so that film storage and loss
moduli can be extracted directly from experimentally determined values of R; and L,.

Example. Figure 15 shows the theoretical response for a 10 MHz resonator using the
lumped-element model of Figure 4 for a viscoelastic layer where G'= G" = 10’ dyne cm™ and pr=
1 g cm®. It can be seen that for thicknesses above 4 um, the electrical equivalent circuit
parameters (R, and X>) are not dependent upon 4y i.e., the film is behaving as semi-infinite and the
TSM resonator is not “seeing” anything beyond this thickness. In this case there would be no

reflection at the film/air interface.
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Figure 15. Theoretical equivalent circuit parameters (R, and X;) versus film thickness for a
viscoelastic layer where G' = G" = 10’ dyne cm? and o= 1 g cm™. The film becomes semi-infinite for

hi>4 am.
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Linear Multiple Loading. In general, surface loads on the TSM resonator consisting of
multiple combinations of mass layers, liquids and viscoelastic layers cannot be treated in a linear
fashion. However, for an ideal mass layer present at the quartz interface, displacement is constant
across that layer. Thus, the impedance of a composite, consisting of an ideal mass layer at the
resonator surface plus some other perturbation, is the sum of the impedances of both loads
considered separately. This is demonstrated for a resonator loaded with an ideal mass layer on the
surface with a semi-infinite Newtonian fluid on top.10. 22 Figure 16 shows the acoustic

displacement for a TSM resonator under this loading condition.

y

Figure 16. Cross-sectional view of a TSM resonator with an ideal mass layer plus semi-infinite

Newtonian fiuid on the upper surface.

The surface mechanical impedance is represented by the sum of eqs 21 and 33:
wp,1, &
Z.=jop, +| | (+)) (49)

The equivalent circuit parameters can be extracted as before to give:

%

122 — 2N7[ (ws/’zﬂz (50)

4K 0.C,Z, 2

and

]

Nz @, P17, )A
L = : +@ 51
g 4K2a)fCqu( 2 P 1)

From egs 50 and 51, it can be seen that the addition of the ideal mass layer only affects the

inductive component (inertial mass) as expected, while fluid properties affect both inertial mass
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and viscous damping equally, as before. Z,' is dependent upon the surface mass density, p,, of
the ideal mass layer and the density, g, and viscosity, 77, of the liquid. Similarly, solutions can be
obtained for resonators loaded with an ideal mass layer plus Maxwell fluid or viscoelastic material
(finite or semi-infinite). For simplicity, these solutions are summarized in Table 2.

Example. Figure 17 shows the theoretical responses using the lumped-element model of
Figure 4 for a 10 MHz device for (a) an unperturbed resonator, (b) fluid loading only, and (c) an
ideal mass layer plus fluid loading. As shown previously, the effect of adding a fluid onto the
resonator surface is to decrease the frequency and increase the damping of the spectrum. In
addition, the ideal mass layer translates the spectrum towards lower frequency without damping
the resonator response. It is possible to separate the physical properties of the two layers due to
the linear relationship between the energy storage and power dissipation for a Newtonian fluid.

Any excess storage can be attributed to the ideal mass layer.

1e-2 F T T T T T
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I 3
2 te3 31e-3 £
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Figure 17. Theoretical admittance response (magnitude and phase) using the lumped-element model

of Figure 4 for a 10 MHz TSM resonator: (a) an unperturbed resonator, (b) fluid loading only (¢) an ideal
mass layer plus fluid loading. =149 cm™ and m=1cP.
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Non-linear Multiple Loading. In the preceding example, the surface mechanical
impedance was the sum of the contributions from the individual layers. In general, multiple layers
do not add algebraically, but combine in a non-linear fashion. The simplest and most commonly
used example of a non-linear system is that of a finite viscoelastic layer with a Newtonian fluid on top
(Figure 18). This is representative of a non-rigid, surface-bound film exposed to a solution. Due to the
phase shift across the viscoelastic layer, the total impedance is not equal to the sum of the characteristic
impedances of the individual layers. Instead the surface mechanical impedance is represented by!4

I Z™4 coshlyh, )+ 27" sinh(yh,)
*T | ZP coshlyh, )+ Z sinh(yh, )

(52)

where Z/™“ is the characteristic mechanical impedance of a Newtonian fluid as described by eq 33;
and Zsﬁl"’ 1s the charactenstic impedance of a viscoelastic film as described by eq 46. The real and
imaginary parts of the complex surface impedance are substituted into eqs 15 and 16 to determine
equivalent circuit elements (R, and X5). Then Z,' is dependent upon the density, o, and the viscosity,
7, of the Newtonian fluid and the shear modulus, G, density, p; and thickness, 45 of the viscoelastic
film.

Figure 18. Cross-sectional view of a TSM resonator with a finite viscoelastic layer plus semi-infinite
Newtonian fluid on the upper surface.
Eq 52 can be generalized to account for any number of viscoelastic layers on the TSM
resonator:$- 14
(n+1) () g, (m) () o3 (n) g, (n)
Z,; cosh(;/ h; )+ZC smh(y h; )
() () 3, () (n+1) o3 (n)7,(n)
A cosh(y hy )+ZC smh(;/ h; )

Z" = Zin)‘: (53)

where Z,”” and Z."*" are the characteristic impedances for the viscoelastic layers as shown in Figure

19 and described by eq 46. The procedure is to stack the layers, starting with a knowledge that the top
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(outermost) of the composite resonator is stress free (or in contact with a semi-infinite fluid), and work
towards calculating the surface mechanical impedance at the resonator/film interface. This makes it
possible to study the effects of many viscoelastic layers on the surface of the TSM resonator, although
characterizing or extracting the density, thickness, and shear moduli of the individual layers would be
difficult due to the increasing number of parameters. It should be noted that if Z,*) = 0 in Figure 19,
1.e., there is only one viscoelastic layer present, then eq 53 will reduce to eq 44 for a finite viscoelastic
layer (Z," P =22 =0).

characteristic impedance

layer impedance of interface
n+1 Zm zZm™
4 an-H
I
n zZn
. (4 * an
Y /V
A A
AZ°
I
2 Z?2
(4 * Zsz

44—
Surface stress, Txy

Figure 19. Model for calculating the mechanical impedance imposed on a TSM resonator by muitiple
viscoelastic layers.

The surface mechanical impedance model given by eq 53 and illustrated in Figure 19 also can
be used to represent viscoelastic films with non-homogeneous moduli or density. Such could exist for
a polymer film in which a solvent diffuses slowly into the bulk over time; the outer portion of the film is
more plastic than polymer near the resonator. In this case, the polymer film can be divided into several
segments, each with a graded modulus and density. An effective surface mechanical impedance is then
computed. Any layered system of viscoelastic films and fluids (or a system with interspersed mass

layers) can be treated with this non-linear model.
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Combinations of Linear and Non-linear Loadings. Figure 20 shows the shear
displacement of a TSM resonator loaded with three different layers: an ideal mass layer next to the
resonator, a viscoelastic layer, and a semi-infinite Newtonian liquid on top. The surface mechanical
impedance for this system is simply eq 52 for the viscoelastic layer with liqmd overlayer plus the
contribution from the ideal mass layer (eq 21). The final expression for Z; can be extracted from the
last entry in Table 2 usingn =1 and Z7*D from eq 33 for a Newtonian liquid. Note here that values of
n are assigned only to the layers that contribute to the non-linear loading, and the mass layer is treated
separately. Having an expression for Z,, eqs 15 and 16 are again used to describe the electrical
components for the equivalent circuit representation. Z,' is dependent upon the surface mass density,
Ps, of the ideal mass layer; the shear modulus, G, density, g5 and thickness, #;; of the viscoelastic film;
and the density, o, and viscosity, 7;, of the Newtonian fluid.

Figure 20. Cross-sectional view of a QCM with an ideal mass layer plus finite viscoelastic layer plus semi-

infinite Newtonian fluid on the upper surface.

Example. For this example, we choose to look at the electrochemical deposition of poly(2,2'-
bithiophene) (PBT) conducting polymer films onto 10 MHz AT-cut quartz resonators with gold
electrodes. This system has been previously studied’ and by a stepwise process shear moduli values
for the polymer film were exﬁacted. The 1deal mass layer accounts for any trapped material in surface
roughness features (entrapped material moves synchronously with the resonator surface and so can be
treated as an ideal mass layer); the fluid represents the deposition solution; and the viscoelastic layer
represents the polymer film. The solution used was 5 mmol dm™ bithiophene, 0.1 mol dm™

tetraethylammonium tetrafluoroborate in acetonitrile and the deposition potential, £, was 1.125 V.
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Figure 21 shows the crystal impedance spectra acquired dynainically during the course of the
deposition process. Upon application of the potential step (£ = 0 to 1.125 V), the resonance moves to
lower frequency and the peak admittance decreases. This is consistent with the deposition of a film in

which there is substantial energy loss, i.e., a viscoelastic PBT film.

8 1 1

uncoated crystal

J1.125 V 3 mins A“<<— in solution
oV |

Real Y (mS)

9.815 9.920 9.925 9.930 9.935 9.940
f (MHz)

Figure 21. Crystal impedance spectra acquired during the electrodeposition of poly(2,2-bithiophene).
Solution 5 mmol dm™ bithiophene, 0.1 mol dm™ tetraethylammonium tetrafluoroborate, acetonitriie. £ =
1.125 V. Numbers indicate time (min) from application of potential step.7

This complex three-layer model is of significant value if the parameters of interest (in this case
the shear modulus of the film) can be extracted. As can be seen from Table 2, there are many
parameters that need to be predetermined in this model in order to extract unique values for the film
shear modulus. This can be accomplished in a stepwise manner. First, the deposition solution is
characterized so that o7 and p; are determined as indicated previously for an ideal mass layer in
contact with a Newtonian fluid. The values obtained were pi7; = 0.00289 g° cm™ s (theoretical =
0.00283 g’ cm™ s7)28 and p, = 1.03 g cm™. Assuming a density of 1 g cm”, this corresponds to an
effective roughness thickness of 10.3 nm. Taking pr=1 ¢ cm” and calculating hy from the charge
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passed during deposition, one can now simplify the problem so the only undetermined parameters are
G' and G". Figure 22 shows the resulting G values obtained as a function of deposition time for this
system using this model. Extracted moduli are much as expected, starting as a liquid like medium (G”
» G’ where G" = on ~ 2 x 10° dyne cm™ for this system as indicated on Figure 22) and approaching a

rubbery polymer (G'~ G").
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Figure 22. Storage (G',0) and loss (G",0) moduli as a function of deposition time (polymer coverage)
computed from the spectral data in Figure 21.

It should be stated that not all mass layers that are part of a multi-layer surface load on a
resonator can be treated linearly when determining surface mechanical impedance. The simple linear
loading applies only for elastically coupled layers adjacent to the TSM resonator. If a fnass layer 1s
interspersed among viscoelastic layers, the stack must be treated non-linearly using eq 53. As a simple
example, if a mass layer is deposited on top of a polymer layer, the complete surface mechanical
impedance of the two layer system required Z.""" = jwp, to be used. When uncertain about
application of linear and non-linear loading contributions, a worthwhile practice is to always treat every

layer as a viscoelastic medium using eq 53, and then apply simplifying mathematical constraints.
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DISCUSSION

The models we have described offer several aspects of sophistication over and above those
previously available. First, they allow one to combine multiple loading elements. This is a
necessity for describing any in situ electrochemical experiment, biosensor system, or multi-phase
fluid/deposition monitor. Second, it allows smooth transition between finite and semi-infinite
films when characterizing a system. This is frequently encountered during a deposition
experiment at fixed conditions as the film thickness increases, or during a temperature ramp
experiment at fixed film thickness. Third, the expressions for surface mechanical impedance
readily lend themselves to diagnostic use. For example, one can explore resonator responses
while varying such parameters as film thickness or surface finish, respectively, to distinguish finite
vs. semi-infinite behavior, or “surface entrapped” vs. bulk liquid behavior. Fourth, the model
provides a relatively transparent link between experimental observations (resonator electrical
response) and useful physical parameters intrinsic to the materials used, notably shear moduli and
liquid viscosity. This allows study of direct chemical interactions as they relate to mechanical or
acoustic characteristics.

We recognize there are certain features and situations that are not covered by the
description we offer. First, we have not discussed the case of non-homogeneous layers that are,
in one way or another, composites of some sort, e.g., the case of macroscopically porous
materials permeated by fluids of (necessarily) very different rheological characteristics. Second,
we have not considered in detail the case of spatially inhomogeneous films, whether in terms of
structure, density, or viscoelasticity. Third, we have not explicitly described film resonance
effects, which have been observed in several polymer systems.8: 26, 27 Nevertheless, we believe
that the generality and simplicity of the model, coupled with the relatively simple diagnostic
characteristics associated with the various cases, make it applicable to a wide variety of systems
and circumstances encountered in interfacial studies. Further, we envisage subsequent extension,

as guided by experiment, to incorporate these more complex situations.
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CONCLUSIONS

We have developed an equivalent circuit model describing the surface mechanical
impedance of several TSM resonator loads. These include rigidly coupled films and non-rigidly
coupled loadings of finite or semi-infinite extent. Important examples of non-rigid loadings
include Newtonian or Maxwell fluids and viscoelastic solids, of which polymers are a very
important class. The model is capable of converting measured electrical impedance data through
surface mechanical impedance to materials properties, such as viscosity, density, and shear
modulus. In the case of finite loading elements, film thickness may also be determined.

The model is extended to a range of multi-element loadings, which may be linear or non-
linear dependent upon the materials involved and location of layers. Specifically, we develop
expressions for two-layer loadings, such as a rigid film with a liquid overlayer and a finite
viscoelastic film with liquid overlayer, and for three-layer loadings, such as a rigid layer with a
finite viscoelastic overlayer and a liquid above that. However, we also demonstrate the general
procedure for resonator loading with an arbitrary number of rheologically distinct overlayers.

For the cases explored, we provide many experimental examples from diverse interfacial
structures and processes involving a wide range of materials. The success of the model in

handling these physically diverse cases suggests its general utility.
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SUMMARY

Surface Physical Example | Surface Mechanical Impedance (Z;) Variable
Perturbation Parameters
unperturbed air 0 -
ideal mass layer Sol-gel film Jop, Ds
semi-infinite water @ % o,
. . 0, ] 5
Newtonian fluid (“7’—1) 1+ )
semi-infinite High viscosity jao % o, M, T
Maxwell fluid liquids (-—’i)
1+ jor
semi-infinite thick polymer film (G P, )Vz G, G", pr
viscoelastic layer
finite viscoelastic | thin polymer film (G pf)Vz tanh(y hf) G', G", ps hy 7
film
ideal mass layer + | electrochemical ' ap,1, % ) Ps: P Th
semi-infinite deposition of Ag Jjap, + (—2—) (1+)
Newtonian fluid
ideal mass layer + |oil on an unpolished jap,m % O O, Mo, T
semi-infinite surface Jjop, + (I—I_OJ
Maxwell fluid TJor
ideal mass layer + | thick polymer film jop, + (Gp ; )V o, G, G", pf
semi-infinite on an unpolished
viscoelastic layer surface
ide.al mass layer.+ thin polyme{' film jap, + (pr)% tanh(yh f) P GG,
finite viscoelastic | on an unpolished o b
layer surface
Multiple electrochemical wl Z () cosh(}r(")h}"))-é— z" sinh(;/(")hf,")) G, G" p;
viscoelastic layers | deposition of a thin Z" coshly® h}"’) + 2% sinh(y ™ h}ro) hy, p, o
polymer film
ideal mass layer + | electrochemical | 70l Z @ cosh (yh™)+ 2P sinh 2R )] | i, G', G,
multiple deposition of a thin| /¥ ™ “* | ZF cosh (P )+ 2V sinhp@rD) | | gy g o,

viscoelastic layers

polymer film on an
unpolished surface

Table 2. Summary of surface mechanical impedance (Zs) for various loading conditions on the TSM

resonator
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A
A B
C: Cl; Co; Cp; Co*

ST fs
G: G- G" Gy G™

h: by, by, b B

Uy, Uxp

ViV, Vx, Vxo

X
XZ
Y
Z: Zo;, Zg; Zus;, Zep; Zs;,

Zo: Zos Zo

NOMENCLATURE

effective electrode area (cm®)

constants

capacitance (F): motional contribution from unperturbed resonator; static;
parasitic; sum of static and parasitic

frequency (Hz): unperturbed fundamental; series resonant

shear modulus (dyne cm™): storage; loss; high frequency rigidity modulus;
shear modulus of n™ layer |

thickness (cm): quartz; film; ideal mass layer; n™ layer

J-1

electromechanical coupling coefficient

motional inductance (H): unperturbed resonator; surface perturbation
areal mass density (g cm™)

harmonic number

transformer turn ratio representing the quartz electromechanical coupling
motional resistance (QQ): unperturbed resonator; surface perturbation
reflection scattering parameter

time (s)

sinusoidal steady-state shear stress in the x-direction on a y-normal plane
(Nm™)

x-component of displacement (cm): at y=0

velocity (m s™): acoustic velocity in quartz; x-directed shear particle
velocity; x-directed shear particle velocity at y=0

reactance of the quartz piezoelectric interaction (€2)

surface load reactance (Q2)

admittance (S)

impedance (Q): characteristic impedance of measurement system (typically
50 Q); quartz characteristic impedance; complex electrical input
impedance; complex mechanical impedance; surface mechanical impedance

motional impedance (€2): unperturbed resonator; surface perturbation
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z". Z, characteristic impedance of n™ layer (Q); surface mechanical impedance

seen by n" layer

T molecular relaxation time (s)

@ ax angular frequency (27f) (Hz): series resonant (27f;)

o decay length (cm)

- 1% Pots, 21 Py p7 density (g cm®): film; ideal mass layer; liquid; quartz; n™ layer

D surface mass density (g cm?)

& dielectric permittivity of quartz (A% s* g cm™)

7. 7 complex propagation factor: of n layer

.1 g o shear viscosity (g cm™ s): liquid; quartz effective; low frequency
o P & phase angle (Radians): quartz; film

Hq quartz shear elastic constant (dyne cm™)
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